
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Quantitative Separation Logic and
Programs with Lists

Marius Bozga,Radu Iosif,Swann Perarnau

Verimag Research Report no TR-2007-9

March 12, 2008

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Quantitative Separation Logic and Programs with Lists

Marius Bozga,Radu Iosif,Swann Perarnau

March 12, 2008

Abstract

This paper presents an extension of a decidable fragment of Separation Logic for singly-
linked lists, defined by Berdine, Calcagno and O’Hearn [8]. Our main extension consists
in introducing atomic formulae of the form lsk(x,y) describing a list segment of length
k, stretching from x to y, where k is a logical variable interpreted over positive natural
numbers, that may occur further inside Presburger constraints. We study the decidability
of the full first-order logic combining unrestricted quantification of arithmetic and loca-
tion variables. Although the full logic is found to be undecidable, validity of entailments
between formulae with the quantifier prefix in the language ∃∗{∃N,∀N}∗ is decidable. We
provide here a model theoretic method, based on a parametric notion of shape graphs. We
have implemented our decision technique, providing a fully automated framework for the
verification of quantitative properties expressed as pre- and post-conditions on programs
working on lists and integer counters.

Keywords:

Reviewers:

Notes:

How to cite this report:

@techreport { ,
title = { Quantitative Separation Logic and Programs with Lists},
authors = {Marius Bozga,Radu Iosif,Swann Perarnau},
institution = { Verimag Research Report },
number = {TR-2007-9},
year = { },
note = { }
}

Marius Bozga,Radu Iosif,Swann Perarnau

1 Introduction

Separation Logic [13, 18] has recently become a widespread formalism for the specification of pro-
grams with dynamic data structures. Due to the intrinsic complexity of the heap structures allocated
and manipulated by such programs, any attempt to formalize their correctness has to be aware of
the inherent bounds of undecidability. Indeed, even programs working on simple acyclic lists have
the power of Turing machines, and it is expected that a general logic describing sets of configura-
tions reached in such programs has an undecidable satisfiability (or validity) problem. An interesting
problem is to define decidable logics that are either specialized for a certain kind of recursive data
structures (e.g. lists, trees), or that are restricted by the quantifier prefix.

This paper presents an extension of a decidable fragment of Separation Logic for singly-linked
lists, defined by Berdine, Calcagno and O’Hearn [8] and used as an internal representation for sets of
states in the Smallfoot tool [4]. Our main extension consists in introducing atomic formulae of the
form lsk(x,y) describing a list segment of length k, stretching from x to y, where k is a logical variable
interpreted over positive natural numbers, that may occur further inside Presburger constraints. This
is motivated by the need to reason about programs that work on both singly-linked list structures and
integer variables (counters). We denote the extended logic as Quantitative Separation Logic (QSL).

In reality, many programs would traverse a list structure, while performing some iterative com-
putation on the integer variables. The result of this computation usually depends on the number of
steps, which, in turn, depends of the length of the list. A specification of the correct behavior for such
a program needs to take into account both the lengths of the lists and the values of the counters.

We study the decidability properties of the full first-order logic combining unrestricted quantifica-
tion of arithmetic and location variables. Although the full logic is found to be undecidable, validity of
entailments between formulae with the quantifier prefix in the language ∃∗{∃N,∀N}∗ is decidable. We
provide here a model theoretic method for decidability, based on a parametric notion of shape graphs.
As a byproduct, we obtain a decision procedure for the fragment of Separation Logic considered in
[8].

The decision procedure for a fragment of QSL is currently implemented in the L2CA tool [3],
a tool for translating programs with singly-linked lists into bisimilar counter automata, according to
the method of [9], which opens the possibility of using well-known counter automata techniques and
tools, e.g. [6, 19, 5], in order to verify pre- and post- conditions expressed in QSL, on programs
working on both singly-linked lists and integer variables.

1.1 Related Work

The saga of logics for describing heap structures has its roots in the early work of Burstall [11]. Later
on, work by Benedikt, Reps and Sagiv [7], Reynolds [18] and Ishtiaq and O’Hearn [13], has brought
the subject into focus, whereas recent advances have been made in tackling the decidability problem
[12, 8, 20]. The work that is closest to ours is the one of Berdine, Calcagno and O’Hearn [8], which
defines a decidable subset of Separation Logic [18] interpreted over singly-linked heap models. The
work in this paper is in fact an extension of the logic in [8] with integer variables representing list
lengths. One of the main challenges in the present paper was to adapt the model of parametric shape
graphs in order to cope with the notion of disjunctive heaps, which is the essence of the semantic
model for Separation Logic.

