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Abstract

We present a heuristic method for compositional deadlock detection and verification of component-
based systems described in a subset of the BIP language encompassing multi-party rendezvous
without data transfer. The method consists in using automatically generated invariants to prove
non-satisfiability of the predicate characterizing global deadlocks.Two kinds of invariants are
generated. Component invariants which are over-approximations of components’ reachability
sets. Interaction invariants which are constraints on the states of the components involved in
interactions. Interaction invariants are obtained by computing traps and locks of finite state
abstractions of the verified system. The method is supported by D-Finder, an interactive tool
that takes as input BIP programs and applies proof strategies to eliminate potential deadlocks
by computing increasingly stronger invariants. The experimental results on non-trivial exam-
ples allow either to prove deadlock-freedom or to identify very few deadlock configurations
that can be analyzing by using state space exploration.
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1 Introduction

Deadlock-freedom is an essential property for the correctness of concurrent systems. It characterizes their
ability to execute some action over their lifetime. Deadlocks are the most common source of errors in
systems involving processes sharing common resources or subject to strong synchronization constraints.
System designers need scalable methods and tools for deadlock detection or verification, especially for
component-based systems. For these systems, it is essential that correctness could be checked composi-
tionally, that is global deadlock-freedom could be inferred from properties of subsystems.

The literature on deadlock analysis techniques not involving state-space exploration is relatively poor.
One direction for avoiding state explosion is through the compositional computation of deadlock preserving
abstractions e.g. [1]. There also exist results ensuring deadlock-freedom for classes of systems such as Petri
nets [2] or data flow systems [3]. Other methods for deadlock detection are based on structural analysis of
the interactions between components. These include analysis of dependency graphs between tasks [4, 5]
or heuristics for the detection of deadlocks in multi-threaded programs [6, 7]. All these methods are based
on coarse grain approximations of the behavior. They are too conservative as they often produce large
numbers of potential deadlock configurations that may not be feasible.

The paper presents a heuristic method for compositional deadlock detection and verification of component-
based systems described in a subset of the BIP (Behavior-Interaction-Priority) language [8]. In BIP, a sys-
tem is the composition of a set of atomic components which are automata extended with data and functions
written in C. In previous papers, [5, 9], we have provided sufficient conditions for deadlock-freedom based
on the analysis of dependencies between interactions in the case of pure synchronization, that is without
transfer of data. Potential deadlocks correspond to cycles of a dependency graph. We proposed to use in-
variants in order to show non-feasability of deadlocks characterized by state predicates. This paper shows
how to efficiently generate such invariants and use them for deadlock analysis. The main results are the
following:

• We propose an heuristic method for detecting potential deadlock configurations and possibly proving
global deadlock-freedom. The method consists in iteratively conjuncting the predicate characterizing
global deadlocks of a composite system with two kinds of invariants: invariants of atomic compo-
nents and interaction invariants. If the conjunction is false then the system is deadlock-free. Oth-
erwise, to eliminate unfeasible deadlocks, new invariants are computed until either the conjunction
becomes false or the method fails to establish deadlock-freedom. In this case, additional reachability
techniques can be used for deadlock confirmation.

• We provide heuristics for computing the two types of invariants. Invariants for atomic components
are generated by simple forward analysis of their behavior. These are over-approximations of the set
of their reachable states. Interaction invariants characterize constraints on the global state space in-
duced by synchronizations between components. They are computed on compositional abstractions
of the global system. They are generalizations of the notions of trap and lock used for the analysis
of deadlocks in Petri nets[2].

• The heuristic method has been fully implemented in the D-Finder toolset. D-Finder takes as input
BIP models and progressively eliminates deadlocks by generating invariants. For this, it cooperates
with two tools: Omega [10] for quantifier elimination and Yices [11] for checking satisfiability of
predicates. It is also connected to the state space exploration tool of the BIP platform, for finer anal-
ysis when the heuristic fails to prove deadlock-freedom. We provide non trivial examples showing
the capabilities of D-Finder as well as the efficiency of the method.

The paper is organized as follows. Section 2 describes the basic semantic model for the considered
subset of BIP. Section 3 presents the principle of the method. The heuristics for computing invariants for
atomic components and interaction invariants are presented in Section 4. D-Finder is described in Section
5 as well as experimental results. Section 6 presents concluding remarks and future work. Due to space
limitations, we provide proofs and experimental data in the Annex.
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2 Basic semantic model
We present a model for component-based systems used in the Behaviour-Interaction-Priority (BIP) com-
ponent framework developed at Verimag [8].

This framework has been implemented in a language and a toolset. The BIP language offers primi-
tives and constructs for modelling and composing components. An atomic component consists of a set of
ports used for the synchronization with other components, a set of transitions and a set of local variables.
Transitions describe the behavior of the component. The BIP toolset includes an editor and a compiler for
generating from BIP programs, C++ code executable on a dedicated platform.

