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Abstract

We develop foundations for proving properties relating fwograms. Our formalization is
based on a suitably adapted notion of program invariant &ngle program. First, we give
an abstract formulation of the theory of program invaridrgsed on the notion of assertion
function: a function that assigns assertions to programtpoirhen, we develop this abstract
notion further so that it can be used to prove properties éetviwo programs. We describe
two applications of the theory. One application is in thensiation validation for optimiz-
ing compilers, and the other application is in the certifaabf smart-card application in the
framework of Common Criteria. The latter application istpafran industrial project con-
ducted at Verimag laboratory.
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1 Introduction

Techniques for proving properties between two programe f@come important in the area of program
verification. The verification of a program consists of prayihat the program satisfies a given speci-
fication. The specification is usually written in a formal darage such as first-order or temporal logic.
However, in some cases, like software evaluation and aatiifin, the formal specification itself is often
not available, and we are only given a model of the specifinaflhis model is essentially a program writ-
ten in a simple language. To prove the correctness of ourgnegwve first formulate the property relating
the program and the model. For example, our program is donidtrespect to the model if they perform
the same sequence of function calls when both of them arerrtimeosame input. Such a property between
two programs is callethter-program propertythroughout this report.

Inter-program properties describe relationships betweenprograms. A relationship between two
programs includes a mapping between locations and a ne&dijp between variables of the two programs.
Moreover, inter-program properties also involve run-tioehaviors of the two programs. Consider the
following two programs:

P P’

i=0 =0

while (i < 100) do while (" < 100) do
= i+1 = V+2

q: q:

od od

return i return i’

We want to prove tha’ and P’ are semantically equivalent. That is, for every pair of rohdoth
programs, one run is terminating if and only if so is the atled if the runs are terminating, they return
the same value. We first assér: i’ at ¢ andq’. Then, we argue tha? and P’ are equivalent with the
following reasoning. From the entries fand P/, by taking two iterations of the loop iff and a single
iteration of the loop inP’, one can reach andq’ such that the values ofandi’ coincide. From; andq’,

by knowing that the values ofandi’ coincide (or the equality= i’ holds), then there are two possibilities
depending on the values o&indi’. One possibility is follow the same paths as before and reaid g’
again such that the values b&ndi’ coincide. The other possibility is exit the loops and theueal ofi
andi’ remain coincide. These two possibilities show that botls i and P’ are either terminating or
non-terminating. The second possibility shows that on iteation, both runs return the same value.

The notion of semantic equivalence is an example of integgam property. Such a notion is heavily
used in compiler verification, particularly in translatiealidation approach and certifying compilers. In
the translation validation approachl], for each compilation, one proves that the source and tlyeta
programs are semantically equivalent. Particularly in rifgegng compiler, the compiler must produce a
certificatecertifying such an equivalence.

One might be interested in the notion of safe implementati@n example, a program is a safe imple-
mentation of another program if the sequence of observadtiaviors performed by the former programis
a subsequence of that of the latter program. Consider tlggqamsP and P’ above and imagine that there
is a function calff (i) atg andq’. Let function calls and return values be the only observebleaviors.P
and P’ are no longer equivalent because both perform differenteseces of function calls. Nonetheless,
one can prove tha?’ is a safe implementation d?.

Standard techniques for proving properties of a singleamdave been addressed for four decades [
5]. However, although there have been many kinds of integianm property used in program verification,
there is no adequate basis for describing inter-prograpgsties formally such that a rigorous standard is
establish for certificates and proofs about such propefiMsspropose in this report an abstract theory of
inter-program properties. The theory is based on the nati@ssertion functiona function that assigns
assertions to program points. For example, in the abovergnog we can assert that< 100 atq by
defining an assertion functiahsuch that mapsg toi < 100.

The formalization of our theory is based on a suitably adé&ptgion of program invariant for a single
program. We introduce the notion of extendible assertioction as a constructive notion for describing
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and proving program invariants. An assertion functioof a program is extendible if for every run of the
program reaching a point; on which [ is defined and the assertion definegatholds, we can always
extendhe run so that it reaches a pojnton which! is defined and the assertiongatholds. For example,
suppose that we define an assertion funcfiaf the programP above such that, on the entry and exit of
P, I is defined as true, and an I is defined as < 100. The function/ is extendible because if a run
reacheg such thai < 100 holds, then we can extend the run either to repagain or to reach the exit of
P, and the assertions defined at those points will also hold.

We develop further the notion of extendible assertion fiamcso that it can be used to prove inter-
program properties. To this end, we consider the two prograsnapair of programswith disjoint sets
of variables. For example, to assert that i’ at ¢ andq’ in the programs” and P’ above, we define
an assertion functiod of (P, P’) such thatl maps(q,¢’) toi = i'. We will show in this report that
meta properties that hold for the case of a single programtadéd for the case of a pair of programs.
Furthermore, since we are interested in a kind of certificatedevelop a notion of verification condition
as a notion of certificate. A verification condition itselfaset of assertions. A certificate can be turned
into a proof by proving that all assertions in the verificatamndition are valid.

In this report we discuss two prominent applications of tteoty of inter-program properties. The first
application is translation validation. We focus the apgdiicn on the translation validation for optimizing
compilers. We can show that the notion of extendible agseftinction can capture inter-program prop-
erties used in all existing works on translation validationoptimizing compilers. In Sectios we will
discuss its application to our previous work on finding bddark and variable correspondencg and
briefly mention how our notion of weakly extendible assertionction and the corresponding notion of
verification condition can be used to certify other appresch

The other application is in software certification. We désern industrial project for certifying smart-
card applications at Verimag laboratory. In this projeat, show that, using our theory, we can provide
certificates that certify properties between different eleaf a specification in the framework of Common
Criteria [1].

In summary, the contributions of this report are the follogyi

e A theory of inter-program properties as an adequate basisdscribing and proving properties
relating two programs.

e Applications of the theory in compiler verification and irfteaare certification.

The outline of this report is as follows. We first describe thain assumptions used in the theory
of inter-program properties. We then develop a theory opprties of a single program. We call such
properties intra-program properties. Then, we develoghkery further so that it can be used to prove
inter-program properties. Having the theory of inter-peog properties, we then discuss two applications
of the theory in translation validation and in Common Ciéerertification.

2 Main Assumptions

Our formalization will be based on standard assumptionsigiigrams and their semantics. We assume
that a program consists of a finite setpybgram points For example, g@rogram pointof a programP

can be the entry or the exit of a sequence of statementsklmch) in P. We denote byPoint p the set

of program points of. A program-point flow graph of is a finite directed graph whose nodes are the
program points of’. In the sequel, we assume that every progfame are dealing with is associated with
a program-point flow graph, denoted Gjp.

We assume that every program has a uniepiy pointand a uniquexit point Denote byentry(P)
and exit(P), respectively, the entry and the exit point of progr&nWe assume that the program-point
flow graph contains no edge into the entry point and no edge fhe exit point.

We describe the run-time behavior of a program as sequeficemfigurations. Aconfigurationof a
program run consists of a program point and a mapping frombis to values. Such a mapping is called a
state The variables used in a state do not necessarily coincithevariables of the program. For example,
we may considememoryto be a variable. Formally, a configuration is a pairo), wherep is a program
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point ando is a state. A configuratiofp, o) is called arentry configuration for? if p = entry(P), and
anexit configuration forP if p = exit(P). For a configuratiory, we denote byp(v) the program point
of v and bystate(~y) the state of this configuration.

We assume that the semantics of a progfam defined as a transition relatien p with transitions of
the form(py,01) —p (p2,02), Wwherep;, p» are program pointss, , o2 are states, angh, p2) is an edge
in the program-point flow graph a?.

DEeFINITION 2.1 (Computation Sequence,Run)cdmputation sequence of a progrdpns either a finite
or an infinite sequence of configurations

(po,UO)a(pl,Ul),---7 (2)

where(p;, 0;) —p (pit1,0i+1) foralli. A run R of a programP from an initial states is a computation
sequencel) such thatpy, = entry(P). A run is completeif it cannot be extended, that is, it is either
infinite or terminates at an exit configuration.

For two configurations , 72, we writey; ~ p - to denote that there is a computation sequende of
starting aty; and ending at». We say that a computation sequenceiisal if it is a sequence of length 1.

We introduce two restrictions on the semantics of progrdsirst, we assume that programs are deter-
ministic. That is, for every program, given a configuration,, there exists at most one configuratign
such thaty; —p 2. Second, we assume that, for every prograind for every non-exit configuration
of P’s run, there exists a configuratign such thaty; —p 72, thatis, a complete run may only terminate in
an exit configuration. Our results can easily be generaligedropping these restrictions. Indeed, one can
view a non-deterministic program as a deterministic proghaving an additional input variablewhose
value is an infinite sequence of numbers, these numbers acetaslecide which of non-deterministic
choices should be made. Further, if a program computatioieraninate in a state different from the exit
state, we can add an artificial transition from this statédexit state. After such a modification we can
also consider arbitrary non-deterministic programs.

Further, we assume sorassertion languagi which one can writ@ssertionsnvolving variables and
express properties of states. For example, the assertigndge may be some first-order language. The
set of all assertions is denoted Awsertion. We will use meta variables, ¢, ¢, andi), along with their
primed, subscript, and superscript notations, to rangeassertions. \We write = « to mean an assertion
ais true in a stater, and also say that satisfiesy, or thata holds ato. We say that an assertianis valid
if o |= « for every stater. We will also use a similar notation for configurations: faranfigurationp, o)
and assertiom we write (p, o) = a if o = a. We also writer [~ « to mean an assertionis false ino,
or o does not satisfyv. We assume that the assertion language is closed undeatidast propositional
connectives and respects their semantics, for exampte—« if and only if o |~ o. We call an assertion
valid if it is true in all states.

To ease the readability we introduce the following notatifor all assertionsy, a;, andas, and for
every stater,

ag ANag  for  «,wheres = aifandonly ifo = aq ando = as

a1 Vas for «,wheres E aifandonlyifo = «a; oro = as

-0 for «,whereos = aifandonly ifo £ oy

a1 = ag  for «,whereos | «if and only if o =« whenevew = oy

3 Intra-Program Properties

In this section we introduce the notion of program invari@anta single program and some related notions
that make it more suitable to present inter-program progeelater.

3.1 Program Invariants

We introduce the notion of assertion function that assesiptogram points with assertions. Assertion
functionfor a programP is a partial function

I : Pointp — Assertion
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mapping program points d? to assertions such thatentry(P)) andI(ezit(P)) are defined. The notion
of assertion function generalizes the notion of progranatiant: one can considdras a collection of
invariants associated with program points. The requireithen/ is defined on the entry and exit points is
purely technical and not restrictive, for one can alwaysnaef{ entry(P)) and I (ezit(P)) asT, that s,
an assertion that holds at every state.

Given an assertion functiah we call a program point I-observabléf I(p) is defined. A configuration
(p, o) is calledI-observable if so is its program point We say that a configuration= (p, o) satisfies/,
denoted byy = I, if I(p) is defined andr = I(p). We will also say thaf is defined ony if it is defined
onp and writel () to denotel (p).

DerINITION 3.1 (Program Invariant) Lef be an assertion function of a prografm The function/ is
said to be grogram invariantof P if for every run

Yo, V1y - - -
of the program such thay, |= I and for alli > 0, we havey; = I whenever is defined orpp(y;). O

In other words, an assertion function is an invariant if anéyaf for every program run from an entry
configuration satisfyind, every observable configuration of this run satisfiéso.

This notion of invariant is useful for asserting that a paogrsatisfies some properties, including partial
correctness of a problem. Recall that a prograis partially correctwith respect to a preconditionand
a postconditiony, denoted by{p}P{v}, if for every run of P from a configuration satisfying and
reaching an exit configuration, this exit configurationsfas. Likewise, a progran® is totally correct
with respect to a preconditiop and a postconditiony, denoted by[p] P[], if every run of P from a
configuration satisfying terminates in an exit configuration and this exit configuagatisfies).

