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Abstract

This report describes a certification method of smart-card applications in the framework of
Common Criteria. In this framework, a smart-card application is represented consecutively by
a model of its specification, a functional specification describing an input-output relationship, a
low-level design, and implementation code. The certification process consists of the following
tasks: (1) prove that the model, the functional specification, the low-level design, and the
code satisfy security properties in the smart-card application’s specification, and (2) prove that
there is a representation correspondence between each two consecutive representations. For
each task, a certificate or a collection of certificates are needed to certify the accomplishment
of the task. We describe in this report the application of a theory of program properties to the
certification process. The theory provides foundations fordescribing and proving properties
of a single program and properties relating two programs. The theory provides a notion of
verification condition as a notion of certificate. The theoryis applicable to the certification
process because all representations of a smart-card application are essentially programs and
the representation correspondences are properties relating two programs.
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1 Introduction

The use of smart cards has been pervasive in our everyday lives. For example, smart cards in the form
of debit or credit cards have been used in electronic bankingtransactions. Smart cards have also been
used for mobile telephony. With the widespread use of mobilephones, the use of smart cards will play an
important role in our lives. Smart-card applications are programs embedded in the chip on smart cards.
These programs control the use of smart cards. Smart card andsmart-card applications have mostly been
used to provide security, mainly for authentication and authorization. The security functions provided by a
smart-card application are described in the specification as security properties. Since security properties are
paramount for a smart-card application, one has to prove formally that an implementation of the application
satisfies the security properties. Moreover, to give high confidence to the user of the smart-card application,
one needs to provide a certificate showing that the implementation indeed satisfies the properties.

We describe in this report our work on certifying smart-cardapplications. Our work is part of an
industrial project calledEDEN2 that has been conducted at Verimag laboratory. The aim of theproject are
twofold: (1) to develop a method for formal software certification in the framework of Common Criteria
certification [Com, 2007], and (2) to provide a certificate or a collection of certificates showing that a
smart-card application follows its specification or a modelof its specification.

Common Criteria (CC) is an international standard for the evaluation of security related systems. CC
defines requirements for certification:security policy model(SPM), functional specification(FSP),TOE
design(TDS), andimplementation(IMP). Given a system and its specification, an SPM is a model of
the specification. An FSP describes an input-output relationship of the system. TOE stands for target of
evaluation, which is the system itself. A TDS is a low-level design of the system. We often describe a TDS
as a reference implementation. An IMP is the code implementing the system. Each requirement in CC
has a representation. For example, inEDEN2 the SPM is written in a declarative language specifying the
behavior of the smart-card application, while the FSP and the TDS are written in subsets of Java. Between
every two consecutive requirements there is a so-called representation correspondence (RCR) relating the
two requirement representations.

In the CC certification process one first has to demonstrate that each requirement representation sat-
isfies the security properties, and also produce certificates that certify that the representation satisfies the
properties. Second, one proves that there is an RCR between each two consecutive representations and
produces a certificate about the RCR. In this report we consider only the requirements SPM, FSP, and
TDS.

We apply the theory of program properties described in [Narasamdya, 2007, Voronkov and Narasamdya,
2008] to the CC certification process. The theory provides foundations for proving properties of a single
program and properties that relate two programs. The formalization of the theory is based on a suitably
adapted notion of program invariant for a single program. The theory is based on the notion ofassertion
function: a function that assigns assertions to program points. The theory introduces the notion of ex-
tendible assertion function as a constructive notion for describing and for proving program invariants. This
notion is developed further in the theory so that it can be used to prove properties relating two programs, or
inter-program properties. The theory also develops a notion of verification condition. A verification con-
dition associated with an assertion function of a program forms acertificatethat certifies that the program
satisfies the properties described by the assertion function. A verification condition itself is a finite set of
assertions constructed from the assertion function and theprogram. A certificate can be turned into aproof
by proving that all assertions in the certificate are valid.

The representations of the SPM, the FSP, and the TDS are essentially programs. Although standard
Floyd-style verification technique like [Floyd, 1967, Hoare, 1969] can be applied to proving their prop-
erties, the theory described above can also be used to prove the properties and, additionally, to provide
certificates about those properties. The RCR between two consecutive requirements are essentially prop-
erties relating two programs. Thus, we can apply the theory to prove the RCR and to provide a certificate
about the RCR.

In this reportwe discuss the application of the theory to proving properties of SPMs. Properties of FSPs
and TDSs can be proved in the same way as proving properties ofSPMs. In the CC certification process,
one has to demonstrate that if the SPM satisfies some property, then the FSP and the TDS also satisfy the
same property. Instead of proving the same property for the FSP and the TDS, we describe in this report
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how properties of the SPM are preserved by the RCR between theSPM and the FSP. That is, once one
proves that the SPM satisfies some property and there is an RCRbetween the SPM and the FSP, then the
FSP satisfies the same property. Property preservation fromthe FSP to the TDS can be described similarly
to describing property preservation from the SPM to the FSP.

The contribution of this paper is the application of the above theory to the certification of smart-card
applications in CC. The application itself is not straightforward since smart-card programs have differ-
ent characteristics from typical imperative programs. First, a run of a smart-card program can terminate
abruptly in the middle of the program due to power loss. Thus,one has to model such an abrupt termination.
Second, the low-level design of the application includes transaction mechanism. One then has to model
transaction mechanism so that the theory can be applied. Thedefinitions of RCRs are more complex than
standard refinement relations. For example, when a transaction is not in progress, the order of updating
some variables of the TDS must be the same as the order of updating their corresponding counterparts in
the FSP. But, when a transaction is in progress, such an orderis irrelevant. Mapping between variables in
RCRs can be nontrivial. For example, a scalar variable in theSPM corresponds to an array variable in the
FSP.

The outline of this report is as follows. We first describe thetheory of program properties. We only
provide the essence of the theory. A detailed description ofthe theory can be found in [Narasamdya, 2007,
Voronkov and Narasamdya, 2008]. We then apply the theory to proving properties of SPMs. Afterward,
we apply the theory to proving RCRs between SPMs and FSPs, andthen RCRs between FSPs and TDSs.
Having described the application of the theory to proving RCRs, we discuss property preservation from
SPMs to FSPs by RCRs between SPMs and FSPs. Finally, we brieflydiscuss some related works and then
conclude this report.

2 A Theory of Program Properties

2.1 Assumptions

The theory is based on standard assumptions about programs and their semantics. A program consists of
a finite set ofprogram points. For example, aprogram pointof a programP can be the entry or the exit
of a sequence of statements (or ablock) in P . We denote byPointP the set of program points ofP . A
program-point flow graph ofP is a finite directed graph whose nodes are the program points of P . In
the sequel, we assume that every programP we are dealing with is associated with a program-point flow
graph, denoted byGP .

We assume that every program has a uniqueentry pointand a uniqueexit point. Denote byentry(P )
andexit(P ), respectively, the entry and the exit point of programP . We assume that the program-point
flow graph contains no edge into the entry point and no edge from the exit point.

We describe the run-time behavior of a program as sequences of configurations. Aconfigurationof
a program run consists of a program point and a mapping from variables to values. Such a mapping is
called astate. Formally, a configuration is a pair(p, σ), wherep is a program point andσ is a state. A
configuration(p, σ) is called anentry configuration forP if p = entry(P ), and anexit configuration for
P if p = exit(P ).

We assume that the semantics of a programP is defined as a transition relation7→P with transitions of
the form(p1, σ1) 7→P (p2, σ2), wherep1, p2 are program points,σ1, σ2 are states, and(p1, p2) is an edge
in GP .

DEFINITION 2.1 (Computation Sequence,Run) Acomputation sequence of a programP is either a finite
or an infinite sequence of configurations

(p0, σ0), (p1, σ1), . . . , (1)

where(pi, σi) 7→P (pi+1, σi+1) for all i. A runR of a programP from an initial stateσ0 is a computation
sequence (1) such thatp0 = entry(P ).

�
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We introduce two restrictions on the semantics of programs.First, we assume that programs are deter-
ministic. That is, for every programP , given a configurationγ1, there exists at most one configurationγ2

such thatγ1 7→P γ2. Second, we assume that, for every programP and for every non-exit configuration
γ1 of P ’s run, there exists a configurationγ2 such thatγ1 7→P γ2. One can view a non-deterministic
program as a deterministic program having an additional input variablex whose value is an infinite se-
quence of numbers, these numbers are used to decide which of non-deterministic choices should be made.
Further, if a program computation can terminate in a state different from the exit state, we can add an
artificial transition from this state to the exit state. After such a modification we can also consider arbitrary
non-deterministic programs.

Further, we assume someassertion languagein which one can writeassertionsinvolving variables and
express properties of states. The set of all assertions is denoted byAssertion. We will use meta variables
α, φ, ϕ, andψ, along with their primed, subscript, and superscript notations, to range over assertions. We
write σ |= α to mean an assertionα is true in a stateσ, and also say thatσ satisfiesα, or thatα holds at
σ. We say that an assertionα is valid if σ |= α for every stateσ. We will also use a similar notation for
configurations: for a configuration(p, σ) and assertionα we write(p, σ) |= α if σ |= α. We assume that
the assertion language is closed under the standard propositional connectives and respects their semantics,
for exampleσ |= ¬α if and only if σ 6|= α.

2.2 Extendible Assertion Functions

We introduce the notion of assertion function that associates program points with assertions. Anassertion
functionfor a programP is a partial function

I : PointP → Assertion

mapping program points ofP to assertions such thatI(entry(P )) andI(exit(P )) are defined. The re-
quirement thatI is defined on the entry and exit points is purely technical andnot restrictive, for one can
always defineI(entry(P )) andI(exit(P )) as⊤, that is, an assertion that holds at every state.

Given an assertion functionI, we call a program pointp I-observableif I(p) is defined. A configuration
(p, σ) is calledI-observable if so is its program pointp. We say that a configurationγ = (p, σ) satisfiesI,
denoted byγ |= I, if I(p) is defined andσ |= I(p). We will also say thatI is defined onγ if it is defined
onp and writeI(γ) to denoteI(p).

For proving that a program satisfies some properties, we introduce the notion of extendible assertion
function. This notion provides a constructive characterization of relations between an assertion function
and a program.

DEFINITION 2.2 LetI be an assertion function of a programP . I is strongly extendibleif for every run

γ0, . . . , γi

of the program such thati ≥ 0, γ0 |= I, γi |= I, andγi is not an exit configuration, there exists a finite
computation sequence

γi, . . . , γi+n

such that

1. n > 0,

2. γi+n |= I, and

3. for all j such thati < j < i+ n, the configurationγj is notI-observable.

The definition ofweakly-extendibleassertion function is obtained from this definition by dropping condi-
tion 3. �
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Later, to provide verification conditions associated with assertion functions, we need a notion of cover-
ing set. We say that a setC of program points inP coversP if entry(P ) ∈ C and every infinite path in
GP contains a program point inC. Verification conditions associated with assertion functions consist of
assertions formed from paths in program-point flow graphs. To form such assertions, we need the notions
of precondition and liberal precondition.

DEFINITION 2.3 (Weakest Precondition) Letπ = (p0, . . . , pn) be a path in the flow graph. An assertion
ϕ is called apreconditionof the pathπ and an assertionψ, if, for every stateσ0 such thatσ0 |= ϕ, there
exist statesσ1, . . . , σn such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn)

andσn |= ψ. An assertionϕ is called theweakest preconditionof π andψ, denoted bywpπ(ψ), if it is a
precondition ofπ andψ, and, for every preconditionϕ′ of π andψ, the assertionϕ′ ⇒ ϕ is valid.

An assertionϕ is called aliberal preconditionof the pathπ and an assertionψ, if, for every sequence
σ0, . . . , σn of states such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn),

andσ0 |= ϕ, we haveσn |= ψ. An assertionϕ is called theweakest liberal preconditionof π andψ,
denoted bywlpπ(ψ), if it is a liberal precondition ofπ andψ, and, for every liberal preconditionϕ′ of π
andψ, the assertionϕ′ ⇒ ϕ is valid. �

To provide certificates or verification conditions for program properties, we need to be able to compute
the weakest and the weakest liberal precondition of a given path and an assertion. In the sequel we assume
that our programming language has theweakest precondition property, that is, for every assertionψ and
pathπ, the weakest precondition forπ andψ exists and moreover, can effectively be computed fromπ
andψ. Sincewlpπ(ψ) is equivalent towpπ(ψ) ∨ ¬wpπ(⊤), one can also compute the weakest liberal
precondition forπ andψ.

Next, we describe the verification conditions associated with assertion functions. Such verification con-
ditions formcertificatesfor program properties described by the assertion functions. LetI be an assertion
function. A pathp0, . . . , pn in GP is calledI-simpleif n > 0 andI is defined onp0 andpn and undefined
on all program pointsp1, . . . , pn−1. We will say that the path isbetweenp0 andpn.

DEFINITION 2.4 LetI be an assertion function of a programP such that the domain ofI coversP . The
strong verification conditionassociated withI is the set of assertions

{I(p0) ⇒ wlpπ(I(pn))
| π is anI-simple path betweenp0 andpn}.