We provide a formalization of atomic components in BIP and their composition by using interactions.

Definition 1 (Atomic Component) An atomic component is a transition system extend with data B =
(L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ), where:

• (L,P, T ) is a transition system, that is

– L = {l1, l2, . . . , lk} is a set of control locations,

– P is a set of ports,

– T ⊆ L× P × L is a set of transitions,

• X = {x1, . . . , xn} is a set of variables and for each τ ∈ T respectively gτ is a guard, a predicate on
X , and fτ (X, X ′) is an update function, a predicate on X (current) and X ′ (next) state variables.

Definition 2 (Semantics) The semantics of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ), is a transition system
(Q,P, T0) such that

• Q = L×X where X denotes the set of valuations of variables X .

• T0 is the set including transitions ((l, x), p, (l′, x′)) such that gτ (x)∧fτ (x, x’) for some τ = (l, p, l′) ∈
T . As usual, if ((l, x), p, (l′, x)′) ∈ T0 we write (l, x)

p→ (l′, x′).

Given a transition τ = (l, p, l′) ∈ T , l and l′ are respectively, the source and the target location denoted
respectively by •τ and τ•. We also write

• •l = {τ | l = τ•} for the set of transitions leading to the control location l.

• l• = {τ | l = •τ} for the set of transitions leaving the control location l.

For a location l, we use the predicate at l which is true only if the system is at location l. A state
predicate Φ is a boolean expression involving location predicates and predicates on X . Any state predicate
can be put in the form

∨
l∈L at l ∧ϕl. Notice that predicates on locations are disjoint and their disjunction

is true.
We define below a parallel composition parameterized by a set of interactions. We consider only pure

synchronizations, that is interactions do not involve data transfer between components.

Definition 3 (Interactions) Given a set of components B1, B2, . . . , Bn, where Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti
, {fτ}τ∈Ti

),
an interaction a is a set of ports, subset of

⋃n
i=1 Pi, such that ∀i = 1, . . . , n |a ∩ Pi| ≤ 1.

Definition 4 (Parallel Composition) Given n components Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti , {fτ}τ∈Ti)
and a set of interactions γ, we define B = γ(B1, . . . , Bn) as the component (L, γ, T , X, {gτ}τ∈T , {fτ}τ∈T ),
where:

• (L, γ, T ) is a transition system that is

– L = L1 × L2 × . . .× Ln is a set of control locations,

– T ⊆ L × γ × L contains transitions τ = ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by synchro-

nization of a set of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I such that {pi}i∈I = a ∈ γ and l′j = lj

if j 6∈ I
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• X =
⋃n

i=1 Xi and for a transition τ resulting from the synchronization of a set of transitions {τi}i∈I ,
the associated guard and function are respectively gτ =

∧
i∈I gτi and fτ =

∧
i∈I fτi ∧

∧
i 6∈I(X

′
i =

Xi).

Definition 5 (System) A system S is a pair 〈B, Init〉 where B is a component and Init is a state predicate
characterizing the initial states of B.

tick
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θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000
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tick1
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tick2
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Rod1 Controller Rod2

Figure 1: Temperature Control System

Example 1 (Temperature Control System) [12]
This system controls the coolant temperature in a reactor tank by moving two independent control rods.

The goal is to maintain the coolant between the temperatures θm and θM . When the temperature reaches
its maximum value θM , the tank must be refrigerated with one of the rods. The temperature rises at a rate
vr and decreases at rate vd. A rod can be moved again only if T time units have elapsed since the end of its
previous movement. If the temperature of the coolant cannot decrease because there is no available rod, a
complete shutdown is required.

We provide a discretized model of the Temperature Control System in BIP, decomposed into three atomic
components: a Controller and two components Rod1, Rod2 modeling the rods. We take θm = 100◦,
θM = 1000◦, T = 3600 seconds. Furthermore, we assume that vr = 1◦/s and vd = 2◦/s. The Controller
has two control locations {l5, l6}, a variable θ, three ports {tick, cool, heat} and four transitions: 2 loop
transitions labeled by tick which increase or decrease the temperature as time progresses and 2 transitions
triggering moves of the rods. The components Rod1 and Rod2 are identical, up to the renaming of states
and ports. Each one has two control locations and four transitions: two loop transitions labeled by tick
and two transitions synchronized with transitions of the Controller. The components are composed by using
the following set of interactions, indicated by connectors in the figure: {tick, tick1, tick2}, {cool, cool1},
{cool, cool2}, {heat, rest1}, {heat, rest2}.

