
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Proving Inter-Program Properties

Andrei Voronkov, Iman Narasamdya

Verimag Research Report no TR-2008-13

September 2008

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Proving Inter-Program Properties

Andrei Voronkov, Iman Narasamdya

The University of Manchester
voronkov@cs.man.ac.uk

Verimag
Iman.Narasamdya@imag.fr

September 2008

Abstract

We develop foundations for proving properties relating twoprograms. Our formalization is
based on a suitably adapted notion of program invariant for asingle program. First, we give
an abstract formulation of the theory of program invariantsbased on the notion of assertion
function: a function that assigns assertions to program points. Then, we develop this abstract
notion further so that it can be used to prove properties between two programs. We describe
two applications of the theory. One application is in the translation validation for optimiz-
ing compilers, and the other application is in the certification of smart-card application in the
framework of Common Criteria. The latter application is part of an industrial project con-
ducted at Verimag laboratory.

Keywords: Assertion Function, Invariant, Translation Validation, Common Criteria Certification

Reviewers: Laurent Mounier

Notes:

How to cite this report:

@techreport{ ,
title = { Proving Inter-Program Properties},
authors ={ Andrei Voronkov, Iman Narasamdya},
institution ={ Verimag Research Report},
number ={TR-2008-13},
year ={ },
note ={ }
}

voronkov@cs.man.ac.uk
Iman.Narasamdya@imag.fr


Andrei Voronkov, Iman Narasamdya

1 Introduction

Techniques for proving properties between two programs have become important in the area of program
verification. The verification of a program consists of proving that the program satisfies a given speci-
fication. The specification is usually written in a formal language such as first-order or temporal logic.
However, in some cases, like software evaluation and certification, the formal specification itself is often
not available, and we are only given a model of the specification. This model is essentially a program writ-
ten in a simple language. To prove the correctness of our program, we first formulate the property relating
the program and the model. For example, our program is correct with respect to the model if they perform
the same sequence of function calls when both of them are run on the same input. Such a property between
two programs is calledinter-program propertythroughout this report.

Inter-program properties describe relationships betweentwo programs. A relationship between two
programs includes a mapping between locations and a relationship between variables of the two programs.
Moreover, inter-program properties also involve run-timebehaviors of the two programs. Consider the
following two programs:

P P ′

i := 0
while (i < 100) do

i := i + 1
q :
od
return i

i′ := 0
while (i′ < 100) do

i′ := i′ + 2
q′ :
od
return i′

We want to prove thatP andP ′ are semantically equivalent. That is, for every pair of runsof both
programs, one run is terminating if and only if so is the other, and if the runs are terminating, they return
the same value. We first asserti = i′ at q andq′. Then, we argue thatP andP ′ are equivalent with the
following reasoning. From the entries ofP andP ′, by taking two iterations of the loop inP and a single
iteration of the loop inP ′, one can reachq andq′ such that the values ofi andi′ coincide. Fromq andq′,
by knowing that the values ofi andi′ coincide (or the equalityi = i′ holds), then there are two possibilities
depending on the values ofi andi′. One possibility is follow the same paths as before and reachq andq′

again such that the values ofi and i′ coincide. The other possibility is exit the loops and the values ofi
andi′ remain coincide. These two possibilities show that both runs ofP andP ′ are either terminating or
non-terminating. The second possibility shows that on termination, both runs return the same value.

The notion of semantic equivalence is an example of inter-program property. Such a notion is heavily
used in compiler verification, particularly in translationvalidation approach and certifying compilers. In
the translation validation approach [11], for each compilation, one proves that the source and the target
programs are semantically equivalent. Particularly in a certifying compiler, the compiler must produce a
certificatecertifying such an equivalence.

One might be interested in the notion of safe implementation. For example, a program is a safe imple-
mentation of another program if the sequence of observable behaviors performed by the former program is
a subsequence of that of the latter program. Consider the programsP andP ′ above and imagine that there
is a function callf(i) at q andq′. Let function calls and return values be the only observablebehaviors.P
andP ′ are no longer equivalent because both perform different sequences of function calls. Nonetheless,
one can prove thatP ′ is a safe implementation ofP .

Standard techniques for proving properties of a single program have been addressed for four decades [4,
5]. However, although there have been many kinds of inter-program property used in program verification,
there is no adequate basis for describing inter-program properties formally such that a rigorous standard is
establish for certificates and proofs about such properties. We propose in this report an abstract theory of
inter-program properties. The theory is based on the notionof assertion function: a function that assigns
assertions to program points. For example, in the above programP we can assert thati ≤ 100 at q by
defining an assertion functionI such thatI mapsq to i ≤ 100.

The formalization of our theory is based on a suitably adapted notion of program invariant for a single
program. We introduce the notion of extendible assertion function as a constructive notion for describing

Verimag Research Report no TR-2008-13 1/34



Andrei Voronkov, Iman Narasamdya

and proving program invariants. An assertion functionI of a program is extendible if for every run of the
program reaching a pointp1 on whichI is defined and the assertion defined atp1 holds, we can always
extendthe run so that it reaches a pointp2 on whichI is defined and the assertion atp2 holds. For example,
suppose that we define an assertion functionI of the programP above such that, on the entry and exit of
P , I is defined as true, and onq, I is defined asi ≤ 100. The functionI is extendible because if a run
reachesq such thati ≤ 100 holds, then we can extend the run either to reachq again or to reach the exit of
P , and the assertions defined at those points will also hold.

We develop further the notion of extendible assertion function so that it can be used to prove inter-
program properties. To this end, we consider the two programs as apair of programswith disjoint sets
of variables. For example, to assert thati = i′ at q andq′ in the programsP andP ′ above, we define
an assertion functionI of (P, P ′) such thatI maps(q, q′) to i = i′. We will show in this report that
meta properties that hold for the case of a single program also hold for the case of a pair of programs.
Furthermore, since we are interested in a kind of certificate, we develop a notion of verification condition
as a notion of certificate. A verification condition itself isa set of assertions. A certificate can be turned
into a proof by proving that all assertions in the verification condition are valid.

In this report we discuss two prominent applications of the theory of inter-program properties. The first
application is translation validation. We focus the application on the translation validation for optimizing
compilers. We can show that the notion of extendible assertion function can capture inter-program prop-
erties used in all existing works on translation validationfor optimizing compilers. In Section5 we will
discuss its application to our previous work on finding basicblock and variable correspondence [8] and
briefly mention how our notion of weakly extendible assertion function and the corresponding notion of
verification condition can be used to certify other approaches.

The other application is in software certification. We describe an industrial project for certifying smart-
card applications at Verimag laboratory. In this project, we show that, using our theory, we can provide
certificates that certify properties between different models of a specification in the framework of Common
Criteria [1].

In summary, the contributions of this report are the following:

• A theory of inter-program properties as an adequate basis for describing and proving properties
relating two programs.

• Applications of the theory in compiler verification and in software certification.

The outline of this report is as follows. We first describe themain assumptions used in the theory
of inter-program properties. We then develop a theory of properties of a single program. We call such
properties intra-program properties. Then, we develop thetheory further so that it can be used to prove
inter-program properties. Having the theory of inter-program properties, we then discuss two applications
of the theory in translation validation and in Common Criteria certification.

2 Main Assumptions

Our formalization will be based on standard assumptions about programs and their semantics. We assume
that a program consists of a finite set ofprogram points. For example, aprogram pointof a programP
can be the entry or the exit of a sequence of statements (or ablock) in P . We denote byPointP the set
of program points ofP . A program-point flow graph ofP is a finite directed graph whose nodes are the
program points ofP . In the sequel, we assume that every programP we are dealing with is associated with
a program-point flow graph, denoted byGP .

We assume that every program has a uniqueentry pointand a uniqueexit point. Denote byentry(P )
andexit(P ), respectively, the entry and the exit point of programP . We assume that the program-point
flow graph contains no edge into the entry point and no edge from the exit point.

We describe the run-time behavior of a program as sequences of configurations. Aconfigurationof a
program run consists of a program point and a mapping from variables to values. Such a mapping is called a
state. The variables used in a state do not necessarily coincide with variables of the program. For example,
we may considermemoryto be a variable. Formally, a configuration is a pair(p, σ), wherep is a program

2/34 Verimag Research Report no TR-2008-13



Andrei Voronkov, Iman Narasamdya

point andσ is a state. A configuration(p, σ) is called anentry configuration forP if p = entry(P ), and
anexit configuration forP if p = exit(P ). For a configurationγ, we denote bypp(γ) the program point
of γ and bystate(γ) the state of this configuration.

We assume that the semantics of a programP is defined as a transition relation7→P with transitions of
the form(p1, σ1) 7→P (p2, σ2), wherep1, p2 are program points,σ1, σ2 are states, and(p1, p2) is an edge
in the program-point flow graph ofP .

DEFINITION 2.1 (Computation Sequence,Run) Acomputation sequence of a programP is either a finite
or an infinite sequence of configurations

(p0, σ0), (p1, σ1), . . . , (1)

where(pi, σi) 7→P (pi+1, σi+1) for all i. A runR of a programP from an initial stateσ0 is a computation
sequence (1) such thatp0 = entry(P ). A run is completeif it cannot be extended, that is, it is either
infinite or terminates at an exit configuration.

For two configurationsγ1, γ2, we writeγ1
∗
7→P γ2 to denote that there is a computation sequence ofP

starting atγ1 and ending atγ2. We say that a computation sequence istrivial if it is a sequence of length 1.
We introduce two restrictions on the semantics of programs.First, we assume that programs are deter-

ministic. That is, for every programP , given a configurationγ1, there exists at most one configurationγ2

such thatγ1 7→P γ2. Second, we assume that, for every programP and for every non-exit configurationγ1

of P ’s run, there exists a configurationγ2 such thatγ1 7→P γ2, that is, a complete run may only terminate in
an exit configuration. Our results can easily be generalizedby dropping these restrictions. Indeed, one can
view a non-deterministic program as a deterministic program having an additional input variablex whose
value is an infinite sequence of numbers, these numbers are used to decide which of non-deterministic
choices should be made. Further, if a program computation can terminate in a state different from the exit
state, we can add an artificial transition from this state to the exit state. After such a modification we can
also consider arbitrary non-deterministic programs.

Further, we assume someassertion languagein which one can writeassertionsinvolving variables and
express properties of states. For example, the assertion language may be some first-order language. The
set of all assertions is denoted byAssertion. We will use meta variablesα, φ, ϕ, andψ, along with their
primed, subscript, and superscript notations, to range over assertions. We writeσ |= α to mean an assertion
α is true in a stateσ, and also say thatσ satisfiesα, or thatα holds atσ. We say that an assertionα is valid
if σ |= α for every stateσ. We will also use a similar notation for configurations: for aconfiguration(p, σ)
and assertionα we write(p, σ) |= α if σ |= α. We also writeσ 6|= α to mean an assertionα is false inσ,
or σ does not satisfyα. We assume that the assertion language is closed under the standard propositional
connectives and respects their semantics, for exampleσ |= ¬α if and only if σ 6|= α. We call an assertion
valid if it is true in all states.

To ease the readability we introduce the following notation: for all assertionsα, α1, andα2, and for
every stateσ,

α1 ∧ α2 for α, whereσ |= α if and only if σ |= α1 andσ |= α2

α1 ∨ α2 for α, whereσ |= α if and only if σ |= α1 or σ |= α2

¬α1 for α, whereσ |= α if and only if σ 6|= α1

α1 ⇒ α2 for α, whereσ |= α if and only if σ |= α2 wheneverσ |= α1

3 Intra-Program Properties

In this section we introduce the notion of program invariantfor a single program and some related notions
that make it more suitable to present inter-program properties later.

3.1 Program Invariants

We introduce the notion of assertion function that associates program points with assertions. Anassertion
functionfor a programP is a partial function

I : PointP → Assertion
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mapping program points ofP to assertions such thatI(entry(P )) andI(exit(P )) are defined. The notion
of assertion function generalizes the notion of program invariant: one can considerI as a collection of
invariants associated with program points. The requirement thatI is defined on the entry and exit points is
purely technical and not restrictive, for one can always defineI(entry(P )) andI(exit(P )) as⊤, that is,
an assertion that holds at every state.

Given an assertion functionI, we call a program pointp I-observableif I(p) is defined. A configuration
(p, σ) is calledI-observable if so is its program pointp. We say that a configurationγ = (p, σ) satisfiesI,
denoted byγ |= I, if I(p) is defined andσ |= I(p). We will also say thatI is defined onγ if it is defined
onp and writeI(γ) to denoteI(p).

DEFINITION 3.1 (Program Invariant) LetI be an assertion function of a programP . The functionI is
said to be aprogram invariantof P if for every run

γ0, γ1, . . .

of the program such thatγ0 |= I and for alli ≥ 0, we haveγi |= I wheneverI is defined onpp(γi). �

In other words, an assertion function is an invariant if and only if for every program run from an entry
configuration satisfyingI, every observable configuration of this run satisfiesI too.

This notion of invariant is useful for asserting that a program satisfies some properties, including partial
correctness of a problem. Recall that a programP is partially correctwith respect to a preconditionϕ and
a postconditionψ, denoted by{ϕ}P{ψ}, if for every run ofP from a configuration satisfyingϕ and
reaching an exit configuration, this exit configuration satisfiesψ. Likewise, a programP is totally correct
with respect to a preconditionϕ and a postconditionψ, denoted by[ϕ]P [ψ], if every run ofP from a
configuration satisfyingϕ terminates in an exit configuration and this exit configuration satisfiesψ.

THEOREM 3.2 LetP be a program andϕ, ψ be assertions. LetI be an assertion function forP such that
I(entry(P )) = ϕ and I(exit(P )) = ψ. If I is an invariant, then{ϕ}P{ψ}. If, in addition,I is only
defined on the entry and the exit points, thenI is an invariant if and only if{ϕ}P{ψ}.