Note that the strong verification condition is always finite. �

THEOREM 2.5 LetI be an assertion function of a programP whose domain coversP andS be the strong
verification condition associated withI. If every assertion inS is valid, thenI is strongly extendible. �

One can reformulate the notion of verification condition in such a way that it will guarantee weak
extendibility. For every pathπ, denote bystart(π) andend(π), respectively, the first and the last point of
π.

DEFINITION 2.6 LetI be an assertion function of a programP andΠ a set of paths inGP such that for
every pathπ in Π bothstart(π) andend(π) areI-observable. For every program pointp in P , denote by
Π|p the set of paths inΠ whose first point isp.

Theweak verification conditionassociated withI andΠ consists of all assertions of the form

I(start(π)) ⇒ wlpπ(I(end(π))),
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whereπ ∈ Π and all assertions of the form

I(p) ⇒
∨

π∈Π|p

wpπ(⊤),

wherep is anI-observable point. �

THEOREM 2.7 Let I andΠ be as in Definition2.6 andW be the weak verification condition associated
with I andΠ. If every assertion inW is valid, thenI is weakly extendible. �

2.3 Inter-Program Properties

To prove properties relating two programsP andP ′, we consider the programs as a pair(P, P ′) of pro-
grams with disjoint sets of variables. A configuration is a tuple (p, p′, σ̂), wherep ∈ PointP , p′ ∈
PointP ′ , andσ̂ is a state mapping from all variables of both programs to values. In the sequel, such a
stateσ̂ is written as(σ, σ′), whereσ is forP andσ′ is forP ′. Similarly, the configuration(p, p′, σ̂) can be
written as(p, p′, σ, σ′).

Similar to the case of a single program, we say that a configuration γ = (p, p′, σ, σ′) is called anentry
configuration for(P, P ′) if p = entry(P ) andp′ = entry(P ′), and anexit configuration for(P, P ′) if
p = exit(P ) andp′ = exit(P ′).

The transition relation7→ of a pair(P, P ′) of programs contains two kinds of transition:

(p1, p
′, σ1, σ

′) 7→ (p2, p
′, σ2, σ

′),

such that(p1, σ1) 7→ (p2, σ2) is in the transition relation ofP , and

(p, p′1, σ, σ
′
1) 7→ (p, p′2, σ, σ

′
2),

such that(p1, σ1) 7→ (p2, σ2) is in the transition relation ofP ′. Having the notion of transition relation for
pairs of programs, the notions of computation sequence and run can be defined in the same way as in the
case of a single program.

An assertion functionof a pair(P, P ′) of programs is a partial function

I : PointP × PointP ′ → Assertion

mapping pairs of program points ofP andP ′ to assertions such thatI is defined on(entry(P ), entry(P ′))
and(exit(P ), exit(P ′)).

Given an assertion functionI, we call a pair of program points(p, p′) I-observableif I(p, p′) is defined.
Let γ = (p, p′, σ, σ′) be a configuration. Then,γ is I-observable if so is the pair of program points(p, p′).
We also say thatγ satisfiesI, denoted byγ |= I, if I is defined on(p, p′) and(σ, σ′) |= I(p, p′). We will
also say thatI is defined onγ if it is defined on(p, p′) and writeI(γ) to denoteI(p, p′).

Unlike in the case of a single program, for a pair of programs,there is no notions of invariant and
strongly-extendible assertion function. The transition relation of a pair of programs has no synchronization
mechanism. For example, one program in a pair can make as manytransitions as possible, while the other
program in the same pair stays at some program point without making any transition. Thus, it is not useful
to have the notions of invariant and strongly-extendible assertion functions.

Weakly-extendible assertion functions for a pair of programs can be defined in the same way as in the
case of a single program.

DEFINITION 2.8 LetI be an assertion function of a pair(P, P ′) of programs.I is weakly extendibleif for
every run

γ0, . . . , γi

of (P, P ′) such thati ≥ 0, γ0 |= I, γi |= I, andγi is not an exit configuration, there exists a finite
computation sequence

γi, . . . , γi+n

of (P, P ′) such that
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1. n > 0, and

2. γi+n |= I.

�

Similar to the properties of a single program, the verification conditions associated with inter-program
properties use the notion of path. However, since the flow graphs of the two programs in a pair of programs
are considered disjoint, the notion of path for pairs of programs needs to be elaborated. Apathπ of a pair
(P, P ′) of programs is a finite or infinite sequence

(p0, p
′
0), (p1, p

′
1), . . .

of pairs of program points such that, for alli ≥ 0, either

• (pi, pi+1) is an edge ofGP andp′i = p′i+1, or

• (p′i, p
′
i+1) is an edge ofGP ′ andpi = pi+1

A path π̂ of (P, P ′) can be considered as a trajectory in a two dimensional space where the axes are paths
of P andP ′. We denote such a patĥπ by (π, π′), whereπ andpi′ are the axes of the space,π is a path
of P andπ′ is a path ofP ′. Having the notion of path for a pair of programs, the notionsof precondition
and liberal precondition for paths of a pair of programs can be defined in the same way as in the case of a
single program.

We can define the verification condition associated with weakly extendible assertion functions similarly
to the case of a single program.

DEFINITION 2.9 LetI be an assertion function of a pair(P, P ′) of programs andΠ a set of non-trivial
paths of the pair of programs such that for every pathπ in Π both start(π) and end(π) path areI-
observable. For every pair(p, p′) of program points, denote byΠ|(p, p′) the set of paths inΠ whose
first pair of points is(p, p′).

Theweak verification conditionassociated withI andΠ consists of all assertions of the form

I(start(π)) ⇒ wlpπ(I(end(π))),

whereπ ∈ Π and all assertions of the form

I(p, p′) ⇒
∨

π∈Π|(p,p′)

wpπ(⊤),

where(p, p′) is anI-observable point, andp is not the exit point ofP . �

THEOREM 2.10 Let I andΠ be as in Definition2.9andW be the weak verification condition associated
with I andΠ. If every assertion inW is valid, thenI is weakly extendible. �

The notion of weak verification condition is the cornerstoneof the theory of inter-program properties. The
notion of weak verification condition forms a suitable notion of certificate about properties involving two
programs.

3 Proving Properties of Policy Models

3.1 Smart-Card Application Life Cycle

In this section we briefly overview the operations of smart-card application. Acard reader(or a terminal)
communicates with a smart-card application by first selecting the application and then sending a sequence
of commands to the application. Each smart-card application is identified by itsapplication identifier
(AID). Commands sent by the reader are in the form ofapplication protocol data units(APDUs), a standard

6/33 Verimag Research Report no TR-2008-14



Iman Narasamdya, Michaël Périn

C?

FailFail

Pass Fail

ϕ2 ϕ3ϕ1 ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3

B1 B2 B3

Abrupt

B4

exit
a
(C)exit

n
(C)

entry(C)

Figure 1: Semantics of SPM.

format for exchanging data defined in ISO 7816-4. The application replies to each APDU command with
a status word indicating the result of the operation, and optionally with data. The reader terminates the
communication with the application by deselecting the application.1

An application isinactivewhen it is first installed into the smart card. The application then becomes
activewhen it gets selected by a card reader. From being active, theapplication becomes inactive if the
reader deselects the application or a card tear (loss of power) occurs. Later in defining the runtime behavior
of smart-card applications, we only concern with the behavior of active applications.

3.2 Command Description Language

We now discuss the language used to write SPMs inEDEN2. An SPM models the policy that a smart-card
application has to respect. Such a policy includes securityand safety properties. The SPM might not be
able to model all security properties, but at least it modelstheaccess controlandinformation flowof the
application. The SPM models such properties by describing the behavior of each command, and therefore
the language used to write SPMs is calledcommand description language.

We only provide an informal description of the syntax and semantics of the language. An SPM consists
of commands that will be implemented in the smart-card application. Each command in the SPM has the
following form:

commandC(p1, . . . , pn) {
pass(ϕ1) { B1 }
fail (ϕ2) { B2 }
fail (ϕ3) { B3 }
abrupt { B4 }

}

The commandC has a list(p1, . . . , pn) of input parameters. Each input parameter specifies the typeand the
name of the parameter. The list of input parameter can be empty. The behavior of a command is specified
by thepass, fail , andabrupt clauses. The conditionsϕ1, ϕ2, ϕ3 of the clauses are boolean expressions.
The bodiesB1, B2, B3, B4 of the clauses are statements written in a simple imperativelanguage.

The semantics of the commandC is described by the flow graph depicted in Figure1. First, for every
commandC, there is a unique entry denoted byentry(C), but there are two exit points, one exit point,
denoted byexitn(C), is for normal exit and the other, denoted byexita(C), is for abrupt exit. Second,
each clause in the command description is associated with a special event. Forpassclause, we associate a

1Specifically for Java Card platform, selecting and deselecting an application are performed by sending special commands to the
Java-Card Runtime Environment, which in turn calls, respectively, selection and deselection methods implemented in the application.
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statement emittingPass event at the end of the body of the clause. Similarly forfail andabrupt clauses,
we associateFail andAbrupt events.

A run or an execution of a commandC from a stateσ is a computation sequence starting from the
configuration(entry(C), σ). If the stateσ satisfiesϕ1, ϕ2, orϕ3, then the run will go through the bodies,
respectively,B1, B2, orB3. If the stateσ satisfies none ofϕ1, ϕ2, orϕ3, then the run will go through the
empty body. A run of a commandC terminates normally if it reachesexitn(C), and for such a termination,
the run emits either aPass or Fail event. For simplicity, particularly to eliminate nondeterminism and
blocking run, we interpret thepassandfail clauses of the command as the followingif -then -elseconstruct:

if ϕ1 thenB1

elseif ϕ2 thenB2

elseif ϕ3 thenB3

elseB5

whereB5 is an empty body.
A card tear can occurs at any time and at any configuration of a command run. In Figure1, for every

point in the round box, we have an edge going to the entry ofB4. A run of a commandC terminates
abruptly if it reaches the pointexita(C), and in reaching this point the run emits anAbrupt event.

As also shown in Figure1, an SPM itself can be considered as a program that takes as an input a
sequence of commands. Each input command is of the formC(a1, . . . , an), whereC is the command’s
name anda1, . . . , an are the input arguments. A run of an SPM can be considered as a sequence of runs of
commands in the SPM. For each run of a command in the SPM, if therun terminates normally, then the run
of the SPM fetches the next inputC(a1, . . . , an) in the input sequence. The notationC? in Figure1 means
that the fetched input is a commandC. When a card tear occurs, then the run of the command terminates
abruptly and, in turn, the run of the SPM simply terminates. In the life cycle of a smart-card application,
such an abrupt termination makes the application inactive.

A run of an SPM is a finite or infinite alternating sequence

γ0, ε1, γ2, ε2, . . . ,

where

• γ0 is an entry configuration;

• for all i ≥ 0, we haveγi 7→ γi+1; and

• for all j ≥ 1, εj is an event associated with transitionγj−1 7→ γj .

Events are not restricted toPass, Fail, andAbrupt events; we allow unobservable internal events. We
assume that each SPM has an input variable and the state of configurationγ0 maps this variable to the input
value, which is a sequence of commands.

3.3 Proof Technique

We prove properties of an SPM by proving properties of each command in the SPM. Each command in
the SPM is represented by two flow graphs: one for thepassandfail clauses, and the other for theabrupt
clause. We illustrate our proof technique by the following examples.

EXAMPLE 3.1 We consider a command used to authenticate users by verifying the input PIN given by the
users. We call the commandcheckPIN. The SPM of the command is depicted in Figure2. For simplicity,
we omit the types of variables in the SPM. We assume thatpin, p, MAX, andtrial are of integral type,
denoted byint, while val is of boolean type. The variablepin holds the PIN stored in the card and the
variablep holds the input PIN. The variableMAX holds the maximum number of failed trials, while the
variabletrial holds the remaining failed trials. The variableval is a flag denoting the validation status of
the PIN.

In Figure2 we also depict the flow graphs for thepassandfail clauses in the middle and for theabrupt
clause on the right. Let us call the former graphP1 and the latterP2.

The property that we want to prove is as follows:
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commandcheckPIN(int p) {

pass(trial > 0 ∧ pin = p) {
val := ⊤;
trial := MAX;

}

fail (trial > 0 ∧ pin 6= p) {
val := ⊥;
trial := trial − 1;

}

fail (trial ≤ 0) { }

abrupt { val := ⊥; }
}

trial > 0

val := ⊥

pin = p

val := ⊤

trial := MAX

trial := trial − 1

p
x

p
e

Fail
Pass

Fail

val := ⊥

a
e

a
x

Abrupt

Figure 2: An SPM ofcheckPIN.

In any run ofcheckPIN, the value of variableval at the exit configuration of the run is trueif
and only if the run emits aPass event.

This property describes an information flow in the command, and thus is a security property. To prove this
property, we need to prove that, for any run of each command, the following sub-properties hold at the
entry and normal exit configurations of the run:

1. The value of variableMAX is greater than0.

2. The value of variabletrial is between0 and the value ofMAX inclusive.

3. If the PIN is blocked, that is the value oftrial is equal to0, then the validation status, or the value of
val is false.