Recently, Magill et al. [15] report on a program analysis technique that uses Separation Logic
[18] extended with first-order arithmetic. However, the main emphasis of [15] is a program analysis
based on counterexample-driven abstraction refinement, whereas our work focuses on distinguishing

Verimag Research Report no TR-2007-9 1/22

Marius Bozga,Radu Iosif,Swann Perarnau

decidable from undecidable when combining Separation Logic with first-order arithmetic. As a mat-
ter of fact, [15] claims that validity of entailments in the purely existential fragment of Separation
Logic with the lsk(x,y) predicate and linear constraints is decidable, without giving the proof, by
analogy to the proof-theoretic method from [8]. We extend their result by showing decidability of
the validity of entailments in the ∃∗{∃N,∀N}∗ fragment, versus undecidability of satisfiability in the
∃∗∃∗N(∀ | ∀N)∃∗∃∗N fragment (or equivalently, validity in the ∀∗∀∗N(∃ | ∃N)∀∗∀∗N fragment).

Remark. For space reasons, all proofs are deferred to [10].

2 Definitions

In the rest of the paper, for a set A we denote by A⊥ the set A∪{⊥}. For a function f : A→ B, we
denote by dom(f) = {x ∈ A | f (x) 6= ⊥} its domain and by img(f) = {y ∈ B | ∃x ∈ A . f (x) = y}
we denote its image. The element ⊥ is used to denote that a (partial) function is undefined at a given
point, e.g. f (x) = ⊥. Sometimes we shall use the graph notation for functions, i.e. f = {〈a,b〉, . . .}
if f (a) = b, . . ., etc. The notation λx : A.y stands for the function {〈x,y〉 | x ∈ A}, and λx : A.⊥ is the
empty function /0, by convention. Let Part(S) denote the set of all partitions of the set S.

By T (X) we denote the set of all terms build using variables x ∈ X . For a term (formula) τ(X)
and a mapping µ : X → T (X), we denote by τ[µ] the term (formula) in which each occurrence of x is
replaced with µ(x). For a formula ϕ, we denote as FV (ϕ) the set of its free variables. If ϕ is a formula
of the first-order arithmetic of integers, and ν : FV (ϕ)→ Z is an interpretation of its free variables,
we denote by ν |= ϕ the fact that ϕ[ν] is a valid formula.

Presburger arithmetic 〈N,+,0,1〉 is the theory of first-order logic of addition and successor func-
tion [17]. The interpretation of logical variables is the set of natural numbers N, and the meaning
of the function symbols 0,1,+ is the natural one. It is well-known that the satisfiability problem for
Presburger arithmetic is decidable [17].

u,v, . . . ∈ PVar program variables
x,y, . . . ∈ LVar location variables
k, l, . . . ∈ IVar integer variables

L := nil | u | x location expressions
I := n ∈ N | k | I + I integer expressions
A := I = I | L = L | emp | L 7→ L | lsI(L,L) atomic propositions
F := T | A | ¬F | F ∧ F | F ∗F | ∃x . F | ∃Nk . F formulae

Figure 1: Separation Logic with Presburger Arithmetic

The syntax of QSL is given in Figure 1. Notice the difference between program variables PVar
and location variables LVar, the former being logical constants, wherears the latter may occur within
the scope of a quantifier.

As usual, we define ϕ∨ψ
∆= ¬(¬ϕ∧¬ψ), ϕ⇒ ψ

∆= ¬ϕ∨ψ, ∀x . ϕ
∆= ¬∃x . ¬ϕ and ∀Nk . ϕ

∆=
¬∃Nk . ¬ϕ. Moreover, we write k≤ l and ls(x,y) as shorthands for ∃Nk′ . k+k′ = l and ∃Nk . lsk(x,y),
respectivelly. F is a shorthand for ¬T. The bounded quantifiers ∃Nm≤ n . ϕ(m) and ∀Nm≤ n . ϕ(m)
are used instead of ∃Nm . m≤ n∧ϕ(m) and ∀Nm . m≤ n⇒ ϕ(m), respectivelly. We shall also deploy

some of the classical shorthands in Separation Logic: x 7→ ∆= ∃y . x 7→ y, and x ↪→ y ∆= x 7→ y ∗T,

Verimag Research Report no TR-2007-9 2/22

Marius Bozga,Radu Iosif,Swann Perarnau

where y is either a location variable or nil. For list segment formulae we define l̃s
k
(x,y) ∆= lsk(x,y)∗T

and l̃s(x,y) ∆= ls(x,y)∗T.
The semantics of QSL formulae is given in terms of heaps. A heap is a rooted graph in which

each node has at most one successor. Let Loc denote the set of locations. We assume henceforth that
Loc is an infinite, countable set, with a designated element nil ∈ Loc. In what follows, we identify
heaps that differ only by a renaming of their locations.