PROOF. Suppose thatI is an invariant ofP andγ1
∗
7→P γ2, whereγ1 is an entry configuration andγ2 is an

exit configuration, andγ1 |= ϕ. Thenγ1 |= I. Using this and the fact thatγ2 is I-observable, we obtain
γ2 |= I, that is,γ2 |= ψ.

Now suppose thatI is only defined on the entry and the exit points, and{ϕ}P{ψ}. Consider any
complete run ofP from a configurationγ1 that satisfiesϕ. We have to show that everyI-observable
configuration of this run also satisfiesI. It is obvious thatγ1 |= I. But the only observable state of this run
different fromγ1 may be an exit configurationγ2, in which case, and by our restrictions on programs, the
run terminates at this configuration, then by{ϕ}P{ψ}, we haveγ2 |= ψ, that is,γ2 |= I. �

One can provide a similar characterization of loop invariants using our notion of invariant.

3.2 Extendible Assertion Functions

Our notion of invariant is not immediately useful forproving that a program satisfies some properties.
For proving, we need a more constructive characterization of relations betweenI andP than just those
expressed by program runs. We introduce the notion of extendible assertion function that provides such a
characterization.

DEFINITION 3.3 LetI be an assertion function of a programP . I is strongly extendibleif for every run

γ0, . . . , γi

of the program such thati ≥ 0, γ0 |= I, γi |= I, andγi is not an exit configuration, there exists a finite
computation sequence

γi, . . . , γi+n

such that
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1. n > 0,

2. γi+n |= I, and

3. for all j such thati < j < i+ n, the configurationγj is notI-observable.

The definition ofweakly-extendibleassertion function is obtained from this definition by dropping condi-
tion 3. �

EXAMPLE 3.4 Let us give an example illustrating the difference between the two notions of extendible
assertion functions. Consider the following programP :

i := 0
j := 0
while (j < 100) do

if (i > j) then j := j + 1
elsei := i + 1
fi

q :
od

Define an assertion functionI of P such thatI(entry(P )) = ⊤ andI(q) = I(exit(P )) = (i = j), and
I(p) is undefined on all program pointsp different fromq and the entry and exit points. ThenI is weakly
extendible but not strongly extendible. To show thatI is weakly extendible, it is enough to observe the
following properties:

1. From an entry configuration, in two iterations of the loop,one reaches a configuration with the
program pointq in which i = j = 1;

2. For everyv < 100, from a configuration with the program pointq in which i = j = v, in two
iterations of the loop, one can reach a configuration in whichi = j = v + 1;

3. For everyv ≥ 100, from a configuration with the program pointq in which i = j = v, one can reach
an exit configuration in whichi = j = v.

To show thatI is not strongly extendible, it is sufficient to note that, from any entry configuration, after
one iteration of the loop, one can reach a configuration with the program pointq in which i = 1 andj = 0
and soi = j does not hold. �

Using the same arguments as in the proof of Theorem3.2, we can show that weakly-extendible func-
tions are sufficient for proving partial correctness:

THEOREM 3.5 LetI be a weakly-extendible assertion function of a programP such thatI(entry(P )) = ϕ

andI(exit(P )) = ψ. Then{ϕ}P{ψ}, that is,P is partially correct with respect to the preconditionϕ and
the postconditionψ. �

On the other hand, strongly-extendible assertion functions serve as invariants, as the following theorem
shows:

THEOREM 3.6 Every strongly-extendible assertion functionI of a programP is also an invariant ofP .

PROOF. We have to show that, for every runγ0, γ1, . . . of P such thatγ0 |= I and everyI-observable
configurationγi of this run, we haveγi |= I. We will prove it by induction oni. Wheni = 0, the statement
is trivial. Supposei > 0. Take the greatest numberj such that0 ≤ j < i andγj is I-observable. Such a
number exists sinceγ0 is I-observable. By the induction hypothesis, we haveγj |= I. By the definition
of strongly-extendible assertion function, we have that there exists ann > 0 and a runγ0, . . . , γj , . . . , γn

such thatγn |= I and all configurations betweenγj andγn are notI-observable. Note that bothγi and
γn are the firstI-observable configurations afterγj in their runs. By the assumption that our programs are
deterministic, we obtainγi = γn, soγi |= I. �
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The following theorem shows that for terminating programs there is a closer relationship between
strongly-extendible assertion functions and invariants:

THEOREM 3.7 Let an assertion functionI be an invariant ofP such thatI(entry(P )) = α. Let P
terminate for every entry configurations satisfyingα, that is, every run on an entry configuration satisfying
α is finite. ThenI is strongly extendible.

PROOF. Take any runγ0, . . . , γi of P such thatγ0 |= I, γi |= I, andγi is not an exit configuration. Extend
this run to a runγ0, . . . , γi+n that satisfies the conditions of Definition3.3. To this end, first extend the run
to a complete run

R = γ0, . . . , γi, γi+1, . . . .

Let us show thatR contains a configurationγi+n with n > 0 on whichI is defined. Such a configuration
exists sinceR is finite andI is defined on the exit configuration ofR. Take the smallestn such thatI is
defined onγi+n. Sincen is the smallest,I is undefined on all configurations betweenγi andγi+n in R.
SinceI is an invariant, we haveγi+n |= I. �

The condition on programs to be terminating is not very constructive. We will introduce other sufficient
conditions on assertion functions which, on the one hand, will guarantee that an invariant is also strongly or
weakly extendible, and on the other hand, make our notion of invariant similar to more traditional ones [7].
To this end, we will use paths in the program-point flow graphGP . Such a path is calledtrivial if it consists
of a single point. To guarantee that an invariantI of a programP is strongly extendible, we require that
I must be defined on certain program points such that those points break all cycles inGP . That is, every
cycle inGP contains at least one of these points. We introduce the notion of covering set to describe this
requirement.

DEFINITION 3.8 (Covering Set) LetP be a program andC be a set of program points inP . We say that
C coversP if entry(P ) ∈ C and every infinite path inGP contains a program point inC. An assertion
functionI is said tocoverP if the set ofI-observable program points coversP . �

Any setC that coversP is often called acut-point setof P .

THEOREM 3.9 Let I be an invariant ofP . If I coversP , thenI is strongly extendible.

PROOF. Take any runγ0, . . . , γi of P such thatγ0 |= I, γi |= I andγi is not an exit configuration. We
have to extend this run to a runγ0, . . . , γi+n satisfying the conditions of Definition3.3. To this end, first
extend this run to a complete runR = (γ0, . . . , γi, γi+1, . . .). Let us show thatR contains a configuration
γi+n with n > 0 on whichI is defined. Indeed, ifR is finite, then the last configuration ofR is an exit
configuration, and thenI is defined on it. IfR is infinite, then the pathpp(γi+1), pp(γi+2), . . . is infinite,
hence contains a program point on whichI is defined. Take the smallest positiven such thatI is defined
onγi+n. Sincen is the smallest,I is undefined on all configurations betweenγi andγi+n in R. SinceI is
invariant, we haveγi+n |= I. �

EXAMPLE 3.10 Consider again the programP of Example3.4. Define an assertion functionI1 of P such
thatI1 is defined only on the entry and the exit points,I1(entry(P )) = ⊤ andI1(exit(P )) = (i = j). I1
is an invariant ofP , but does not coverP since it is undefined on all points in the loop. Nevertheless,I1 is
strongly extendible.

Let us now define another assertion functionI2 such thatI2(entry(P )) = ⊤, I2(exit(P )) = (i = j),
I2(q) = (i > j ⇒ i = j + 1), andI2 is undefined on all other points.I2 is an invariant ofP and also
strongly extendible. Moreover,I2 coversP . �
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3.3 Verification Conditions

Our next aim is to define a notion of verification condition as acollection of formulas and use these veri-
fication conditions to prove properties of programs. We wantto define it in such a way that a verification
condition guarantees certain properties of programs. To this end, we use the notions of precondition and
liberal precondition for programs and paths in program-point flow graphs.

DEFINITION 3.11 (Weakest Liberal Precondition) An assertionϕ is called theweakest liberal precondi-
tion of a programP and an assertionψ, if

1. {ϕ}P{ψ}, and

2. for every assertionϕ′ such that{ϕ′}P{ψ}, the assertionϕ′ ⇒ ϕ is valid.

In general, the weakest liberal precondition may not exists. If it exists, we denote the weakest liberal
precondition ofP andψ by wlpP (ψ).

In a similar way, we introduce the notion of a weakest liberalprecondition of a pathπ = (p0, . . . , pn)
in the flow graph. An assertionϕ is called apreconditionof the pathπ and an assertionψ, if, for every
stateσ0 such thatσ0 |= ϕ, there exist statesσ1, . . . , σn such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn)

andσn |= ψ. An assertionϕ is called theweakest preconditionof π andψ, denoted bywpπ(ψ), if it is a
precondition ofπ andψ, and, for every preconditionϕ′ of π andψ, the assertionϕ′ ⇒ ϕ is valid.

An assertionϕ is called aliberal preconditionof the pathπ and an assertionψ, if, for every sequence
σ0, . . . , σn of states such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn),

andσ0 |= ϕ, we haveσn |= ψ. An assertionϕ is called theweakest liberal preconditionof π andψ,
denoted bywlpπ(ψ), if it is a liberal precondition ofπ andψ, and, for every liberal preconditionϕ′ of π
andψ, the assertionϕ′ ⇒ ϕ is valid. �

Later in proving the correctness of verification condition,we find that the following property of weakest
liberal precondition is useful:

COROLLARY 3.12 Letπ = p0, . . . , pn be a path, andϕ andψ be assertions. Suppose that there exists a
sequenceσ0, . . . , σn of states such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn),

σ0 |= ϕ andϕ⇒ wlpπ(ψ) is valid. Thenσn |= ψ.

PROOF. Sinceσ0 |= ϕ andϕ⇒ wlpπ(ψ) is valid, we haveσ0 |= wlpπ(ψ). Sincewlpπ(ψ) is the weakest
liberal precondition forπ andψ, we haveσn |= ψ. �

Another useful property of weakest preconditions and weakest liberal precondition is that the weakest
liberal precondition can be expressed in terms of the weakest precondition.

THEOREM 3.13 Let π be a path andψ be an assertion. Thenwlpπ(ψ) is equivalent towpπ(ψ) ∨
¬wpπ(⊤).

PROOF. Let π = (p0, . . . , pn). We have to show that, for every stateσ, σ |= wlpπ(ψ) if and only if
σ |= wpπ(ψ) ∨ ¬wpπ(⊤).

(⇒) Suppose thatσ |= wlpπ(ψ) for some stateσ. Suppose further that there exists a sequence
σ0, . . . , σn of states such thatσ0 = σ and

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn).
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Since the weakest liberal precondition is a liberal precondition, by the definition of liberal precondition,
we haveσn |= ψ. Hence, by the definition of precondition, the stateσ satisfies some preconditionϕ of π
andψ. By the definition of weakest precondition, the assertionϕ ⇒ wpπ(ψ) is valid, and thus we have
σ |= wpπ(ψ).

Suppose that there is no such a sequenceσ0, . . . , σn. By the definition of precondition, any precondition
of π and⊤ is equivalent to⊥, and so iswpπ(⊤). Thus, we haveσ |= ¬wpπ(⊤).

(⇐) Supposeσ |= wpπ(ψ) for some stateσ. Then, there exist statesσ0, . . . , σn such thatσ = σ0,

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn),

andσn |= ψ. By the definition of liberal precondition,σ satisfies some liberal preconditionϕ of π and
ψ. By the definition of weakest liberal precondition, the assertion ϕ⇒ wlpπ(ψ) is valid. Hence, we have
σ |= wlpπ(ψ).

Suppose now thatσ |= ¬wpπ(⊤). Since every state satisfies⊤, the relationσ |= ¬wpπ(⊤) means that
there is no sequenceσ0, . . . , σn of states such thatσ = σ0 and

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn).

By the definition of liberal precondition, the stateσ satisfies any liberal precondition ofπ and any assertion.
Thus, the stateσ also satisfies any liberal preconditionϕ of π andψ. By the definition of weakest liberal
precondition, the assertionϕ⇒ wlpπ(ψ) is valid. Hence, we haveσ |= wlpπ(ψ). �

We have so far not imposed any restrictions on the programming languages in which programs are
written. However, to provide certificates or verification conditions for program properties, we need to be
able to compute the weakest and the weakest liberal precondition of a given path and an assertion.

DEFINITION 3.14 (Weakest Precondition Property) We say that a programming language has theweakest
precondition propertyif, for every assertionψ and pathπ, the weakest precondition forπ andψ exists and
moreover, can effectively be computed fromπ andψ. �

In the sequel we assume that our programming language has theweakest precondition property. Note that
Theorem3.13implies that in any such language, given a pathπ and an assertionψ, one can also compute
the weakest liberal precondition forπ andψ.

Next, we describe the verification conditions associated with assertion functions. Such verification con-
ditions formcertificatesfor program properties described by the assertion functions. LetI be an assertion
function. A pathp0, . . . , pn in GP is calledI-simpleif n > 0 andI is defined onp0 andpn and undefined
on all program pointsp1, . . . , pn−1. We will say that the path isbetweenp0 andpn.

DEFINITION 3.15 LetI be an assertion function of a programP such that the domain ofI coversP . The
strong verification conditionassociated withI is the set of assertions

{I(p0)⇒ wlpπ(I(pn))
| π is anI-simple path betweenp0 andpn}.

Note that the strong verification condition is always finite.
�

THEOREM 3.16 LetI be an assertion function of a programP whose domain coversP andS be the strong
verification condition associated withI. If every assertion inS is valid, thenI is strongly extendible.

PROOF. Take any runγ0, . . . , γi of P such thatγ0 |= I, γi |= I andγi is not an exit configuration. Using
arguments of the proof of Theorem3.9, we extend this run to a runγ0, . . . , γi+n such thatI is defined on
γi+n but undefined onγi+1, . . . , γi+n−1. It remains to prove thatγi+n |= I.