THEOREM 3.2 Let P be a program and, ¢ be assertions. Let be an assertion function fd? such that
I(entry(P)) = ¢ and I(exzit(P)) = . If I is an invariant, then{o}P{«}. If, in addition, I is only
defined on the entry and the exit points, tHes an invariant if and only if o} P{«}.

PROOF. Suppose thak is an invariant of? and~; + p 72, Wherey, is an entry configuration ang is an
exit configuration, and; = ¢. Thenvy; | I. Using this and the fact that, is I-observable, we obtain
Y2 ': I, that iS,’}/Q ': ’(/)

Now suppose thal is only defined on the entry and the exit points, grd P{v}. Consider any
complete run ofP from a configurationy; that satisfiesp. We have to show that everfrobservable
configuration of this run also satisfiéslt is obvious thaty; = I. But the only observable state of this run
different from~; may be an exit configuratiof, in which case, and by our restrictions on programs, the
run terminates at this configuration, thenfay} P{v }, we havey, | ¢, thatis,y = I. O

One can provide a similar characterization of loop invasarsing our notion of invariant.

3.2 Extendible Assertion Functions

Our notion of invariant is not immediately useful fproving that a program satisfies some properties.
For proving, we need a more constructive characterizatioelations betweerd and P than just those
expressed by program runs. We introduce the notion of eitendssertion function that provides such a
characterization.

DEFINITION 3.3 Let] be an assertion function of a progrdm I is strongly extendiblé& for every run

Y05 -5 Vi
of the program such that> 0, vy = I, v; E I, and~; is not an exit configuration, there exists a finite
computation sequence
Yis ooy Yitn
such that
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1. n>0,
2. Yi+n =1, and
3. forallj such that < j < i+ n, the configurationy; is not/-observable.

The definition ofweakly-extendiblassertion function is obtained from this definition by drimgpcondi-
tion 3. 0

ExamPLE 3.4 Let us give an example illustrating the difference befwthe two notions of extendible
assertion functions. Consider the following progr&m
i=0
j=20
while (j < 100) do
it (i>]j)thenj := j+1
elsei = i+1
fi
q:
od
Define an assertion functiahof P such thatl (entry(P)) = T andI(q) = I(exzit(P)) = (i =j), and
I(p) is undefined on all program poingsdifferent fromq and the entry and exit points. Théns weakly
extendible but not strongly extendible. To show thhas weakly extendible, it is enough to observe the
following properties:

1. From an entry configuration, in two iterations of the loopge reaches a configuration with the
program point in whichi = j = 1;

2. For everyv < 100, from a configuration with the program poigtin whichi = j = v, in two
iterations of the loop, one can reach a configuration in whiehj = v + 1;

3. For everyw > 100, from a configuration with the program poiptn whichi = j = v, one can reach
an exit configuration in which= j = v.

To show that/ is not strongly extendible, it is sufficient to note that,fr@ny entry configuration, after
one iteration of the loop, one can reach a configuration wighprogram poing in whichi = 1 andj = 0
and so = j does not hold. O

Using the same arguments as in the proof of Thede&nwe can show that weakly-extendible func-
tions are sufficient for proving partial correctness:

THEOREM 3.5 LetI be a weakly-extendible assertion function of a progfasuch thatl (entry(P)) = ¢
andI(exit(P)) = 1. Then{p}P{v}, thatis, P is partially correct with respect to the preconditignand
the postcondition). O

On the other hand, strongly-extendible assertion funstgerve as invariants, as the following theorem
shows:

THEOREM 3.6 Every strongly-extendible assertion functibof a programP is also an invariant of?.

PROOF We have to show that, for every rug, 1, ... of P such thaty, = I and everyl-observable
configurationy; of this run, we have; = I. We will prove it by induction ori. Wheni = 0, the statement

is trivial. Supposé > 0. Take the greatest numbgsuch that < j < ¢ and~; is /-observable. Such a
number exists since, is I-observable. By the induction hypothesis, we hayd= I. By the definition

of strongly-extendible assertion function, we have thatérexists am > 0 and a rumyy, ..., v;,...,Vn
such thaty, = I and all configurations betweey) and~,, are not/-observable. Note that botj) and

~», are the first/-observable configurations aftey in their runs. By the assumption that our programs are
deterministic, we obtain; = v, sov; = I. O
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The following theorem shows that for terminating prograimsré is a closer relationship between
strongly-extendible assertion functions and invariants:

THEOREM 3.7 Let an assertion functiod be an invariant ofP such that/(entry(P)) = «. LetP
terminate for every entry configurations satisfyimghat is, every run on an entry configuration satisfying
« is finite. Then! is strongly extendible.

PROOF Take any runy, ..., ~; of P suchthaty = I,v; = I, andy; is not an exit configuration. Extend
this run to a runyo, . . . , v:1,, that satisfies the conditions of Definiti@m3. To this end, first extend the run
to a complete run

R=707---,%,%'+1,----

Let us show thaf? contains a configuratiof;.,, with n > 0 on which[ is defined. Such a configuration
exists sinceR is finite and! is defined on the exit configuration &f. Take the smallest such that/ is
defined omy;,,. Sincen is the smallest/ is undefined on all configurations betwegnand~;,, in R.
Sincel is an invariant, we have, ., = I. O

The condition on programs to be terminating is not very aaesive. We will introduce other sufficient
conditions on assertion functions which, on the one hantigwarantee that an invariant is also strongly or
weakly extendible, and on the other hand, make our notionvafriant similar to more traditional oneg |
To this end, we will use paths in the program-point flow gr&pp. Such a path is calledlivial if it consists
of a single point. To guarantee that an invariarmf a programP is strongly extendible, we require that
1 must be defined on certain program points such that thos¢spmieak all cycles ifz p. That is, every
cycle inG p contains at least one of these points. We introduce themoficovering set to describe this
requirement.

DEFINITION 3.8 (Covering Set) LeP be a program and' be a set of program points iR. We say that
C coversP if entry(P) € C and every infinite path iz » contains a program point if. An assertion
function! is said tocover P if the set of/-observable program points covedrs O

Any setC' that coversP is often called aut-point seof P.

THEOREM 3.9 Let I be an invariant ofP. If I coversP, thenI is strongly extendible.

PROOF Take any runyo,...,v; of P such thatyy = I, v; | I and~; is not an exit configuration. We
have to extend this run to a rum, . . ., v;+» Satisfying the conditions of Definitio8.3. To this end, first
extend this run to a complete rub= (o, ..., vi,vi+1, - ..). Letus show thaR contains a configuration
vi+n With n > 0 on which[ is defined. Indeed, iR is finite, then the last configuration & is an exit
configuration, and then is defined on it. IfR is infinite, then the pathp(vi+1), pp(Yit2), - - . is infinite,
hence contains a program point on whicis defined. Take the smallest positivesuch that/ is defined
oNn~;+n. Sincen is the smallest/ is undefined on all configurations betwegrand~; .., in R. Sincel is
invariant, we havey; ., = I. O

ExampPLE 3.10 Consider again the prografof Example3.4. Define an assertion functidn of P such
thatI; is defined only on the entry and the exit pointsientry(P)) = T andl;(ezit(P)) = (i =j). 1
is an invariant ofP, but does not coveP since it is undefined on all points in the loop. Neverthelésss
strongly extendible.

Let us now define another assertion functigrsuch thatlz (entry(P)) = T, LIx(exit(P)) = (i =),
Ir(qg) = (i > j=1i=j+1), andl> is undefined on all other pointd, is an invariant ofP and also
strongly extendible. Moreovef; coversP. O
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3.3 \Verification Conditions

Our next aim is to define a notion of verification condition aso#iection of formulas and use these veri-
fication conditions to prove properties of programs. We wartefine it in such a way that a verification

condition guarantees certain properties of programs. iBoetid, we use the notions of precondition and
liberal precondition for programs and paths in programrmpfbow graphs.

DEeFINITION 3.11 (Weakest Liberal Precondition) An assertiois called theweakest liberal precondi-
tion of a programP and an assertion, if

1. {¢}P{¢}, and
2. for every assertiop’ such thatf{ ¢’} P{«}, the assertiop’ = ¢ is valid.

In general, the weakest liberal precondition may not existst exists, we denote the weakest liberal
precondition ofP andi by wip ().

In a similar way, we introduce the notion of a weakest lib@raicondition of a path = (po, ..., pn)
in the flow graph. An assertiop is called apreconditionof the pathm and an assertio, if, for every
stateo such thav = ¢, there exist states;, . . ., o, such that

(po;00) = (p1,01) = ... = (Pn, 04)

ando,, | 1. An assertiornp is called theweakest preconditionf = and, denoted bywp . (v), if it is a
precondition ofr and, and, for every preconditiop’ of = andq, the assertiop’ = ¢ is valid.

An assertiony is called diberal preconditionof the pathr and an assertion, if, for every sequence
oo, ..., 0y Of states such that

(pOaUO) = (p170'1) = . = (pN7Uﬂ)7

andoy | ¢, we haves,, = 1. An assertionp is called theweakest liberal preconditionf = and,
denoted bywlp (), if it is a liberal precondition ofr and+, and, for every liberal preconditioy’ of =
andv, the assertiop’ = ¢ is valid. O

Later in proving the correctness of verification conditiae, find that the following property of weakest
liberal precondition is useful:

COROLLARY 3.12 Letw = py, ..., p, be a path, and> and be assertions. Suppose that there exists a
sequencey, .. ., o, Of states such that

(pOaUO) = (p170'1) = . = (pN7Uﬂ)7
o0 E ¢ andy = wip . (v) is valid. Thery,, |= 1.

PROOF Sincesy = ¢ andy = wip,.(v) is valid, we havery = wip,.(v). Sincewlp (1) is the weakest
liberal precondition forr andi, we haver,, = . O

Another useful property of weakest preconditions and wsidkeeral precondition is that the weakest
liberal precondition can be expressed in terms of the wegkesondition.

THEOREM3.13 Let = be a path andy be an assertion. Thewlp_ (v) is equivalent towp,. () V
ﬁwpﬂ'(wi)'

PROOF Letw = (po,...,pn). We have to show that, for every stateo = wip,(¢) if and only if

o = wp(¥) V owp(T).
(=) Suppose that = wlip,.(v) for some stater. Suppose further that there exists a sequence
oo, ...,0p Of states such thaty, = ¢ and

(o, 00) = (p1,01) = ... = (Pn; o).
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Since the weakest liberal precondition is a liberal predod by the definition of liberal precondition,
we haveo,, = ¢. Hence, by the definition of precondition, the statsatisfies some preconditignof =
and. By the definition of weakest precondition, the assertios> wp_ (1) is valid, and thus we have
o = wpL(¥).

Suppose that there is no such a sequence. . , o,,. By the definition of precondition, any precondition
of m andT is equivalent tal, and so iswp,.(T). Thus, we have = —wp,.(T).

(<) Supposer = wp,.(v) for some state. Then, there exist states, . . ., o, such thatr = oy,

(o, 00) = (p1,01) = ... = (Pn, o),

ando,, = 1. By the definition of liberal preconditior; satisfies some liberal preconditignof = and
1. By the definition of weakest liberal precondition, the aise ¢ = wip.(v) is valid. Hence, we have

o = wlp, (V).
Suppose now that = —wp_.(T). Since every state satisfigs the relatioro = —wp_. (T) means that
there is no sequene®, . . ., o, of states such that = o and

(o, 00) = (p1,01) = ... = (Pn; o).

By the definition of liberal precondition, the statesatisfies any liberal precondition #fand any assertion.
Thus, the state also satisfies any liberal preconditignof = andt. By the definition of weakest liberal
precondition, the assertign=- wip . (+) is valid. Hence, we have = wip . (v). O

We have so far not imposed any restrictions on the progragaimguages in which programs are
written. However, to provide certificates or verificatiomddions for program properties, we need to be
able to compute the weakest and the weakest liberal prettmmdf a given path and an assertion.