These properties are often calledinvariants of the SPM. Note that properties (2) and (3) are safety proper-
ties.

Let the following assertions describe the above properties:

MAX > 0 (1)
0 ≤ trial ≤ MAX (2)
trial = 0 ⇒ val = ⊥ (3).

We generalize property (3) to
trial < MAX ⇒ val = ⊥ (3′),

that is, instead of proving(1) ∧ (2) ∧ (3), we prove a stronger assertion(1) ∧ (2) ∧ (3′). Denote the latter
assertion byϕ.

First assume that emitting an observable event is performedby assigning the event to a special variable
calledε. We assume further thatPass 6= Fail 6= Abrupt. We now define assertion functionsI1 of P1 and
I2 of P2 as follows:

I1(pe) = ϕ

I1(px) = ϕ ∧ val = ⊤ ⇔ ε = Pass

I2(ae) = ⊤
I2(ax) = val = ⊤ ⇔ ε = Pass
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Second, since a card tear can happen at any time and at any point in the flow graphP1. We need to
prove that for any run ofP1 from a state satisfyingI1(pe), the assertionI2(ae) holds at every configuration
at any point inP1. SinceI2(ae) is a valid assertion, thenI2(ae) holds at every configuration.

We argue that, for the commandcheckPIN, if the functionsI1 andI2 are weakly extendible, then the
properties that we want to prove hold. Consider a runR of checkPIN from a stateσ satisfyingI1(pe).
Assume first that card tears are not present. Ifσ satisfies the condition of thepassclause, then the run will
reach the normal exit ofcheckPIN with some stateσ′. Sinceσ′ satisfiestrial = MAX andMAX are not
modified in the run, thenσ′ satisfies0 ≤ trial ≤ MAX andMAX > 0. Because the value ofMAX was
assigned totrial in the run, it follows thatσ′ satisfiestrial < MAX ⇒ val = ⊥. Finally, sinceval andε
are assigned with, respectively,⊤ andPass, the stateσ′ satisfiesval = ⊤ ⇔ ε = Pass. Thus, the stateσ′

satisfiesI1(px).
With a similar kind of reasoning, if the stateσ of the runR satisfiesI1(pe) and the conditiontrial >

0 ∧ pin 6= p, then when card tears are not present, the run will reach the normal exit with a stateσ′′ that
satisfiesI1(px). The assertion0 ≤ trial ≤ MAX holds atσ′′ since the assertion

0 ≤ trial ≤ MAX ∧ MAX > 0 ∧ trial > 0 ⇒ 0 ≤ (trial − 1) ≤ MAX

is valid. Similarly for the assertiontrial < MAX ⇒ val = ⊥. The assertionval = ⊤ ⇔ ε = Pass is
trivially satisfied byσ′′ becauseval andev were assigned with⊥ andFail, respectively.

Now, suppose that the stateσ of the runR satisfiesI1(pe) andtrial ≤ 0. When no card tears occur,
the run reaches the normal exit with a stateσ′′′. Since there is no variable modified in the run, it follows
thatσ′′′ satisfiesϕ. To prove thatσ′′′ satisfiesval = ⊤ ⇔ ε = Pass, we need to show thatσ′′′ mapsval
to ⊥. Since the stateσ satisfiestrial ≤ 0 andMAX > 0, thenσ satisfiestrial < MAX. Becauseσ also
satisfiestrial < MAX ⇒ val = ⊥, it follows thatσ satisfiesval = ⊥. Finally, the stateσ′′′ will map val

to ⊥ becauseval was not modified in the run. This reasoning has shown the importance of the properties
described by the assertionϕ = I1(pe).

For the assertion functionI2, we define⊤ onae because we do not make any assumption when a card
tear occurs. Moreover, sinceval is set to⊥ andε gets the valueAbrupt, the assertionval = ⊤ ⇔ ev = Pass

holds trivially at the exit configuration of a run that terminates abruptly.
We prove thatI1 andI2 are strongly extendible. First, bothI1 andI2 coverP1 andP2, respectively.

Let π1
pe,px

, π2
pe,px

, andπ3
pe,px

be I1-simple paths frompe to px. The pathπ1
pe,px

traverses the condition
pin = p, the pathπ2

pe,px
traverses the conditionpin 6= p, and the pathπ3

pe,px
traversestrial ≤ 0. Letπae,ax

be the only path inP2. The strong verification conditions forI1 andI2 consist of the following assertions:

I1(pe) ⇒ wlpπ1
pe,px

(I(px))

I1(pe) ⇒ wlpπ2
pe,px

(I(px))

I1(pe) ⇒ wlpπ3
pe,px

(I(px))

I2(ae) ⇒ wlpπae,ax
(I(ax)).

One can prove that these assertions are all valid, and thusI1 andI2 are strongly extendible, which in turn
are also weakly extendible.

To prove that the above properties hold for the whole SPM, we need to prove that the assertionϕ holds
at the entry and normal exit configurations of any run ofother commands. To this end, we follow the
following steps:

1. Prove that the assertionϕ holds after the initialization of the SPM.

2. For each command, define an assertion function for the flow graph representing thepassand fail
clauses such that the assertions defined on the entry and normal exit points of the function implyϕ,
and then prove that the function is weakly extendible.

These steps (1) and (2) can be carried out in the same way as proving the properties for the command
checkPIN. �

In the above example we do not assume anything when a card tearoccurs. That is, the assertion function
I2 is defined as⊤ on the entry pointae of the programP2 that represents abrupt termination. For simplicity,
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commandupdatePIN(int p) {

pass(val) {
if (c) {

pin := p;
trial := MAX;

} else{
pb := pin;
tb := trial;
c := ⊤;
pin := p;
trial := MAX;
c := ⊥;

}
}

fail (¬val) { }

abrupt {
if (c) {

pin := pb;
trial := pt;

}
val := ⊥;

}
}

pin := p

¬c

val
p

e

c := ⊤

pin := p

trial := MAX

pb := pin

Pass

p
x

Fail

c := ⊥

trial := MAX tb := trial

p2

p1

a
e

c

a
x

Abrupt

val := ⊥

pin := pb

trial := tb

Figure 3: An SPM ofupdatePIN.

let us call such aP2 anabrupt programor anabrupt flow graph. The assertion⊤ is valid at every state,
and so when a card tear occurs, the state upon the entry ofP2 satisfies⊤. One can unnecessarily assert
MAX > 0 at the pointae since, provided thatMAX > 0 holds at the entry point of the command andMAX

is not modified in the command, the assertion always holds at every configuration of a run when the run
is in thepassor fail clause. Thus, the entry configuration of any run ofP2 always satisfiesMAX > 0.
However, one often needs to define a precondition at the entrypoint of an abrupt program such that some
variables in the precondition are modified in thepassor fail clause of the command description. In such a
case, one has to prove that the precondition always holds at every configuration of a run of the command
when the run is in thepassor fail clause. We illustrate such a case in the following example.

EXAMPLE 3.2 We consider a command for updating PIN shown in Figure3. The updates ofpin andtrial

are conditional depending on the value of variablec. Such an update mechanism resembles the transaction
facility in the implementation level. Since the command description language does not have any transaction
facility, the conditional updates are performed manually with the help of the variablec. The variablespb

andtb can be considered as variables that back up the values ofpin andtrial, respectively. The variables
pb andtb are declared globally.

In Figure3 we depict the flow graphs for normal termination in the middleand for the abrupt termina-
tion on the right. Denote the former flow graph byP1 and the latter byP2.

The property that we want to prove in this example is the following:

In any run ofupdatePIN, at the exit configuration of the run, either the values of both pin

and trial are updated or the values of these variables coincide with the values at the entry
configuration.

Verimag Research Report no TR-2008-14 11/33



Iman Narasamdya, Michaël Périn

To prove the property, we need to assert that at the entry point of any run ofupdatePIN, if the conditionc
is true, then the variablespb andtb hold the latest values of, respectively,pin andtrial beforec becomes
true. Assume that the variablec is initially false. For simplicity, we assume that we have proved that, for
every command besidesupdatePIN, we prove that wheneverc is true, the variablespb andtb holds the
latest values of, respectively,pin andtb beforec becomes true.

We now define two assertion functions,I1 of P1 andI2 of P2 as follows:

I1(pe) = (c ⇒ (pb = k ∧ tb = l)) ∧ pin = n ∧ trial = m

I1(px) = ψ

I2(ae) = (c ⇒ (pb = n ∧ tb = m) ∨ (pb = k ∧ tb = l))
∧(¬c ⇒ ψ)

I2(ax) = ψ ∨ (pin = k ∧ trial = l),

wherek, l,m, n are logical variables, andψ denotes the assertion

(pin = p ∧ trial = MAX) ∨ (pin = n ∧ trial = m).

The functionI1 says that at the entry configuration of any run ofupdatePIN, the variablespin andtrial

hold some values denoted by the logical variablesn andm, respectively. Moreover, if the conditionc true,
then the variablespb andtb also hold some values denoted by the logical variablesk andl, respectively.

One can prove thatI1 andI2 are weakly extendible. The weak extendibility ofI1 ensures that when the
run reaches the exit ofP1, then either bothpin andtrial are updated or none of them are updated. Similarly,
by being weakly extendible, the functionI2 guarantees that if the run terminates abruptly, then eitherthe
variablespin andtrial are updated, or both variables retain the same values as the values upon entry, or the
values of the variables must be rolled back to the latest values before the variablec becomes true.

Note that the assertionI2(ae) “links” the flow graphsP1 andP2. That is, we have to prove thatI2(ae)
holds at every state of any run of the command when the run is inthe passor fail clause, provided that
the entry configuration of the run satisfiesI1(pe). First, since the assertionI1(pe) impliesI2(ae), then it
follows that for any run of the command such that the entry configuration satisfiesI1(pe), the configuration
also satisfiesI2(ae). Next, for every statement that updatesc, we prove thatI2(ae) holds immediately after
the statement. We define another assertion functionI3 as follows:

I3(pe) = I1(pe)
I3(p1) = I2(ae)
I3(p2) = I2(ae)
I3(px) = I2(ae)

We only consider the statements that updatec because only those statements that can affect the truth value
of I2(ae). One can prove easily that the functionI3 is strongly extendible. Thus, for any run of the
command such that the entry configuration of the run satisfiesI1(pe), the assertionI2(ae) holds at every
configuration of the run. �

In the implementation of the SPM, the conditions of the clauses in a command description are boolean
expressions written in a subset of Java language. The bodiesof the clauses are statements in a subset of
Java language. Program points in the flow graphs are denoted by labels in the SPM. Labels are placed
in a special comments following the JML notations [Leavens and Cheon, 2003]. Assertion functions are
written in a separate file. Assertions themselves are JML expressions.

4 Proving RCRs between SPMs and FSPs

In EDEN2 an FSP is essentially a Java program written in a subset of Java. Each command in the FSP
is a Java method. The return value of the method is a response status indicating whether the execution of
the method is successful or not. If the method needs to returnsome data, then such data is assigned to
a special designated variable. One can consider returning asuccessful response status as emitting aPass
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i n t checkPIN ( i n t [ ] p , i n t l ) {
t ry {

i f ( t r i a l > 0) {
t r i a l = t r i a l − 1 ;
i f ( l eng th = l ) {

i n t i = 0
while ( i < l eng th ) {

i f ( p in [ i ] == p [ i ] )
i = i + 1 ;

else
return SW PIN VERIFICATION FAILED ;

}
return SW NO ERROR;

}
}
return SW PIN VERIFICATION FAILED ;

} catch ( CardTearException e ) {
va l = fa lse ;
return SW UNKNOWN;

}
}

Listing 1: An FSP ofcheckPIN

event, while returning a response status that indicates an error or a failure as emitting aFail event. Any
exception that can occur in the method shall be encoded as returning a response status indicating failure.

An FSP describes card tears using atry-catch construct, where thecatch part catches a special excep-
tion calledCardTearException. Thetry part describes an input-output relationship when card tears are not
present. Thecatch part tells what the application has to do when a card tear occurs.

EXAMPLE 4.1 In this example we show an FSP of the commandcheckPIN discussed in the previous
section. The FSP is shown in Listing1. The PIN in the FSP is represented by the array variablepin,
while the input PIN is represented by the array variablep. The length of the PIN is stored in the variable
length.2 The FSP also takes the length of the input PIN as an input. The return statement returning
SW NO ERROR denotes a successful completion of the command, while otherreturn statements in the
try part denotes terminations with failures. In thecatch part the validation status is set to false. Since
the command has to return a response status, thecatch part returnsSW UNKNOWN. One can consider
returningSW UNKNOWN in thecatch part as emitting anAbrupt event.

�

Similar to SPMs, an FSP is a program that takes as an input a sequence of commands of the form
C(a1, . . . , an), whereC is the command’s name anda1, . . . , an are input arguments. A run of an FSP can
be described as a sequence of runs of commands in the FSP. For each run of the command, if the run exits
from the try part, then the run of the FSP fetches the next inputC(a1, . . . , an) from the input sequence.
If a card tear occurs, then the run of the command exits from the catch part or terminates abruptly, and in
turn the run of the FSP simply terminates.