Consider the runγi, . . . , γi+n and denote the program point of each configurationγj in this run by
pj and the state ofγj by σj . Then the pathπ = (pi, . . . , pi+n) is simple and we haveσi |= I(pi). The
assertion

I(pi)⇒ wlpπ(I(pi+n))
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belongs to the strong verification condition associated with I, hence valid, so by Corollary3.12we have
σi+n |= I(pi), which is equivalent toγi+n |= I. �

Note that this theorem gives us a sufficient condition for checking partial correctness of the program: given
an assertion functionI defined on a covering set, we can generate the strong verification condition associ-
ated withI. This condition by Theorem3.16guarantees thatI is strongly extendible, hence also weekly
extendible. Therefore, by Theorem3.5 guarantees partial correctness. Moreover, the strong verification
condition is simply a collection of assertions, so if we havea theorem prover for the assertion language, it
can be used to check the strong verification condition.

One can reformulate the notion of verification condition in such a way that it will guarantee weak
extendibility. For every pathπ, denote bystart(π) andend(π), respectively, the first and the last point of
π.

DEFINITION 3.17 LetI be an assertion function of a programP andΠ a set of paths inGP such that for
every pathπ in Π bothstart(π) andend(π) areI-observable. For every program pointp in P , denote by
Π|p the set of paths inΠ whose first point isp.

Theweak verification conditionassociated withI andΠ consists of all assertions of the form

I(start(π))⇒ wlpπ(I(end(π))),

whereπ ∈ Π and all assertions of the form

I(p)⇒
∨

π∈Π|p

wpπ(⊤),

wherep is anI-observable point.

The first kind of assertion in this definition is similar to theassertions used in the strong verification condi-
tion, but instead of all simple paths we consider all paths inΠ. The second kind of assertion expresses that,
whenever a configuration at a pointp satisfiesI(p), the computation from this configuration will inevitably
follow at least one path inΠ. This informal explanation is made more precise in the following theorem.

THEOREM 3.18 LetI andΠ be as in Definition3.17andW be the weak verification condition associated
with I andΠ. If every assertion inW is valid, thenI is weakly extendible.

PROOF. In the proof, whenever we denote a configuration byγi, we usepi for the program point andσi

for the state of this configuration, and similarly for other indices instead ofi.
Take any runγ0, . . . , γi of P such thatγ0 |= I, γi |= I andγi is not an exit configuration. Sincepi is

I-observable, the following assertion belongs toW:

I(pi)⇒
∨

π∈Π|pi

wpπ(⊤),

and hence it is valid. Sinceγi |= I, we haveσi |= I(pi), then by the validity of the above formula we have

σi |=
∨

π∈Π|pi

wpπ(⊤).

This implies that there exists a pathπ ∈ Π|pi such thatσi |= wpπ(⊤). Let the pathπ have the form
pi, . . . , pi+n. Then, by the definition ofwpπ(⊤), there exist statesσi+1, . . . , σi+n such that

(pi, σi) 7→ (pi+1, σi+1) 7→ . . . 7→ (pi+n, σi+n).

Using thatπ ∈ Π and repeating arguments of Theorem3.16we can proveσi+n |= I(pi+n). �
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4 Inter-Program Properties

In this section we develop further the notion of extendible assertion function so that it can be used to prove
inter-program properties. Given a pair(P, P ′) of programs, we assume that they have disjoint sets of
variables. A configuration is a tuple(p, p′, σ̂), wherep ∈ PointP , p′ ∈ PointP ′ , andσ̂ is a state mapping
from all variables of both programs to values. A state can be considered as a pair of states: one for the
variables ofP and one for the variables ofP ′. In the sequel, such a stateσ̂ is written as(σ, σ′), whereσ is
for P andσ′ is forP ′. Similarly, the configuration(p, p′, σ̂) can be written as(p, p′, σ, σ′).

Similar to the case of a single program, we say that a configuration γ = (p, p′, σ, σ′) is called anentry
configuration for(P, P ′) if p = entry(P ) andp′ = entry(P ′), and anexit configuration for(P, P ′) if
p = exit(P ) andp′ = exit(P ′). We overload the functionspp andstate to deal with such configurations,
that is,pp(γ) = (p, p′) andstate(γ) = (σ, σ′). We introduce two new functions on configurations,ps1

andps2, such that, onγ, ps1(γ) = (p, σ) is a configuration ofP andps2(γ) = (p′, σ′) is a configuration
of P ′.

The transition relation7→ of a pair(P, P ′) of programs contains two kinds of transition:

(p1, p
′, σ1, σ

′) 7→ (p2, p
′, σ2, σ

′),

such that(p1, σ1) 7→ (p2, σ2) is in the transition relation ofP , and

(p, p′1, σ, σ
′
1) 7→ (p, p′2, σ, σ

′
2),

such that(p1, σ1) 7→ (p2, σ2) is in the transition relation ofP ′.
Having the notion of transition relation for pairs of programs, the notions of computation sequence and

run can be defined in the same way as in the case of a single program. That is, a computation sequence of
(P, P ′) is a finite or infinite sequence

γ0, γ1, . . .

of configurations such thatγi 7→ γi+1 for all i. A run from an initial statêσ is a computation sequence
such thatγ0 = (p0, p

′
0, σ̂) is an entry configuration. One can observe that, for any pair(σ, σ′) of states,

there can be many runs of(P, P ′) from (σ, σ′). The following theorem then shows that if any of those run
is terminating, then all runs are terminating, and they terminate at the same configuration.

LEMMA 4.1 Let (P, P ′) be a pair of programs. If a run of(P, P ′) from an entry configurationγ is
terminating at an exit configurationγ′, then all runs of(P, P ′) fromγ are terminating atγ′.

PROOF. LetR = γ0, . . . , γk be a terminating run of(P, P ′) such thatγ0 = γ andγk = γ′. Denote byR|P
the subsequence

γi0 , . . . , γim

of R such that, for alll = 0, . . . ,m − 1, the transitionps1(γil
) 7→ ps1(γil+1

) is a transition inP . This
means that the run ofP from the entry configurationps1(γi0) terminates at the exit configurationps1(γim

).
Similarly forR|P ′, we have the subsequence

γj0 , . . . , γjn
.

We also have
γ0 = (pp(ps1(γi0 )), pp(ps2(γj0)),

state(ps1(γi0)), state(ps2(γj0)))
γk = (pp(ps1(γim

)), pp(ps2(γjn
)),

state(ps1(γim
)), state(ps2(γjn

))).

(2)

Assume that there is a non-terminating runR′ of (P, P ′) from γ. Then,R′|P or R′|P ′ is infinite.
Without loss of generality, suppose that

R′|P = γ′0, γ
′
1, . . .

is infinite. That is, the run ofP from ps1(γ
′
0) is non-terminating. However, sinceps1(γ

′
0) = ps1(γi0 )

andP is deterministic, the run ofP from ps1(γ
′
0) must terminate. This contradicts the existence ofR′.
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Moreover, the run ofP from ps1(γi0 ) must terminate atps1(γim
). Using the same argument, we can show

that the run ofP ′ from ps1(γj0) must terminate atps1(γjn
). By equalities2, it follows that all runs of

(P, P ′) from γ are terminating atγ′. �

We will show later that the above lemma allows us to preserve meta properties of the abstract notions intro-
duced in the previous section when these notions are developed further for the case of a pair of programs.

An assertion functionof a pair(P, P ′) of programs is a partial function

I : PointP ×PointP ′ → Assertion

mapping pairs of program points ofP andP ′ to assertions such thatI is defined on(entry(P ), entry(P ′))
and(exit(P ), exit(P ′)).

Given an assertion functionI, we call a pair of program points(p, p′) I-observableif I(p, p′) is defined.
Let γ = (p, p′, σ, σ′) be a configuration. Then,γ is I-observable if so is the pair of program points(p, p′).
We also say thatγ satisfiesI, denoted byγ |= I, if I is defined on(p, p′) and(σ, σ′) |= I(p, p′). We will
also say thatI is defined onγ if it is defined on(p, p′) and writeI(γ) to denoteI(p, p′).

The notions of partial and total correctness for the case of single programs can be adapted for the case
of pairs of programs. A pair(P, P ′) of programs is partially correct with respect to a preconditionϕ and a
postconditionψ, denoted by{ϕ}(P, P ′){ψ}, if for every run of(P, P ′) from a configuration satisfyingϕ
and reaching an exit configuration, this exit configuration satisfiesψ. A pair (P, P ′) of programs is totally
correct with respect to a preconditionϕ and a postconditionψ, denoted by[ϕ](P, P ′)[ψ], if every run of
(P, P ′) from a configuration satisfyingϕ terminates in an exit configuration and this exit configuration
satisfiesψ.

Unlike in the case of a single program, for a pair of programs,there is no notions of invariant and
strongly-extendible assertion function. The transition relation of a pair of programs has no synchronization
mechanism. For example, one program in a pair can make as manytransitions as possible, while the other
program in the same pair stays at some program point without making any transition. Thus, it is not useful
to have the notions of invariant and strongly-extendible assertion functions.

The notion of weakly-extendible assertion function is better suited for describing inter-program prop-
erties. Weakly-extendible assertion functions for a pair of programs can be defined in the same way as in
the case of a single program.

DEFINITION 4.2 LetI be an assertion function of a pair(P, P ′) of programs.I is weakly extendibleif for
every run

γ0, . . . , γi

of (P, P ′) such thati ≥ 0, γ0 |= I, γi |= I, andγi is not an exit configuration, there exists a finite
computation sequence

γi, . . . , γi+n

of (P, P ′) such that

1. n > 0, and

2. γi+n |= I.

�

EXAMPLE 4.3 Let us illustrate the notion of weakly-extendible assertion function for a pair of programs.
Consider the following two programsP andP ′:
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P P ′

i := 0
j := 0
while (j < 100) do

if (i > j) then j := j + 1
elsei := i + 1
fi

q :
od

i′ := 0
j′ := 0
while (j′ < 100) do

i′ := i′ + 1
j′ := j′ + 1

q′ :
od

Define an assertion functionI of (P, P ′) such that

I(entry(P ), entry(P ′)) = ⊤
I(q, q′) = ϕ

I(exit(P ), exit(P ′)) = ϕ,

where
ϕ = (i = i′) ∧ (j = j′) ∧ (i = j).

The functionI is weakly extendible due to the following properties:

1. From an entry configuration of(P, P ′), by taking a computation sequence consisting of two iterations
of the loop ofP and one iteration of the loop ofP ′, one reaches a configuration with program points
(q, q′) in whichϕ holds.

2. For everyv < 100, from a configuration with the program points(q, q′) in which i = i′ = j = j′ = v,
by taking a computation sequence consisting of two iterations of the loop ofP and one iteration of
the loop ofP ′, one again reaches a configuration with program points(q, q′) in which i = i′ = j =
j′ = v + 1.

3. For everyv ≥ 100, from a configuration with the program points(q, q′) in which i = i′ = j = j′ = v,
one can reach an exit configuration in whichi = i′ = j = j′ = v.

�

Concerning the sufficiency of weakly-extendible assertionfunctions for proving partial correctness, we
obtain the same result as in the case of a single program, as stated by the following theorem:

THEOREM 4.4 Let I be an assertion function of a pair(P, P ′) of programs such that

ϕ = I(entry(P ), entry(P ′)) andψ = I(exit(P ), exit(P ′)).

If the assertion functionI is weakly extendible, then{ϕ}(P, P ′){ψ}, that is,(P, P ′) is partially correct
with respect to the preconditionϕ and postconditionψ.

PROOF. Suppose thatI is weakly extendible andγ
∗
7→(P,P ′) γ

′, whereγ is an entry configuration andγ′

is an exit configuration, andγ |= ϕ. It follows thatγ |= I. By Lemma4.1, all runs of(P, P ′) from γ

terminate atγ′.
Consider any complete run

R = γ0, . . . , γm

of (P, P ′) from γ, that is,γ = γ0 andγm = γ′. We need to prove thatγm |= ψ. Take the largest number
j such thatγj is not the exit configurationγ′ andγj |= I. Such a configuration exists sinceγ0 = γ and
γ |= I. SinceI is weakly extendible, there exists a computation sequence

γj , . . . , γj+n

such thatγj+n |= I. Now, sincej is the largest one, we haveγj+n = γm, and thusγm |= I. It follows by
the definition ofI thatγm |= ψ, as required. �
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Similar to the properties of a single program, the verification conditions associated with inter-program
properties use the notion of path. However, since the flow graphs of the two programs in a pair of programs
are considered disjoint, the notion of path for pairs of programs needs to be elaborated. Apathπ of a pair
(P, P ′) of programs is a finite or infinite sequence

(p0, p
′
0), (p1, p

′
1), . . .

of pairs of program points such that, for alli ≥ 0, either

• (pi, pi+1) is an edge ofGP andp′i = p′i+1, or

• (p′i, p
′
i+1) is an edge ofGP ′ andpi = pi+1

A path π̂ of (P, P ′) can be considered as a trajectory in a two dimensional space where the axes are paths
of P andP ′. We denote such a patĥπ by (π, π′), whereπ andpi′ are the axes of the space,π is a path of
P andπ′ is a path ofP ′.

Having the notion of path for a pair of programs, the notions of precondition and liberal precondition
for paths of a pair of programs can be defined in the same way as in the case of a single program. In
fact, the weakest precondition of a path of a pair of programsmay be derived from the paths of the single
programs.

THEOREM 4.5 Let (π, π′) be a path of a pair(P, P ′) of programs. Letψ be an assertion such thatψ is
equivalent toψ1 ∧ ψ2, whereψ1 contains only variables fromP andψ2 contains only variables fromP ′.
Then,wp(π,π′)(ψ) is equivalent towpπ(ψ1) ∧ wpπ′(ψ2).