DEFINITION 3.14 (Weakest Precondition Property) We say that a progiagianguage has theeakest
precondition propertyf, for every assertion) and pathr, the weakest precondition farand exists and
moreover, can effectively be computed franand). O

In the sequel we assume that our programming language hastiest precondition property. Note that
Theorem3.13implies that in any such language, given a patind an assertion, one can also compute
the weakest liberal precondition ferand).

Next, we describe the verification conditions associateéd agsertion functions. Such verification con-
ditions formcertificatesfor program properties described by the assertion funstibet/ be an assertion
function. A pathpy, . . ., p, In Gp is called/-simpleif n > 0 and! is defined orp, andp,, and undefined
on all program pointg, . .., p,—1. We will say that the path isetweernp, andp,,.

DEFINITION 3.15 Let/ be an assertion function of a progrdfrsuch that the domain dfcoversP. The
strong verification conditiomassociated with is the set of assertions

{I(po) = wip(I(pn))
| w is anl-simple path betweem, andp,, }.

Note that the strong verification condition is always finite.
O

THEOREM 3.16 Let! be an assertion function of a prografwhose domain covei8 andS be the strong
verification condition associated with If every assertion if$ is valid, then! is strongly extendible.

PROOF Take any runyo, . ..,~; of P such thaty, = I, v; = I and~; is not an exit configuration. Using
arguments of the proof of TheoreBmd, we extend this run to a rup, . . ., ;4 Such thatl is defined on
~i+n but undefined oR; 1, ..., vitn—1. It remains to prove tha;,,, = I.
Consider the runy;, ..., v+, and denote the program point of each configuratipin this run by
p; and the state of; by o;. Then the pathr = (p;, ..., pit+n) IS simple and we have; = I(p;). The
assertion
I(p;) = wilp(1(pitn))
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belongs to the strong verification condition associateth Wjthence valid, so by Corollary.12we have
o.+n E I(pi), which is equivalent tey; ., = I. O

Note that this theorem gives us a sufficient condition foickireg partial correctness of the program: given
an assertion functioh defined on a covering set, we can generate the strong vedficaindition associ-
ated with/. This condition by Theorer8.16guarantees that is strongly extendible, hence also weekly
extendible. Therefore, by Theore®nb guarantees partial correctness. Moreover, the stron§joagion
condition is simply a collection of assertions, so if we hawbeorem prover for the assertion language, it
can be used to check the strong verification condition.

One can reformulate the notion of verification condition urtls a way that it will guarantee weak
extendibility. For every path, denote bystart(r) andend (), respectively, the first and the last point of
.

DEFINITION 3.17 Let!/ be an assertion function of a progrdfrandII a set of paths iz p such that for
every pathr in II both start(7) andend(w) are-observable. For every program pojnin P, denote by
I1|p the set of paths ifil whose first point ip.

Theweak verification conditioassociated witlf andII consists of all assertions of the form

I(start(n)) = wip,.(I(end(w))),

wherer € II and all assertions of the form

I(p) = \/ wp.(T),
well|p

wherep is anl-observable point.

The first kind of assertion in this definition is similar to thesertions used in the strong verification condi-
tion, but instead of all simple paths we consider all patis.iiThe second kind of assertion expresses that,
whenever a configuration at a pojnsatisfies/ (p), the computation from this configuration will inevitably
follow at least one path ifil. This informal explanation is made more precise in the foihg theorem.

THEOREM 3.18 LetI andII be as in DefinitiorB.17andW be the weak verification condition associated
with I andIl. If every assertion iV is valid, then/ is weakly extendible.

PrROOF In the proof, whenever we denote a configuratiombywe usep; for the program point and;
for the state of this configuration, and similarly for othedices instead aof.

Take any runyo, ..., v; of P such thatyy = I, v; = I and~; is not an exit configuration. Singg is
I-observable, the following assertion belong&¥o

m€ll|p;

and hence itis valid. Sincg |~ I, we haves; = I(p;), then by the validity of the above formula we have

o E \/ wp,.(T).

m€ll|p;

This implies that there exists a pathe II|p; such thato; = wp,(T). Let the pathr have the form
Dis - - -, Ditn. Then, by the definition ofup . (T), there exist states; 1, . . ., 0,4+, Such that

(piy 0i) = (Piv1,0i41) = o = (Ditn, Tign)-

Using thatr € II and repeating arguments of Theor8ri6we can prover; ., = I(pitn)- O
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4 Inter-Program Properties

In this section we develop further the notion of extendilgeastion function so that it can be used to prove
inter-program properties Given a pair(P, P’) of programs, we assume that they have disjoint sets of
variables. A configuration is a tuple, p’, ), wherep € Pointp, p’ € Point p/, andé is a state mapping
from all variables of both programs to values. A state candesiclered as a pair of states: one for the
variables ofP and one for the variables @f'. In the sequel, such a statds written as(c, ¢’), whereo is
for P ando’ is for P’. Similarly, the configuratiofip, p’, &) can be written agp, p’, o, o’).

Similar to the case of a single program, we say that a confiigira = (p, p’, o, 0’) is called arentry
configuration for(P, P') if p = entry(P) andp’ = entry(P’), and anexit configuration for( P, P’) if
p = exit(P) andp’ = exit(P’). We overload the functiongp andstate to deal with such configurations,
that is, pp(v) = (p,p’) andstate(y) = (o,0’). We introduce two new functions on configuratiops,
andps,, such that, ony, ps,(v) = (p, o) is a configuration of? andps,(v) = (p’, 0’) is a configuration
of P’.

The transition relatior~ of a pair(P, P’) of programs contains two kinds of transition:

(plap/a 01, OJ) = (p27p/7 02, OJ)v

such tha{p1,01) — (p2, 02) is in the transition relation oP, and

(p,p,0,0%) — (p,ph, 0,0%),

such thai(p,, 01) — (p2, o2) is in the transition relation of’.

Having the notion of transition relation for pairs of progrs, the notions of computation sequence and
run can be defined in the same way as in the case of a singlegpnogihat is, a computation sequence of
(P, P') is a finite or infinite sequence

Y0, V1 -

of configurations such that; — ~;.; for all 2. A run from an initial statey is a computation sequence
such thatyy, = (po, pp, d) is an entry configuration. One can observe that, for any (pai#’) of states,
there can be many runs 6P, P’) from (o, ¢’). The following theorem then shows that if any of those run
is terminating, then all runs are terminating, and they teate at the same configuration.

LEMMA 4.1 Let (P, P’) be a pair of programs. If a run ofP, P’) from an entry configuratiory is
terminating at an exit configuratioff, then all runs of P, P’) from~ are terminating aty’.

PROOF. Let R = v, ..., be a terminating run afP, P’) such thaty, = v andv;, = 4’. Denote byR|P
the subsequence

Yigs o9 Vim
of R such that, for all = 0,...,m — 1, the transitiorps, (vi,) — ps;(7i,,,) IS @ transition inP. This
means that the run d? from the entry configuratiops, (v;, ) terminates at the exit configuratips (v;,. ).
Similarly for R|P’, we have the subsequence

Yios -+ Vin-
We also have
Y = (pp(ps1(viy))s PP(Ps2(Vio)):
State(psl(’yio))a State(pSQ(’on))) (2)
e = (pp(ps1(Vin)), pp(Ps2(V4,)),

state(ps, (), state(psy(1;,)))-

Assume that there is a non-terminating rehof (P, P’) from ~. Then,R’|P or R'|P’ is infinite.
Without loss of generality, suppose that

R'\P =~{,7, ..

is infinite. That is, the run oP from ps, () is non-terminating. However, sings, (7)) = sy (Vi,)
and P is deterministic, the run o from ps, (7(,) must terminate. This contradicts the existenceRaf
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Moreover, the run of” from ps, (v;, ) must terminate ats, (v;,, ). Using the same argument, we can show
that the run ofP’ from ps, (v;,) must terminate aps, (v;, ). By equalities2, it follows that all runs of
(P, P") from~ are terminating af’. O

We will show later that the above lemma allows us to presermroperties of the abstract notions intro-
duced in the previous section when these notions are dexefoither for the case of a pair of programs.

An assertion functiomf a pair(P, P’) of programs is a partial function
I : Pointp x Pointp, — Assertion

mapping pairs of program points #fand P’ to assertions such thais defined or{entry(P), entry(P'))
and(exit(P), exit(P")).

Given an assertion functiahn we call a pair of program pointp, p’) I-observablef I(p, p’) is defined.
Lety = (p,p’,0,0’) be a configuration. Then, is I-observable if so is the pair of program poifisp’).

We also say that satisfiesl, denoted byy = I, if I is defined on(p, p’) and(o,0’) = I(p,p"). We will
also say thaf is defined ony if it is defined on(p, p’) and writeI(~y) to denotel (p, p’).

The notions of partial and total correctness for the caséngfesprograms can be adapted for the case
of pairs of programs. A paifP, P’) of programs is partially correct with respect to a precandip and a
postcondition), denoted by{¢} (P, P'){«}, if for every run of(P, P’) from a configuration satisfying
and reaching an exit configuration, this exit configuratiatis§iesy. A pair (P, P’) of programs is totally
correct with respect to a preconditignand a postconditiog, denoted by](P, P’)[¢], if every run of
(P, P") from a configuration satisfying terminates in an exit configuration and this exit configunati
satisfies).

Unlike in the case of a single program, for a pair of prograthsre is no notions of invariant and
strongly-extendible assertion function. The transitielation of a pair of programs has no synchronization
mechanism. For example, one program in a pair can make astmaasjtions as possible, while the other
program in the same pair stays at some program point withaktng any transition. Thus, it is not useful
to have the notions of invariant and strongly-extendibseason functions.

The notion of weakly-extendible assertion function is éesuited for describing inter-program prop-
erties. Weakly-extendible assertion functions for a paprograms can be defined in the same way as in
the case of a single program.

DEFINITION 4.2 LetI be an assertion function of a p&i, P’) of programs. is weakly extendiblé for
every run

Yoy -5 Vi

of (P,P’) such thatt > 0, v = I,y E I, and~; is not an exit configuration, there exists a finite
computation sequence

Yis o5 Yitn

of (P, P’) such that

1. n>0,and

2. Yi+n ': L.

ExaMPLE 4.3 Let us illustrate the notion of weakly-extendible agsarfunction for a pair of programs.
Consider the following two prograni® and P’:
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P P
! :i 0 i =0
j =0 j/ = 0
while (j < 100) do ile (7
if (i>j)thenj = j+1 W??p ij”gg
elsei == i+1 gy
- =+l
_| q/ .
q: -
o od
Define an assertion functiahof (P, P’) such that
I(entry(P), entry(P')) = T
I(q,q") = ¢
I(exit(P), exit(P')) = ¥,

where
p=(>0=1")A({=])A(=]).
The function! is weakly extendible due to the following properties:

1. Froman entry configuration 6P, P’), by taking a computation sequence consisting of two itenati
of the loop of P and one iteration of the loop @', one reaches a configuration with program points
(¢, q") in which ¢ holds.

2. Forevery < 100, from a configuration with the program poiritg ¢’) in whichi =" = j =j = v,
by taking a computation sequence consisting of two itenatiaf the loop ofP and one iteration of
the loop of P/, one again reaches a configuration with program pdintg') in whichi =i’ = j =
J=v+1

3. For every > 100, from a configuration with the program poir{is ¢’) inwhichi =" =j=j = v,
one can reach an exit configuration in which i = j = j' = v.

O

Concerning the sufficiency of weakly-extendible asserfimttions for proving partial correctness, we
obtain the same result as in the case of a single progranatasl &ty the following theorem:

THEOREM4.4 Let ! be an assertion function of a paiP, P’) of programs such that
o = I(entry(P), entry(P")) andy = I(exit(P), exit(P")).

If the assertion functiod is weakly extendible, thefp} (P, P'){v}, that is, (P, P’) is partially correct
with respect to the preconditiopand postcondition).