A run of an FSP is a finite or infinite alternating sequence

γ0, ε1, γ2, ε2, . . . ,

where

• γ0 is an entry configuration;

2In Java the length of an arraya is stored in the fieldlength associated with the array, and this field can be accessed by the
selectora.length. We store the length of an array PIN in a separate variable notassociated with the array because the length of the
PIN can be different from the length of the array.

Verimag Research Report no TR-2008-14 13/33



Iman Narasamdya, Michaël Périn

• for all i ≥ 0, we haveγi 7→ γi+1; and

• for all j ≥ 1, the eventεj is an event associated with transitionγj−1 7→ γj .

We assume that each FSP has an input variable, and the state ofconfigurationγ0 maps this variable to the
input value, which is a sequence of commands. Later in the definition of RCRs between SPMs and FSPs
we introduce a one-to-one correspondenceObs between the set of observable variables of an SPM and the
set of observable variables of an FSP. We assume thatObs maps the input variable of the SPM to the input
variable of the FSP.

We prove properties of an FSP in the same way as proving properties of an SPM. First, we prove
properties of each command in the FSP separately. To this end, we represent the command by two program-
point flow graphs, one for thetry part and the other for thecatch part. We then define assertion functions
of the two flow graphs and prove that the functions are weakly or strongly extendible.

We now define the notion of RCR between SPMs and FSPs that we usein EDEN2. LetE be a set of
observable events. Denote byR|E the subsequence ofR consisting only of events inE:

R = (p0, σ0), ε1, (p1, σ1), ε2, . . .
R|E = (p0, σ0), εi1 , (pi1 , σi1), εi2 , (pi2 , σi2),

whereεij
∈ E for all j. LetX be a set of variables of an SPM, we denote byAb(X) the set of variables in

X such that the variables are modified in theabrupt clause of the SPM.

DEFINITION 4.2 LetOSPM andOFSP be the sets of observable variables of, respectively, an SPMand
an FSP such that there is a one-to-one correspondenceObs betweenOSPM andOFSP . Let EO =
{Pass,Fail,Abrupt} be the set of observable events of the SPM and the FSP. There isan RCR between
the SPM and the FSPif, for every run

R|EO
= (p0, σ0), εi1 , (pi1 , σi1), . . .

of the FSP, there is a run
R′|EO

= (p′0, σ
′
0), ε

′
j1
, (p′j1 , σ

′
j1

), . . .

of the SPM, where for allx ∈ OSPM , we haveσ0(x) = σ′
0(Obs(x)), such that, for allk

• εik
= ε′jk

,

• if εik
6= Abrupt, thenσik

(x) = σ′
jk

(Obs(x)) for all x ∈ OSPM ,

• if εik
= Abrupt, thenσil

(y) = σ′
jl

(Obs(y)) for all y ∈ Ab(OSPM ).

�

The observable events in the above definition of RCR consist of events that occur at the exit points of
both the SPM and the FSP. In the above definition, if there is anRCR between the SPM and the FSP, then
if there is a run of the FSP from a stateσ′ such that the run terminates normally, then there is a run of
the SPM from a stateσ with (σ′, σ) satisfies

∧
x∈OSPM

x = Obs(x) such that the run of the SPM also
terminates normally and, upon termination of both runs, thevalues of corresponding observable variables
coincide at the exit configurations of the runs. If the run of the FSP terminates abruptly, then there is also
a run of the SPM with the same condition on the entry points such that the run terminates abruptly; but in
this case, only observable variables modified by the SPM in the abrupt clause must have equal values at
the exit configurations to their corresponding counterparts in the FSP.

To apply the theory of inter-program properties to proving an RCR between an SPM and an FSP, we
prove the RCR between each corresponding commands separately. Let Obs be a one-to-one correspon-
dence between observable variables of the SPM and of the FSP.There is an RCR between the SPM and the
FSP of a commandC if the following conditions hold. For any runR of the commandC in the FSP from
a stateσ1, there is a runR′ of the same command in the SPM from a stateσ′

1 such thatσ1 andσ′
1 satisfy∧

x∈OSPM
x = Obs(x), and
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• if R is terminating, then so isR′,

• whenR andR′ are terminating with, respectively, statesσ2 andσ′
2, R andR′ emit the same eventε

such that

– if ε 6= Abrupt, thenσ2 andσ′
2 satisfy

∧
x∈OSPM

x = Obs(x);

– otherwiseσ2 andσ′
2 satisfyx = Obs(x) for all x ∈ Ab(OSPM ).

Let α be an assertion such that the assertionα ⇒
∧

x∈OSPM
x = Obs(x) is valid. LetP1 be the flow

graph of thepassand fail clauses of the commandC in the SPM, and letP2 be the flow graph of the
abrupt clause ofC. LetP ′

1 andP ′
2 be the flow graphs of, respectively, thetry and thecatch parts of the

same command in the FSP. In the same way as denoting the exit points of commands in SPM, we denote
the exit point ofP ′

1 by exitn(P ′
1) and the exit point ofP ′

2 by exita(P ′
2). We define an assertion function̂I1

of (P1, P
′
1) such that

Î1(entry(P1), entry(P ′
1)) = Î1(exitn(P1), exitn(P ′

1)) = α.

Î1 can be defined elsewhere but for all pointsp 6= exitn(P1) andp′ 6= exitn(P ′
1), we havêI1(p, exitn(P ′

1))
andÎ1(exitn(P1), p

′) undefined. Furthermore, letS1 = {p′ | ∃p, φ.Î1(p, p′) = φ} be the set of points in
P ′

1 such that, for any pointp′ in S1, there is a pointp in P1 and Î1(p, p′) is defined. We say that a path
p0, . . . , pn isS1-simple ifn > 0, andp0 andpn are inS1 but none ofp1, . . . , pn−1 are inS. We require that
the setS1 coversP ′

1. Next, we define a set̂Π1 of paths of(P1, P
′
1) such that the set{π′ | ∃(π, π′) ∈ Π̂1}

consists of allS1-simple paths.
We define an assertion function̂I2 of (P2, P

′
2) as follows. On the pair(entry(P2), entry(P ′

2)) of entry
points the function̂I2 is defined asψ with the following requirements:

• the assertionα⇒ ψ is valid, and

• for every finite run(p′0, σ
′
0), . . . , (p

′
n, σ

′
n) of P ′

1, there is a finite run(p0, σ0), . . . , (pm, σm) of P1

such that(σ0, σ
′
0) satisfiesα and(σm, σ

′
n) satisfiesψ.

On the pair(exita(P2), exita(P ′
2)), the functionÎ2 is defined asψ′ such that, for allx ∈ Ab(OSPM ), the

assertionψ′ ⇒ x = Obs(x) is valid. Furthermore, for all pointsp 6= exita(P2) andp′ 6= exita(P ′
2), we

haveÎ2(exitn(P2), p
′) andÎ2(p, exitn(P ′

2)) undefined. From the function̂I2, we can define a setS2 from
Î2 similarly to defining the setS1 from Î1. The setS2 must coverP ′

2. We also define a set̂Π2 of paths of
(P2, P

′
2) similarly to defining the set̂Π1.

THEOREM 4.3 Let Î1 and Î2 be assertion functions as defined above, andΠ̂1 andΠ̂2 be sets of paths as
defined above. LetW1 andW2 be the weak verification conditions associated, respectively, with Î1 and
Π̂1, and withÎ2 andΠ̂2. If all assertions ofW1 andW2 are valid, then there is an RCR between the SPM
and the FSP of the commandC.

PROOF. First, since all assertions inW1 andW2 are valid,Î1 andÎ2 are weakly extendible.
Suppose that card tears do not occur. LetR = γ0, . . . , γi be a run of(P1, P

′
1) such thatγ0 |=

Î1(entry(P1), entry(P ′
1)) andγi |= Î1(pi, p

′
i) whereγi = (pi, p

′
i, σi, σ

′
i). Let us suppose thatp′i 6=

exitn(P ′
1). Since the setS1 = {p′ | ∃p, φ.Î1(p, p′) = φ} coversP ′

1, from the configuration(p′i, σ
′
i), there

is a computation sequence(p′i, σ
′
i), . . . , (p

′
i+n, σ

′
i+n) of P ′

1 such that the computation sequence passes

through anS1-simple pathπ′ = p′i, . . . , p
′
i+n in P ′

1. By the construction of the set̂Π1 and the validity of
all assertions in the verification conditionW1, there is a pathπ = pi, . . . , pi+m in P1 such that (1) there is
a computation sequence(pi, σi), . . . , (pi+m, σi+m) of P1 such that the computation sequence followsπ,
(2) Î1(pi+m, p

′
i+n) is defined, and (3)(σi+m, σ

′
i+n) modelsÎ1(pi+m, p

′
i+n).

Now, if p′i+n = exitn(P ′
1), then since for all pointsp 6= exitn(P1) we haveÎ1(p, exitn(P ′

1)) undefined,
we havepi+m = exitn(P1). Thus, if the run ofP ′

1 is terminating, then the run ofP1 is terminating.
Moreover, since(σi+m, σ

′
i+n) satisfiesÎ1(pi+m, p

′
i+n), Î1(exitn(P1), exitn(P ′

1)) = α, and the assertion
α⇒

∧
x∈OSPM

x = Obs(x) is valid, we have that(σi+m, σ
′
i+n) satisfies

∧
x∈OSPM

x = Obs(x).
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trial > 0

length = l
val := ⊥

pin = p

val := ⊤

trial := MAX

trial := trial − 1

trial > 0

i := 0

i < l

trial := MAX

val := ⊤
val := ⊥

pin[i] = p[i]

i := i + 1

trial := trial − 1

p
e

p1

p2

p′
2

p′
3

p′′
1

p′
e

p′
1

p
x

p′
x

val := ⊥

p3

Figure 4:P1 is on the left andP ′
1 is on the right.

When card tears occur, then by the requirements ofÎ2(entry(P2), entry(P ′
2)) we have the states on

enteringentry(P2) andentry(P ′
2) satisfyÎ2(entry(P2), entry(P ′

2)). With the same kind of reasoning as
before, if the run ofP ′

2 reachesexita(P ′
2) with a stateσ′, then there is a run ofP2 reachingexita(P2) with

a stateσ. By the weak extendibility of̂I2, it follows that(σ, σ′) |= Î2(exita(P2), exita(P ′
2)). �

To prove that there is an RCR between the SPM and the FSP, first we require that for every commandC
and for every assertion function̂I1 of the flow graphs representing thepassandfail clauses of the command
C in the SPM and thetry part of the same command in the FSP,

Î1(entry(P1), entry(P ′
1)) = Î1(exitn(P1), exitn(P ′

1)) = α,

whereα is the assertion expressing the correspondence between theSPM and the FSP. Second, we have
to prove thatα holds when the SPM and the FSP are initialized. When a commandC1 calls another
commandC2 both in the SPM and in the FSP, then since a command in a smart-card application is usually
not recursive, we can inline the commandC2.

EXAMPLE 4.4 In this example we will show that there is an RCR between the SPM and the FSP of the
commandcheckPIN. The SPM of the command is described in Figure2 and the FSP is described in
Listing 1. Let us first consider the flow graph representing thepassandfail clauses of the SPM and the
flow graph representing thetry part. Call the former flow graphP1 and the latterP ′

1. These flow graphs
are depicted in Figure4.

For clarity, we assume that the SPM and the FSP have disjoint sets of variables. To this end, we consider
that all variables in the FSP are in primed notation. Let the sets

OSPM = {trial, pin, p, val,MAX, ε}
OFSP = {trial′, pin′, p′, val′,MAX′, ε′}

be the sets of observable variables of, respectively, the SPM and the FSP such that a one-to-one correspon-
denceObs betweenOSPM andOFSP maps each variable inOSPM to its primed counterpart inOFSP

Note thatpin in the SPM has a scalar type butpin′ in the FSP has an array type. So, we have to define
the equivalence betweenpin andpin′. First, every array PINp has a lengthl associated with the array; we
write the association as a pair(p, l). We introduce a predicate≡ between such pairs such that, given an
array PINsp, p′ and lengthsl, l′, we say that(p, l) ≡ (p′, l′) if l = l′ and for alli = 0, . . . , l − 1, we have
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a
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x

Abrupt

val := ⊥

Abrupt

val := ⊥

a
′

e

a
′

x

Figure 5:P2 is on the left andP ′
2 is on the right.

p[i] = p′[i]. Next we introduce a predicate∼ between scalar PINs and array PINs. The predicate∼ is
axiomatized as follows: for every scalar PINsw, x and for every array PINsy, z,

x ∼ y ⇒ (y ≡ z ⇔ x ∼ z)
x ∼ y ⇒ (w = x⇔ w ∼ y).