In our model, complete shutdown corresponds to a deadlock. Throughout the paper we verify deadlock-
freedom of this example by taking Init = at l5 ∧ (θ = 100) ∧ at l1 ∧ (t1 = 3600) ∧ at l3 ∧ (t2 = 3600).
�

3 The Heuristic Method for Checking Deadlock-Freedom

3.1 Invariants and Their Properties
In this subsection, B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ) represents a component.
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Definition 6 (Deadlock-free States) Given a component B, we represent by DFS the state predicate
characterizing deadlock-free states

DFS =
∨

l∈L

∨
τ∈l• en(τ) where en(τ) = at l ∧ gτ

The predicate en(τ) characterizes the states from which transition τ is enabled. The following lemma
gives a useful characterization of DFS.

Lemma 1 Given a component B,
DFS =

∧
l∈L(at l ⇒

∨
τ∈l• gτ ) =

∧
l∈L(at l ∧

∨
τ∈l• gτ )

For a component B, we recall here the definition of the post predicate transformer allowing to com-
pute successors of global states represented symbolically by state predicates. Given a state predicate
Φ =

∨
l∈L at l ∧ ϕl, we define post(Φ) =

∨
l∈L(

∨
τ=(l,p,l′) at l′ ∧ postτ (ϕl)) where postτ (ϕ)(X) =

(∃X ′.gτ (X ′)∧fτ (X ′, X)∧ϕ(X ′)). Equivalently, we have that post(Φ) =
∨

l∈L at l∧(
∨

τ=(l′,p,l) postτ (ϕl′)).
which allows computing post(Φ) by forward propagation of the assertions associated with control locations
in Φ.

We define in a similar way the preτ predicate transformer for a transition τ , preτ (ϕ)(X) = ∃X ′.gτ (X)∧
fτ (X, X ′) ∧ ϕ(X ′).

Definition 7 (Invariants) Given a system 〈B, Init〉 a state predicate Φ is

• an inductive invariant iff (Init ∨ post(Φ)) ⇒ Φ.

• an invariant iff there exists an inductive invariant Φ0 such that Φ0 ⇒ Φ.

• a deadlock-free invariant iff it is an invariant and Φ ⇒ DFS

Notice that invariants are over-approximations of the set of the reachable states from Init. We exten-
sively use the following well-known results about invariants.

Proposition 1 Let Φ1,Φ2 be two invariants of a component B. Then Φ1 ∧ Φ2, Φ1 ∨ Φ2 are invariants of
B. Furthermore, if Φ1 is a deadlock-free invariant then Φ1 ∧ Φ2 is a deadlock-free invariant too.

Example 2 For the Temperature Control System of figure 1, the predicates Φ1 = (at l1 ∧ t1 ≥ 0) ∨
(at l2 ∧ t1 ≥ 3600), Φ2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600) and Φ3 = (at l5 ∧ 100 ≤ θ ≤
1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000) are respectively deadlock-free invariants of the atomic components
Rod1, Rod2 and Controller. �

3.2 The Method
The aim is to show deadlock-freedom for systems of the form 〈γ(B1, . . . , Bn), Init〉 by using a heuristic
computing more and more precise over-approximations of the set of the reachable states.

Definition 8 (Deadlock States) We define the predicate DIS characterizing the set of the states of γ(B1, . . . , Bn)
from which all interactions are disabled:

DIS =
∧

a∈γ ¬
∧

port(τ)∈a en(τ)
where port(τ) is the port labeling the transition τ .

Example 3 For the Temperature Control System (see figure 1), we have:
DIS = (¬(at l5 ∧ θ < 1000))

∧
(¬(at l6 ∧ θ = 100) ∨ ¬at l2)∧

(¬(at l6 ∧ θ > 100))
∧

(¬(at l5 ∧ θ = 1000) ∨ ¬(at l3 ∧ t2 ≥ 3600))∧
(¬(at l5 ∧ θ = 1000) ∨ ¬(at l1 ∧ t1 ≥ 3600))

∧
(¬(at l6 ∧ θ = 100) ∨ ¬at l4)

�

The system 〈γ(B1, . . . , Bn), Init〉 is deadlock-free if the predicate ¬DIS is an invariant of the system.
Our method relies on standard invariant-based proof techniques. That is, in order to check that ¬DIS is
an invariant, we need a stronger invariant Φ such that Φ ⇒ ¬DIS or equivalently Φ ∧DIS = false.

Figure 2 presents the verification heuristic for a system 〈γ(B1, . . . , Bn), Init〉.