PROOF Suppose that is weakly extendible and »L(P,P/) ~', where~ is an entry configuration and
is an exit configuration, angl = ¢. It follows thaty = I. By Lemma4.1, all runs of (P, P’) from ~
terminate aty’.
Consider any complete run
R=70,...,7m

of (P, P’) from, thatis,y = v and~,, = +'. We need to prove that,, = . Take the largest number
j such thaty; is not the exit configuration” and~; = I. Such a configuration exists singg = v and
~ = I. Sincel is weakly extendible, there exists a computation sequence

Yis- s Vj+n

such thaty;+,, = I. Now, sincej is the largest one, we have,, = v,,, and thusy,, |= I. It follows by
the definition ofI that~,, | v, as required. O
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Similar to the properties of a single program, the verifmatonditions associated with inter-program
properties use the notion of path. However, since the floplggaf the two programs in a pair of programs
are considered disjoint, the notion of path for pairs of paogs needs to be elaboratedpath = of a pair
(P, P') of programs is a finite or infinite sequence

(P, 2o), (P1, 1Y), -
of pairs of program points such that, for ali 0, either
e (pi,pi+1) is an edge ofzp andp] = p/ |, or
e (p},piy,)is anedge ofzpr andp; = pit1

A path7 of (P, P’) can be considered as a trajectory in a two dimensional spheeavthe axes are paths
of P andP’. We denote such a pathby (m, '), wherer andpi’ are the axes of the spaceijs a path of
P andr’ is a path ofP’.

Having the notion of path for a pair of programs, the notiohprecondition and liberal precondition
for paths of a pair of programs can be defined in the same way #eeicase of a single program. In
fact, the weakest precondition of a path of a pair of prograrag be derived from the paths of the single
programs.

THEOREM4.5 Let (m, 7’) be a path of a pai( P, P’) of programs. Let) be an assertion such thatis
equivalent ta); A 15, Wherey; contains only variables fron? and+» contains only variables fron®”’.
Then,wp . .. (¢) is equivalent tavp . (1) A wp . (12).

PrROOF Let (m,7') = (po,py),---,(pk, D)) Suppose there is a pafby,o(,) of states that satisfies
wp .. (1). Then there is a sequence(of, o}), ..., (ok, 0},) such that
(poap/O) 00, 06) = (plaplla 01, Ull) s (pkap;c) Ok, U;c)

and(oy, 0}.) = 1, which also mean&ry, o},) = ¥1 As. By the disjointness of sets of variables®fnd
P’, we havery, = ¢ andoj, = ¥s.
By the construction ofr, 7’), we have

(pioagio) = (pimagim)

such thatr = p;,,...,pi,., 0i, = 00, ando;, = ox. Similarly, we have

(P> 050) = o= (0,505,)

suchthatr’ = p’ ,....p} , 0} = of, ando; = oy. Itfollows thatoo = wp, (1) andoy = wp, (¥2).
Consequently,oo, o)) = wp,(¥1) A wp,. (12), as required. O

We can define the verification condition associated with Weaktendible assertion functions similarly
to the case of a single program.

DEFINITION 4.6 Let! be an assertion function of a pdiP, P') of programs andI a set of non-trivial
paths of the pair of programs such that for every patm II both start(7) and end(w) path arel-
observable. For every paip,p’) of program points, denote bM|(p, p’) the set of paths idl whose
first pair of points is(p, p’).

Theweak verification conditioassociated witli andII consists of all assertions of the form

I(start(n)) = wip_. (I(end(rm))),

wherer € II and all assertions of the form
Ipp)= \/  wpa(T),
m€eIl|(p,p’)

where(p, p’) is anl-observable point, angis not the exit point ofP. O
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THEOREM4.7 Let I andII be as in Definitiod.6 and W be the weak verification condition associated
with I andIl. If every assertion iV is valid, then/ is weakly extendible.

PROOF In the proof, whenever we denote a configuratiombywe use(p;, p;) for the program points
and(o;, o) for the states of this configuration, and similarly for otivadices instead of. Take any run
Y0, ---,7 Of (P,P") such thaty, = I, v; = I and~; is not an exit configuration. Sindg;, p}) is
I-observable, the following assertion belong$¥o

I(plap;)) = \/ prr(T))
7 €I1|(ps,p})

and hence itis true. Sineg = I, we have(o;, o)) = 1(p;, p;), then by the validity of the above formula
we have

(i) =\ wpe(T).

meIl|(pi,p})

This implies that there exists a pathe II|(p;, p}) such thato;, o)) = wp,.(T). Let the pathr have the
form

(p“p;)a ) (pz+n7p;+n)

Then, by the definition ofup, (T ), there exist pairs of stat¢s; 1,0} ), ..., (Gitn, 0isn) Such that

/ / /
(pi,pivﬂivﬂi) = (pi+1,pi+1,0i+1,0i+1) = ...
/ /
s (pi+n,pi+mﬂi+mﬂi+n)-

Using thatr € 11, it follows that(o; v, 0} ,,,) F I(Pitn, Pisp)- O

The notion of weak verification condition is the cornerstoheur theory of inter-program properties.
The notion of weak verification condition forms a suitabléioo of certificate about properties involving
two programs.

5 Translation Validation

Translation validation11] is an approach to compiler verification. In this approadsteéad of proving
the correctness of a compiler for all source programs, onegsrthatfor a single source programnthe
program and the result of its compilation, or the target paiog are semantically equivalent. Translation
validation approach has mainly been used in the verificaifaptimizing compilers, for example in.p,

10, 15, 13, 8]. In the case of optimizing compilers, the target programktitained by applying optimizing
transformations to the source program. Both source andttarggrams are usually in the same language.
In the sequel we focus the application of our theory on thesledion validation for optimizing compilers.

In translation validation one first has to define formally twerectness property between the source
and the target programs. A typical correctness propertsainstation validation is semantic equivalence.
An example of informal definition of semantic equivalencassfollows: a source prograi and a target
programP’ are semantically equivalent if, for every pair of runs oftbptograms on the same input, (1)
both runs perform the same sequence of function calls, (&)ron is terminating if and only if so is the
other, and (3) on termination both runs return the same valaving the correctness property, usually
one then defines a notion of correspondence between twogmsgr The semantic equivalence is then
established by finding some correspondences between tgeapms. Both the correctness property and
the notion of correspondence are inter-program properifese can show that such properties can be
captured by our notion of extendible assertion functioanttve can provide certificates or proofs for those
properties.
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5.1 Basic-Block and Variable Correspondences

We start our discussion with our translation validation kvdescribed in §, 9]. In our work we intro-
duce the notion of basic-block and variable correspondeiibe equivalence between two programs is
established by finding certain basic-block and variableespondences.

Denote bylnVar p the set of input variables of a progra In the sequel, given two progranisand
P’, we assume that there always exists a one-to-one correspoeth betweeninVarp andInVarp:.
We also say that the rur® and R’ are on the same input if, let states andoy(, be the initial states of,
respectivelyR andR’, we havery(x) = o (In(x)) forall z € InVarp.

We first define the notion of program equivalence. DenotdidYarp and ObsVarp the sets of,
respectively, input variables and observable variablesawbgramP. The source prograrf? and the target
programP’ aresemantically equivalerif there exist a one-to-one correspondeiigebetweenlnVar p
andInVarp: and a one-to-one corresponderigies betweenObsVarp and ObsVarp/, such that for
every pair of runs

R = (po,00),(p1,01),...
R = (p6a U(/))a (P1:01)s -

of, respectivelyP andP’, andoy(x) = o (In(x)) for all z € InVar p, the following conditions hold:
e Ris terminating (or finite) if and only if so i&’;

e if R and R’ are terminating with, respectively, statesand¢’, theno(y) = o(Obs(y)) for all
y € ObsVarp.

A block in a program is a sequence of statements in the praghkastock is basic if it is maximal, and
it can only be entered at the beginning and exited at the etitedilock.

Let us assume that the program points being considered imggigms consist of the entry point of each
basic block in the program, such that the point is denotethéyasic block itself. A run can be defined as
a sequence

(ﬁ07 00)7 (ﬁl; Ul)a (ﬁQ; 02)7 ey

where, for alli > 0, the pointg; is the entry point of basic block;. For any runk and any sequende
of basic blocks, we denote biy|b the subsequence & consisting only of configurations whose program
points are the entry points of basic blocksin

Given two programg® and P, letb = by, ...,b,, andd’ = b}, ..., b, be sequences of distinct basic
blocks of, respectivelyP and P/, and letz = z1,...,x, andz’ = z/,..., 2] be sequences of distinct
variables of, respectively? and P’. There is abasic-block and variable corresponderioetween(b, 7)
and(b', z') if for every two runs

R
R/

(Bo,00), (Br,01), ...
(56;06), (ﬁi,aﬂ), -

of, respectively” and P’ on the same inputs, let

R|B_ - (B’L'();O—’L'())a(ﬁ’il?o-il)?"'
R/|b/ = (626,0-;6);(62’170’;/1)73

thenR|b and R|b" are of the same length and the following conditions hold:albk
1. B;, = b;ifandonlyif 3, =¥/ forall j, and

2. Uik+1(zl> = O'/-/

i1 1 () forall 7.

In the sequel, we often cdll b’ sequences afontrol blocksandz, ' sequences afontrol variables We
assume that every program has a unique start block and aeueidfublock. The entry of start block is the
program'’s entry point, while the exit of exit block is the gram’s exit points. The start block of a program
is also a control block, and it always corresponds to the Btack of the other program.
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Figure 1: P’ is an optimized version aP.

ExamMPLE 5.1 Letus give an example of basic-block and variable cpmedence. Consider the programs
P andP’ depicted in Figurd. The variablesn, n are the input variables df, and their primed counterparts
are the input variables d?” such that/n(m) = m’ andIn(n) = n’. P’ is obtained fromP by fusing the
branches that are represented by bldgkandbs, and by moving the assignment instruction- m out of
the loop.

There is a basic-block and variable correspondence bet@ge(s, i, m,n)) and (b}, (s',i", m’,n’)).
For every two runs of and P’ on the same input, the blod is visited as many times as the bldgkis
visited, and on each corresponding visits, at the exitsebtbcks, the values afi, m, n coincide with the
values of their primed counterparts. With the same reagpitiis easy to see that there is a basic-block
and variable correspondence betwég@sn, b,), (s,i,m,n)) and((bj, b3), (s',i’, m’, n’)). O

Establishing program equivalence can be accomplished binfirbasic-block and variable correspon-
dences between the exit blocks and between the observatzbles.

THEOREMS.2 Let P and P’ be programs, and; and b, be the exit blocks oP and P’, respectively.
Let Obs be the one-to-one correspondence betw8®dsVarp and ObsVarp,, whereObsVarp =
{z1,...,z,}. P and P’ are semantically equivalent if and only if there is a baslieek and variable
correspondence between

(be, (21, .., 2,)) and (b}, (Obs(x1),. .., 0bs(zy,)))

Note that in the above example there is a correspondencebetw
((bﬁa b2)a (57 ia m, n)) and((béa b/2>a (5/7 i/v m/v n/))'

By the definition of basic-block and variable correspon@sné obviously follows that there is a corre-
spondence betweéh,, s) and(b, s’). Sinceb, andb’, are the exit blocks and the only observable variables
ares ands’, we can conclude that the prografisnd P’ in the above example are equivalent.

The verification of basic-block and variable correspondsritas been described in detail #. [For
presentation in this section, suppose that one finds a b&sik-and variable correspondence between
(b, ) of a programP and(V', z') of a programP’, whereh = by, ..., by, 0’ = b\, ... bl T =21,...,2n,

»Yms
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andz’ = a,...,z),. Assume that a path is a sequence of program points, whehepedt is theexit
of a basic block and is denoted by the basic block itself. i@esequencé of basic blocks, a path
7 = fo,..., 0 is b-simple if 3, and 3, are inb, or 3, is the start block ang is in b, but none of
B1,...,Bk_1 are inb. Assume further that every program has a unique variabpresenting program
counter, and for every basic blogkin the program, the value of is updated with3 by the assignment
p < (3 atthe entry ofj.