PROOF. Let (π, π′) = (p0, p
′
0), . . . , (pk, p

′
k) Suppose there is a pair(σ0, σ

′
0) of states that satisfies

wpπ·π′(ψ). Then there is a sequence of(σ1, σ
′
1), . . . , (σk, σ

′
k) such that

(p0, p
′
0, σ0, σ

′
0) 7→ (p1, p

′
1, σ1, σ

′
1) . . . 7→ (pk, p

′
k, σk, σ

′
k)

and(σk, σ
′
k) |= ψ, which also means(σk, σ

′
k) |= ψ1∧ψ2. By the disjointness of sets of variables ofP and

P ′, we haveσk |= ψ1 andσ′
k |= ψ2.

By the construction of(π, π′), we have

(pi0 , σi0) 7→ . . . 7→ (pim
, σim

)

such thatπ = pi0 , . . . , pim
, σi0 = σ0, andσim

= σk. Similarly, we have

(p′j0 , σ
′
j0

) 7→ . . . 7→ (p′jn
, σ′

jn
)

such thatπ′ = p′j0 , . . . , p
′
jn

, σ′
j0

= σ′
0, andσ′

jn
= σ′

k. It follows thatσ0 |= wpπ(ψ1) andσ′
0 |= wpπ′(ψ2).

Consequently,(σ0, σ
′
0) |= wpπ(ψ1) ∧ wpπ′(ψ2), as required. �

We can define the verification condition associated with weakly extendible assertion functions similarly
to the case of a single program.

DEFINITION 4.6 LetI be an assertion function of a pair(P, P ′) of programs andΠ a set of non-trivial
paths of the pair of programs such that for every pathπ in Π both start(π) and end(π) path areI-
observable. For every pair(p, p′) of program points, denote byΠ|(p, p′) the set of paths inΠ whose
first pair of points is(p, p′).

Theweak verification conditionassociated withI andΠ consists of all assertions of the form

I(start(π))⇒ wlpπ(I(end(π))),

whereπ ∈ Π and all assertions of the form

I(p, p′)⇒
∨

π∈Π|(p,p′)

wpπ(⊤),

where(p, p′) is anI-observable point, andp is not the exit point ofP . �
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THEOREM 4.7 Let I andΠ be as in Definition4.6 andW be the weak verification condition associated
with I andΠ. If every assertion inW is valid, thenI is weakly extendible.

PROOF. In the proof, whenever we denote a configuration byγi, we use(pi, p
′
i) for the program points

and(σi, σ
′
i) for the states of this configuration, and similarly for otherindices instead ofi. Take any run

γ0, . . . , γi of (P, P ′) such thatγ0 |= I, γi |= I andγi is not an exit configuration. Since(pi, p
′
i) is

I-observable, the following assertion belongs toW:

I(pi, p
′
i))⇒

∨

π∈Π|(pi,p
′

i
)

wpπ(⊤),

and hence it is true. Sinceγi |= I, we have(σi, σ
′
i) |= I(pi, p

′
i), then by the validity of the above formula

we have

(σi, σ
′
i) |=

∨

π∈Π|(pi,p
′

i
)

wpπ(⊤).

This implies that there exists a pathπ ∈ Π|(pi, p
′
i) such that(σi, σ

′
i) |= wpπ(⊤). Let the pathπ have the

form

(pi, p
′
i), . . . , (pi+n, p

′
i+n).

Then, by the definition ofwpπ(⊤), there exist pairs of states(σi+1, σ
′
i+1), . . . , (σi+n, σi+n) such that

(pi, p
′
i, σi, σ

′
i) 7→ (pi+1, pi+1, σi+1, σ

′
i+1) 7→ . . .

. . . 7→ (pi+n, p
′
i+n, σi+n, σ

′
i+n).

Using thatπ ∈ Π, it follows that(σi+n, σ
′
i+n) |= I(pi+n, p

′
i+n). �

The notion of weak verification condition is the cornerstoneof our theory of inter-program properties.
The notion of weak verification condition forms a suitable notion of certificate about properties involving
two programs.

5 Translation Validation

Translation validation[11] is an approach to compiler verification. In this approach, instead of proving
the correctness of a compiler for all source programs, one proves that,for a single source program, the
program and the result of its compilation, or the target program, are semantically equivalent. Translation
validation approach has mainly been used in the verificationof optimizing compilers, for example in [12,
10, 15, 13, 8]. In the case of optimizing compilers, the target program isobtained by applying optimizing
transformations to the source program. Both source and target programs are usually in the same language.
In the sequel we focus the application of our theory on the translation validation for optimizing compilers.

In translation validation one first has to define formally thecorrectness property between the source
and the target programs. A typical correctness property in translation validation is semantic equivalence.
An example of informal definition of semantic equivalence isas follows: a source programP and a target
programP ′ are semantically equivalent if, for every pair of runs of both programs on the same input, (1)
both runs perform the same sequence of function calls, (2) one run is terminating if and only if so is the
other, and (3) on termination both runs return the same value. Having the correctness property, usually
one then defines a notion of correspondence between two programs. The semantic equivalence is then
established by finding some correspondences between the programs. Both the correctness property and
the notion of correspondence are inter-program properties. If we can show that such properties can be
captured by our notion of extendible assertion function, then we can provide certificates or proofs for those
properties.
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5.1 Basic-Block and Variable Correspondences

We start our discussion with our translation validation work described in [8, 9]. In our work we intro-
duce the notion of basic-block and variable correspondence. The equivalence between two programs is
established by finding certain basic-block and variable correspondences.

Denote byInVarP the set of input variables of a programP . In the sequel, given two programsP and
P ′, we assume that there always exists a one-to-one correspondenceIn betweenInVarP andInVarP ′ .
We also say that the runsR andR′ are on the same input if, let statesσ0 andσ′

0 be the initial states of,
respectively,R andR′, we haveσ0(x) = σ′

0(In(x)) for all x ∈ InVarP .
We first define the notion of program equivalence. Denote byInVarP andObsVarP the sets of,

respectively, input variables and observable variables ofa programP . The source programP and the target
programP ′ aresemantically equivalentif there exist a one-to-one correspondenceIn betweenInVarP

andInVarP ′ and a one-to-one correspondenceObs betweenObsVarP andObsVarP ′ , such that for
every pair of runs

R = (p0, σ0), (p1, σ1), . . .
R′ = (p′0, σ

′
0), (p

′
1, σ

′
1), . . .

of, respectively,P andP ′, andσ0(x) = σ′
0(In(x)) for all x ∈ InVarP , the following conditions hold:

• R is terminating (or finite) if and only if so isR′;

• if R andR′ are terminating with, respectively, statesσ andσ′, thenσ(y) = σ(Obs(y)) for all
y ∈ ObsVarP .

A block in a program is a sequence of statements in the program. A block is basic if it is maximal, and
it can only be entered at the beginning and exited at the end ofthe block.

Let us assume that the program points being considered in a programs consist of the entry point of each
basic block in the program, such that the point is denoted by the basic block itself. A run can be defined as
a sequence

(β0, σ0), (β1, σ1), (β2, σ2), . . . ,

where, for alli ≥ 0, the pointβi is the entry point of basic blockβi. For any runR and any sequencēb
of basic blocks, we denote byR|b̄ the subsequence ofR consisting only of configurations whose program
points are the entry points of basic blocks inb̄.

Given two programsP andP ′, let b̄ = b1, . . . , bm andb̄′ = b′1, . . . , b
′
m be sequences of distinct basic

blocks of, respectively,P andP ′, and letx̄ = x1, . . . , xn andx̄′ = x′1, . . . , x
′
n be sequences of distinct

variables of, respectively,P andP ′. There is abasic-block and variable correspondencebetween(b̄, x̄)
and(b̄′, x̄′) if for every two runs

R = (β0, σ0), (β1, σ1), . . .
R′ = (β′

0, σ
′
0), (β

′
1, σ

′
1), . . .

of, respectively,P andP ′ on the same inputs, let

R|b̄ = (βi0 , σi0), (βi1 , σi1), . . .
R′|b̄′ = (β′

i′0
, σ′

i′0
), (β′

i′1
, σ′

i′1
), . . . ,

thenR|b̄ andR|b̄′ are of the same length and the following conditions hold: forall k

1. βik
= bj if and only if β′

i′
k

= b′j for all j, and

2. σik+1(xl) = σ′
i′
k
+1(x

′
l) for all l.

In the sequel, we often call̄b, b̄′ sequences ofcontrol blocksandx̄, x̄′ sequences ofcontrol variables. We
assume that every program has a unique start block and a unique exit block. The entry of start block is the
program’s entry point, while the exit of exit block is the program’s exit points. The start block of a program
is also a control block, and it always corresponds to the start block of the other program.
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i← 0
s← 0

b0

i < n

b1

return s

b2

x← i

s = 0

b3

s← x

b4

s← s + x

b5

y← m

i← i + y

b6

f

t

t f

i′ ← 0
s′ ← 0
y′ ← m′

b′
0

i′ < n′
b′

1

return s′
b′

2

s′ ← s′ + i′

i′ ← i′ + y′

b′
3

f

t

P P ′

Figure 1:P ′ is an optimized version ofP .

EXAMPLE 5.1 Let us give an example of basic-block and variable correspondence. Consider the programs
P andP ′ depicted in Figure1. The variablesm, n are the input variables ofP , and their primed counterparts
are the input variables ofP ′ such thatIn(m) = m′ andIn(n) = n′. P ′ is obtained fromP by fusing the
branches that are represented by blocksb4 andb5, and by moving the assignment instructiony← m out of
the loop.

There is a basic-block and variable correspondence between(b6, (s, i,m, n)) and(b′
3
, (s′, i′,m′, n′)).

For every two runs ofP andP ′ on the same input, the blockb6 is visited as many times as the blockb′
3

is
visited, and on each corresponding visits, at the exits of the blocks, the values ofs, i,m, n coincide with the
values of their primed counterparts. With the same reasoning, it is easy to see that there is a basic-block
and variable correspondence between((b6, b2), (s, i,m, n)) and((b′

3
, b′

2
), (s′, i′,m′, n′)). �

Establishing program equivalence can be accomplished by finding basic-block and variable correspon-
dences between the exit blocks and between the observable variables.

THEOREM 5.2 Let P andP ′ be programs, andbt and b′t be the exit blocks ofP andP ′, respectively.
Let Obs be the one-to-one correspondence betweenObsVarP and ObsVarP ′ , whereObsVarP =
{x1, . . . , xn}. P andP ′ are semantically equivalent if and only if there is a basic-block and variable
correspondence between

(bt, (x1, . . . , xn)) and(b′t, (Obs(x1), . . . , Obs(xn)))

�

Note that in the above example there is a correspondence between

((b6, b2), (s, i,m, n)) and((b′3, b
′
2), (s

′, i′,m′, n′)).

By the definition of basic-block and variable correspondences, it obviously follows that there is a corre-
spondence between(b2, s) and(b′

2
, s′). Sinceb2 andb′

2
are the exit blocks and the only observable variables

ares ands′, we can conclude that the programsP andP ′ in the above example are equivalent.
The verification of basic-block and variable correspondences has been described in detail in [9]. For

presentation in this section, suppose that one finds a basic-block and variable correspondence between
(b̄, x̄) of a programP and(b̄′, x̄′) of a programP ′, wherēb = b1, . . . , bm, b̄′ = b′1, . . . , b

′
m, x̄ = x1, . . . , xn,
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and x̄′ = x′1, . . . , x
′
n. Assume that a path is a sequence of program points, where each point is theexit

of a basic block and is denoted by the basic block itself. Given a sequencēb of basic blocks, a path
π = β0, . . . , βk is b̄-simple if β0 andβk are in b̄, or β0 is the start block andβk is in b̄, but none of
β1, . . . , βk−1 are in b̄. Assume further that every program has a unique variableρ representing program
counter, and for every basic blockβ in the program, the value ofρ is updated withβ by the assignment
ρ← β at the entry ofβ.

The verification condition associated with a basic-block and variable correspondence consists of two
parts: conjecture preservation and simulation relation. Aconjecture is a set of assertions. Consider again
the basic-block and variable correspondence between(b̄, x̄). Letρ, ρ′ be program counters of, respectively,
programsP andP ′, andC be a conjecture in the verification condition. For two blocksβ, β′, we often
write ρ(β, β′) as a shorthand forρ = β ∧ ρ′ = β′. For every pairβ, β′ of corresponding control blocks,
we require that the assertion

∧
C ∧ ρ(β, β′) ⇒

∧n

k=1 xk = x′k is valid. For alli = 1, . . . ,m and for all
j = 1, . . . ,m, let

Πbj ,bi
= {π1

bj ,bi
, . . . , πc

bj ,bi
}

Πb′
j
,b′

i
= {π1

b′
j
,b′

i
, . . . , πd

b′
j
,b′

i
}

be the sets of, respectively, allb̄-simple paths betweenbj andbi and allb̄′-simple paths betweenb′j andb′i.
The verification condition associated with conjecture preservation consists of the following assertions: for
all k = 1, . . . , c and for alll = 1, . . . , d,

∧
C ∧ ρ(bj , b

′
j)⇒ wlpπk

bj,bi

(wlpπl

b′
j

,b′
i

(
∧
C)).

The verification condition associated with simulation relation consists of the following assertions: for all
k = 1, . . . , c, ∧

C ∧ ρ(bj , b′j) ∧ wpπk
bj,bi

(⊤) ⇒
∨d

l=1 wpπl

b′
j

,b′
i

(⊤),

and for alll = 1, . . . , d,
∧
C ∧ ρ(bj , b′j) ∧ wpπl

b′
j

,b′
i

(⊤) ⇒
∨c

k=1 wpπk
bj,bi

(⊤).

EXAMPLE 5.3 Let us consider again the programsP andP ′ in Example5.1. The programs are depicted
in Figure1. In this example we show the verification condition associated with the basic-block and variable
correspondence between((b6, b2), (s, i,m, n)) and((b′

3
, b′

2
), (s′, i′,m′, n′)).