4/13 Verimag Research Report no TR-2008-5
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Input: S = 〈γ(B1, . . . , Bn), Init〉
Output: S is deadlock-free or has a set of potential deadlocks.
1. Find Φ an invariant of S
2. Compute DIS for γ(B1, . . . , Bn).
3. If Φ ∧DIS = false then return “S is deadlock-free” else go to 4 or 6
4. Find Φ′ an invariant of S
5. Φ := Φ ∧ Φ′ go to 3
6. return the set of the solutions that satisfy Φ ∧DIS

Figure 2: Heuristic for Deadlock Verification

Example 4 Φ = Φ1 ∧ Φ2 ∧ Φ3 is the conjunction of the deadlock-free invariants given in example 2. The
predicate Φ∧DIS, where DIS is given in example 3, is satisfiable and it is the disjunction of the following
terms:

1. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l6 ∧ θ = 100)

2. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

3. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

4. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

5. (at l2 ∧ t1 ≥ 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

Each one of the above terms represents a family of possible deadlocks. To decrease the number of
potential deadlocks, we find a new invariant Φ′ stronger than Φ, such that Φ′ = Φ ∧ Φint, where Φint is
an invariant on the states of Rod1, Rod2 and Controller induced by the interactions:

( (at l2 ∧ t1 ≥ 3600) ∨ (at l4 ∧ t2 ≥ 3600) ∨ (at l5 ∧ 100 ≤ θ ≤ 1000) )∧
( (at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600) ∨ (at l3 ∧ t2 ≥ 0)∨ (at l4 ∧ t2 ≥ 3600) )∧
( (at l3 ∧ t2 ≥ 1) ∨ (at l4) ∨ (at l5 ∧ θ = 100) )∧
( (at l1 ∧ t1 ≥ 0) ∨ (at l3 ∧ t2 ≥ 0) ∨ (at l6 ∧ θ = 1000) ∨ (at l6 ∨ 100 ≤ θ ≤ 998) )∧
( (at l1 ∧ t1 ≥ 1) ∨ (at l2) ∨ (at l5 ∧ θ = 100) )

The predicate Φ′ ∧DIS is reduced to:

6. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

7. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

8. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Finally, it can be checked by using finite state reachability analysis on an abstraction of the system
without variables, that only the first term represents feasible deadlocks, the two other being spurious. This
term characterizes deadlock configurations leading to complete shutdown. �

4 Automatic Generation of Invariants

In this section, we present techniques for computing invariants for atomic components and interaction
invariants.

Verimag Research Report no TR-2008-5 5/13
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4.1 Computing Component Invariants
We compute sequences of inductive invariants for atomic components by using the proposition below.

Proposition 2 Given a system S = 〈B, Init〉, the following iteration defines a sequence of increasingly
stronger inductive invariants:

Φ0 = true Φi+1 = Init ∨ post(Φi)

In our heuristic, we use different strategies for producing component invariants. We usually iterate
until we find deadlock-free invariants. Their use guarantees that global deadlocks are exclusively due to
synchronization.

A key issue is the efficient computation of component invariants as the precise computation of post
requires quantifier elimination. An alternative to quantifier elimination is to compute over-approximations
of post based on syntactic analysis of the predicates. In this case, the obtained invariants are not inductive.

We give here a very brief description of a syntactic technique used for approximating postτ for a fixed
transition τ . A more detailed presentation, as well as much stronger techniques for generating component
invariants are given in [13].

Consider a transition τ = (l, p, l′) of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ). Assume that its guard is
of the form gτ (Y ) and the associated update function fτ is of the form Z ′

1 = eτ (U) ∧ Z ′
2 = Z2 where

Y, Z1, Z2, U ⊆ X and {Z1, Z2} is a partition of X .
For an arbitrary predicate ϕ find a decomposition ϕ = ϕ1(Y1) ∧ ϕ2(Y2) such that Y2 ∩ Z1 = ∅ i.e.

which has a conjunct not affected by the update function fτ . We apply the following rule to compute
over-approximations postaτ (ϕ) of postτ (ϕ)

postaτ (ϕ) = ϕ2(Y2) ∧
{

gτ (Y ) if Z1 ∩ Y = ∅
true otherwise

}
∧

{
Z1 = eτ (U) if Z1 ∩ U = ∅

true otherwise

}
Proposition 3 If τ and ϕ are respectively a transition and a state predicate as above, then postτ (ϕ) ⇒
postaτ (ϕ).

4.2 Computing Interaction Invariants
As shown in example 4, component invariants do not suffice for removing unfeasible deadlocks. We need
stronger invariants called interaction invariants because they involve state variables from different atomic
components.

Consider a system S = 〈γ(B1, . . . , Bn), Init〉 and a set of invariants Φ1 . . .Φn corresponding to its
components. We show below, for each component Bi and its associated invariant Φi, how to define a
finite state abstraction αi and to compute an abstract transition system Bαi

i . Then, we compute interaction
invariants for S by analyzing, without constructing explicitely the state space, the parallel composition
Bα = γ(Bα1

1 , . . . , Bαn
n ).