The verification condition associated with a basic-bloc# aariable correspondence consists of two
parts: conjecture preservation and simulation relatiortoAjecture is a set of assertions. Consider again
the basic-block and variable correspondence betWiean). Letp, p’ be program counters of, respectively,
programsP and P’, andC be a conjecture in the verification condition. For two blogkg’, we often
write p(3, #’) as a shorthand fgv = 5 A p’ = 3’. For every pai3, 5’ of corresponding control blocks,
we require that the assertigC A p(8, ') = Aj_, zr = =}, is valid. Foralli = 1,...,m and for all
j=1,...,m,let

Hbjybi = {ng,bi’ s b \bi }
Hb;.,b; = {Wl};,bg . 7Tb/ b/}

be the sets of, respectively, asimple paths betwedry andb; and allb’-simple paths betweer} andb;.
The verification condition associated with conjecture preation consists of the following assertions: for
alk=1,...,candforalll =1,...,d,

/\C/\p s ] :>wlp7rllj,b wlpw /\C

The verification condition associated with simulation tiela consists of the following assertions: for all
k=1,...,c,
AC A p(bj,0%) A WPk . (1) = \/l 1 wp,r /(T),

andforalll =1,...,d,

NC AP b)) Nwprt,  (T) = Vicywpgg  (T).

g

EXAMPLE 5.3 Let us consider again the prografsnd P’ in Example5.1 The programs are depicted
in Figurel. In this example we show the verification condition assedatith the basic-block and variable
correspondence betweéfbe, bs), (s,i,m,n)) and((b5, b3), (s',i’, m’,n’)).

Let b5 andb’, be the start blocks of, respectivey,and P’. That is,b, is the predecessor bf and?’,
is the predecessor of. Let ¢ be an assertion equivalentito = m’ A n = n’. The conjectur€ in the
verification condition consists of the following asserson

p(bs, b)) = ¢,
p(be, b)) = pAs=s Ai=i"Ay =m’, and
p(ba,bh) = pAs=s ANi=1V.

The first assertion above describes the input condition.sEleend and third assertions describe the corre-
spondence between corresponding control variables aotinesponding control blocks. Note that in the
second assertion the conjunctign= m’ is a loop invariant that is crucial for proving the corresgence.

Having the conjecture, we can generate assertions assdevith conjecture preservation and simula-
tion relation for the following pairs of sets of simple paths

o Ilp, by = {7rb6 b677Tb6 be ) @NALy by = {mb; by}

® b b, = {Tbg,b, } ANAILy; by = {7b; s}

o Ty, 1, = {w5:7b6, Wll))i,be} andIly, b, = {m b }; and
o Il b, = {mb, b, } @NALLy; by = {7y by },

Wherewb s denotes a path fromy to b, via bs. O
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The notion of basic-block and variable correspondence eacaptured by the notions of extendible
assertion function and weak verification condition. Thatgisen a basic-block and variable correspon-
dence between progranisand P’, we can define an extendible assertion funciaand a sefl of paths
of (P, P'), such that if all assertions in the weak verification comditassociated witti andIT are valid,
then so are all assertions in the verification condition @ssed with the correspondence.

Consider a basic-block and variable correspondence betgeg) of P and (¥',7') of P'. LetV
be the verification condition associated with the corresigoice, such that is the conjecture irV. We
define the assertion functiahof (P, P') that expresse8. For simplicity, since we are interested in the
correspondence of control variables at the exits of comedimg control blocks, we say thatis defined
on a pair(3, ') of control blocks to mean thdtis defined on a paifexit(3), exit(/3)) of the exits of3
andg. The function/ is defined as follows:

I(entry(P), entry(P")) = p(entry(P), entry(P")) A NC

and for every paif3, 3’ of corresponding control blocks
1(8,8) = p(B,8)NNAC.

Note that/ can be defined on other pairs of programs points.

Next, recall that a path of (P, P’) can be considered as a trajectory in a two dimensional spaesew
the axes are a pathof P and a pathr’ of P’. We denote such a pathby (7, 7). We now impose some
requirements on the sktof paths of(P, P'). First, the setl includes all simple paths in the sets of simple
paths used to generate the verification conditiothat is,

12 {(7ms,,8,, 751.8,) |
Mg, g, Mgy 575,85 € Up, 3, Ay 3, € gt g},

wherellg, g, is the set of allb-simple paths fronp, to 8, andIlg g is the set of allb’-simple paths

from 3} to 3. Second, for every other pathr, #') in II, = andx’ are not prefixes of ang-simple and
b’-simple path, and neither the nontrivial prefixesradire b-simple paths nor the nontrivial prefixesof
arel’-simple paths.

Having the function/ and the sefl, one can prove a basic-block and variable correspondences b
proving the weak verification condition associated witand11.

THEOREMS5.4 LetV, I, andTI be as defined above, afl be the weak verification condition associated
with I andIl. Then, if all assertions iftV are valid, then all assertions i are valid.

PrROOFR We first prove the conjecture preservation\af Take any two pairgf, #) and (52, 3;) of
corresponding control blocks, such that there existsample pathrg, g, from 5, to 5, and ab’-simple
pathms, s, from 3] to 33. We need to prove that the assertion

NCAp=pinp =0 = wipy, , (wlpe,  (/\C)) (3)

is valid. Since the assertighC A p = (1 A p' = 3} is equivalent td (51, 3,) and we assume thatandyp’

are updated immediately preceding the exit blocks, the'ssevlp ., . mﬁi,%)(l(ﬂg, (%)) is equivalent

towlp,, . (wlpwﬂé (A C)). Because the assertion

f(ﬁlaﬁi) = wzp(ﬂ'gl’QQ,ﬂ' (f(ﬁ%Bé))

»33 ,ﬁé)

is valid, so is the assertioB);

For the simulation relation d¥, we prove it by contradiction. Assume that there are twosdglr, 57)
and (3, 3;) of corresponding control blocks such that, without losserierality, there is &-simple path
T3,,8,, but the assertion

NCrp=Binp =B Awpe,  (T)= \/  wpg(T)

Wenﬂi \Bh
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is not valid. Recall that the séfs, 4 is the set of alb’-simple paths fronp] to 35. Since the assertion
ACAp=p1Ap = p]isequivalent tal (31, 8}), it means that there is a pdir, o) of states satisfying
I(B1, 1) such that there is a computation sequenc® dhat starts from the exit of; and stater, and
follows the pathrg, g,, but there is no computation sequencéthat starts from the exit o] and state
o', and follows any path il g .
1272 R
By the requirements imposed oh the pathrg, s, is only paired with some path g, 5, . It means

that at the exits off; and/3,, the computation sequence from the stétes’) that satisfyl (3, (3} ) cannot
follow any path inIl. This is a contradiction since all assertiong/hare valid. O

ExAMPLE 5.5 Consider again the progransand P’ in Figurel. We want to verify the basic-block
and variable correspondence betwéen (s, i, m, n)) and(bj, (s',i’, m’, n’)). The verification conditio/
associated with the correspondence consists of a conggtthat includes the following assertions:

p(bs, b)) =m=m'An=n', and
plbe,bs) =m=m'An=n"As=sAi=iAy =m'

The pairs of sets of simple paths considered in generairage: (Il b, b, p;) and (Ip, bg, iy by)-
These sets of paths are defined as in Exarfile
We define the assertion functidras follows:

I(bs, V) = plbs, b)) ANC
{(bﬁabé) = p(bﬁvbg)/\/\c
I(b2,by) = T

Next, we define the séf as the union of the cross products of the following pairs 8:9& g bs » by by )
(I, bg» Mor 1y )y (T, by, T 1y ), @NA (g b, Ty 1y ). It can be proved that all assertions in the weak
verification conditionW associated with andII are valid. By Theorens.4, all assertions ifi/ are also
valid. It means that there exists a basic-block and variabieespondence betweéby, (s, i, m,n)) and

(b, (s',i",m’, n")). O

Note that in the above example the functibis defined on the paiib,, b)) although none of the blocks
are control blocks. Moreover, the détabove includes the pajr, p,, Wés,b;) of simple paths but none of
them are used to generate the verification conditio®ne can actually prove a larger correspondence, that
is between((bs, by), (s,i,m,n)) and((b}, b}), (s',i’, m’,n’)), and thusl can be defined only on pairs of
control blocks andI includes only pairs of paths used to genefétdy the following theorem, it follows
that there exists a basic-block and variable corresporedegtoveertbe, (s, i, m, n)) and(b, (s',i’, m’, n’)).

THEOREM5.6 Let P and P’ be programs. If there is a basic-block and variable correggence between
(b,8,7) of Pand(b', ', z) of P’, or there is a basic-block and variable correspondence betwb, 7, y)
of P and (b',z,y') of P, then there is a basic-block and variable correspondendeséen(b, ) and
(b, Z).

Adding a pair of control blocks or a pair of control variabiet a basic-block and variable correspon-
dence often results in a non basic-block and variable cooretence. In such a case, to apply the above
theorem, one can always translate programs into SSA fafnafpd modify the correspondence according
to the variable renaming that occurs during the translation

In the following example we will show that we can prove a bddmck and variable correspondence
using the notions of extendible assertion function and weaification condition although the verification
condition associated with the correspondence cannot bergtenl.

EXAMPLE 5.7 Consider the progranidand P’ in Figure2. The one-to-one correspondengebetween
the input variables maps to N’. There is a basic-block and variable correspondence bat(yee bs), j)
and((}, by), N’), and we want to verify this correspondence. The verificatmmdition associated with the
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Jei i—i+1
be /
return j
P P’

Figure 2: P’ is an optimized version aP.

correspondence cannot be generated because there atelinfimny simple paths fromy to bg. Adding
new pairs of control blocks is not possible because all ek’ are already control blocks.

We can prove the correspondence using the notions of exterasertion function and weak verifica-
tion condition. Define the assertion functidras follows:

sy Vs

I(bs,b)) = N=N' I(bgby)=j=N,
I(bg,0)) = N=NAN>0AiI<N.

Let the sef(I of paths of( P, P’) consist of the following paths:

(Wzl;i,bﬁ, T by ) (WZEZE} T by ) (Tbs bas T, ),
(Wb4-,b47 Wb;)v (Wb47bev Wb;.,b())v

wherer, denotes a trivial path consisting only of a single psinOne can prove that all assertions in the
weak verification condition associated witlandlII are all valid. Moreover, frond andll, one can reason
that there is a basic-block and variable correspondeneeskel (b, bs), j) and((b’, by), N’). O

5.2 Proof Rule VALIDATE

In this section we discuss how our notion of extendible d@&sefunction can capture inter-program proper-
ties described by the proof ruleaVIDATE in [15]. The proof rule consists of several steps. First, establis
a control abstractions between program® and P’. The abstraction is a mapping frof\Pp: to C'Pp,
whereC Pp: is a cut-point set of”’ and, additionally, includes the exit block &f. The setCPp can
be defined similarly. The abstractienmust map the entry and the exit &fto, respectively, the entry
and the exit of?’. Second, for each poipt in C'Pp/, form an intra-program assertier), referring only
to variables inP’. Next, establish @ata abstractiory, which is an assertion relating variables/mand
variables inP’.

A path in a program can be considered as a transition relatintaining the conditions that enable the
path to be traversed and the data transformation effectédebgath. For example, consider the program
P is Examplel. The path consisting of the instructions

= ityii<nx =

describes the transition relation
=i+ yATT<nAX =i
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For simplicity, we denote by the transition relation described by a path

Similar to the proof technique for verifying basic-blockdavariable correspondences, the proof rule
VALIDATE generates assertions that express simulation relaticat.i§;Hfor each paifp;, p}) of program
points such thak(p}) = p; and there is & Pp,-simple pathr,, ., from p} to p; in the flow graph of
P’ letTl ) (py) e the set of all simple paths fror{p) ) to x(p5) in P, one proves that the following
assertion is valid:

Qupr A0 A Tt pl, = EV;( \/ )Wﬁ(p’l),ﬁ(pé)) AO* A Oé;/z, (4)

y€Ell

Tr(ph),m(ph (P, m(ph)

whereV/} is a sequence of starred version of some variablés iandd* andoz;*),2 are obtained fromi and
ay, by replacing all variables updatedaty, ,, andm,(,,) «(py) by their starred counterparts.