The predicate∼ defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence between observable variables of the SPM and of

the FSP:
φ1 ⇔ trial = trial′

φ2 ⇔ val = val′

φ3 ⇔ pin ∼ (pin′, length′)

φ4 ⇔ p ∼ (p′, l′)
φ5 ⇔ MAX = MAX′

φ6 ⇔ ε = ε′

Next, we define an assertion function̂I1 of (P1, P
′
1) as follows:

Î1(pe, p
′
e) =

∧6
i=1 φi

Î1(p1, p
′
1) =

∧6
i=1 φi ∧ trial > 0

Î1(p1, p
′′
1) =

∧6
i=2 φi ∧ trial > 0 ∧ trial = trial′ + 1

∧length′ = l′ ∧ i′ < l′ ∧ (∀j.0 ≤ j < i′ ⇒ pin′[j] = p′[j])

Î1(p2, p
′
2) =

∧6
i=1 φi ∧ pin = p ∧ (pin, length) ≡ (p, l)

Î1(p3, p
′
3) =

∧6
i=1 φi ∧ pin 6= p ∧ (pin, length) 6≡ (p, l)

Î1(px, p
′
x) =

∧6
i=1 φi

The functionÎ1 is undefined elsewhere. Note that the setS1 = {p′e, p
′
1, p

′′
1 , p

′
2, p

′
3, p

′
x} of points inP ′

1

coversP ′
1.

Denote a path from pointp to q in a program-point flow graph byπp,q. We define a set̂Π1 of paths of
(P1, P

′
1) such that the set consists of the following paths:

(πpe,p1
, πp′

e,p′

1
), (πpe,px

, πp′

e,p′

x
), (πp1

, πp′

1
,p′′

1
), (πp1,px

, πp′

1
,p′

x
),

(πp1,p2
, πp′

1
,p′

2
), (πp1

, πp′′

1
,p′′

1
), (πp1,p2

, πp′′

1
,p′

2
), (πp1,p3

, πp′′

1
,p′

3
),

(πp2,px
, πp′

2
,p′

x
), (πp3,px

, πp′

3
,p′

x
).

Note that the set{π′ | ∃π.(π, π′) ∈ Π̂1} consists of allS1-simple paths. One can prove that all assertions
in the weak verification condition associated withÎ1 andΠ̂1 are valid.

We now consider the flow graphs of theabrupt clause and thecatch part. Call the former oneP2 and

the latterP ′
2. These flow graphs are depicted in Figure5. We define an assertion function̂I2 of (P2, P

′
2) as

follows:
Î2(ae, a

′
e) = ⊤

Î2(ax, a
′
x) = val = val′.

The functionÎ2 is undefined elsewhere. Note that the setS2 = {a′e, a
′
x} coversP ′

2. Note also that since
the assertion⊤ is satisfied by any state, the assertionÎ2(ae, a

′
e) satisfies the requirements of the assertion

ψ described before. We define a setΠ̂2 of paths of(P2, P
′
2) such that the set consists only of the path
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pin := p

val
p

e

c := ⊤

pin := p

trial := MAX

pb := pin

c := ⊥

trial := MAX tb := trial

val

i := 0

length := l

trial := MAX

p3

p1 p2

¬c

i := 0

i < length

pb[i] := pin[i]

i := i + 1

c := ⊤

tb := trial

lb := length

trial := MAX

c := ⊥

length := l

j := 0

j < l

j := j + 1

pin[j] := p[j]

p′
4

i < l

pin[i] := p[i]

i := i + 1

¬c

p′
e

p4

p
x

p′
x

p′′
3

p′
1

p′
2

p′
3

Figure 6:P1 is on the left andP ′
1 is on the right.

(πae,ax
, πa′

e,a′

x
). The pathπa′

e,a′

x
is the onlyS2-simple path. One can prove easily that all assertions in the

weak verification condition associated witĥI2 andΠ̂2 are valid. Thus, by Theorem4.3 there is an RCR
between the SPM and the FSP of the commandcheckPIN. �

EXAMPLE 4.5 We consider in this example the commandupdatePIN whose SPM is depicted in Figure3.
The flow graphs that represent thepassandfail clauses of the SPM and thetry part of the FSP are depicted
in Figure6. Let us call the former flow graphP1 and the latter oneP ′

1.
Let the setOSPM = {c, trial, pin, p, val,MAX, ε} be the set of observable variables of the SPM, and

the setOFSP be the set of observable variables of the FSP such thatOFSP consists of the primed coun-
terparts of all variables inOSPM . The one-to-one correspondenceObs betweenOSPM andOFSP simply
maps each variable inOSPM to its primed counterpart inOFSP . The following assertions express the
correspondence between the SPM and the FSP:

φ1 ⇔ trial = trial′

φ2 ⇔ val = val′

φ3 ⇔ pin ∼ (pin′, length′)
φ4 ⇔ p ∼ (p′, l′)

φ5 ⇔ c = c′

φ6 ⇔ MAX = MAX′

φ7 ⇔ ε = ε′

φ8 ⇔ c ∧ c′ ⇒ pb ∼ (pb′, lb′) ∧ tb = tb′

We define an assertion function ofÎ1 of (P1, P
′
1) as follows:

Î1(pe, p
′
e) =

∧8
i=1 φi

Î1(p1, p
′
1) =

∧2
i=1 φi ∧

∧8
i=4 φi ∧ c ∧ (∀l.0 ≤ l < i ⇒ pin′[l] = p′[l])

Î1(p2, p
′
2) =

∧8
i=1 φi ∧ ¬c ∧ (∀l.0 ≤ l < i ⇒ pb′[l] = pin′[l])

Î1(p3, p
′
3) =

∧2
i=1 φi ∧

∧8
i=4 φi ∧ c ∧ (∀l.0 ≤ l < j ⇒ pin′[l] = p′[l])

Î1(p3, p
′′
3) =

∧8
i=1 φi ∧ c ∧ (¬c ∧ ¬c′ ⇒ φ1 ∧ φ3)

Î1(p4, p
′
4) =

∧8
i=1 φi ∧ (¬c ∧ ¬c′ ⇒ φ1 ∧ φ3)

Î1(px, p
′
x) =

∧8
i=1 φi.

The functionÎ1 is undefined elsewhere. Note that the setS1 = {p′e, p
′
1, p

′
2, p

′
3, p

′′
3 , p

′
4, p

′
x} of points inP ′

1
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pin := pb

trial := tb
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′

e

c

pin[k] := pb[k]
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a
′

1

Figure 7:P2 is on the left andP ′
2 is on the right.

coversP ′
1. We also define a set̂Π1 of paths of(P1, P

′
1) such that the set consists of the following paths:

(πpe,p1
, πp′

e,p′

1
), (πpe,p2

, πp′

e,p′

2
), (πpe,px

, πp′

e,p′

x
),

(πp1
, πp′

1
,p′

1
), (πp1,p4

, πp′

1
,p′

4
), (πp2

, πp′

2
,p′

2
), (πp2,p3

, πp′

2
,p′′

3
),

(πp3
, πp′′

3
,p′

3
), (πp3

, πp′

3
,p′

3
), (πp3,p4

, πp′

3
,p′

4
), (πp4,px

, πp′

4
,p′

x
).

The pathπ¬c′

p′

e,p′

4

is the path fromp′e to p′4 through the¬c′ branch. Similarly forπ¬c
pe,p4

. Note that the set

{π′ | ∃π.(π, π′) ∈ Π̂1} consists of allS1-simple paths. One can prove that all assertions in the weak
verification condition associated witĥI1 andΠ̂1 are valid.

We now consider the flow graphs of theabrupt clause and thecatch part. Call the former oneP2 and

the latterP ′
2. These flow graphs are depicted in Figure7. We define an assertion function̂I2 of (P2, P

′
2) as

follows:

Î2(ae, a
′
e) = φ8 ∧ (¬c ∧ ¬c′ ⇒ φ1 ∧ φ3)

Î2(a1, a
′
1) = pb ∼ (pb′, lb′) ∧ tb = tb′ ∧ (∀l.0 ≤ l < k ⇒ pin′[l] = pb′[l])

Î2(ax, a
′
x) = φ1 ∧ φ2 ∧ φ3

The functionÎ2 is undefined elsewhere. Note that the setS2 = {a′e, a
′
1, a

′
x} coversP ′

1.
We also define a set̂Π2 of paths of(P2, P

′
2) such that the set consists of the following paths:

(πae,a1
, πa′

e,a′

1
), (πa1

, πa′

1
,a′

1
), (πae,ax

, πa′

e,a′

x
), (πa1,ax

, πa′

1
,a′

x
).

Note that the set{π′ | ∃π.(π, π′) ∈ Π̂2} consists of allS2-simple paths. One can prove that all assertions
in the weak verification condition associated withÎ2 andΠ̂2 are valid.

Note also that the requirements for the assertionÎ2(ae, a
′
e) is satisfied by the assertionŝI1(p3, p

′′
3) and

Î1(p4, p
′
4) and the weak extendibility of̂I1. Therefore, there is an RCR between the commandupdatePIN

of the SPM and of the FSP. �

5 Proving RCRs between FSPs and TDSs

In this section we discuss RCRs between FSPs and TDSs. Beforediscussing RCRs, we first describe TDSs.
In EDEN2, a TDS of a smart-card application is a program describing a low-level design of the application.
A TDS is also called areferenceimplementation. The language used to write a TDS inEDEN2 is a subset
of Java. This subset includes memory characteristics and transaction mechanism of Java Card [Sun, 2008,
Chen, 2000]. First, in the language of TDSs there are two kinds of memory, persistent memory and transient
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memory. The difference between these kinds of memory is the following: when power is lost (or a card tear
occurs), data stored in the persistent memory will be kept inthe memory, while data stored in the transient
memory will be lost. In the sequel, variables whose values are stored in the persistent memory are called
persistent variables, and variables whose values are stored in the transient memory are calledtransient
variables.

The language of TDSs offers a transaction mechanism that resembles the transaction mechanism of
Java Card API. The depth of a transaction is at most 1, that is,there is no nested transaction. The methods
for managing transactions arebeginTransaction, commitTransaction, andabortTransaction. A transaction
is started by callingbeginTransaction. When another transaction is in progress, callingbeginTransaction
throws an exception. Throwing such an exception can be represented by a return statement that returns a
value indicating an error. The transaction is ended by calling eithercommitTransaction or abortTransaction;
but when no transaction is in progress, callingcommitTransaction or abortTransaction throws an exception.
Similarly, throwing such an exception can be represented bya return statement. When a transaction is
in progress, any updates to persistent variables are conditional. That is, if the transaction is ended by
commitTransaction, then all updates to the persistent variables are committed; otherwise, all updates are
discarded. The updates of transient variables are unconditional, regardless a transaction is in progress or
not. Later, we will introduce a boolean variableinTransaction to keep track if a transaction is in progress
or not. When a transaction begins, the value ofinTransaction is set to true, and when it ends, the value of
inTransaction is set to false. One can set the value ofinTransaction to false to escape from a transaction.
This feature is useful for variables whose updates must be unconditional. In Java Card such a feature is
provided by non-atomic API methods [Sun, 2008]. Discussion on Java Card non-atomic API methods and
their effects on transactions can be found in [Hubbers and Poll, 2004a].

Similar to FSPs, each command in a TDS is a Java method. Card tears are described using atry-catch
construct in the method. For an FSP, the writer of the FSP has afreedom to write, in thecatch part of a
command, what the command has to do when a card tear occurs. For a TDS, thecatch part of the command
modelsonly the clearing of transient memory and the effects of transactions. Clearing transient memory
means setting all transient variables to their default values.

To cope with transactions, we modify each command in the TDS as follows:

• For each persistent variable, we introduce a fresh variablefor the bookkeeping of the old value of the
variable during a transaction.

• We introduce a special global variableinTransaction to keep track whether a transaction is in progress
or not.

• In the catch part of the command, we add statements that undo the effects of a transaction if the
transaction is in progress.

• We replace any call tobeginTransaction by the statements

i f ( i n T ra n sa c t ion ) return TRANSACTION IN PROGRESS;
i n T ra n sa c t io n = t rue ;

Between the above two statements we add statements that bookkeep the current values of persistent
variables.

• We replace any call tocommitTransaction and toabortTransaction by the statements

i f ( ! i n T ra n sa c t i on ) return TRANSACTION NOT IN PROGRESS;
i n T ra n sa c t io n = fa lse ;

Particularly forabortTransaction, between the two statements above we add statements that undo the
effects of the in-progress transaction.

Our modelling of transactions follows the modelling of JavaCard transactions in [Hubbers and Poll, 2004b].

EXAMPLE 5.1 We illustrate the modelling of transactions and card tears in TDSs in this example. The pro-
grams in this example is adapted from [Hubbers and Poll, 2004b]. The original command, or the command
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before the modification, is shown below on the lefthand side,and the modified version is on the righthand
side. We assume here thatp is a persistent variable, whilet is a transient variable. The default value oft is
0.

i n t command ( ) {
beginTransact ion ( ) ;
p = p + 1 ; t = t + 1 ;
p = p + 1 ;
i f ( p < 10)

commitTransact ion ( ) ;
else

abor tT ransact ion ( ) ;
t = t + 1 ;
return SW NO ERROR;

}

i n t command ( ) {
t ry {

i f ( i n T ra n sa c t i on )
return TRANSACTION IN PROGRESS;

pb = p ;
i n T ra n sa c t ion = t rue ;
p = p + 1 ; t = t + 1 ; p = p + 1 ;
i f ( p < 10)

i f ( ! i n T ra n sa c t ion )
return TRANSACTION NOT IN PROGRESS;

i n T ra n sa c t ion = fa lse ;
else {

i f ( ! i n T ra n sa c t ion )
return TRANSACTION NOT IN PROGRESS;

p = pb ;
i n T ra n sa c t ion = fa lse ;

}
t = t + 1 ;
return SW NO ERROR;

} catch ( CardTearException e ) {
i f ( i n T ra n sa c t i on ) p = pb ;
t = 0 ;
return SW UNKNOWN;

}
}

�

Similar to FSPs, a TDS is a program that takes as an input a sequence of command calls of the form
C(a1, . . . , an), whereC is the command’s name anda1, . . . , an are input arguments. The notion of run of
TDSs is the same as the notion of run of FSPs. Proving properties of TDSs can be done in the same way
as proving properties of SPMs or FSPs.