4.2.1 Computing abstractions

Definition 9 (Abstraction Function) Consider an invariant Φ of a system 〈B, Init〉 written in disjunctive
form Φ =

∨
l∈L at l ∧ (

∨
m∈Ml

ϕlm) such that atomic predicates of the form at l ∧ ϕlm are disjoint. An
abstraction function α is an injective function associating with each atomic predicate at l ∧ ϕlm a symbol
φ = α(at l ∧ ϕlm) called abstract state. We denote by Φα the set of the abstract states.

Definition 10 (Abstract System) Given a system S = 〈B, Init〉, an invariant Φ and an associated ab-
straction function α, we define the abstract system Sα = 〈Bα, Initα〉 where

• Bα = (Φα, P, ) is a transition system with  such that for any pair of abstract states φ =
α(at l∧ϕ) and φ′ = α(at l′∧ϕ′) we have φ

p
 φ′ iff ∃τ = (l, p, l′) ∈ T and ϕ∧preτ (ϕ′) 6= false,

• Initα =
∨

φ∈Φα
0

at φ where Φα
0 = {φ ∈ Φα | α−1(φ) ∧ Init 6= false} is the set of the initial

abstract states.

6/13 Verimag Research Report no TR-2008-5



Deadlock Detection for BIP Saddek Bensalem Marius Bozga Thanh-Hung Nguyen Joseph Sifakis

We apply the following method presented in [14] and implemented in the tool InVeSt [15] in order to
compute an abstract transition system Bα of a component B. We proceed by elimination starting from the
universal relation on abstract states. We eliminate pairs of abstract states in a conservative way. To check
whether φ

p
 φ′, where φ = α(at l ∧ ϕ) and φ′ = α(at l′ ∧ ϕ′), can be eliminated, we check that for all

concrete transitions τ = (l, p, l′) we have ϕ ∧ preτ (ϕ′) = false.

Proposition 4 If Bα is an abstraction of B with respect to Φ and abstraction function α, then Bα simulates
B. Moreover, if Φα is an invariant of 〈Bα, Initα〉 then α−1(Φα) is an invariant of 〈B, Init〉.

Example 5 The table below provides the abstract states constructed from the components invariants Φ1,Φ2,Φ3

of respectively Rod1, Rod2, Controller given in example 2.

φ11 = at l1 ∧ t1 = 0 φ51 = at l5 ∧ θ = 100 φ31 = at l3 ∧ t2 = 0
φ12 = at l1 ∧ t1 ≥ 1 φ52 = at l5 ∧ 101 ≤ θ ≤ 1000 φ32 = at l3 ∧ t2 ≥ 1
φ21 = at l2 ∧ t1 ≥ 3600 φ61 = at l6 ∧ θ = 1000 φ41 = at l4 ∧ t2 ≥ 3600
φ22 = at l2 ∧ t1 < 3600 φ62 = at l6 ∧ 100 ≤ θ ≤ 998 φ42 = at l4 ∧ t2 < 3600

Figure 3 presents the computed abstraction of the Temperature Control System with respect to the
considered invariants.�
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Figure 3: Abstraction of the Temperature Control System.

The following proposition is a well-known result about preservation of abstraction by parallel compo-
sition.

Proposition 5 If Bαi
i is an abstraction of Bi with respect to invariants Φi and abstraction functions αi

for i = 1, ..., n , then Bα = γ(Bα1
1 , . . . , Bαn

n ) is an abstraction of B = γ(B1, ..., Bn) with respect to∧n
i=1 Φi and an abstraction function α obtained as a composition of the αi.

4.2.2 Computing Traps and Locks.

In this subsection, we provide results for computing traps and locks and the associated interaction invari-
ants. They are computed directly from the parallel composition γ(Bα1

1 , . . . , Bαn
n ) of the abstract compo-

nents.

Definition 11 (Forward and Backward Interaction Sets ) Given the parallel composition γ(Bα1
1 , . . . , Bαn

n )
where Bαi

i = (Φαi
i , Pi, i), we define for a set of abstract states Ψ ⊆

⋃n
i=1 Φαi

i

• its forward interaction set Ψ+ =
⋃

φ∈Ψ φ+ where
φ+ = {(τ1, . . . , τk) | ∀i.τi ∈ i ∧ ∃i. •τi = φ ∧ {port(τi)}k

i=1 ∈ γ}
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Input: S = 〈γ(B1, . . . , Bn), Init〉, component invariants Φi, for i = 1, ..., n
Output: Interaction invariant Φ.

1. For each Bi, compute the corresponding abstraction Bαi
i .

3. For γ(Bα1
1 , ..., Bαn

n ), compute the traps {Ψ1,Ψ2, . . . ,Ψm}
containing some abstract initial state

4. For each trap Ψk, compute the corresponding interaction invariant Φk =
∨

φ∈Ψk
α−1(φ).