In [15] the correctness of data abstractiois proved separately. Essentially, for every two simplépat
from p} to p, and fromk(p}) to x(p5), one proves that the assertion

apr A A Tt oty N Tr(p!), i (ply) = 0" A Oé;/z (5)

is valid.

The notions of extendible assertion function and weak watifon condition can capture the program
properties described by the rulaMDATE . First, define an assertion functidrfrom the abstractions and
intra-program assertions in the rule. Then, reuse the sipaths in the proof rule to generate the weak
verification condition associated with the function. Let thssertion functiod of (P, P') be defined as
follows: for every poing’ in C' Pp/,

I(k(p),p') =y NS,

and! is undefined on other pairs of points. Define al$etf paths of( P, P’) as follows:
I = {0, ) [ Mg g W) () T € Mgy ATE T o) }-

Note that the definition of is different from/ discussed in the previous section on basic-block and variab
correspondences. The functidiin this section is only defined on pairs of control points.

Having the functior/ and the setl, one can prove a property described by rule MATE by proving
the weak verification condition associated witAndII.

'I:HEOBEM 5.8 Let ] andIl be as defined above, afftl be the weak verification condition associated with
I andIl. Then, if all assertions itV are valid, then so are all assertions of the fords&nd ().

PROOF. We first prove that all assertions of the forB) &re valid. Since the assertid(v:(p} ), p! ) is equiv-
alent toay,, A9, the assertion,; ,y ATy (p),k(py) = 07 Aoy, IS equivalenttavlp, , (0N

Loph () (ph))

o, ), and the assertion
2

(9)

f(m(pll)vpll) = wzp(wp/ »

1w TR () (h))

is valid, it follows that the assertion
Qupr AOA Tt p, AN Tw(p)),k(ph) = 0" A Oz;é

is also valid.
Now, assume that, for some poiptsandp}, the assertion

Oépll/\(S/\ﬂp/Upé éﬂV;( \/ )w,i(pfl)y,i(pé))/\é*/\a;;,

T (o)) (ply) S (p!) e (pl)

is not valid. It means that there is a péir, o) of states satisfying,» A A, ., there is a computation
sequence fromp; on ¢’ traversing the path, ., , but there is no computation sequence fromon o
traversing any path ifil. (1) (). SinceCPp is a cut-point sets, all paths frorip] ) to x(p5) are all in

II . By the definition of(I, the pathr,, .. is only paired with all paths ifil; (/) «(p,)- Thus, there

K (p]),k(ph
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Figure 3: P’ is an optimized version aP.

are statego, o”) sa:cisfyingf(n(p’l),p’l) but the computation sequence frédri(p} ), p}) on (o, ¢’) does not
follow any path inlI. However, since all assertionsWi are valid, our assumption is then contradictary.

ExXAMPLE 5.9 In this example we consider programs used as an exam[glg]inNVe depict the programs
in Figure3.

Let us denote the entry point of a basic block by the name otbtsc block itself. The control
abstractions mapsbg to by, by to b}, andb; to b;. The blocksh; andd; are the exit blocks of and P/,
respectively. The data abstractidis defined as the following assertion:

p=r(p)Ni=i"Na=a' Ab=b A(p #b]l=x=xXAy=Y),

wherep is a program counter, and the data abstraction always imfileeequalityy = x(p). Furthermore,
at the entry ob; we have the assertion,, equivalentto =a’ +b’.

We define the assertion functidras follows:

i(bo,b) = 4
I(b:,by) = ¢
I(bl,bll) = 6/\04an

and/ is undefined on other pairs of points. The Hetf paths of( P, P') consists of the following paths:

(Tbo, b1 by bt ) (ng,bl,ﬂb;,b;), (ﬁsf,blvﬂb{,b{)v (WEibtvﬂbi,b;)a (ng,b,,vﬂbg,b;)-

These pairs of paths are all pairs of simple paths considerte proof rule MLIDATE . Thus, by Theo-
rem5.8if all assertions in the verification condition associatdéthw andII are valid, then all assertions
generated by ¥LIDATE are also valid. O

The proof rule MLIDATE cannot prove the inter-program property in Examplé For each pair
Ty, b, ANAT (1), (0) OF Simple paths used in generating assertions of the fojrend 6), both paths are
nontrivial. However, in Exampl.7 the sefil contains the patr, 1, 7, ), wherer,  is a trivial path. In
this sense, our notions of extendible assertion functiahvesek verification condition are more powerful
than the proof rule XLIDATE.
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5.3 Simulation Invariants

We show in this section that the notion of simulation invatiatroduced in the work on credible compila-
tion [12] can be captured by our notions of extendible assertiontiomand weak verification condition.

There are two kinds of invariant introduced ir’], they are standard invariants and simulation invari-
ants. A standard invariant of a prograpnis written as(a)p, wherec is an assertion angis a program
point of P. The invariant is true if, for all executions &f, the assertioma holds on the state at poipt

Simulation invariants express a simulation relationshépseen the partial executions of programs.
Partial executions of a program are computation sequertaging from the entry of the program. A
simulation invariant between two prografRsand P’ is written as(«, €)p < (o, &’)p’, wherea, o/ are as-
sertionsg, & are equally long sequences of expressmnsmpdare program pomts aP, P, respectlvely
For sequences = ey, ..., e, ande’ = ¢/,. .., e, of expressions, we write = & for A\, e; = ¢;. The
invariant is true if for all partial executions @t reachingp’ with o’ true, there exists a partial execution
of P reachingp with « true such that the execution &fis on the same input as that Bf ande = €.

The notion of standard invariant can be captured by the nati@xtendible assertion function. Instead
of proving a single standard invariant, in credible contmlaone usually proves a set of standard invari-
ants. Given a se$ of standard invariants, we define an assertion funciias follows: for(a)p € S,
I(p) = a. Note that/ can be defined on other points. We then prove thit a strongly-extendible
assertion function.

THEOREM?.lO Let S pe a set of standard invariants anidbe an assertion function such that, for all
(a)p € S, I(p) = «. If I is strongly extendible, then all standard invariantsSrare true. O

The proof of the above theorem is straightforward from th&niten of strongly-extendible assertion
functions.

The notion of simulation invariant can be captured by théomstof weakly-extendible assertion func-
tion and weak verification condition. Similar to provingtiard invariants, instead of proving a single
simulation invariant, one usually proves a set of simufativariants. Similar to proving basic-block and
variable correspondences and properties described byrulm®ATE, proving a set of simulation invari-
ants requires some standard invariants that are assumedrteeb LetS be a set of simulation and standard
invariants of program#® and P’. Denote by

Slp = {a | Ha)p € S}
the set of assertions of all standard invariantS isuch that the points of the invariants areDenote by
Slp,p)={and ne=¢ |Fa,e)p<(d,&)p €S}

the set of assertions of all simulation invariantsSisuch that the pairs of points afg, p’). We define an
assertion functiord of (P, P’) as follows: for every paifp, p’) of points such tha$|(p, p’) is not empty,

)= A\Slw.p) A \Slpr A\SI'.

LetTs = {p’ | Ha,e)p < {(c/,&)p’ € S} be the set of all program points & such that there is a
simulation invariant inS involving these points. We assume that the set off glsimple paths is finite.
This assumption is also used in the proof rules describetirt$ prove a set of simulation invariants. We
define a sefl of paths of(P, P’) with the following requirement: for evefyjs-simple pathr,, ., , thereis a
path a pathr,, ,, in the flow graph of? such that (1) there are simulation invariatus, €:)p1 < (¢, €7)p}
and(az, 2)p2 < (s, €5)py IN S, and (2)(7p, p,, Ty, py ) IS IN I1. Note that the path,, ,,, can be trivial.

Having the function/ and the sefl, one can prove a set of simulation invariants by proving teakv
verification condition associated withandIT.

THEOREM5.11 LetS, I, andIl be as defined above. LBt be the weak verification condition associated
with I andIl. If all assertions inW are valid, then all simulation invariants iff are true. O
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Figure 4: P’ is an optimized version aP.

To prove the above theorem, we need to describe the proafiufé ). In this section we will only
provide an informal proof of the theorem. First, the’Betcontains all program points @’ such that there
is a simulation relation there. Since we considerZalisimple path, by the requirement Bf if there is
aTs-simple pathr,, ., then there is a path,, ,, in the flow graph of?” such that there are simulation

invariants at(p,p’,) and at(p2, p4). Thus, the paths ifil represents the directions that the rulesif] [
follow in the proof.

EXAMPLE 5.12 We consider an example taken from the work on credibtepdation in [LZ]. The pro-
grams in the example are depicted in FigdreEach block in the programs has only one instruction, and
the instruction is labelled with a point denoting the entiryhe block. The sef of simulation and standard
invariants to be proved consists of the following invargant

(8%12 =0V g%l12 = 6)p4, (g’ %12 = 0)p}, (g’ %12 = 6)ph
(8%12 = 0,g)ps < (T, g)ph,

(%12 = 6,g)ps < (T,g")ph,

(g%12 = 6,g)ps < (T, &)k,

(87012 =0,g)ps < (T,g" )P4,

(T.g)p7r < (T,g")p7.

The assertion functioh is defined as follows:

I(ps,ph) = g%hl2=0Ag=g

I(ps,ph) = g%12=6Ag=g Ng'%12=6A(g%12=0Vghl2=06)
I(ps,p5) = ghl2=6Ag=¢g

L(pa,py) = g%h12=6Ag=g Ag%12=0A (g%12=0Vg%h12=6)
I(p7,p7) = g=¢g

Both at the pair of exit points and at the pair of entry poiiitis, defined as™. The sefl of paths of(P, P')
consists of the following paths:

(1 ,ps» Tp} 710;)7 (Tps pas Wp;-,pg), (Tpa,ps s ngﬂpg)v
(Tps pas ng,pg)v (Tpapr s 7Tp21-,p’7)a (Tpa.prs ngﬂp;)-

It is easy to see that if all assertions in the weak verificationditionW associated witd andII are
valid, then all simulation assertions fhare true. Assume that all assertion$ihare valid. The invariant
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(T,g)p7 < (T,g')p7 is true by the following reasoning. For every pathgoing top?, there is a pathr
going top7 such that(r, 7’) is in Il and/ is defined on the starts of and#’. For the pathr,, .., we

have the pathr,, ,, such that(m,, ., 7 ;) in IT and! is defined on(py, p,). Since all assertions itV
are valid, we can ignore the assertions definedyanp;) and on(pz, p7). For the pathr,, .., we have

the pathry, ,, such that(m,, ,,, T 2 ) IS N IT and] is defined on(p4, pj). Assuming tha_t the ir_1variants
(g%12 = 0,g)ps < (T, g")p) and(g%12 = 6,g)ps < (T, g’)p4 are true, we can prove inductively that,
for all partial executions of’ and the executions reagh, there is a partial execution @t such that the
execution reaches; and the values of andg’ on reaching; andp’, coincide. O

Recall that we require that, for every pdth, 7’) in the setll, the pathr’ is not trivial. Due to this
requirement, the proof rules describéd][cannot prove the inter-program property in Exanfplé Thus,
with our notions of extendible assertion function and weaidification condition, we can prove more inter-
program properties than that of the proof rulesiif][

The notion of simulation invariant used in credible comiidla is similar to the notion of simulation
triple in Necula’s work on translation validatiofi(). Thus, our notions of extendible assertion function
and weak verification condition can capture the notion ofugation triple as well.