Having described TDSs, we now define RCRs between FSPs and TDSs. Let us first denote byPr(X)
the set of persistent variables in the setX of variables of a TDS. Later in the definition of RCRs between an
FSP and a TDS we require that observable persistent variables of the TDS are updated in the same order as
their counterparts of the FSP. But, when a transaction is in progress, then such an order becomes irrelevant.
For example, given a one-to-one correspondenceObs between observable variables of the TDS and of the
FSP, if no transaction is in progress and the observable persistent variables of the TDS are updated in the
orderx1, x2, x3, then their counterparts are updated in the orderObs(x1), Obs(x2), Obs(x3). However,
when a transaction is in progress, then the order of updatingObs(x1), Obs(x2), Obs(x3) is irrelevant.
Moreover, whether a transaction is in progress or not, each variable is updated with the same value as its
counterpart. To this end, first, for each persistent variablex of the TDS and its counterpartObs(x) of the
FSP, we associate with both variables an event functionWrite x. This function takes as an input the value
v of x orObs(x) and returns an eventWrite x(v). The following assertion axiomatizes the event function:

∀x, y, v, w.(Write x(v) = Write y(w) ⇔ Write x = Write y ∧ v = w),

where the equalityWrite x = Write y denotes a syntactic equality. In the sequel we denote byτx the
domain of variablex.

Second, the set of events emitted by the TDS is a power set of the set of events emitted by the FSP. Next,
assignments to observable persistent variables and committing transactions emit events in the following
way:

• In the try part of the FSP, the update of a variabley, wherey = Obs(x) for an observable persistent
variablex in the TDS, emitsWrite x(v), wherev is the updated value ofy.
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• In the try part of the TDS,

– if no transaction is in progress, that is the variableinTransaction is false, then the update of an
observable persistent variablex emits{Write x(v)}, wherev is the updated value ofx;

– if a transaction is in progress, that is the variableinTransaction is true, then wheninTransaction
is set to false and beforehand the observable persistent variablesx0, . . . , xn are updated such
that thelatest updated values of these variables are, respectively,v0, . . . , vn, then if the re-
setting of inTransaction is not caused by a call toabortTransaction, then the resetting emits
{Write x0(v0), . . . ,Write xn(vn)}. However, when the resetting ofinTransaction is caused
by a call toabortTransaction or no observable variables are updated, then no set of eventsis
emitted.

Note that the set of events emitted by the TDS is always nonempty.
For comparing events of the TDS and events of the FSP, we say that a nonempty set{ε0, . . . , εm} of

TDS’s eventsmatchesa sequenceε′0, . . . , ε
′
n of FSP’s events if (1)m = n, and (2) for alli = 0, . . . ,m,

there existsj such that0 ≤ j ≤ n andε′j = εi. Now, we say that a sequencêε1, ε̂2, . . . of sets of TDS’s
eventsmatchesa sequenceε′1, ε

′
2, . . . of FSP events if either both sequences are of length 0, or there is an

increasing sequencen1 < n2 < . . . of positive integers such that

1. ε̂1 matchesε′1, . . . , ε
′
n1

, and

2. for all i ≥ 2, ε̂i matchesε′ni−1+1, . . . , ε
′
ni

.

Note that the one-to-one correspondenceObs maps variables of the TDS to variables of the FSP. We
assume that the FSP and the TDS have disjoint sets of variables. In the sequel, for simplicity, the inverse
of Obs is calledObs as well. That is, for any variablex of the TDS and any variablex′ of the FSP,
x′ = Obs(x) if and only if x = Obs(x′).

DEFINITION 5.2 LetOFSP andOTDS be the sets of observable variables of, respectively, an FSPand a
TDS, andObs be a one-to-one correspondence between these sets. Let the sets

EFSP = {Pass,Fail,Abrupt}
∪{Write x(v) | x ∈ Pr(OTDS) ∧ v ∈ τObs(x)}

ETDS = {{Pass}, {Fail}, {Abrupt}}
∪(P({Write x(v) | x ∈ Pr(OTDS) ∧ (v ∈ τx ∨ v ∈ τObs(x))}) − {∅})

be the sets of observable events of the FSP and of the TDS, respectively. There is anRCR between the FSP
and the TDSif, for every run

R|ETDS
= (p0, σ0), εi1 , (pi1 , σi1), . . .

of the TDS, there is a run
R′|EF SP

= (p′0, σ
′
0), ε

′
j1
, (p′j1 , σ

′
j1

), . . .

of the FSP, where for allx ∈ OTDS , we haveσ0(x) = σ′
0(Obs(x)), such that there is an increasing

sequencen1 < n2 < . . . of positive integers such that

1. εi1 matchesε′j1 , . . . , ε
′
jn1

, and

2. for all k > 1, εik
matchesε′jnk−1+1

, . . . , ε′jnk
,

and

• for all l, if εil
6= {Pass} 6= {Fail} 6= {Abrupt}, thenσil

(y) = σ′
jnl

(Obs(y)) for all y ∈ Pr(OTDS);
otherwise

• σil
(x) = σ′

jnl
(Obs(x)) for all x ∈ OTDS .

�
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EXAMPLE 5.3 We illustrate the above definition in this example. For simplicity, consider the following
two programs, where the TDS is on the left and the FSP is on the right.

/∗ x , y , z are p e r s i s t e n t ∗ /
/∗ t i s t r a n s i e n t ∗ /
z = 1 ;
beginTransact ion ( ) ;
x = z + 1 ;
z = 3 ;
t = x ;
y = 4 ;
commitTransact ion ( ) ;
y = 5 ;

z ’ = 1 ;
x ’ = z ’ + 1 ;
t ’ = x ’ ;
y ’ = 4 ;
z ’ = 3 ;
y ’ = 5 ;

The variablesx, y, z are persistent, while the variablet is transient. All of these variables are assumed to
be observable. The one-to-one correspondenceObs between the observables of TDS and the observables
of FSP maps every variable ofTDS to its primed counterpart.

There is an RCR between the TDS and the FSP with the following reasoning. First, the sequence of
events in the TDS is

{Write z(1)}, {Write x(2),Write z(3),Write y(4)}, {Write y(5)}.

In the FSP we have a matching sequence:

Write z(1), | Write x(2),Write y(4),Write z(3) |,Write y(5)

We put a separator “|” as an aid for the readers to see how the sequences match. Thatis, for example, the set
{Write x(2),Write z(3),Write y(4)} matches the sequenceWrite x(2),Write y(4),Write z(3). Second,
the values of corresponding persistent variables coincideat every pair of matching events. Third, the value
of transient variablet coincide with the value oft′ on termination. �

Similar to the RCR between an SPM and an FSP, we use the specialvariableε to store the events emitted
by the FSP and the TDS. For the RCR between an FSP and a TDS, emitting an event means concatenating
the event to the current value of the special variableε. That is, for an event or a set of eventsE, emittingE

is equal to the assignmentε := ε; E. We say that the valuev of ε of the TDS is equal to the valuev′ of ε
of the FSP if and only ifv matchesv′. The variableε of the TDS is considered transient.

Particularly for the TDS, we use another special variableεt to keep track the updated observable persis-
tent variables when a transaction is in progress. When the variable inTransaction is set to true, the variable
εt is set to the empty set. During the transaction, any update toan observable persistent variablex with
valuev is recorded by updatingεt with εt ∪ {Write x(v)}. When the variableinTransaction is set to false,
the variableε is set toε; εt only if the reseting ofinTransaction is not caused byabortTransaction. More-
over, when the TDS emitsPass or Fail, and a transaction is in progress, thenε is updated withε; εt; Pass

or ε; εt; Fail, respectively. When a card tear occurs and the TDS emitsAbrupt, then the content ofεt is
discarded andε is updated withε; Abrupt.

Regarding the updates of variables during a transaction, one might need to modify programs further to
apply our technique of recording updates with the special variablesε andεt. For example, suppose that in
the TDS a transaction is in progress and a persistent variablex is updated by the following statements:

x = x + 1 ;
x = x + 1 ;

But its corresponding counterpartx′ in the FSP is updated by a single statementx’ = x’ + 2. For sim-
plicity, assume that the domains ofx and x′ are the same. The variableε of the TDS will be set to
{Write x(v1),Write x(v2)}, for some valuesv1, v2, but the variableε of the FSP will be set toWrite x(v2).
To handle this problem, one can always translate both programs into SSA form [Alpern et al., 1988] such
that in the program texts there is only one assignment to eachvariable. That is, the translation of the TDS
into SSA form results in

x1 = x0 + 1 ;
x2 = x1 + 1 ;
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and the translation of the FSP into SSA form results inx1’ = x0’ + 2. For the correspondence between
variables, the variablex0 corresponds to the variablex0′ and the variablex2 corresponds to the variable
x1′. Thus, the variableε of the TDS will be set to{Write x2(v2)} that matches the eventWrite x2(v2) set
to the variableε of the FSP.

We apply the theory of inter-program properties to proving an RCR between an FSP and a TDS by
proving the RCR between each corresponding commands separately. Letα be an assertion describing the
correspondence between variables induced by the one-to-one correspondenceObs between the setsOFSP

andOTDS of observable variables of the FSP and the TDS. That is, the assertionα ⇒
∧

x∈OT DS
x =

Obs(x) is valid. LetP1 andP ′
1 be the flow graphs of, respectively, the FSP and the TDS of thetry part of

a commandC. Let alsoP2 andP ′
2 be the flow graphs of, respectively, the FSP and the TDS of thecatch

part of the same command.
We define an assertion function̂I1 of (P1, P

′
1) such that

Î1(entry(P1), entry(P ′
1)) = Î1(exitn(P1), exitn(P ′

1)) = α.

Î1 can be defined elsewhere but for all pointsp 6= exitn(P1) andp′ 6= exitn(P ′
1), we havêI1(exitn(P1), p

′)
andÎ1(p, exitn(P ′

1)) undefined. Furthermore, letS1 = {p′ | ∃p, φ.Î1(p, p′) = φ} be the set of points in
P ′

1 such that, for any pointp′ in S1, there is a pointp in P1 andÎ1(p, p′) is defined. We require that the set
S1 coversP ′

1. Next, we define a set̂Π1 of paths of(P1, P
′
1) such that the set{π′ | ∃(π, π′) ∈ Π̂1} consists

of all S1-simple paths.
Similarly for the pair(P2, P

′
2), we define an assertion function̂I2 of (P2, P

′
2) as follows. On the pair

(entry(P2), entry(P ′
2)) of entry points the function̂I2 is defined asψ with the following requirements:

• the assertionα⇒ ψ is valid,

• the assertionψ ⇒ ε = Obs(ε) ∧
∧

x∈Pr(OT DS) x = Obs(x)) is valid, and

• for every finite run(p′0, σ
′
0), . . . , (p

′
n, σ

′
n) of P ′

1, there is a finite run(p0, σ0), . . . , (pm, σm) of P1

such that(σ0, σ
′
0) satisfiesα and(σm, σ

′
n) satisfiesψ.

On the pair(exita(P2), exita(P ′
2)) of exit points, the function̂I2 is defined asψ′ such that the assertion

ψ′ ⇒
∧

x∈OTDS
x = Obs(x) is valid. Furthermore, for all pointsp 6= exita(P2) andp′ 6= exita(P ′

2),

we haveÎ2(exitn(P2), p
′) andÎ2(p, exitn(P ′

2)) undefined. From the function̂I2, we can define a setS2

similarly to defining the setS1 from Î1. The setS2 must coverP ′
2. We also define a set̂Π2 of paths of

(P2, P
′
2) similarly to defining the set̂Π1.