5. Return Φ =
∧m

k=1 Φk

Figure 4: Computing Interaction Invariants

• its backward interaction set +Ψ =
⋃

φ∈Ψ
+φ where

+φ = {(τ1, . . . , τk) | ∀i.τi ∈ i ∧ ∃i τ•i = φ ∧ {port(τi)}k
i=1 ∈ γ}

Notice that the computation of forward/backward interaction sets does not require the explicit com-
putation of the abstract product Bα = γ(Bα1

1 , . . . , Bαn
n ). Interaction sets consist of sets of component

transitions involved in some interaction. These sets can also be viewed as transitions in a Petri net. Ψ+

(resp. +Ψ) contains sets of transitions which have some abstract state of some φ ∈ Ψ as precondition (resp.
postcondition).

Definition 12 (Traps and Locks) Given a parallel composition γ(Bα1
1 , . . . , Bαn

n ) where Bαi
i = (Φαi

i , Pi, i

), a trap (resp. lock) is a set Ψ of abstract states Ψ ⊆
⋃n

i=1 Φαi
i such that Ψ+ ⊆+ Ψ (resp. +Ψ ⊆ Ψ+).

Proposition 6 Given an abstract system Sα = 〈γ(Bα1
1 , . . . , Bαn

n ), Initα〉, if the set of abstract states
Ψ ⊆

⋃n
i=1 Φαi

i is a trap containing an initial state of some abstract component (resp. lock containing no
initial state of any abstract component) then

∨
φ∈Ψ at φ (resp.

∧
φ∈Ψ ¬at φ) is an invariant of Sα and∨

φ∈Ψ α−1(φ) (resp.
∧

φ∈Ψ ¬α−1(φ)) is an invariant of S = 〈γ(B1, . . . , Bn), Init〉.

The following result given in [16] characterizes traps and locks as solution of a system of implications.

Proposition 7 Let γ(Bα1
1 , ..., Bαn

n ) and a boolean valuation v :
⋃n

i=1 Φαi → B.
• If v satisfies the following set of the implications, then {φi}v(φi) is a trap:

{φi ⇒
∧

{τ1,...,τk}∈φ+
i

(
∨

φj∈
Sk

m=1 τ•m

φj)} for each φi ∈
n⋃

i=1

Φαi

• If v satisfies the following set of the implications, then, {φi}v(φi) is a lock:

{φi ⇒
∧

{τ1,...,τk}∈+φi

(
∨

φj∈
Sk

m=1
•τm

φj)} for each φi ∈
n⋃

i=1

Φαi

Example 6 The set of implications characterizing traps are given in section B of the appendix. From these
implications we compute the minimal traps containing initial abstract states is: Ψ1 = {φ21, φ41, φ51, φ52},
Ψ2 = {φ11, φ12, φ21, φ31, φ32, φ41}, Ψ3 = {φ32, φ41, φ42, φ51}, Ψ4 = {φ11, φ12, φ31, φ32, φ61, φ62}
and Ψ5 = {φ12, φ21, φ22, φ51}. By using proposition 6, we obtain the interaction invariant

∧5
i=1

∧
φ∈Ψi

α−1(φ)
which is exactly the invariant Φint given in example 4. �

We give the principle of an algorithm for computing traps (dually for locks) of a system S = 〈γ(B1, ..., Bn), Init〉
and a set of component invariant Φi, for i = 1, ..., n.

5 Implementation and Experimentation
5.0.3 The D-Finder Toolset

The D-Finder toolset takes as input a BIP model and computes component invariants CI . This step may
require quantifier elimination by using Omega. Then, it checks for deadlock-freedom of component in-
variants by using Yices. From the generated component invariants, it computes an abstraction of the BIP

8/13 Verimag Research Report no TR-2008-5



Deadlock Detection for BIP Saddek Bensalem Marius Bozga Thanh-Hung Nguyen Joseph Sifakis

Local
Deadlock-Free
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generation
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II ∧ CI ∧ DIS
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II Satisfiability

false
6= false-strengthen 6= false-give up

II generation
Abstraction and

Figure 5: D-Finder

model and the corresponding interaction invariants II . Then, it checks satisfiability of the conjunction
II ∧ CI ∧ DIS. If the conjunction is unsatisfiable, then there is no deadlock else either it generates
stronger component and interaction invariants or it tries to confirm the detected deadlocks by using reach-
ability analysis techniques.