Let bs andb′s be the start blocks of, respectively,P andP ′. That is,bs is the predecessor ofb0 andb′s
is the predecessor ofb′

0
. Let ϕ be an assertion equivalent tom = m′ ∧ n = n′. The conjectureC in the

verification condition consists of the following assertions:

ρ(bs, b
′
s)⇒ ϕ,

ρ(b6, b
′
3
)⇒ ϕ ∧ s = s′ ∧ i = i′ ∧ y′ = m′, and

ρ(b2, b
′
2
)⇒ ϕ ∧ s = s′ ∧ i = i′.

The first assertion above describes the input condition. Thesecond and third assertions describe the corre-
spondence between corresponding control variables at the corresponding control blocks. Note that in the
second assertion the conjunctiony′ = m′ is a loop invariant that is crucial for proving the correspondence.

Having the conjecture, we can generate assertions associated with conjecture preservation and simula-
tion relation for the following pairs of sets of simple paths:

• Πb6,b6
= {πb4

b6,b6
, πb5

b6,b6
} andΠb′

3
,b′

3
= {πb′

3
,b′

3
};

• Πb6,b2
= {πb6,b2

} andΠb′

3
,b′

2
= {πb′

3
,b′

2
};

• Πbs,b6
= {πb4

bs,b6
, πb5

bs,b6
} andΠb′s,b′

3
= {πb′s,b′

3
}; and

• Πbs,b2
= {πbs,b2

} andΠb′s,b′

2
= {πb′s,b′

2
},

whereπb3
b1,b2

denotes a path fromb1 to b2 via b3. �
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The notion of basic-block and variable correspondence can be captured by the notions of extendible
assertion function and weak verification condition. That is, given a basic-block and variable correspon-
dence between programsP andP ′, we can define an extendible assertion functionÎ and a set̂Π of paths
of (P, P ′), such that if all assertions in the weak verification condition associated witĥI andΠ̂ are valid,
then so are all assertions in the verification condition associated with the correspondence.

Consider a basic-block and variable correspondence between (b̄, x̄) of P and (b̄′, x̄′) of P ′. Let V

be the verification condition associated with the correspondence, such thatC is the conjecture inV. We
define the assertion function̂I of (P, P ′) that expressesC. For simplicity, since we are interested in the
correspondence of control variables at the exits of corresponding control blocks, we say thatÎ is defined
on a pair(β, β′) of control blocks to mean that̂I is defined on a pair(exit(β), exit(β)) of the exits ofβ
andβ. The functionÎ is defined as follows:

Î(entry(P ), entry(P ′)) = ρ(entry(P ), entry(P ′)) ∧
∧
C

and for every pairβ, β′ of corresponding control blocks

Î(β, β′) = ρ(β, β′) ∧
∧
C.

Note thatÎ can be defined on other pairs of programs points.
Next, recall that a patĥπ of (P, P ′) can be considered as a trajectory in a two dimensional space where

the axes are a pathπ of P and a pathπ′ of P ′. We denote such a patĥπ by (π, π′). We now impose some
requirements on the setΠ̂ of paths of(P, P ′). First, the set̂Π includes all simple paths in the sets of simple
paths used to generate the verification conditionV, that is,

Π̂ ⊇ {(πβ1,β2 , πβ′

1,β′

2
) |

∃Πβ1,β2 ,Πβ′

1,β′

2
.πβ1,β2 ∈ Πβ1,β2 ∧ πβ′

1,β′

2
∈ Πβ′

1,β′

2
},

whereΠβ1,β2 is the set of all̄b-simple paths fromβ1 to β2 andΠβ′

1,β′

2
is the set of all̄b′-simple paths

from β′
1 to β′

2. Second, for every other path(π, π′) in Π̂, π andπ′ are not prefixes of anȳb-simple and
b̄′-simple path, and neither the nontrivial prefixes ofπ areb̄-simple paths nor the nontrivial prefixes ofπ′

areb̄′-simple paths.
Having the functionÎ and the set̂Π, one can prove a basic-block and variable correspondences by

proving the weak verification condition associated withÎ andΠ̂.

THEOREM 5.4 Let V, Î, andΠ̂ be as defined above, andW be the weak verification condition associated
with Î andΠ̂. Then, if all assertions inW are valid, then all assertions inV are valid.

PROOF. We first prove the conjecture preservation ofV. Take any two pairs(β1, β
′
1) and (β2, β

′
2) of

corresponding control blocks, such that there exist ab̄-simple pathπβ1,β2 from β1 to β2 and ab̄′-simple
pathπβ′

1,β′

2
from β′

1 to β′
2. We need to prove that the assertion
∧
C ∧ ρ = β1 ∧ ρ

′ = β′
1 ⇒ wlpπβ1,β2

(wlpπβ′

1
,β′

2

(
∧
C)) (3)

is valid. Since the assertion
∧
C ∧ ρ = β1 ∧ ρ′ = β′

1 is equivalent tôI(β1, β
′
1) and we assume thatρ andρ′

are updated immediately preceding the exit blocks, the assertionwlp(πβ1,β2
,πβ′

1,β′

2
)(Î(β2, β

′
2)) is equivalent

to wlpπβ1,β2
(wlpπβ′

1,β′

2

(
∧
C)). Because the assertion

Î(β1, β
′
1)⇒ wlp(πβ1,β2

,πβ′

1,β′

2
)(Î(β2, β

′
2))

is valid, so is the assertion (3).
For the simulation relation ofV, we prove it by contradiction. Assume that there are two pairs(β1, β

′
1)

and(β2, β
′
2) of corresponding control blocks such that, without loss of generality, there is āb-simple path

πβ1,β2 , but the assertion
∧
C ∧ ρ = β1 ∧ ρ

′ = β′
1 ∧ wpπβ1,β2

(⊤)⇒
∨

π∈Πβ′

1
,β′

2

wpπ(⊤)

18/34 Verimag Research Report no TR-2008-13



Andrei Voronkov, Iman Narasamdya

is not valid. Recall that the setΠβ′

1,β′

2
is the set of all̄b′-simple paths fromβ′

1 to β′
2. Since the assertion∧

C ∧ ρ = β1 ∧ ρ
′ = β′

1 is equivalent tôI(β1, β
′
1), it means that there is a pair(σ, σ′) of states satisfying

Î(β1, β
′
1) such that there is a computation sequence ofP that starts from the exit ofβ1 and stateσ, and

follows the pathπβ1,β2 , but there is no computation sequence ofP ′ that starts from the exit ofβ′
1 and state

σ′, and follows any path inΠβ′

1,β′

2
.

By the requirements imposed on̂Π, the pathπβ1,β2 is only paired with some path inΠβ′

1,β′

2
. It means

that at the exits ofβ1 andβ2, the computation sequence from the states(σ, σ′) that satisfyÎ(β1, β
′
1) cannot

follow any path inΠ̂. This is a contradiction since all assertions inW are valid. �

EXAMPLE 5.5 Consider again the programsP andP ′ in Figure1. We want to verify the basic-block
and variable correspondence between(b6, (s, i,m, n)) and(b′

3
, (s′, i′,m′, n′)). The verification conditionV

associated with the correspondence consists of a conjectureC that includes the following assertions:

ρ(bs, b
′
s)⇒ m = m′ ∧ n = n′, and

ρ(b6, b
′
3
)⇒ m = m′ ∧ n = n′ ∧ s = s′ ∧ i = i′ ∧ y′ = m′.

The pairs of sets of simple paths considered in generatingV are: (Πb6,b6
,Πb′

3
,b′

3
) and (Πbs,b6

,Πb′s,b′

3
).

These sets of paths are defined as in Example5.3.
We define the assertion function̂I as follows:

Î(bs, b
′
s) = ρ(bs, b

′
s) ∧

∧
C

Î(b6, b
′
3
) = ρ(b6, b

′
3
) ∧

∧
C

Î(b2, b
′
2
) = ⊤

Next, we define the set̂Π as the union of the cross products of the following pairs of sets: (Πb6,b6
,Πb′

3
,b′

3
),

(Πbs,b6
,Πb′s,b′

3
), (Πbs,b2

,Πb′s,b′

2
), and (Πb6,b2

,Πb′

3
,b′

2
). It can be proved that all assertions in the weak

verification conditionW associated witĥI andΠ̂ are valid. By Theorem5.4, all assertions inV are also
valid. It means that there exists a basic-block and variablecorrespondence between(b6, (s, i,m, n)) and
(b′

3
, (s′, i′,m′, n′)). �

Note that in the above example the functionÎ is defined on the pair(b2, b
′
2
) although none of the blocks

are control blocks. Moreover, the setΠ̂ above includes the pair(πbs,b2
, π′

bs,b′

2

) of simple paths but none of
them are used to generate the verification conditionV. One can actually prove a larger correspondence, that
is between((b6, b2), (s, i,m, n)) and((b′

3
, b′

2
), (s′, i′,m′, n′)), and thusÎ can be defined only on pairs of

control blocks and̂Π includes only pairs of paths used to generateV. By the following theorem, it follows
that there exists a basic-block and variable correspondence between(b6, (s, i,m, n)) and(b′

3
, (s′, i′,m′, n′)).

THEOREM 5.6 LetP andP ′ be programs. If there is a basic-block and variable correspondence between
(b̄, β, x̄) ofP and(b̄′, β′, x̄) ofP ′, or there is a basic-block and variable correspondence between(b̄, x̄, y)
of P and (b̄′, x̄, y′) of P ′, then there is a basic-block and variable correspondence between(b̄, x̄) and
(b̄, x̄).

Adding a pair of control blocks or a pair of control variablesinto a basic-block and variable correspon-
dence often results in a non basic-block and variable correspondence. In such a case, to apply the above
theorem, one can always translate programs into SSA form [2], and modify the correspondence according
to the variable renaming that occurs during the translation.

In the following example we will show that we can prove a basic-block and variable correspondence
using the notions of extendible assertion function and weakverification condition although the verification
condition associated with the correspondence cannot be generated.

EXAMPLE 5.7 Consider the programsP andP ′ in Figure2. The one-to-one correspondenceIn between
the input variables mapsN to N′. There is a basic-block and variable correspondence between ((bs, b6), j)
and((b′s, b

′
0
),N′), and we want to verify this correspondence. The verificationcondition associated with the
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bs

N ≥ 0

b0

i← 0

b1

i < N

b2

j← i

b3

i← i + 1

b4

j← N

b5

return j

b6

t

t

b′s

return N′

b′
0

P P ′

Figure 2:P ′ is an optimized version ofP .

correspondence cannot be generated because there are infinitely many simple paths frombs to b6. Adding
new pairs of control blocks is not possible because all blocks inP ′ are already control blocks.

We can prove the correspondence using the notions of extendible assertion function and weak verifica-
tion condition. Define the assertion functionÎ as follows:

Î(bs, b
′
s) = N = N′, Î(b6, b

′
0
) = j = N′,

Î(b4, b
′
s) = N = N′ ∧ N ≥ 0 ∧ i ≤ N.

Let the set̂Π of paths of(P, P ′) consist of the following paths:

(πb5

bs,b6
, πb′s,b′

0
), (πb2,b3

bs,b6
, πb′s,b′

0
), (πbs,b4

, πb′s
),

(πb4,b4
, πb′s

), (πb4,b6
, πb′s,b′

0
),

whereπb denotes a trivial path consisting only of a single pointb. One can prove that all assertions in the
weak verification condition associated withÎ andΠ̂ are all valid. Moreover, from̂I andΠ̂, one can reason
that there is a basic-block and variable correspondence between((bs, b6), j) and((b′s, b

′
0
),N′). �

5.2 Proof Rule VALIDATE

In this section we discuss how our notion of extendible assertion function can capture inter-program proper-
ties described by the proof rule VALIDATE in [15]. The proof rule consists of several steps. First, establish
a control abstractionκ between programsP andP ′. The abstraction is a mapping fromCPP ′ to CPP ,
whereCPP ′ is a cut-point set ofP ′ and, additionally, includes the exit block ofP ′. The setCPP can
be defined similarly. The abstractionκ must map the entry and the exit ofP to, respectively, the entry
and the exit ofP ′. Second, for each pointp′ in CPP ′ , form an intra-program assertionαp′ referring only
to variables inP ′. Next, establish adata abstractionδ, which is an assertion relating variables inP and
variables inP ′.

A path in a program can be considered as a transition relationcontaining the conditions that enable the
path to be traversed and the data transformation effected bythe path. For example, consider the program
P is Example1. The path consisting of the instructions

i := i + y; i < n; x := i′

describes the transition relation
i∗ = i + y ∧ i∗ < n ∧ x∗ = i∗.
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For simplicity, we denote byπ the transition relation described by a pathπ.
Similar to the proof technique for verifying basic-block and variable correspondences, the proof rule

VALIDATE generates assertions that express simulation relation. That is, for each pair(p1, p
′
1) of program

points such thatκ(p′1) = p1 and there is aCPP ′ -simple pathπp′

1,p′

2
from p′1 to p′2 in the flow graph of

P ′, let Πκ(p′

1),κ(p′

2)
be the set of all simple paths fromκ(p′1) to κ(p′2) in P , one proves that the following

assertion is valid:

αp′

1
∧ δ ∧ πp′

1,p′

2
⇒ ∃V ∗

P .(
∨

πκ(p′

1),κ(p′

2)∈Πκ(p′

1),κ(p′

2)

)πκ(p′

1),κ(p′

2)
) ∧ δ∗ ∧ α∗

p′

2
, (4)

whereV ∗
P is a sequence of starred version of some variables inP , andδ∗ andα∗

p′

2
are obtained fromδ and

αp′

2
by replacing all variables updated inπp′

1,p′

2
andπκ(p′

1),κ(p′

2)
by their starred counterparts.