Definition 1 A heap is a pair H = 〈s,h〉, where s : PVar∪ LVar→ Loc⊥ associates variables with
locations, and h : Loc→ Loc⊥ is the partial successor mapping. In particular, we have h(nil) = ⊥.
We denote by H the set of all heaps with variables from PVar∪LVar and locations from Loc.

The interpretation of a formula is defined by a forcing relation |= between tuples 〈H,ν, ι〉 ∈H ×
(LVar 7→ Loc⊥)× (IVar 7→N⊥) and formulae. Here ν : LVar→ Loc⊥ is a partial valuation of location
variables, and ι : IVar→N⊥ is a partial valuation of integer variables. The semantics of QSL formulae
is given below, for a given heap H = 〈s,h〉:

[[u]]〈H,ν〉 = s(u), [[x]]〈H,ν〉 = ν(x), [[nil]]〈H,ν〉 = nil

〈H,ν, ι〉 |= T always

〈H,ν, ι〉 |= L1 = L2 iff [[L1]]〈H,ν〉 = [[L2]]〈H,ν〉
〈H,ν, ι〉 |= emp iff h = /0

〈H,ν, ι〉 |= L1 7→ L2 iff h = {〈[[L1]]〈H,ν〉, [[L2]]〈H,ν〉〉}
〈H,ν, ι〉 |= ¬ϕ iff 〈H,ν, ι〉 6|= ϕ

〈H,ν, ι〉 |= ϕ∧ψ iff 〈H,ν, ι〉 |= ϕ and 〈H,ν, ι〉 |= ψ

〈H,ν, ι〉 |= ϕ∗ψ iff there exist H1,H2 such that H = H1 •H2

and 〈H1,ν, ι〉 |= ϕ,〈H2,ν, ι〉 |= ψ

〈H,ν, ι〉 |= ∃x . ϕ iff 〈H,ν[x← l], ι〉 |= ϕ for some l ∈ Loc\{nil}

Here H1 •H2 denotes the disjoint union of H1 = 〈s,h1〉 and H2 = 〈s,h2〉, i.e, dom(h1)∩dom(h2) = /0,
h = h1∪h2. The above definitions are standard in Separation Logic [18]. The rules below are specific
to our extension:

[[I]]
ι
= I[ι]

〈H,ν, ι〉 |= I1 = I2 iff [[I1]]ι = [[I2]]ι
〈H,ν, ι〉 |= ls0(L1,L2) iff 〈H,ν, ι〉 |= L1 = L2 ∧ emp

〈H,ν, ι〉 |= lsn+1(L1,L2) iff 〈H,ν, ι〉 |= ∃x . lsn(L1,x)∗ x 7→ L2

〈H,ν, ι〉 |= lsI(x,y) iff 〈H,ν, ι〉 |= ls[[I]]
ι(x,y)

〈H,ν, ι〉 |= ∃Nk . ϕ iff 〈H,ν, ι[k← n]〉 |= ϕ, for some n ∈ N

There are two types of quantifiers, ∃ ranges over locations Loc, and ∃N over natural numbers N. A
tuple 〈H,ν, ι〉 is said to be a model of ϕ iff 〈H,ν, ι〉 |= ϕ. If FV (ϕ) = /0, we denote the fact that H is a
model of ϕ directly as H |= ϕ.

An entailment is a formula of type ϕ⇒ ψ. Given such an entailment, the validity problem asks if
it holds for any tuple 〈H,ν, ι〉, i.e. if any model of ϕ is also a model of ψ.

Verimag Research Report no TR-2007-9 3/22

Marius Bozga,Radu Iosif,Swann Perarnau

The following notion of dangling location is essential for the semantics of Separation Logic on
heaps [13],[18]. To understand this point, consider the formula ϕ : u 7→ v∗v 7→ nil, describing a heap
H = 〈s,h〉, in which u and v are allocated to two different cells, i.e. s(u) = l1, s(v) = l2, and nothing
else is in the domain of the heap, i.e. h = {〈l1, l2〉,〈l2,nil〉}. The reason for which H |= ϕ, is that there
exists two disjoint heaps, namely H1 = 〈s,{〈l1, l2〉}〉 and H2 = 〈s,{〈l2,nil〉}〉, such that H1 |= u 7→ v
and H2 |= v 7→ nil. Notice the role of the location l2, pointed to by the variable v, which is referenced
by the first heap, but allocated in the second one. This location ensures that the disjoint union of H1
and H2 is defined, and that H1 •H2 |= u 7→ v∗ v 7→ nil.

Definition 2 A location l ∈ Loc \ {nil} is said to be dangling in a heap H = 〈s,h〉 iff l ∈ (img(s)∪
img(h))\dom(h).