5.0.4 Experimental results

The first example is the Temperature Control System extensively presented in the paper. The second exam-
ple is Utopar, an industrial case study of the European Integrated project SPEEDS (http://www.speeds.eu.com/)
about an automated transportation system. A succinct description of Utopar can be found at http://www.artist-
embedded.org/COMBEST-draft/. The system is the composition of three types of components: au-
tonomous vehicles, called U-cars, a centralized Automatic Control System and Calling Units. The latter
two types have (almost exclusively) discrete behavior. U-cars are equipped with a local controller, respon-
sible for handling the U-cars sensors and performing various routing and driving computations depending
on users’ requests. We analyzed a simplified version of Utopar by abstracting from data exchanged be-
tween components as well as from continuous dynamics of the cars. In this version, each U-Car is modeled
by a component having 7 control locations and 6 integer variables. The Automatic Control System has
3 control locations and 2 integer variables. The Calling Units have 2 control locations and no variables.
Finally, as third example, we consider Readers-Writer systems in order to evaluate how the method scales
up for components without data.

The table below gives an overview of the experimental results obtained for the three examples. For
the columns: n is the number of BIP components in the example, q is the total number of control lo-
cations, xb (resp. xi) is the total number of boolean (resp. integer) variables, D is the number of po-
tential deadlock configurations (disjuncts) in DIS, Dc (resp. Dci) is the number of potential deadlock
configurations remaining in DIS ∧ CI (resp. DIS ∧ CI ∧ II) and t is the total time for computing
invariants and checking for satisfiability of DIS ∧ CI ∧ II . Detailed results are available at http://www-
verimag.imag.fr/˜ thnguyen/tool.

6 Conclusion
The paper presents a heuristic method for compositional deadlock detection and verification of component-
based systems. The principle of the method is very simple: it consists in computing more and more precise
over-approximations of the reachability set of a composite system and showing that they do not contain
deadlock states. The method innovates in that it efficiently combines two types of invariants: invariants
of atomic components and interaction invariants. As shown through several examples, the use of only one
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example n q xb xi D Dc Dci t
Temperature Control System (2 rods) 3 6 0 3 8 5 3 3s
Temperature Control System (4 rods) 5 10 0 5 32 17 15 1m05s
Utopar System (4 U-Cars, 9 Calling Units) 14 45 4 26 - - 0 1m42s
Utopar System (8 U-Cars, 16 Calling Units) 25 91 8 50 - - 0 22m02s
Readers-Writer (50 readers) 52 106 0 1 ∼1015 ∼1015 0 1m15s
Readers-Writer (100 readers) 102 206 0 1 ∼1030 ∼1030 0 15m28s
Readers-Writer (130 readers) 132 266 0 1 ∼1039 ∼1039 0 29m13s

type of invariants does not suffice to eliminate unfeasible deadlocks. On the contrary, their combination
led either to proving deadlock-freedom or to the detection of only a few feasible deadlock configurations.

The method uses only lightweight analysis techniques that do not involve computation of fixpoints and
avoids global state space exploration. Component invariants are easy to compute by forward propagation of
predicates. The computation of interaction invariants requires the compositional computation of finite state
abstractions for components and the enumeration of solutions of systems of implications. Here there is a
risk of explosion, if exhaustivity of solutions is necessary in the analysis process. There are no restrictions
on the type of data as long as we stay within theories for which there exist efficient decision procedures.

The obtained experimental results for non trivial case studies are really convincing. The method can
be adapted to interactions with data transfer. Data transfer with finite domains, can be encoded by creating
individual interactions for each configuration of transferred data. Otherwise, the notion of component in-
variant and subsequently the notion of interaction invariant can be extended to take into account transferred
data. Finally, an interesting work direction would be to study how this methodology can be adapted to
prove safety properties other than deadlock-freedom.
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A Proofs
Proof of lemma 1 Proof: The proof is based on the fact that

∨
l∈L at l and ¬(at l ∧ at l′) for l 6= l′. �

Proof of proposition 2 Proof: By induction. Φ0 is an inductive invariant. If Φi is an inductive invari-
ant then Init ∨ post(Φi) ⇒ Φi. As post is monotonic and distributes over disjunction, post(Φi+1) =
post(Init ∨ post(Φi)) ⇒ post(Φi) ⇒ Φi+1. Moreover, Init ⇒ Φi+1. So Φi+1 is an inductive invariant.
�

Proof of proposition 3 Proof: We can over-approximate successively postτ (ϕ) as follows:

postτ (ϕ)(X ′) = ∃X. (ϕ(X) ∧ gτ (X) ∧ fτ (X, X ′))
= ∃Z1, Z2. (ϕ1(Y1) ∧ ϕ2(Y2) ∧ gτ (Y ) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2)

⇒ ∃Z2. (ϕ2(Y2) ∧ Z ′
2 = Z2)

∧
∃Z1, Z2. (gτ (Y ) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2)

= ϕ2(Y ′
2)

∧
∃Z1, Z2. (gτ (Y ) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2)

⇒ ϕ2(Y ′
2)