THEOREM 5.4 Let Î1 and Î2 be assertion functions as defined above, andΠ̂1 andΠ̂2 be sets of paths as
defined above. LetW1 andW2 be the weak verification conditions associated, respectively, with Î1 and
Π̂1, and withÎ2 andΠ̂2. If all assertions ofW1 andW2 are valid, then there is an RCR between the FSP
and the TDS of the commandC. �

The proof of the above theorem is similar to that of Theorem4.3. First, consider runs that terminate
normally. Since the assertions

Î1(entry(P1), entry(P ′
1)) ⇒ ε = Obs(ε)

Î1(exitn(P1), exitn(P ′
1)) ⇒ ε = Obs(ε)

are valid and the functionI1 is weakly extendible, it is guaranteed that the sequence of sets of events
emitted by the run of the TDS matches the sequence of events emitted by the run of the FSP. Moreover,
since the assertion

Î1(entry(P1), entry(P ′
1)) ⇒

∧

x∈Pr(OTDS)

x = Obs(x)

is valid, it follows that after each corresponding updates of ε andObs(ε) the value of each variable
y ∈ Pr(OTDS) coincides with the value of its counterpart in the FSP. It then follows from the asser-
tion Î1(exitn(P1), exitn(P ′

1) that when the runs terminate normally, or emittingPass or Fail, the values of
each corresponding observable variables coincide.
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Let us now consider runs that terminate abruptly. Recall that in the TDS, when a transaction is in
progress, updating an observable persistent variable doesnot emit any event; instead, the update is re-
membered by the special variableεt. Since the assertion̂I1(exitn(P1), exitn(P ′

1)) ⇒ ε = Obs(ε) is
valid, for any run of the TDS that emits eventε1 and then terminates abruptly, there is a run of the FSP,
on the same input for observable variables, such that the runof the FSP emits eventε′1 and terminates
abruptly, andε1 matchesε′1. The match betweenε1 and ε′1 fulfills the requirement that the assertion
Î2(entry(P2), entry(P ′

2)) ⇒ ε = Obs(ε) ∧
∧

x∈Pr(OTDS) x = Obs(x) is valid. Moreover, since undoing
the effects of an in-progress transaction only involves values of persistent variables before the transaction
begins, it is safe to assert

∧
x∈Pr(OTDS) x = Obs(x) at the entry of(P2, P

′
2). Moreover, by the assertion

Î2(exita(P2), exita(P ′
2)) and the weak extendibility of̂I2, it follows that, at the exit of(P2, P

′
2) (or when

the runs emitAbrupt), the assertion
∧

x∈Pr(OTDS) x = Obs(x) is preserved by the undoing of the effects of
the transaction, and the value of each observable transientvariable and the value of its counterpart coincide.

EXAMPLE 5.5 We consider again the commandcheckPIN in this example. Consider the FSP of the com-
mand shown on the righthand side of Figure4. The figure shows the flow graph of thetry part of the
command. The value of variabletrial is decremented before the PIN is checked against the input PIN. This
is a desirable security property. If the value oftrial is decremented after the PIN is checked against the
input PIN, then if one can observe the run of the command, thenhe can produce a card tear once he knows
that the PIN is not equal to the input PIN, and thus he can inputwrong PIN infinitely often. This is a kind
of security attack which is not captured by the SPM ofcheckPIN.

In the presence of transactions, having the value oftrial decremented before the PIN check is not
sufficient to handle the above security attack. First, the variabletrial must be persistent since it must keep
its value when power is switched off. Second, the decrement of the value oftrial must not participate in a
transaction; otherwise, if a card tear occurs, the content of the variabletrial will be restored with its latest
value before the transaction begins, and thus one can possibly try wrong PIN infinitely often.

In the TDS of the commandcheckPIN, for simplicity, we require that any update of the value oftrial

shall not participate in any transaction, or in other words,the update shall be unconditional. Figure8
depicts the FSP and the TDS of thetry parts of the commandcheckPIN. The flow graph of the FSP is
calledP1 and is on the lefthand side of the figure, while the other flow graph is the flow graph of the TDS
and it is calledP ′

1. In P ′
1, the variableinTrans denotes the variableinTransaction used in desugaring the

transaction mechanism of TDSs. Persistent variables inP ′
1 aretrial, pin, length,MAX. Other variables are

transient. The variabletb is a backup variable for the variabletrial.
Let the set

OFSP = {trial, pin, length, p, l, val,MAX, ε}

be the set of observable variables of the FSP and the setOTDS be the set of observable variables of
the TDS such thatOTDS consists of the primed counterparts of all variables inOFSP . The one-to-one
correspondenceObs betweenOFSP andOTDS maps each variable inOFSP to its primed counterpart in
OTDS . We express the relationship of observable variables by thefollowing assertions:

φ1 ⇔ pin = pin′ ∧ length = length′ ∧ MAX = MAX′ ∧ trial = trial′

φ2 ⇔ p = p′ ∧ l = l′ ∧ val = val′ ∧ ε = ε′

φ ⇔ φ1 ∧ φ2 ∧ (inTrans′ ⇒ trial = tb′)

The assertionsφ1 andφ2 describe the correspondence of, respectively, persistentand transient variables.
We define an assertion function of(P1, P

′
1) as follows:

Î1(pe, p
′
e) = Î1(p1, p

′
1) = Î1(p1, p

′
5) = Î1(p5, p

′
6) = Î1(p2, p

′
2)

= Î1(p3, p
′
3) = Î1(p3, p

′
7) = Î1(p4, p

′
4) = Î1(p6, p

′
8) = Î1(px, p

′
x) = φ

Let S′
1 = {p′ | ∃p, ϕ.Î1(p, p′) = ϕ} be the set of points inP ′

1 such that for each pointp′ in S′
1, there is a

pointp in P1 andÎ1(p, p′) is defined. Note thatS′
1 coversP ′

1. Similarly, letS1 = {p | ∃p′, ϕ.Î1(p, p
′) = ϕ}

We define a set̂Π1 of paths of(P1, P
′
1) as follows: for everyS′

1-simple pathπp′,q′ ,

• there is anS1-simple pathπp,q such thatÎ1(p, p′) andÎ1(q, q′) are defined, or
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length = l

trial := trial − 1

trial > 0

i := 0

i < l

trial := MAX

val := ⊤
val := ⊥

pin[i] = p[i]

i := i + 1

p4

p
x
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trial > 0
p′

e

p′
1

pin[i] = p[i]

i := i + 1

length = l
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p′
2

trial := trial − 1

inTrans := ⊥

inTrans

p
e

p1

inTrans := ⊤

tb := trial

p′
5

p5
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p′

4
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inTrans

tb := trial

p′
x

p3

p6

p′
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Figure 8:P1 is on the left andP ′
1 is on the right.
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a
e
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a
x

a1
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j := 0

l := 0

j < p.length

j := j + 1

p[j] := 0

j := j + 1

a
′

x

j := 0

j < p.length

Abrupt

l := 0 p[j] := 0

a
′

1

val := ⊥

inTrans

trial := tb

a
′

e

Figure 9:P2 is on the left andP ′
2 is on the right.

• there is a trivial pathπp, wherep ∈ S1, such thatÎ1(p, p′) andÎ1(p, q′) are defined.

One can easily prove that the assertions in the verification condition associated witĥI1 andΠ̂1 are valid,
and thusÎ1 is weakly extendible.

We next consider thecatch part of the commandupdatePIN. The flow graphsP2 andP ′
2 in Figure9

are thecatch parts of the command. Note that thecatch partP2 of the FSP is different from the one
shown on the righthand side of Figure5. The flow graphP2 in Figure9 updates the variablesp andl. The
counterparts of these variables in the TDS are transient variables,3 and so on abrupt they are set to their
default values. Nevertheless, one can easily define an assertion function of the flow graphP2 in Figure9
and the flow graphP2 of the SPM in Figure5 such that there is still an RCR between the SPM and the FSP
of the commandcheckPIN.

We define an assertion function̂I2 of (P2, P
′
2) as follows:

Î2(ae, a
′
e) = φ1 ∧ p = p′ ∧ ε = ε′ ∧ (inTrans′ ⇒ trial = tb′)

Î2(a1, a
′
1) = φ1 ∧ p = p′ ∧ val = val′ ∧ ε = ε′

Î2(ax, a
′
x) = φ.

Note that the assertionsφ ⇒ Î2(ae, a
′
e) andÎ2(ae, a

′
e) ⇒

∧
x∈Pr(OT DS) x = Obs(x) ∧ ε = ε′ are valid.

Moreover, since the setS′
1 above coversP ′

1, by the weak-extendibility of̂I1, it follows that for every finite
run ofP ′

1, there is a finite run ofP1 such that the initial configurations of the runs satisfyφ and the last
configurations of the runs satisfŷI2(ae, a

′
e).

LetS′
2 = {p′ | ∃p, ϕ.Î2(p, p′) = ϕ} be the set of points inP ′

2 such that for each pointp′ in S′
2, there is

a pointp in P2 andÎ2(p, p′) is defined. Note thatS′
2 coversP ′

2. Similarly, letS2 = {p | ∃p′, ϕ.Î2(p, p
′) =

ϕ}. LetΠS′

2
be the set of allS′

2-simple paths andΠS2
be the set of allS2-simple paths. We define a setΠ̂2

of paths of(P2, P
′
2) as follows:

Π̂2 = {(πp,q, πp′,q′) | ∃ϕ1, ϕ2.(πp,q, πp′,q′) ∈ ΠS2
× ΠS′

2
andÎ1(p, p′) = ϕ1 andÎ1(q, q′) = ϕ2}.

One can prove that the assertions in the weak verification condition associated witĥI2 andΠ̂2 are valid.
Therefore, there is an RCR between the FSP and the TDS of the commandcheckPIN. �

3Stack variables are transient variables.
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Figure 10:P1 is on the left andP ′
1 is on the right.

EXAMPLE 5.6 In this example we will show that there is an RCR between the FSP and the TDS of the
commandupdatePIN. Figure10 shows thetry parts of the command. The flow graphsP1 andP ′

1 are the
FSP and the TDS, respectively. As usual, to distinguish variables of the FSP from variable of the TDS, we
use primed notation for variables of the TDS. Let the sets

OFSP = {trial, pin, length, p, l, val,MAX, c, ε}
OTDS = {trial′, pin′, length′, p′, l′, val′,MAX′, inTrans′, ε}

be the sets of observable variables of, respectively, the FSP and the TDS. The one-to-one correspondence
Obs maps each variable inOFSP , exceptc, to its primed counterpart inOTDS ; the variablec itself is
mapped toinTrans′. The following assertions express the correspondence between the observable vari-
ables:

φ1 ⇔ trial = trial′ ∧ MAX = MAX′ ∧ length = length′ ∧ pin = pin′

φ2 ⇔ val = val′ ∧ c = inTrans′ ∧ p = p′ ∧ l = l′

φ3 ⇔ ε = ε′

φ4 ⇔ c ∧ inTrans′ ⇒ pb = pb′ ∧ lb = lb′ ∧ tb = tb′

φ ⇔ φ1 ∧ φ2 ∧ φ3 ∧ φ4

We define an assertion function ofÎ1 of (P1, P
′
1) as follows:

Î1(pe, p
′
e) = φ

Î1(p1, p
′
1) = φ1 ∧ φ2 ∧ φ4 ∧ c ∧ ε = ε′; ε′t ∧ i = i′

Î1(p2, p
′
2) = φ ∧ ¬c ∧ i = i′

Î1(p3, p
′
3) = φ ∧ c

Î1(p4, p
′
4) = φ1 ∧ φ2 ∧ φ4 ∧ c ∧ ε = ε′; ε′t ∧ j = j′

Î5(p5, p
′
5) = φ

Î5(px, p
′
x) = φ

The functionÎ1 is undefined elsewhere. Note that the setS1 = {p′e, p
′
1, p

′
2, p

′
3, p

′
4, p

′
5, p

′
x} of points inP ′

1
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Figure 11:P2 is on the left andP ′
2 is on the right.

coversP ′
1. We also define a set̂Π1 of paths of(P1, P

′
1) such that the set consists of the following paths:

(πpe,p1
, πp′

e,p′

1
), (πpe,p2

, πp′

e,p′

2
), (πpe,px

, πp′

e,p′

x
),

(πp1,p1
, πp′

1
,p′

1
), (πp1,p4

, πp′

1
,p′

4
), (πp2,p2

, πp′

2
,p′

2
), (πp2,p3

, πp′

2
,p′

3
),

(πp3,p3
, πp′

3
,p′

3
), (πp3,p4

, πp′

3
,p′

4
), (πp4,p5

, πp′

4
,p′

5
).(πp5,px

, πp′

5
,p′

x
).

Note that the set{π′ | ∃π.(π, π′) ∈ Π̂1} consists of allS1-simple paths. One can prove that all assertions
in the weak verification condition associated withÎ1 andΠ̂1 are valid.

We now consider the flow graphs of thecatch parts of the command. Call the flow graph of the FSP
P2 and the flow graph of the TDSP ′

2. These flow graphs are depicted in Figure11. We define an assertion
functionÎ2 of (P2, P

′
2) as follows:

Î2(ae, a
′
e) = φ1 ∧ φ3 ∧ φ4

Î2(a1, a
′
1) = φ1 ∧ φ3 ∧ φ4 ∧ c ∧ k = k′

Î2(a2, a
′
2) = φ1 ∧ φ3 ∧ val = val′

Î2(ax, a
′
x) = φ1 ∧ φ2 ∧ φ3

The functionÎ2 is undefined elsewhere. Note that the setS2 = {a′e, a
′
1, a

′
2, a

′
x} coversP ′

1.
We also define a set̂Π2 of paths of(P2, P

′
2) such that the set consists of the following paths:

(πae,a1
, πa′

e,a′

1
), (πa1,a1

, πa′

1
,a′

1
), (πa1,a2

, πa′

1
,a′

2
), (πae,a2

, πa′

e,a′

2
), (πa1,ax

, πa′

1
,a′

x
).