In [15] the correctness of data abstractionδ is proved separately. Essentially, for every two simple paths
from p′1 to p′2 and fromκ(p′1) to κ(p′2), one proves that the assertion

αp′

1
∧ δ ∧ πp′

1,p′

2
∧ πκ(p′

1),κ(p′

2)
⇒ δ∗ ∧ α∗

p′

2
(5)

is valid.
The notions of extendible assertion function and weak verification condition can capture the program

properties described by the rule VALIDATE . First, define an assertion function̂I from the abstractions and
intra-program assertions in the rule. Then, reuse the simple paths in the proof rule to generate the weak
verification condition associated with the function. Let the assertion function̂I of (P, P ′) be defined as
follows: for every pointp′ in CPP ′ ,

Î(κ(p′), p′) = αp′ ∧ δ,

andÎ is undefined on other pairs of points. Define a setΠ̂ of paths of(P, P ′) as follows:

Π̂ = {(π, π′) | ∃Πp′

1,p′

2
,Πκ(p′

1),κ(p′

2)
.π′ ∈ Πp′

1,p′

2
∧ π ∈ Πκ(p′

1),κ(p′

2)}.

Note that the definition of̂I is different fromÎ discussed in the previous section on basic-block and variable
correspondences. The functionÎ in this section is only defined on pairs of control points.

Having the function̂I and the set̂Π, one can prove a property described by rule VALIDATE by proving
the weak verification condition associated withÎ andΠ̂.

THEOREM 5.8 Let Î andΠ̂ be as defined above, andW be the weak verification condition associated with
Î andΠ̂. Then, if all assertions inW are valid, then so are all assertions of the forms (4) and (5).

PROOF. We first prove that all assertions of the form (5) are valid. Since the assertion̂I(κ(p′1), p
′
1) is equiv-

alent toαp′

1
∧ δ, the assertionπp′

1,p′

2
∧ πκ(p′

1),κ(p′

2)
⇒ δ∗ ∧ α∗

p′

2
is equivalent towlp(πp′

1,p′

2
,πκ(p′

1),κ(p′

2))
(δ ∧

αp′

2
), and the assertion

Î(κ(p′1), p
′
1)⇒ wlp(πp′

1,p′

2
,πκ(p′

1),κ(p′

2))
(δ)

is valid, it follows that the assertion

αp′

1
∧ δ ∧ πp′

1,p′

2
∧ πκ(p′

1),κ(p′

2)
⇒ δ∗ ∧ α∗

p′

2

is also valid.
Now, assume that, for some pointsp′1 andp′2, the assertion

αp′

1
∧ δ ∧ πp′

1,p′

2
⇒ ∃V ∗

P .(
∨

πκ(p′

1
),κ(p′

2
)∈Πκ(p′

1
),κ(p′

2
)

)πκ(p′

1),κ(p′

2)
) ∧ δ∗ ∧ α∗

p′

2
,

is not valid. It means that there is a pair(σ, σ′) of states satisfyingαp′

1
∧ δ ∧ πp′

1,p′

2
, there is a computation

sequence fromp′1 on σ′ traversing the pathπp′

1,p′

2
, but there is no computation sequence fromp1 on σ

traversing any path inΠκ(p′

1),κ(p′

2)
. SinceCPP is a cut-point sets, all paths fromκ(p′1) to κ(p′2) are all in

Πκ(p′

1),κ(p′

2)
. By the definition ofΠ̂, the pathπp′

1,p′

2
is only paired with all paths inΠκ(p′

1),κ(p′

2)
. Thus, there
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i← 0

b0

x← a + b

i 6= 0

b1

i← x

b2

i← i + x

b3

y← a + i

i < 100

b4

bt

t

f

i′ ← 0
x′ ← a′ + b′

b′
0

i′ ← i′ + x′

i′ < 100

b′
1

y′ ← a′ + i′

b′
2

b′t

f

P P ′

Figure 3:P ′ is an optimized version ofP .

are states(σ, σ′) satisfyingÎ(κ(p′1), p
′
1) but the computation sequence from(κ(p′1), p

′
1) on(σ, σ′) does not

follow any path inΠ̂. However, since all assertions inW are valid, our assumption is then contradictory.�

EXAMPLE 5.9 In this example we consider programs used as an example in[15]. We depict the programs
in Figure3.

Let us denote the entry point of a basic block by the name of thebasic block itself. The control
abstractionκ mapsb0 to b′

0
, b1 to b′

1
, andbt to b′t. The blocksbt andb′t are the exit blocks ofP andP ′,

respectively. The data abstractionδ is defined as the following assertion:

ρ = κ(ρ′) ∧ i = i′ ∧ a = a′ ∧ b = b′ ∧ (ρ′ 6= b′
1
⇒ x = x′ ∧ y = y′),

whereρ is a program counter, and the data abstraction always implies the equalityρ = κ(ρ). Furthermore,
at the entry ofb′

1
we have the assertionαb′

1
equivalent tox′ = a′ + b′.

We define the assertion function̂I as follows:

Î(b0, b
′
0
) = δ

Î(bt, b
′
t) = δ

Î(b1, b
′
1
) = δ ∧ αb′

1
,

andÎ is undefined on other pairs of points. The setΠ̂ of paths of(P, P ′) consists of the following paths:

(πb0,b1
, πb′

0
,b′

1
), (πb2

b1,b1
, πb′

1
,b′

1
), (πb3

b1,b1
, πb′

1
,b′

1
), (πb2

b1,bt
, πb′

1
,b′t

), (πb3

b1,bt
, πb′

1
,b′t

).

These pairs of paths are all pairs of simple paths consideredin the proof rule VALIDATE . Thus, by Theo-
rem5.8 if all assertions in the verification condition associated with Î andΠ̂ are valid, then all assertions
generated by VALIDATE are also valid. �

The proof rule VALIDATE cannot prove the inter-program property in Example5.7. For each pair
πb′1,b′2

andπκ(b′1),κ(b′2)
of simple paths used in generating assertions of the forms (4) and (5), both paths are

nontrivial. However, in Example5.7the setΠ̂ contains the path(πb4,b4
, πbs

), whereπbs
is a trivial path. In

this sense, our notions of extendible assertion function and weak verification condition are more powerful
than the proof rule VALIDATE .
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5.3 Simulation Invariants

We show in this section that the notion of simulation invariant introduced in the work on credible compila-
tion [12] can be captured by our notions of extendible assertion function and weak verification condition.

There are two kinds of invariant introduced in [12], they are standard invariants and simulation invari-
ants. A standard invariant of a programP is written as〈α〉p, whereα is an assertion andp is a program
point ofP . The invariant is true if, for all executions ofP , the assertionα holds on the state at pointp.

Simulation invariants express a simulation relationship between the partial executions of programs.
Partial executions of a program are computation sequences starting from the entry of the program. A
simulation invariant between two programsP andP ′ is written as〈α, ē〉p⊳ 〈α′, ē′〉p′, whereα, α′ are as-
sertions,̄e, ē′ are equally long sequences of expressions, andp, p′ are program points ofP, P ′, respectively.
For sequences̄e = e1, . . . , en andē′ = e′1, . . . , e

′
n of expressions, we writēe = ē′ for

∧n

i=1 ei = e′i. The
invariant is true if for all partial executions ofP ′ reachingp′ with α′ true, there exists a partial execution
of P reachingp with α true such that the execution ofP is on the same input as that ofP ′ andē = ē′.

The notion of standard invariant can be captured by the notion of extendible assertion function. Instead
of proving a single standard invariant, in credible compilation one usually proves a set of standard invari-
ants. Given a setS of standard invariants, we define an assertion functionÎ as follows: for〈α〉p ∈ S,
Î(p) = α. Note thatÎ can be defined on other points. We then prove thatÎ is a strongly-extendible
assertion function.

THEOREM 5.10 Let S be a set of standard invariants and̂I be an assertion function such that, for all
〈α〉p ∈ S, Î(p) = α. If Î is strongly extendible, then all standard invariants inS are true. �

The proof of the above theorem is straightforward from the definition of strongly-extendible assertion
functions.

The notion of simulation invariant can be captured by the notions of weakly-extendible assertion func-
tion and weak verification condition. Similar to proving standard invariants, instead of proving a single
simulation invariant, one usually proves a set of simulation invariants. Similar to proving basic-block and
variable correspondences and properties described by ruleVALIDATE , proving a set of simulation invari-
ants requires some standard invariants that are assumed to be true. LetS be a set of simulation and standard
invariants of programsP andP ′. Denote by

S|p = {α | ∃〈α〉p ∈ S}

the set of assertions of all standard invariants inS such that the points of the invariants arep. Denote by

S|(p, p′) = {α ∧ α′ ∧ ē = ē′ | ∃〈α, ē〉p⊳ 〈α′, ē′〉p′ ∈ S}

the set of assertions of all simulation invariants inS such that the pairs of points are(p, p′). We define an
assertion function̂I of (P, P ′) as follows: for every pair(p, p′) of points such thatS|(p, p′) is not empty,

Î(p, p′) =
∧
S|(p, p′) ∧

∧
S|p ∧

∧
S|p′.

Let TS = {p′ | ∃〈α, ē〉p ⊳ 〈α′, ē′〉p′ ∈ S} be the set of all program points ofP ′ such that there is a
simulation invariant inS involving these points. We assume that the set of allTS-simple paths is finite.
This assumption is also used in the proof rules described in [12] to prove a set of simulation invariants. We
define a set̂Π of paths of(P, P ′) with the following requirement: for everyTS-simple pathπp′

1,p′

2
, there is a

path a pathπp1,p2 in the flow graph ofP such that (1) there are simulation invariants〈α1, ē1〉p1⊳〈α′
1, ē

′
1〉p

′
1

and〈α2, ē2〉p2 ⊳ 〈α′
2, ē

′
2〉p

′
2 in S, and (2)(πp1,p2 , πp′

1,p′

2
) is in Π̂. Note that the pathπp1,p2 can be trivial.

Having the function̂I and the set̂Π, one can prove a set of simulation invariants by proving the weak
verification condition associated witĥI andΠ̂.

THEOREM 5.11 LetS, Î, andΠ̂ be as defined above. LetW be the weak verification condition associated
with Î andΠ̂. If all assertions inW are valid, then all simulation invariants inS are true. �
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p1 : g← 0

p5 : g← g + 6

p4 : g < 48

p7 : return g

f

p′1 : g′ ← 0

p′2 : g′ ← g′ + 6

p′3 : g′ < 48

p′5 : g′ ← g′ + 6

p′4 : g′ < 48

p′7 : return g′

ff

P P ′

Figure 4:P ′ is an optimized version ofP .

To prove the above theorem, we need to describe the proof rules in [12]. In this section we will only
provide an informal proof of the theorem. First, the setTS contains all program points ofP ′ such that there
is a simulation relation there. Since we consider allTS-simple path, by the requirement ofΠ̂, if there is
a TS-simple pathπp′

1,p′

2
, then there is a pathπp1,p2 in the flow graph ofP such that there are simulation

invariants at(p1, p
′
1) and at(p2, p

′
2). Thus, the paths in̂Π represents the directions that the rules in [12]

follow in the proof.

EXAMPLE 5.12 We consider an example taken from the work on credible compilation in [12]. The pro-
grams in the example are depicted in Figure4. Each block in the programs has only one instruction, and
the instruction is labelled with a point denoting the entry of the block. The setS of simulation and standard
invariants to be proved consists of the following invariants:

〈g%12 = 0 ∨ g%12 = 6〉p4, 〈g′%12 = 0〉p′4, 〈g
′%12 = 6〉p′3

〈g%12 = 0, g〉p5 ⊳ 〈⊤, g′〉p′2,
〈g%12 = 6, g〉p4 ⊳ 〈⊤, g′〉p′3,
〈g%12 = 6, g〉p5 ⊳ 〈⊤, g′〉p′5,
〈g%12 = 0, g〉p4 ⊳ 〈⊤, g′〉p′4,
〈⊤, g〉p7 ⊳ 〈⊤, g′〉p′7.

The assertion function̂I is defined as follows:

Î(p5, p
′
2) = g%12 = 0 ∧ g = g′

Î(p4, p
′
3) = g%12 = 6 ∧ g = g′ ∧ g′%12 = 6 ∧ (g′%12 = 0 ∨ g%12 = 6)

Î(p5, p
′
5) = g%12 = 6 ∧ g = g′

Î(p4, p
′
4) = g%12 = 6 ∧ g = g′ ∧ g′%12 = 0 ∧ (g′%12 = 0 ∨ g%12 = 6)

Î(p7, p
′
7) = g = g′

Both at the pair of exit points and at the pair of entry points,Î is defined as⊤. The set̂Π of paths of(P, P ′)
consists of the following paths:

(πp1,p5 , πp′

1,p′

2
), (πp5,p4 , πp′

2,p′

3
), (πp4,p5 , πp′

3,p′

5
),

(πp5,p4 , πp′

5,p′

4
), (πp4,p7 , πp′

4,p′

7
), (πp4,p7 , πp′

3,p′

7
).

It is easy to see that if all assertions in the weak verification conditionW associated witĥI andΠ̂ are
valid, then all simulation assertions inS are true. Assume that all assertions inW are valid. The invariant
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〈⊤, g〉p7 ⊳ 〈⊤, g′〉p′7 is true by the following reasoning. For every pathπ′ going top′7, there is a pathπ
going top7 such that(π, π′) is in Π̂ and Î is defined on the starts ofπ andπ′. For the pathπp′

4,p′

7
, we

have the pathπp4,p7 such that(πp4,p7 , πp′

4,p′

7
) in Π̂ andÎ is defined on(p4, p

′
4). Since all assertions inW

are valid, we can ignore the assertions defined on(p4, p
′
4) and on(p7, p

′
7). For the pathπp′

3,p′

7
, we have

the pathπp4,p7 such that(πp4,p7 , πp′

3,p′

7
) is in Π̂ andÎ is defined on(p4, p

′
3). Assuming that the invariants

〈g%12 = 0, g〉p4 ⊳ 〈⊤, g′〉p′4 and〈g%12 = 6, g〉p4 ⊳ 〈⊤, g′〉p′3 are true, we can prove inductively that,
for all partial executions ofP ′ and the executions reachp′7, there is a partial execution ofP ′ such that the
execution reachesp7 and the values ofg andg′ on reachingp7 andp′7 coincide. �

Recall that we require that, for every path(π, π′) in the setΠ̂, the pathπ′ is not trivial. Due to this
requirement, the proof rules described [12] cannot prove the inter-program property in Example5.7. Thus,
with our notions of extendible assertion function and weak verification condition, we can prove more inter-
program properties than that of the proof rules in [12].