∧ {
gτ (Y ′) if Z1 ∩ Y = ∅
true otherwise

} ∧ {
Z ′

1 = eτ (U ′) if Z1 ∩ U = ∅
true otherwise

}
= postaτ (ϕ)(X ′)

Proof of proposition 4 Proof: We show that the relation (l, x)Rφ is a simulation if α−1(φ) = at l ∧ϕ

and ϕ(x) for the valuation x. If (l, x)
p→ (l′, x′) is a transition of B and (l, x)Rφ for some abstract state φ,

then we show that there exists φ′ = α(at l′ ∧ ϕ′) such that φ
p
 φ′. As Φ is an invariant of B, if (l′,x′) is

reachable then ∃ϕ′ at l′ ∧ ϕ′ ⇒ Φ such that ϕ′(x′) and φ′ = α(at l′ ∧ ϕ′). Moreover, as ϕ(x) ∧ ϕ′(x′),
we have ϕ(x) ∧ preτ (ϕ)(x) 6= false for τ = (l, p, l′) and therefore φ

p
 φ′. �

Proof of proposition 6 Proof: The abstract behaviour Bα is equally represented by a 1-safe Petri net
where places correspond to abstract states of

⋃n
i=1 Φαi

i and transitions correspond to interactions of γ.
Moreover, the traps and locks previously introduced correspond precisely to the traps and the locks (aka
siphons) in this Petri net.

Regarding traps and locks in Petri nets, the following invariance properties hold (1) if a trap is initially
marked, it remains marked through all computation of the net and (2) dually, if a lock is initially unmarked,
it remains unmarked through all computations of the net (see [2] for details). These properties can be lifted
to the abstract system in order to obtain synchronization invariants as follows.

Any trap Ψ containing the initial state of some abstract component Bα
i corresponds to an initially

marked trap in the underlying Petri net. Then, according to its characteristic property, it will stay marked
in any execution. For the abstract system Sα this implies that it always has at least one of its abstract
components in some abstract state of Ψ. This simply means that the predicate

∨
φ∈Ψ at φ is an invariant of

Bα and consequently
∨

φ∈Ψ α−1(φ) is an invariant of S.
A dual proof can be provided for locks. �

B Temperature Control System
For the abstraction of the Temperature Control System given in figure 3 the following set of implications
characterizes the set of traps:

φ11 ⇒ (φ12 ∨ φ42 ∨ φ52)∧
(φ12 ∨ φ42 ∨ φ62)∧
(φ12 ∨ φ32 ∨ φ52)∧

(φ12 ∨ φ32 ∨ φ62)∧
(φ12 ∨ φ41 ∨ φ52)∧
(φ12 ∨ φ41 ∨ φ62)

φ12 ⇒ (φ61 ∨ φ21)
φ21 ⇒ (φ51 ∨ φ11)
φ22 ⇒ (φ51 ∨ φ11)
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φ31 ⇒ (φ22 ∨ φ32 ∨ φ52)∧
(φ22 ∨ φ32 ∨ φ62)∧
(φ12 ∨ φ32 ∨ φ52)∧
(φ12 ∨ φ32 ∨ φ62)∧
(φ21 ∨ φ32 ∨ φ52)∧
(φ21 ∨ φ32 ∨ φ62)

φ32 ⇒ (φ61 ∨ φ41)
φ41 ⇒ (φ51 ∨ φ31)
φ42 ⇒ (φ51 ∨ φ31)
φ51 ⇒ (φ22 ∨ φ42 ∨ φ52)∧

(φ22 ∨ φ32 ∨ φ52)∧

(φ12 ∨ φ42 ∨ φ52)∧
(φ12 ∨ φ32 ∨ φ52)∧
(φ22 ∨ φ41 ∨ φ52)∧
(φ21 ∨ φ42 ∨ φ52)∧
(φ21 ∨ φ41 ∨ φ52)∧
(φ21 ∨ φ32 ∨ φ52)∧
(φ12 ∨ φ41 ∨ φ52)

φ52 ⇒ (φ61 ∨ φ21)∧
(φ61 ∨ φ41)

φ61 ⇒ (φ22 ∨ φ42 ∨ φ62)∧
(φ22 ∨ φ32 ∨ φ62)∧

(φ12 ∨ φ42 ∨ φ62)∧
(φ12 ∨ φ32 ∨ φ62)∧
(φ22 ∨ φ41 ∨ φ62)∧
(φ21 ∨ φ42 ∨ φ62)∧
(φ21 ∨ φ41 ∨ φ62)∧
(φ21 ∨ φ32 ∨ φ62)∧
(φ12 ∨ φ41 ∨ φ62)

φ62 ⇒ (φ51 ∨ φ11)∧
(φ51 ∨ φ31)
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