Note that the set{π′ | ∃π.(π, π′) ∈ Π̂2} consists of allS2-simple paths. One can prove that all assertions
in the weak verification condition associated withÎ2 andΠ̂2 are valid.

Note also that the requirements for the assertionÎ2(ae, a
′
e) is satisfied by the assertionŝI1(p3, p

′
3) and

Î1(p5, p
′
5) and the weak extendibility of̂I1. Therefore, there is an RCR between the commandupdatePIN

of the SPM and of the FSP. �

Verimag Research Report no TR-2008-14 29/33



Iman Narasamdya, Michaël Périn

6 Property Preservation

We have discussed in Section3 a technique for proving properties of SPMs. The same proof technique is
also applicable to proving properties of FSPs and TDSs. Proving properties of SPMs is easier than proving
properties of FSPs or TDSs because the language of SPMs is simpler than those of FSPs and TDSs. Let
us be given an SPM, an FSP, and a TDS of a smart-card application. Suppose that we have proven that the
SPM satisfies a propertyϕ. Suppose further that there are an RCR between the SPM and theFSP and an
RCR between the FSP and the TDS. Instead of proving that the FSP and the TDS satisfyϕ in the same
way as proving that the SPM satisfiesϕ, we prove that the FSP and the TDS satisfyϕ by showing thatϕ
is preservedby the RCRs. We discuss in this section how properties are preserved by RCRs, particularly
RCRs between SPMs and FSPs; property preservation between FSPs and TDSs can be described similarly.

We are interested in the partial correctness property. Recall that a programP is partially correctwith
respect to a preconditionϕ and a postconditionψ, denoted by{ϕ}P{ψ}, if for every run ofP from a
configuration satisfyingϕ and reaching an exit configuration, this exit configuration satisfiesψ. We now
introduce a notion of partial correctness that also respects abrupt terminations. A programP is partially
correct with respect to a preconditionϕ, a normal postconditionψ1 and an abrupt postconditionψ2, denoted
by {ϕ}P{ψ1}{ψ2} , if for every run ofP from a configuration satisfyingϕ, if the run reaches a normal exit
configuration, then this exit configuration satisfiesψ1, and if the run reaches an abrupt exit configuration,
then this exit configuration satisfiesψ2. The programP itself can be a command in an SPM, an FSP, or
a TDS. In the sequel the former notion of partial correctnessis called the standard notion, while the latter
notion is called the non-standard notion.

Weakly-extendible assertion functions are sufficient for proving standard partial correctness.

THEOREM 6.1 LetI be a weakly-extendible assertion function of a programP such thatI(entry(P )) = ϕ

andI(exit(P )) = ψ. Then{ϕ}P{ψ}, that is,P is partially correct with respect to the preconditionϕ and
the postconditionψ. �

A proof of the above theorem can be found in [Narasamdya, 2007].
To prove non-standard partial correctness{ϕ1}P{ψ1}{ψ2}, we first represent the programP by two

programsP1 andP2. The programP1 describes the normal behavior ofP , that is in the case of smart-card
applications, the behavior ofP when no card tears are present. The programP2 describes the behavior of
P when a card tear occurs. Recall that ifP is a command in an SPM, thenP1 is the program representing
thepassandfail clauses andP2 is the program representing theabrupt clause. IfP is a command in an
FSP or a TDS, thenP1 is the program representing thetry part andP2 is the program representing the
catch part.

Second, we introduce an assertionϕ2 as a “linking” assertion betweenP1 andP2, such that the assertion
ϕ1 ⇒ ϕ2 is valid. We then prove the following properties:

1. {ϕ1}P1{ψ1},

2. {ϕ2}P2{ψ2}, and

3. for every run ofP from an entry configuration satisfyingϕ1, every configuration of the run satisfies
ϕ2.

By Theorem6.1, weakly-extendible assertion functions are sufficient forproving properties1 and 2. As
shown in Example3.1and Example3.2, we can use the notions of (weakly or strongly) extendible assertion
function and verification condition associated with the function to prove property3.

THEOREM 6.2 LetP andP ′ be programs representing, respectively, the SPM and the FSPof a command
C. LetObs be a one-to-one correspondence between the setOSPM of observable variables of the SPM and
the setOFSP of observable variables of the FSP. Letϕ, ψ1, ψ2 be assertions consisting only of variables
of the SPM andϕ′, ψ′

1, ψ
′
2 be assertions consisting only of variables of the FSP such that the following
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assertions are valid: ∧
x∈OSPM

x = Obs(x) ⇒ (ϕ⇔ ϕ′)∧
x∈OSPM

x = Obs(x) ⇒ (ψ1 ⇔ ψ′
1)

∧
x∈Ab(OSPM ) x = Obs(x) ⇒ (ψ2 ⇔ ψ′

2).

If P is partially correct with respect to the preconditionϕ, normal postconditionψ1, and abrupt postcon-
ditionψ2, or {ϕ}P{ψ1}{ψ2} and there is an RCR between the SPM and the FSP of the commandC, then
{ϕ′}P ′{ψ′

1}{ψ
′
2}.

PROOF. Consider a run ofP ′ from a stateσ′
1 satisfyingϕ′ such that the run reaches a normal exit configu-

ration with stateσ′
2. Since there is an RCR betweenP andP ′, there is a run ofP from a stateσ1 such that

(σ1, σ
′
1) satisfies

∧
x∈OSPM

x = Obs(x), and thusσ1 satisfiesϕ. By the RCR, the run ofP ′ also reaches
a normal exit configuration with stateσ2. Since{ϕ}P{ψ1}{ψ2}, the stateσ2 satisfiesψ1. It follows from
the validity of assertion

∧
x∈OSPM

x = Obs(x) ⇒ (ψ1 ⇔ ψ′
1) thatσ′

2 satisfiesψ′
1.

Suppose that the run ofP ′ reaches an abrupt exit configuration with a stateσ′
3. Then by the RCR there

is a run ofP from a stateσ1 such that(σ1, σ
′
1) satisfies

∧
x∈OSPM

x = Obs(x), and thusσ1 satisfiesϕ,
and the run reaches an abrupt exit configuration with stateσ3. Since{ϕ}P{ψ1}{ψ2}, the stateσ3 satisfies
ψ2. It follows from the validity of assertion

∧
x∈Ab(OSPM ) x = Obs(x) ⇒ (ψ2 ⇔ ψ′

2) thatσ′
3 satisfiesψ′

2.
�

Properties of SPMs or FSPs and RCRs between SPMs and FSPs are often described by assertion func-
tions. LetP1 andP2 be programs representing, respectively, thepassandfail clauses and theabrupt clause
of a commandC in an SPM. LetP ′

1 andP ′
2 be programs representing, respectively,thetry andcatch parts

of the commandC in an FSP. LetI1 andI2 be assertion functions of, respectively,P1 andP2, such that

I1(entry(P1)) = ϕ1

I1(exit(P1)) = ψ1

I2(entry(P2)) = ϕ2

I2(exit(P2)) = ψ2

for some assertionsϕ1, ϕ2, ψ1, ψ2, and{ϕ1}P{ψ1}{ψ2}. The same property for the FSP is represented
by assertion functionsI ′1 andI ′2 of, respectively,P ′

1 andP ′
2, such that

I ′1(entry(P ′
1)) = ϕ′

1

I ′1(exit(P
′
1)) = ψ′

1

I ′2(entry(P ′
2)) = ϕ′

2

I ′2(exit(P
′
2)) = ψ′

2

for some assertionsϕ1, ϕ2, ψ1, ψ2.
Let the RCR between the SPM and the FSP of the commandC is represented by assertion functionsÎ1

andÎ2 of, respectively,(P1, P
′
1) and(P2, P

′
2), such that

Î1(entry(P1), entry(P ′
1)) = α

Î1(exit(P1), exit(P
′
1)) = α′

Î2(entry(P2), entry(P ′
2)) = β

Î1(exit(P2), exit(P
′
2)) = β′

for some assertionsα, α′, β, β′. To prove that{ϕ′
1}P

′{ψ′
1}{ψ

′
2}, as the above theorem has shown, we have

to prove that the following assertions are valid:

α⇒ (ϕ1 ⇔ ϕ′
1)

α′ ⇒ (ψ1 ⇔ ψ′
1)

β′ ⇒ (ψ2 ⇔ ψ′
2).

In addition we have to show that if a card tear occurs during a run of P ′
1, then the final state of the run

satisfiesI ′2(entry(P ′
2)). To this end, we need to prove that the assertionβ ⇒ (ϕ2 ⇔ ϕ′

2) is valid. Thus, if
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a card tear occurs during a run ofP ′
1 such that the final state of the run isσ′, then by the RCR there is a finite

run ofP such that the final state of the run isσ and(σ, σ′) satisfiesI ′2(entry(P ′
2)). Since{ϕ1}P{ψ1}{ψ2},

we haveσ satisfiesϕ2. Now, sinceI ′2(entry(P ′
2)) = β and the assertionβ ⇒ (ϕ2 ⇔ ϕ′

2) is valid, it
follows thatσ′ satisfiesϕ′

2, and thus{ϕ′
1}P

′{ψ′
1}{ψ

′
2}.

EXAMPLE 6.3 In this example we consider the property that we have proven for the SPM in Example3.1.
That is, in any run ofcheckPIN the validation status at the exit configuration of the run is true if and only if
the run emits aPass event. This property is a partial correctness property of the SPM. We want to show that
this property is preserved by the RCR described in Example4.4. That is, the FSP shown on the righthand
side of Figure4 and Figure5 satisfies the property.

We assume that all variables in the FSP are in primed notation. To describe the property we define two
assertion functionsI ′1 andI ′2 such that

I ′1(p
′
e) = ϕ′

I ′1(p
′
x) = ϕ′ ∧ val′ = ⊤ ⇔ ε = Pass

I ′2(a
′
e) = ⊤

I ′2(a
′
x) = val′ = ⊤ ⇔ ε = Pass,

whereϕ′ is the conjunction of the assertionsMAX′ > 0, 0 ≤ trial′ ≤ MAX′, andtrial′ < MAX′ ⇒ val′ =
⊥. The functionI ′1 andI ′2 can be defined elsewhere.

Consider the assertion functionsI1 andI2 defined in Example3.1, and the assertion functionŝI1 and
Î2 defined in Example4.4. Since the following assertions are valid:

Î1(pe, p
′
e) ⇒ (I1(pe) ⇔ I ′1(p

′
e))

Î1(px, p
′
x) ⇒ (I1(px) ⇔ I ′1(p

′
x))

Î2(pe, p
′
e) ⇒ (I2(pe) ⇔ I ′1(p

′
e))

Î2(px, p
′
x) ⇒ (I2(px) ⇔ I ′1(p

′
x))

it follows that the FSP of the commandcheckPIN is partially correct with respect to the precondition
I ′1(p

′
e), the normal postconditionI ′1(p

′
x), and the abrupt postconditionI ′2(p

′
x). �

In this section we have shown how RCRs between SPMs and FSPs preserve properties of SPMs. Prop-
erty preservation between FSPs and TDSs can be described similarly.

7 Related Work

There have been some works related to the specification and verification of smart-card applications and to
CC certification. For example, the work in [Breunesse et al., 2005] describes a case study in the specifica-
tion and verification of an electronic purse application. The work is not in the framework of CC and only
concerned with the specification and verification of a singleprogram, which is the implementation code.
The work can complement our work in proving properties of theimplementation code.

An example work on CC certification is [Heitmeyer et al., 2006]. The work is concerned with verifying
that the kernel of a software-based embedded device enforces data separation. Similar to our SPMs, the
specification is modelled as a finite state machine. The RCR inthis work is only between the state machine
and the implementation code, and also is a standard refinement relation.

8 Conclusion

We have successfully applied the theory of program properties described in [Narasamdya, 2007] to the cer-
tification of smart-card applications in the framework of Common Criteria. In the application of the theory
to proving properties of SPMs, FSPs, and TDSs, we prove the properties of each command separately. Each
command is represented by two flow graphs or programs, one program describes the normal behavior of

32/33 Verimag Research Report no TR-2008-14



Iman Narasamdya, Michaël Périn

the command and the other program describes what the commandhas to do when a card tear occurs. Prop-
erties that we want to prove are encoded as assertion functions of these two programs. Weakly-extendible
assertion functions are then sufficient to prove the properties.

In the application of the theory to proving RCRs, we prove that there is an RCR between each corre-
sponding commands separately. Each corresponding programs representing the normal behavior and card
tears are considered as two pairs of programs. The RCR itselfis then encoded as assertion functions of
these pairs of programs. The notions of weakly-extendible assertion function and weak verification condi-
tion are used to prove the RCR and to provide a certificate about the RCR. Particularly for RCRs between
FSPs and TDSs, the application of the theory to proving such RCRs also handles memory characteristics
and transaction mechanism that exist in the low-level design, or the TDSs.

We have also shown that, using the theory, the properties that are satisfied by a requirement representa-
tion of an application can be brought forward to the subsequent requirement representations, and so there
is no need to prove that the same properties are satisfied by the subsequent representations.
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