The notion of simulation invariant used in credible compilation is similar to the notion of simulation
triple in Necula’s work on translation validation [10]. Thus, our notions of extendible assertion function
and weak verification condition can capture the notion of simulation triple as well.

6 Common Criteria Certification

We discuss in this section an application of our theory of inter-program properties in the certification of
smart-card applications. The work described in this section is part of an industrial project, called EDEN2,
that has been conducted at Verimag laboratory.1 The aim of the project are twofold: (1) to develop a
method for software certification in the framework of CommonCriteria certification [1], and (2) to provide
a certificate or a collection of certificates showing that a smart-card application follows its specification or
a model of its specification.

Common Criteria (CC) is an international standard for the evaluation of security related systems. CC
defines requirements for certification: security policy model (SPM), functional specification (FSP), high-
level design (HLD), low-level design (LLD), and implementation (IMP). Given a specification of a system
or a program, an SPM is a model of the specification. an FSP describes an input-output relationship of
the system. HLDs are often fused into FSPs or into LLDs. An LLDitself is described as a reference
implementation.2 The IMP is the code implementing the system.

Each requirement in CC has a representation. For example, inEDEN2 project the SPM is written in
a declarative language that specifies, for each smart-card command, the normal behavior of the command
and the actions that the command has to perform when a card tear (or power loss) occurs. The FSP
and the LLD in EDEN2 project are programs written in subsets of Java, while the IMP are Java Card
programs [3, 14]. The HLD in EDEN2 is fused into the LLD. Essentially, the SPM, the FSP, the LLD,
and the IMP are programs that can be represented as program-point flow graphs. Between every two
consecutive requirement representations there is a so-called representation correspondence (RCR). An RCR
is essentially a property relating two programs, or an inter-program property, and thus we can apply our
theory of inter-program properties to proving RCRs and providing certificates about the RCRs. Our theory
is also applicable to proving properties of SPMs, FSPs, LLDs, and IMPs. In this report we focus on the
application of the theory to proving RCRs.

The definitions of RCRs between two consecutive requirements are different. We first discuss the
definition of RCRs between SPMs and FSPs. To this end, we discuss the SPM and the FSP. An SPM and
an FSP consist of a set of commands. A command can be thought ofas a method in a Java program or a
function in a C program. For each command in the SPM and the FSP, the command can be represented
by two programs, one program specifies the normal behavior ofthe command and the other specifies what
the command has to do when a card tear occurs. For simplicity,we call the former program thenormal
fragmentof the command and the latter one theabrupt fragmentof the command. In the FSP the normal

1Industrial partners involved in this project include companies that work on security for embedded systems, e.g., Gemalto and
Trusted Logic.

2In the latest version of Common Criteria report [1], HLD and LLD are replaced by TOE design description (TDS). In this report
we regard LLDs as TDSs.
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and abrupt fragments are represented by a try-catch construct. The try part represents the normal fragment,
the catch part catches a special exception and represents the abrupt fragment.

The operation of SPMs and FSPs resembles the operation of smart-card applications, that is, by sending
a sequence of commands to the SPMs and the FSPs. One can think of an SPM or an FSP as a program that
takes as an input a sequence of commands of the formC(a1, . . . , an), whereC is the command’s name
anda1, . . . , an are input arguments. A run of an SPM or an FSP can be described as a sequence of runs
of commands. For each run of a command, if no card tears occur and the run of the command terminates
normally, then the run of the SPM or the FSP fetches the next inputC(a1, . . . , an) from the input sequence.
If a card tear occurs, then the run goes to the abrupt fragmentof the command. If the run of the abrupt
fragment then terminates, the run of the command is said to terminate abruptly, and in turn the run of the
SPM or the FSP simply terminates.

A run of an SPM or an FSP is a finite or infinite alternating sequence

γ0, ε1, γ2, ε2, . . . ,

where

• γ0 is an entry configuration;

• for all i ≥ 0, we haveγi 7→ γi+1; and

• for all j ≥ 1, the eventεj is an event associated with transitionγj−1 7→ γj .

We assume that each of the SPM and the FSP has an input variable, and the state of configurationγ0 maps
this variable to the input value, which is a sequence of commands. Later in the definition of RCRs between
SPMs and FSPs we introduce a one-to-one correspondenceObs between the set of observable variables of
an SPM and the set of observable variables of an FSP. We assumethatObs maps the input variable of the
SPM to the input variable of the FSP.

For every run of a command, upon reaching the exit of normal fragment, the run of an SPM or an FSP
emits either aPass event or aFail event, and upon reaching the exit of abrupt fragment, the runemits an
Abrupt event. We assume that emitting an event is the same as assigning the event to a special variableε.
Events are not restricted toPass, Fail, andAbrupt events; we allow internal or unobservable events.

We now define the notion of RCR between SPMs and FSPs that we usein EDEN2. LetE be a set of
observable events. Denote byR|E the subsequence ofR consisting only of events inE:

R = (p0, σ0), ε1, (p1, σ1), ε2, . . .
R|E = (p0, σ0), εi1 , (pi1 , σi1), εi2 , (pi2 , σi2),

whereεij
∈ E for all j. LetX be a set of variables of an SPM, we denote byAb(X) the set of variables in

X such that the variables are modified in the abrupt fragment ofthe SPM.

DEFINITION 6.1 LetOSPM andOFSP be the sets of observable variables of, respectively, an SPMand
an FSP such that there is a one-to-one correspondenceObs betweenOSPM andOFSP . Let EO =
{Pass, Fail, Abrupt} be the set of observable events of the SPM and the FSP. There isanRCR between
the SPM and the FSPif, for every run

R|EO
= (p0, σ0), εi1 , (pi1 , σi1), . . .

of the FSP, there is a run
R′|EO

= (p′0, σ
′
0), ε

′
j1
, (p′j1 , σ

′
j1

), . . .

of the SPM, where for allx ∈ OSPM , we haveσ0(x) = σ′
0(Obs(x)), such that, for allk

• εik
= ε′jk

,

• if εik
6= Abrupt, thenσik

(x) = σ′
jk

(Obs(x)) for all x ∈ OSPM ,

• if εik
= Abrupt, thenσil

(y) = σ′
jl

(Obs(y)) for all y ∈ Ab(OSPM ).
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trial > 0

length = l
val := ⊥

pin = p

val := ⊤

trial := MAX

trial := trial− 1

trial > 0

i := 0

i < l

trial := MAX

val := ⊤
val := ⊥

pin[i] = p[i]

i := i + 1

trial := trial− 1

p
e

p1

p2

p
′

2

p
′

3

p
′′

1

p
′

e

p
′

1

p
x

p
′

x

val := ⊥

p3

Figure 5:P1 is on the left andP ′
1 is on the right.

�

To apply the theory of inter-program properties to proving an RCR between an SPM and an FSP, we
prove the RCR between each corresponding commands separately. Let Obs be a one-to-one correspon-
dence between observable variables of the SPM and of the FSP.There is an RCR between the SPM and the
FSP of a commandC if the following conditions hold. For any runR of the commandC in the FSP from
a stateσ1, there is a runR′ of the same command in the SPM from a stateσ′

1 such thatσ1 andσ′
1 satisfy∧

x∈OSPM
x = Obs(x), and

• if R is terminating (or the run reaches the exit of normal or abrupt fragment), then so isR′,

• whenR andR′ are terminating with, respectively, statesσ2 andσ′
2, R andR′ emit the same eventε

such that

– if ε 6= Abrupt, thenσ2 andσ′
2 satisfy

∧
x∈OSP M

x = Obs(x);

– otherwiseσ2 andσ′
2 satisfyx = Obs(x) for all x ∈ Ab(OSPM ).

EXAMPLE 6.2 In this example we will show that there is an RCR between the SPM and the FSP of the
commandcheckPIN used for PIN verification. Let us first consider the flow graphsrepresenting the normal
fragments of the SPM and of the FSP. Call the former flow graphP1 and the latterP ′

1. These flow graphs
are depicted in Figure5. The edge(p2, px) emits aPass event, while other edges coming topx emits a
Fail event. Similarly, the edge(p′2, p

′
x) emits aPass event, while other edges coming top′x emit aFail

event.
For clarity, we assume that the SPM and the FSP have disjoint sets of variables. To this end, we consider

that all variables in the FSP are in primed notation. Let the sets

OSPM = {trial, pin, p, val,MAX, ε}
OFSP = {trial′, pin′, p′, val′,MAX′, ε′}

be the sets of observable variables of, respectively, the SPM and the FSP such that a one-to-one correspon-
denceObs betweenOSPM andOFSP maps each variable inOSPM to its primed counterpart inOFSP

Note thatpin in the SPM has a scalar type butpin′ in the FSP has an array type. So, we have to define
the equivalence betweenpin andpin′. First, every array PINp has a lengthl associated with the array; we
write the association as a pair(p, l). We introduce a predicate≡ between such pairs such that, given an
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a
e

a
x

Abrupt

val := ⊥

Abrupt

val := ⊥

a
′

e

a
′

x

Figure 6:P2 is on the left andP ′
2 is on the right.

array PINsp, p′ and lengthsl, l′, we say that(p, l) ≡ (p′, l′) if l = l′ and for alli = 0, . . . , l − 1, we have
p[i] = p′[i]. Next we introduce a predicate∼ between scalar PINs and array PINs. The predicate∼ is
axiomatized as follows: for every scalar PINsw, x and for every array PINsy, z,

x ∼ y ⇒ (y ≡ z ⇔ x ∼ z)
x ∼ y ⇒ (w = x⇔ w ∼ y).

The predicate∼ defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence between observable variables of the SPM and of

the FSP:
φ1 ⇔ trial = trial′

φ2 ⇔ val = val′

φ3 ⇔ pin ∼ (pin′, length′)

φ4 ⇔ p ∼ (p′, l′)
φ5 ⇔ MAX = MAX′

φ6 ⇔ ε = ε′

Next, we define an assertion function̂I1 of (P1, P
′
1) as follows:

Î1(pe, p
′
e) =

∧6
i=1 φi

Î1(p1, p
′
1) =

∧6
i=1 φi ∧ trial > 0

Î1(p1, p
′′
1) =

∧6
i=2 φi ∧ trial > 0 ∧ trial = trial′ + 1
∧length′ = l′ ∧ i′ < l′ ∧ (∀j.0 ≤ j < i′ ⇒ pin′[j] = p′[j])

Î1(p2, p
′
2) =

∧6
i=1 φi ∧ pin = p ∧ (pin, length) ≡ (p, l)

Î1(p3, p
′
3) =

∧6
i=1 φi ∧ pin 6= p ∧ (pin, length) 6≡ (p, l)

Î1(px, p
′
x) =

∧6
i=1 φi

The functionÎ1 is undefined elsewhere.
Denote a path from pointp to q in a program-point flow graph byπp,q. We define a set̂Π1 of paths of

(P1, P
′
1) such that the set consists of the following paths:

(πpe,p1 , πp′

e,p′

1
), (πpe,px

, πp′

e,p′

x
), (πp1 , πp′

1,p′′

1
), (πp1,px

, πp′

1,p′

x
),

(πp1,p2 , πp′

1,p′

2
), (πp1 , πp′′

1 ,p′′

1
), (πp1,p2 , πp′′

1 ,p′

2
), (πp1,p3 , πp′′

1 ,p′

3
),

(πp2,px
, πp′

2,p′

x
), (πp3,px

, πp′

3,p′

x
).

One can prove that all assertions in the weak verification condition associated witĥI1 andΠ̂1 are valid.
We now consider the flow graphs of the abrupt fragments of the SPM and of the FSP. Call the former

oneP2 and the latterP ′
2. These flow graphs are depicted in Figure6. We define an assertion function̂I2 of

(P2, P
′
2) as follows:

Î2(ae, a
′
e) = ⊤

Î2(ax, a
′
x) = val = val′.

The functionÎ2 is undefined elsewhere. One can prove easily that all assertions in the weak verification
condition associated witĥI2 andΠ̂2 are valid.

From the assertion functionŝI1, Î2 and from the setsΠ̂1, Π̂2, one can easily see that there is an
RCR between the SPM and the FSP of the commandcheckPIN. First, since for allp 6= px, Î1(p, p′x)
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is undefined and the set{π′ | ∃π.(π, π′) ∈ Π̂1} is the set of all simple paths induced by the points in
P ′

1, then if for a pair of runsR′ of P ′
1 andR of P1 such that the entry configurations of the runs satisfy

Î1(pe, p
′
e), then if the runR′ is terminating, then so is the run ofR. SinceÎ1 is weakly extendible and

the assertion̂I1(px, p
′
x) ⇒

∧
x∈OSPM

x = Obs(x) is valid, the exit configurations of both runs satisfy∧
x∈OSPM

x = Obs(x).

Now, if a card tear occurs then the runR′ will go to the entry ofP ′
2. Since theÎ2(ae, a

′
e) is valid, the

runR can also go to the entryP2 such that the entry configurations of the runsR andR′ on reaching the
entries ofP2 andP ′

2 satisfyÎ2(ae, a
′
e). With the same reasoning as above, ifR′ reachesa′e, thenR reaches

ae too. SinceÎ2 is weakly extendible and the assertionÎ2(ax, a
′
x) ⇒

∧
x∈Ab(OSPM ) x = Obs(x) is valid,

then the exit configurations of both runs satisfy
∧

x∈Ab(OSPM ) x = Obs(x). Therefore, there is an RCR
between the SPM and the FSP of the command.