6 Common Criteria Certification

We discuss in this section an application of our theory aériptrogram properties in the certification of
smart-card applications. The work described in this sadigart of an industrial project, called EDEN2,
that has been conducted at Verimag laboratoifhe aim of the project are twofold: (1) to develop a
method for software certification in the framework of Comn@iteria certification {], and (2) to provide

a certificate or a collection of certificates showing that adroard application follows its specification or
a model of its specification.

Common Criteria (CC) is an international standard for tha&leation of security related systems. CC
defines requirements for certification: security policy mlo@PM), functional specification (FSP), high-
level design (HLD), low-level design (LLD), and implemetita (IMP). Given a specification of a system
or a program, an SPM is a model of the specification. an FSRidlesan input-output relationship of
the system. HLDs are often fused into FSPs or into LLDs. An Litdelf is described as a reference
implementatiorf. The IMP is the code implementing the system.

Each requirement in CC has a representation. For exampEDEN2 project the SPM is written in
a declarative language that specifies, for each smart-cemdnand, the normal behavior of the command
and the actions that the command has to perform when a cardaepower loss) occurs. The FSP
and the LLD in EDENZ2 project are programs written in subsét3ava, while the IMP are Java Card
programs §, 14]. The HLD in EDEN2 is fused into the LLD. Essentially, the SPifle FSP, the LLD,
and the IMP are programs that can be represented as progrnatflpw graphs. Between every two
consecutive requirementrepresentations there is a gedecapresentation correspondence (RCR). An RCR
is essentially a property relating two programs, or an iptegram property, and thus we can apply our
theory of inter-program properties to proving RCRs and faiog certificates about the RCRs. Our theory
is also applicable to proving properties of SPMs, FSPs, Lldbsl IMPs. In this report we focus on the
application of the theory to proving RCRs.

The definitions of RCRs between two consecutive requiresnarg different. We first discuss the
definition of RCRs between SPMs and FSPs. To this end, westigbe SPM and the FSP. An SPM and
an FSP consist of a set of commands. A command can be thoughtaofmethod in a Java program or a
function in a C program. For each command in the SPM and the thERRommand can be represented
by two programs, one program specifies the normal behavittveofommand and the other specifies what
the command has to do when a card tear occurs. For simpheiycall the former program theormal
fragmentof the command and the latter one thlgrupt fragmenof the command. In the FSP the normal

industrial partners involved in this project include comies that work on security for embedded systems, e.g., Geraatl
Trusted Logic.

2|n the latest version of Common Criteria repat}, [HLD and LLD are replaced by TOE design description (TD8)tHis report
we regard LLDs as TDSs.
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and abrupt fragments are represented by a try-catch cohsfitee try part represents the normal fragment,
the catch part catches a special exception and represerdbtthpt fragment.

The operation of SPMs and FSPs resembles the operation afsard applications, that is, by sending
a sequence of commands to the SPMs and the FSPs. One canftam8BM or an FSP as a program that
takes as an input a sequence of commands of the &, .. ., a,), whereC is the command’s name
anday, ..., a, are input arguments. A run of an SPM or an FSP can be describadaquence of runs
of commands. For each run of a command, if no card tears oocclihe run of the command terminates
normally, then the run of the SPM or the FSP fetches the nextifi(a4, . . ., a,) from the input sequence.
If a card tear occurs, then the run goes to the abrupt fragofehe command. If the run of the abrupt
fragment then terminates, the run of the command is saidhainiate abruptly, and in turn the run of the
SPM or the FSP simply terminates.

A run of an SPM or an FSP is a finite or infinite alternating sexpee

Y05E1,7V25E25+ « -y
where
e 7y is an entry configuration;
e foralli > 0, we havey; — ~;+1; and
o forall j > 1, the event; is an event associated with transitign.; — ;.

We assume that each of the SPM and the FSP has an input vaaalthe state of configuratiog maps
this variable to the input value, which is a sequence of contsal ater in the definition of RCRs between
SPMs and FSPs we introduce a one-to-one correspond#gideetween the set of observable variables of
an SPM and the set of observable variables of an FSP. We ashahi#s maps the input variable of the
SPM to the input variable of the FSP.

For every run of a command, upon reaching the exit of nornagjrfrent, the run of an SPM or an FSP
emits either aPass event or aF'ail event, and upon reaching the exit of abrupt fragment, thenaits an
Abrupt event. We assume that emitting an event is the same as agpifrievent to a special variakle
Events are not restricted ass, Fail, and Abrupt events; we allow internal or unobservable events.

We now define the notion of RCR between SPMs and FSPs that wia 882EN2. LetF be a set of
observable events. Denote Byr the subsequence & consisting only of events if:

R = (po,00).€1, (p1,01), €25 - -
Rl = (po,00),€is (PirTi1), Eins (Pigs Tiy )

wheree;; € E forall j. Let X be a set of variables of an SPM, we denoteddy X ) the set of variables in
X such that the variables are modified in the abrupt fragmetitcoSPM.

DEFINITION 6.1 LetOgpy andOpgp be the sets of observable variables of, respectively, an SfRiM
an FSP such that there is a one-to-one correspond@hedetweenOgpy; and Opgsp. Let Ep =
{Pass, Fail, Abrupt} be the set of observable events of the SPM and the FSP. Them&iGR between
the SPM and the FSP, for every run

Rlgo = (po,00), iy, (Pirs 0i ), - -
of the FSP, there is arun
R|Eo = (P0,00): 5,5 (05,5 05.), - -
of the SPM, where for alt € Ogpas, we havesy () = o(,(Obs(x)), such that, for alk
® ci, =¢j,

o if g, # Abrupt, theno;, (v) = o}, (Obs(z)) forall z € Ospu,

o if e;, = Abrupt, theno;, (y) = o7, (Obs(y)) forally € Ab(Ospum).
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trial > 0
trial := trial — 1

Figure 5:P; is on the left andP] is on the right.

O

To apply the theory of inter-program properties to provingRCR between an SPM and an FSP, we
prove the RCR between each corresponding commands sdpatageObs be a one-to-one correspon-
dence between observable variables of the SPM and of theTR8Re is an RCR between the SPM and the
FSP of a command' if the following conditions hold. For any ruR of the command’ in the FSP from
a stater;, there is a rumR’ of the same command in the SPM from a st@fesuch thatr; ando] satisfy
Necosp,, T = Obs(z), and

e if Ris terminating (or the run reaches the exit of normal or abitggment), then so i&’,

e whenR andR’ are terminating with, respectively, statesandc’, R and R’ emit the same event
such that

— if & # Abrupt, theno, andoy, satisfy A ..o ., © = Obs(z);
— otherwiser, andd), satisfyz = Obs(x) forall z € Ab(Ospar).

ExAMPLE 6.2 In this example we will show that there is an RCR between3RM and the FSP of the
commandheckPIN used for PIN verification. Let us first consider the flow grapgesenting the normal
fragments of the SPM and of the FSP. Call the former flow gri@phnd the latte;. These flow graphs
are depicted in FigurB. The edggp2, p..) emits aPass event, while other edges coming g emits a
Fail event. Similarly, the edg@), p,) emits aPass event, while other edges comingtf emit a F'ail
event.

For clarity, we assume that the SPM and the FSP have disgimb$variables. To this end, we consider
that all variables in the FSP are in primed notation. Let #te s

Ogpy = {trial, pin, p,val, MAX, ¢}
Opsp = {trial’,pin’,p’,val’, MAX’ '}

be the sets of observable variables of, respectively, tihé &Rl the FSP such that a one-to-one correspon-
denceDbs betweerDgpy; andOrgp maps each variable i@sp,, to its primed counterpart i@ s p

Note thatpin in the SPM has a scalar type tnit’ in the FSP has an array type. So, we have to define
the equivalence betwegin andpin’. First, every array PIN has a lengtlh associated with the array; we
write the association as a pdp,[). We introduce a predicate between such pairs such that, given an
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Figure 6: P, is on the left andP; is on the right.

array PINsp, p’ and lengthg, I’, we say thatp,() = (p’,l')if L =1"and foralli = 0,...,l — 1, we have
pli] = p'[{]. Next we introduce a predicate between scalar PINs and array PINs. The predicats
axiomatized as follows: for every scalar PIdsx and for every array PINg, z,

r~y=> Y=z 1~ 2)
r~y=(w=xSw~y).

The predicate- defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence batoleservable variables of the SPM and of
the FSP:
¢1 & trial = trial’ ¢s = p~(p,l)
¢o & val=val o5 < MAX = MAX
¢3 < pin ~ (pin’, length’) g & e=¢

Next, we define an assertion functidnof (P, P}) as follows:

Lipep.) = Ny i
I (pl,pll) = /\?:1 ¢i Atrial > 0
Lip,p!) = /\?:2 ¢; A trial > 0 A trial = trial’ + 1
Alength” = 1" AT < I A (V4.0 < j < i = pin'[j] = p'[j])
Lipo.ph) = Ay i/ pin=pA(pin,length) = (p, 1)
L (ps, pl) Ay=1 @i A pin # p A (pin, length) # (p, )
Lipeph) = Nt éi

The function/; is undefined elsewhere. R
Denote a path from pointto ¢ in a program-point flow graph by, ,. We define a seiil; of paths of
(Py, P/) such that the set consists of the following paths:

(Tpe.p1» ng,p’l)v (Tpe pas ﬂ'p/e,p;)v (Tpy Tp} 7p’1’)7 (Tp1 pass Tp} 7p;)7
Tpy,pas 7717’1,1)’2)7 (Tpy » 7Tp’1’7p’1’)7 (Tp1 pas 7Tp’1’7p’2)7 (Tp1 ps s 7Tp’1’7pg)’
Tpa,pas Tph,pl, )s (Tps pas Tpl, p, )-

One can prove that all assertions in the weak verificatiomitimm associated witti; andIl; are valid.

We now consider the flow graphs of the abrupt fragments of #/d 8nd of the FSP. Call the former
oneP; and the latter?;. These flow graphs are depicted in Figbra\Ve define an assertion functidn of
(Py, Pj) as follows:

L(ae,al) = T

L(ag,a,) = val =val'.

The function, is undefined elsewhere. One can prove easily that all asssiith the weak verification
condition associated with, and1l, are valid.

From the assertion function§, I, and from the setdl;, II,, one can easily see that there is an
RCR between the SPM and the FSP of the commardkPIN. First, since for allp # p.., I;(p, pl,)
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is undefined and the s¢t’ | 3n.(m,n') € II,} is the set of all simple paths induced by the points in
P/, then if for a pair of runs®’ of P{ and R of P, such that the entry configurations of the runs satisfy
I (pe, pl), then if the runR’ is terminating, then so is the run &. Sincel; is weakly extendible and

the assertior; (p., pl,) = A x = Obs(x) is valid, the exit configurations of both runs satisfy

/\erspM x = Obs(x).

Now, if a card tear occurs then the riii will go to the entry ofP}. Since thel,(a., ) is valid, the
run R can also go to the entr#?, such that the entry configurations of the rldend R’ on reaching the
entries ofP, and P} satisfy 1 (a., a’,). With the same reasoning as aboveRifreaches.,, thenR reaches
a. 100. Sincel, is weakly extendible and the assertitiia., a,) = A, ap(osp,) @ = Obs() is valid,
then the exit configurations of both runs satigfy . ,,, )@ = Obs(z). Therefore, there is an RCR
between the SPM and the FSP of the command.

z€0spm

Ospm

O

We now focus on RCRs between FSPs and LLDs. Before discuB€Rs, we first describe LLDs. In
EDENZ2 the language used to write an LLD is a subset of Java Sttiset includes memory characteristics
and transaction mechanism of Java Card [3]. First, in the language of LLDs there are two kinds of
memory, persistent memory and transient memory. The difiez between these kinds of memory is the
following: when power is lost (or a card tear occurs), dataest in the persistent memory will be kept in
the memory, while data stored in the transient memory willdsé. In the sequel, variables whose values
are stored in the persistent memory are caflecsistent variablesand variables whose values are stored
in the transient memory are call&@dnsient variables

Similar to the FSP, an LLD consists of a set of commands whesk eommand is a Java method. Card
tears are capture using a try-catch construct where theattyr@presents the normal fragment of the LLD
and the catch part catches a special exception and repsélemtbrupt fragment of the LLD. The language
of LLDs offers a transaction mechanism that resembles #mséction mechanism of Java Card API. Our
modelling of transactions follows the modelling of Java Caeansactions ind]. We introduce a boolean
variableinTrans to keep track if a transaction is in progress or not. Whenrastetion begins, the value
of inTrans is set to true, and when it ends, the valudrdffrans is set to false. One can set the value of
inTrans to false to escape from a transaction. This feature is u$efulariables whose updates must be
unconditional.