�

We now focus on RCRs between FSPs and LLDs. Before discussingRCRs, we first describe LLDs. In
EDEN2 the language used to write an LLD is a subset of Java. This subset includes memory characteristics
and transaction mechanism of Java Card [14, 3]. First, in the language of LLDs there are two kinds of
memory, persistent memory and transient memory. The difference between these kinds of memory is the
following: when power is lost (or a card tear occurs), data stored in the persistent memory will be kept in
the memory, while data stored in the transient memory will belost. In the sequel, variables whose values
are stored in the persistent memory are calledpersistent variables, and variables whose values are stored
in the transient memory are calledtransient variables.

Similar to the FSP, an LLD consists of a set of commands where each command is a Java method. Card
tears are capture using a try-catch construct where the try part represents the normal fragment of the LLD
and the catch part catches a special exception and represents the abrupt fragment of the LLD. The language
of LLDs offers a transaction mechanism that resembles the transaction mechanism of Java Card API. Our
modelling of transactions follows the modelling of Java Card transactions in [6]. We introduce a boolean
variableinTrans to keep track if a transaction is in progress or not. When a transaction begins, the value
of inTrans is set to true, and when it ends, the value ofinTrans is set to false. One can set the value of
inTrans to false to escape from a transaction. This feature is usefulfor variables whose updates must be
unconditional.

Similar to FSPs, an LLD is a program that takes as an input a sequence of command calls of the form
C(a1, . . . , an), whereC is the command’s name anda1, . . . , an are input arguments. The notion of run of
LLDs is the same as the notion of run of FSPs.

Having described LLDs, we now define RCRs between FSPs and LLDs. Let us first denote byPr(X)
the set of persistent variables in the setX of variables of an LLD. Later in the definition of RCRs betweenan
FSP and an LLD we require that observable persistent variables of the LLD are updated in the same order as
their counterparts of the FSP. But, when a transaction is in progress, then such an order becomes irrelevant.
For example, given a one-to-one correspondenceObs between observable variables of the LLD and of the
FSP, if no transaction is in progress and the observable persistent variables of the LLD are updated in the
orderx1, x2, x3, then their counterparts are updated in the orderObs(x1), Obs(x2), Obs(x3). However,
when a transaction is in progress, then the order of updatingObs(x1), Obs(x2), Obs(x3) is irrelevant.
Moreover, whether a transaction is in progress or not, each variable is updated with the same value as its
counterpart. To this end, first, for each persistent variablex of the LLD and its counterpartObs(x) of the
FSP, we associate with both variables an event functionWrite x. This function takes as an input the value
v of x orObs(x) and returns an eventWrite x(v). The following assertion axiomatizes the event function:

∀x, y, v, w.(Write x(v) = Write y(w)⇔Write x = Write y ∧ v = w),

where the equalityWrite x = Write y denotes a syntactic equality. In the sequel we denote byτx the
domain of variablex.

Second, the set of events emitted by the LLD is a power set of the set of events emitted by the FSP. Next,
assignments to observable persistent variables and committing transactions emit events in the following
way:
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• In the try part of the FSP, the update of a variabley, wherey = Obs(x) for an observable persistent
variablex in the LLD, emitsWrite x(v), wherev is the updated value ofy.

• In the try part of the LLD,

– if no transaction is in progress, that is the variableinTrans is false, then the update of an
observable persistent variablex emits{Write x(v)}, wherev is the updated value ofx;

– if a transaction is in progress, that is the variableinTransaction is true, then wheninTransaction

is set to false and beforehand the observable persistent variablesx0, . . . , xn are updated such
that thelatestupdated values of these variables are, respectively,v0, . . . , vn, then if the reset-
ting of inTrans is not caused by aborting the in-progress transaction, thenthe resetting emits
{Write x0(v0), . . . ,Write xn(vn)}. However, when the resetting ofinTrans is caused by
aborting the in-progress transaction or no observable variables are updated, then no set of events
is emitted.

For comparing events of the LLD and events of the FSP, we say that a nonempty set{ε0, . . . , εm} of
LLD’s eventsmatchesa sequenceε′0, . . . , ε

′
n of FSP’s events if (1)m = n, and (2) for alli = 0, . . . ,m,

there existsj such that0 ≤ j ≤ n andε′j = εi. Now, we say that a sequencêε1, ε̂2, . . . of sets of LLD’s
eventsmatchesa sequenceε′1, ε

′
2, . . . of FSP events if either both sequences are of length 0, or there is an

increasing sequencen1 < n2 < . . . of positive integers such that

1. ε̂1 matchesε′1, . . . , ε
′
n1

, and

2. for all i ≥ 2, ε̂i matchesε′ni−1+1, . . . , ε
′
ni

.

Note that the one-to-one correspondenceObs maps variables of the LLD to variables of the FSP. We
assume that the FSP and the LLD have disjoint sets of variables. In the sequel, for simplicity, the inverse
of Obs is calledObs as well. That is, for any variablex of the LLD and any variablex′ of the FSP,
x′ = Obs(x) if and only if x = Obs(x′).

DEFINITION 6.3 LetOFSP andOLLD be the sets of observable variables of, respectively, an FSPand a
LLD, andObs be a one-to-one correspondence between these sets. Let the sets

EFSP = {Pass, Fail, Abrupt}
∪{Write x(v) | x ∈ Pr(OLLD) ∧ v ∈ τObs(x)}

ELLD = {{Pass}, {Fail}, {Abrupt}}
∪(P({Write x(v) | x ∈ Pr(OLLD) ∧ v ∈ τx})− {∅})

be the sets of observable events of the FSP and of the LLD, respectively. There is anRCR between the FSP
and the LLDif, for every run

R|ELLD
= (p0, σ0), εi1 , (pi1 , σi1), . . .

of the LLD, there is a run
R′|EF SP

= (p′0, σ
′
0), ε

′
j1
, (p′j1 , σ

′
j1

), . . .

of the FSP, where for allx ∈ OLLD, we haveσ0(x) = σ′
0(Obs(x)), such that there is an increasing

sequencen1 < n2 < . . . of positive integers such that

1. εi1 matchesε′j1 , . . . , ε
′
jn1

, and

2. for all k > 1, εik
matchesε′jnk−1+1

, . . . , ε′jnk
,

and

• for all l, if εil
6= {Pass} 6= {Fail} 6= {Abrupt}, thenσil

(y) = σ′
jnl

(Obs(y)) for all y ∈
Pr(OLLD); otherwise

• σil
(x) = σ′

jnl
(Obs(x)) for all x ∈ OLLD.
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Figure 7:P1 is on the left andP ′
1 is on the right.

�

Similar to the RCR between an SPM and an FSP, we use the specialvariableε to store the events
emitted by the FSP and the LLD. For the RCR between an FSP and a LLD, emitting an event means
concatenating the event to the current value of the special variableε. Particularly for the LLD, we use
another special variableεt to keep track the updated observable persistent variables when a transaction
is in progress. When the variableinTrans is set to true, the variableεt is set to the empty set. During
the transaction, any update to an observable persistent variablex with valuev is recorded by updatingεt

with εt ∪ {Write x(v)}. When the variableinTrans is set to false, the variableε is set toε; εt only if the
reseting ofinTrans is not caused by aborting the in-progress transaction. Moreover, when the LLD emits
a Pass or Fail event, and a transaction is in progress, thenε is updated withε; εt;Pass or ε; εt;Fail,
respectively. When a card tear occurs and the LLD emitsAbrupt, then the content ofεt is discarded
andε is updated withε;Abrupt. When an observable persistent variable is updated more than once in a
transaction, then one can always translate the LLD into SSA form [2] such that in the program texts there
is only one assignment to each variable.

Similar to RCRs between SPMs and FSPs, we apply the theory of inter-program properties to prov-
ing an RCR between an FSP and an LLD by proving the RCR between each corresponding commands
separately.

EXAMPLE 6.4 We consider again the commandcheckPIN in this example. Figure7 depicts the FSP and
the LLD of the try parts of the commandcheckPIN. The flow graph of the FSP is calledP1 and is on the
lefthand side of the figure, while the other flow graph is the flow graph of the LLD and it is calledP ′

1.
Persistent variables inP ′

1 aretrial, pin, length,MAX. Other variables are transient. The variabletb is a
backup variable for the variabletrial.
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Let the set
OFSP = {trial, pin, length, p, l, val,MAX, ε}

be the set of observable variables of the FSP and the setOLLD be the set of observable variables of
the LLD such thatOLLD consists of the primed counterparts of all variables inOFSP . The one-to-one
correspondenceObs betweenOFSP andOLLD maps each variable inOFSP to its primed counterpart in
OLLD. We express the relationship of observable variables by thefollowing assertions:

φ1 ⇔ pin = pin′ ∧ length = length′ ∧MAX = MAX′ ∧ trial = trial′

φ2 ⇔ p = p′ ∧ l = l′ ∧ val = val′ ∧ ε = ε′

φ ⇔ φ1 ∧ φ2 ∧ (inTrans′ ⇒ trial = tb′)

The assertionsφ1 andφ2 describe the correspondence of, respectively, persistentand transient variables.
We define an assertion function of(P1, P

′
1) as follows:

Î1(pe, p
′
e) = Î1(p1, p

′
1) = Î1(p1, p

′
5) = Î1(p5, p

′
6) = Î1(p2, p

′
2)

= Î1(p3, p
′
3) = Î1(p3, p

′
7) = Î1(p4, p

′
4) = Î1(p6, p

′
8) = Î1(px, p

′
x) = φ

LetS1 = {p | ∃p′, ϕ.Î1(p, p′) = ϕ} andS′
1 = {p′ | ∃p, ϕ.Î1(p, p′) = ϕ}. be the sets of program points

on whichÎ1 is defined. Given a setS of program points in a flow graph, we say that a pathπ = p0, . . . , pn

in the flow graph isS-simple ifn > 0, p0 andpn are inS, and none ofp1, . . . , pn−1 are inS.
We define a set̂Π1 of paths of(P1, P

′
1) as follows: for everyS′

1-simple pathπp′,q′ ,

• there is anS1-simple pathπp,q such thatÎ1(p, p′) andÎ1(q, q′) are defined, or

• there is a trivial pathπp, wherep ∈ S1, such thatÎ1(p, p′) andÎ1(p, q′) are defined.

One can easily prove that the assertions in the verification condition associated witĥI1 andΠ̂1 are valid,
and thusÎ1 is weakly extendible.

We next consider the catch parts of the commandupdatePIN. The flow graphsP2 andP ′
2 in Figure8

are the catch parts of the command. Note that the catch partP2 of the FSP is different from the one shown
on the righthand side of Figure6. The flow graphP2 in Figure 8 updates the variablesp and l. The
counterparts of these variables in the LLD are transient variables,3 and so on abrupt they are set to their
default values. Nevertheless, one can easily define an assertion function of the flow graphP2 in Figure8
and the flow graphP2 of the SPM in Figure6 such that there is still an RCR between the SPM and the FSP
of the commandcheckPIN.

We define an assertion function̂I2 of (P2, P
′
2) as follows:

Î2(ae, a
′
e) = φ1 ∧ p = p′ ∧ ε = ε′ ∧ (inTrans′ ⇒ trial = tb′)

Î2(a1, a
′
1) = φ1 ∧ p = p′ ∧ val = val′ ∧ ε = ε′

Î2(ax, a
′
x) = φ.

Note that the assertionsφ ⇒ Î2(ae, a
′
e) andÎ2(ae, a

′
e) ⇒

∧
x∈Pr(OLLD) x = Obs(x) ∧ ε = ε′ are valid.

Moreover, since the setS′
1 above coversP ′

1, by the weak-extendibility of̂I1, it follows that for every finite
run ofP ′

1, there is a finite run ofP1 such that the initial configurations of the runs satisfyφ and the last
configurations of the runs satisfŷI2(ae, a

′
e).

LetS′
2 = {p′ | ∃p, ϕ.Î2(p, p′) = ϕ} be the set of points inP ′

2 such that for each pointp′ in S′
2, there is

a pointp in P2 andÎ2(p, p′) is defined. Similarly, letS2 = {p | ∃p′, ϕ.Î2(p, p′) = ϕ}. Let ΠS′

2
be the set

of all S′
2-simple paths andΠS2 be the set of allS2-simple paths. We define a set̂Π2 of paths of(P2, P

′
2) as

follows:

Π̂2 = {(πp,q, πp′,q′) | ∃ϕ1, ϕ2.(πp,q, πp′,q′) ∈ ΠS2 ×ΠS′

2
andÎ1(p, p

′) = ϕ1 andÎ1(q, q
′) = ϕ2}.

One can prove that the assertions in the weak verification condition associated witĥI2 andΠ̂2 are valid.
From the assertion functionŝI1, Î2 and the setsΠ̂1, Π̂2, and the weak extendibility of̂I1 and Î2, one

can easily see that there is an RCR between the FSP and the LLD of the commandcheckPIN. �

3Stack variables are transient variables.
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7 Conclusion

We have developed a theory of inter-program properties. Thetheory forms a basis for describing and
proving properties between two programs. The cornerstone of the theory is the notion of weak verification
condition, by which one can provide certificates certifyingthe inter-program properties. The theory itself is
abstract and general, in the sense that it can be applied to programs written in any programming languages
as long as these languages have the weakest precondition property.

We have applied the theory in the translation validation foroptimizing compilers and in Common Cri-
teria certification. In translation validation, we have shown that, using the notions of extendible assertion
function and weak verification condition, we can capture different notions of correspondence used in dif-
ferent translation validation work. We have also shown thatwe can prove the equivalence of two programs
in the presence of optimizations that introduce or eliminate loops. In Common Criteria certification, we
have shown that the theory can be applied to two programs written in different languages, and the theory
can also provide certificates certifying representation correspondences between requirements in Common
Criteria.
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