Similar to FSPs, an LLD is a program that takes as an input aesese of command calls of the form
C(ay,...,a,), whereC is the command’s name angl, . . ., a,, are input arguments. The notion of run of
LLDs is the same as the notion of run of FSPs.

Having described LLDs, we now define RCRs between FSPs and LLE&X us first denote bipr(X)
the set of persistent variables in the eof variables of an LLD. Later in the definition of RCRs between
FSP and an LLD we require that observable persistent vasatflthe LLD are updated in the same order as
their counterparts of the FSP. But, when a transaction isagness, then such an order becomes irrelevant.
For example, given a one-to-one correspondémeebetween observable variables of the LLD and of the
FSP, if no transaction is in progress and the observabléspansvariables of the LLD are updated in the
orderxy, z2, x3, then their counterparts are updated in the or@es(xz1), Obs(x2), Obs(xs). However,
when a transaction is in progress, then the order of updadingz,), Obs(z2), Obs(x3) is irrelevant.
Moreover, whether a transaction is in progress or not, eadahe is updated with the same value as its
counterpart. To this end, first, for each persistent vagiatif the LLD and its counterpar®bs(x) of the
FSP, we associate with both variables an event funéfiofite_z. This function takes as an input the value
v of z or Obs(z) and returns an evelt'rite_x(v). The following assertion axiomatizes the event function:

Va,y, v, w.(Write_x(v) = Write_y(w) < Write_x = Write_y A v = w),

where the equalityV rite_x = Write_y denotes a syntactic equality. In the sequel we denote, litie
domain of variabler.

Second, the set of events emitted by the LLD is a power seedahof events emitted by the FSP. Next,
assignments to observable persistent variables and ctingritansactions emit events in the following
way:
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e In the try part of the FSP, the update of a variaplevherey = Obs(x) for an observable persistent
variablez in the LLD, emitsiWrite_xz(v), wherev is the updated value of.

e Inthe try part of the LLD,

— if no transaction is in progress, that is the variabi€rans is false, then the update of an
observable persistent variabtemits{Write_xz:(v)}, wherev is the updated value af;

— ifatransaction is in progress, that is the variablBransaction is true, then wheimTransaction
is set to false and beforehand the observable persisteablesz,, . . ., z,, are updated such
that thelatestupdated values of these variables are, respectivgly, ., v,,, then if the reset-
ting of inTrans is not caused by aborting the in-progress transaction, ttiemesetting emits

{Write_xo(vo), ..., Write_z,(v,)}. However, when the resetting &fTrans is caused by
aborting the in-progress transaction or no observablabbes are updated, then no set of events
is emitted.

For comparing events of the LLD and events of the FSP, we sgyathonempty sefe, . . ., &, } Of
LLD’s eventsmatchesa sequencey, ..., e, of FSP’s events if (1jn = n, and (2) foralli = 0,...,m,
there existg such that) < j < n ande’, = ;. Now, we say that a sequeneg ¢, . .. of sets of LLD's
eventsmatches sequence, ¢, . .. of FSP events if either both sequences are of length 0, oe them
increasing sequenea < nq < ... of positive integers such that

1. & matcheg’,..., e, ,and

1 ny?

2. foralli > 2, &; matches),,  ,,...,e

i ngt

Note that the one-to-one correspondetde maps variables of the LLD to variables of the FSP. We
assume that the FSP and the LLD have disjoint sets of vagabiethe sequel, for simplicity, the inverse
of Obs is calledObs as well. That is, for any variable of the LLD and any variable:’ of the FSP,

x' = Obs(z) if and only if z = Obs(z').

DEFINITION 6.3 LetOprgp andOp1p be the sets of observable variables of, respectively, andfgR
LLD, and Obs be a one-to-one correspondence between these sets. Letshe s

Epsp = {Pass,Fail, Abrupt}
U{Write_r(v) | x € Pr(OrLp) AV € Tobs(z) }
Enp = {{Pass},{Fail}, {Abrupt}}

UP{{Writex(v) | x € Pr(OpLp) Av € 72}) — {0})

be the sets of observable events of the FSP and of the LLDgctgely. There is aRCR between the FSP
and the LLDif, for every run

RlgLp = (P0,00):€irs (Piy; 0ir); - - -
of the LLD, there is arun

R gesp = (P0:00),€5,5 (P5,,07,); - --
of the FSP, where for alt € O ;p, we haveoy(z) = o((Obs(zx)), such that there is an increasing
sequence; < no < ... Of positive integers such that

/ /
1. &;, matches’ ...}  and
2. forallk >1,¢;, matche$jnk71ﬂ, e
and

o forall I, if &;, # {Pass} # {Fuail} # {Abrupt}, theno;, (y) = aé-nl (Obs(y)) for all y €
Pr(Orp); otherwise

° Uil (:C) = U}n’l (Obs(m)) fOI’ a." T e OLLD-
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N>o

IR inTrans

inTrans := L
)
trial := trial — 1

tb := trial

trial := trial — 1

7
inTrans :
val =

Figure 7:P; is on the left andP] is on the right.

O

Similar to the RCR between an SPM and an FSP, we use the spadibles to store the events
emitted by the FSP and the LLD. For the RCR between an FSP anda émitting an event means
concatenating the event to the current value of the speaighiec. Particularly for the LLD, we use
another special variablg to keep track the updated observable persistent variabiies & transaction
is in progress. When the variabil€Trans is set to true, the variable, is set to the empty set. During
the transaction, any update to an observable persisteéablas: with valuev is recorded by updating
with ¢, U {Write_z(v)}. When the variablinTrans is set to false, the variableis set tos; £, only if the
reseting ofinTrans is not caused by aborting the in-progress transaction. Mame when the LLD emits
a Pass or Fail event, and a transaction is in progress, thes updated withe; ,; Pass ofr ¢; &y; Fail,
respectively. When a card tear occurs and the LLD emiisupt, then the content of, is discarded
ande is updated withe; Abrupt. When an observable persistent variable is updated moneathee in a
transaction, then one can always translate the LLD into S8/ {2] such that in the program texts there
is only one assignment to each variable.

Similar to RCRs between SPMs and FSPs, we apply the theonterfprogram properties to prov-
ing an RCR between an FSP and an LLD by proving the RCR betwaem erresponding commands
separately.

ExaMPLE 6.4 We consider again the commart@ckPIN in this example. Figur& depicts the FSP and
the LLD of the try parts of the commaratieckPIN. The flow graph of the FSP is calldgl and is on the
lefthand side of the figure, while the other flow graph is thevflraph of the LLD and it is called;.
Persistent variables if?| aretrial, pin, length, MAX. Other variables are transient. The variatilds a
backup variable for the variabteial.
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Let the set
Opsp = {trial, pin, length, p, |, val, MAX ¢}

be the set of observable variables of the FSP and th€&ggb be the set of observable variables of
the LLD such thatO p consists of the primed counterparts of all variable®insp. The one-to-one
correspondenc@bs betweenDrsp andOr, p maps each variable i@ s p to its primed counterpart in
Orrp. We express the relationship of observable variables bfolleving assertions:

¢1 < pin = pin’ A length = length’ A MAX = MAX' A trial = trial’
P & p=p Al=lIAval=vall Ahe=¢
¢ < o1 Apa A(inTrans’ = trial = tb')

The assertiong, andg, describe the correspondence of, respectively, persiatehtransient variables.
We define an assertion function@? , P;) as follows:

f1(13e,pé) = A1(1?1,p/1) = fl(plvpé) = A1(stvpé) = A1(p27p/2)

= L1(p3,py) = L1 (p3, 0y) = L1 (pa, Py) = L1 (p6, 0k) = L1 (pes 1) = ¢

LetSy = {p| I, 0.1 (p,p') = ¢} andS] = {p' | Ip, p.11(p,p') = ©}. be the sets of program points
on which1; is defined. Given a set of program points in a flow graph, we say that a path po, . . ., p»
in the flow graph isS-simple ifn. > 0, pg andp,, are inS, and none op, ..., p,_1 areins.

We define a sefl; of paths of( Py, P}) as follows: for everys;-simple pathr, ,/,

e there is anS;-simple pathr, , such thatl; (p, p’) and 1, (g, ¢') are defined, or
e there is a trivial pathr,, wherep € Sy, such thatl, (p, p’) and1, (p, ¢') are defined.

One can easily prove that the assertions in the verificatorlition associated witlh, andTl; are valid,
and thud/; is weakly extendible.

We next consider the catch parts of the commapdhtePIN. The flow graphs?, and P, in Figure8
are the catch parts of the command. Note that the catchpartthe FSP is different from the one shown
on the righthand side of Figur@ The flow graphP; in Figure 8 updates the variablgs andl. The
counterparts of these variables in the LLD are transierialsfes® and so on abrupt they are set to their
default values. Nevertheless, one can easily define antiassmction of the flow graphP, in Figure8
and the flow grapl#®, of the SPM in Figuré such that there is still an RCR between the SPM and the FSP
of the commandheckPIN.

We define an assertion functidp of (P,, Py) as follows:

Lac,al) = ¢1Ap=p Ae=c"A(inTrans' = trial = tb’)
Iy(a,d)) = ¢o1Ap=p Aval=val' Ae=¢
L(az,al,) = o.

Note that the assertions= I(a.,a,) andly(ac,a.) = A,cpr(o,,,) * = Obs(x) A e = & are valid.

Moreover, since the sét; above cover$’;, by the weak-extendibility of,, it follows that for every finite
run of P/, there is a finite run of; such that the initial configurations of the runs satigfand the last
configurations of the runs satisfy(a., a’,).

Let S, = {p' | Ip,¢.Ir(p,p') = ¢} be the set of points i) such that for each point in S}, there is
apointp in P andZ(p,p’) is defined. Similarly, lefSz = {p | 3p', 0.I2(p,p’) = ¢}. LetIlg, be the set
of all S4-simple paths anflls, be the set of alb,-simple paths. We define a S@ of paths of( P, P3) as
follows:

I, = {(mp,qs Tpr.q) | Fop1, 02 (Tp,q5 Tpr q) € s, X gy andfl(p,p’) =¥ andfl(qu/) = p2}.

One can prove that the assertiops jn the weak ve[ificqtiodiu’on associated witty andﬁg are vAaIid.
From the assertion functions, I, and the set$l;, Ils, and the weak extendibility of, and ., one
can easily see that there is an RCR between the FSP and theflthB commanaheckPIN. O

3Stack variables are transient variables.
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Figure 8: P, is on the left andP; is on the right.

7 Conclusion

We have developed a theory of inter-program properties. thikery forms a basis for describing and
proving properties between two programs. The cornerstbtiedheory is the notion of weak verification
condition, by which one can provide certificates certifyiing inter-program properties. The theory itself is
abstract and general, in the sense that it can be appliedgogms written in any programming languages
as long as these languages have the weakest preconditjperfy.o

We have applied the theory in the translation validatiorofatimizing compilers and in Common Cri-
teria certification. In translation validation, we have whahat, using the notions of extendible assertion
function and weak verification condition, we can capturéedént notions of correspondence used in dif-
ferent translation validation work. We have also shown thatan prove the equivalence of two programs
in the presence of optimizations that introduce or elimérlabps. In Common Criteria certification, we
have shown that the theory can be applied to two programgewriih different languages, and the theory
can also provide certificates certifying representatiamespondences between requirements in Common
Criteria.
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