In the following, we denote by dng(H) the set of all dangling nodes of H, and by loc(H) =
img(s)∪dom(h)∪ img(h) the set of all locations, either defined or dangling in H.

3 Motivating Example

Let us consider the program in Figure 2. The loop on the left hand side inserts elements into the list
pointed to by u, while incrementing the c counter, and the loop on the right removes the elements
in reversed order, while decrementing c. The pre- and post-condition of the program are inserted as
Hoare-style annotations. Both initially and finally, the value of c is zero and the heap is empty.

{c = 0∧ emp∧u = nilo}
1: while ... do
{c≥ 0∧ c = k∧ lsk(u,nil)}
2: t := new;
3: t.next := u;
4: u := t;
5: c := c + 1;
6: od

7: while c 6= 0 do
{c > 0∧ c = k∧ lsk(u,nil)}
8: u := u.next;
9: c := c - 1;
10: od
{c = 0∧ emp}

Figure 2: Program verification using QSL

In order to prove that the program terminates without a null pointer dereferencing, and moreover
ensuring that the post-condition holds, one needs to relate the value of c to the length of the list pointed
to by u, as it is done in the invariants of the left and right hand side : c = k∧ lsk(u,nil). This example
could not be handled using standard Separation Logic, since we explicitly need the ability of reasoning
about both list lengths and integer variables.

4 Undecidability of QSL

In this section we prove the undecidability of the QSL logic. Namely the class of formulae with
quantifier prefix in the language ∃∗∃∗N(∀ | ∀N)∃∗∃∗N are shown to have an undecidable satisfiability
problem. It is to be noticed that undecidability of QSL is not a direct consequence of the undecid-
ability of Separation Logic [16], since the proof in [16] uses multiple selector heaps, while in this

Verimag Research Report no TR-2007-9 4/22

Marius Bozga,Radu Iosif,Swann Perarnau

case we consider only heaps composed of singly-linked lists. Our result is non-trivial since it is well-
known also that, e.g. FOL, MSOL are decidable when interpreted over singly-linked lists, and become
quickly undecidable when interpreted over grid-like, and more general graph structures.

Theorem 1 The set of QSL formulae which, written in prenex normal form, have the quantifier prefix
in the language ∃∗∃∗N(∀ | ∀N)∃∗∃∗N, is undecidable.

Proof: The proof is by reduction from the halting problem for 2-counter machines. A 2-counter
machine M [?] with non-negative counters c1,c2 is a sequential program:

0 : ins1;1 : ins2; · · · ;n−1 : insn;

where insn is a halt instruction and insi with i = 1,2, · · · ,n−1 are instructions of the following two
types, for 0≤ k,k1,k2 < n, and j = 1,2:

1. c j = c j +1;goto k;

2. if c j = 0 then goto k1 else (c j = c j−1; goto k2);

The machine starts executing at label 0 with values c1 = c2 = 0. When it reaches the control location
k− 1, it executes the instruction insk i.e, it modifies the values of the counter and jumps to the next
label according to the instruction. Formally, we use the relation 〈q,v1,v2〉 `M 〈q′,v1,v2〉 to describe
a one-step transition of M between two configurations, where q,q′ ∈ {0, . . . ,n− 1} are the control
labels, v1,v2 and v′1,v

′
2 are the values of the counters before and after the transition. The machine halts

when it reaches the halt instruction at label n. It is undecidable whether a given 2-counter machine
halts [?].

Given a 2-counter machine M, we build a closed formula ΨM in the language of QSL, describing
any terminating computation of M. It follows that M halts if and only if ΨM is satisfiable, i.e. there
exists 〈s,h〉 ∈ (LVar 7→ Loc⊥)× (Loc 7→ Loc⊥) such that 〈s,h〉 |= ΨM. Let ΨM be the following
formula:

∃x,x′∃Nn . x 7→ x′ ∗ l̃s
n
(x′,nil) ∧ ∀Nm < n . ∃y,y′,q,q′,c1,c′1,c2,c′2∃Nl, l′,v1,v′1,v2,v′2 .

l̃s
m
(x′,y)∗ y 7→ y′ ∗ lsl(q,y)∗ lsv1(c1,y)∗ lsv2(c2,y)∗ lsl′(q′,y′)∗ lsv′1(c′1,y

′)∗ lsv′2(c′2,y
′)

∧
Wn

i τi(l,v1,v2, l′,v′1,v
′
2)

The intuition behind this formula is given in Figure 3. Here x points to a list segment of length n that
represents a halting computation of M. Each element y in this list represents a configuration 〈l,v1,v2〉
of M, where l is encoded by a list segment lsl(q,y), and v1, v2 by the list segments lsv1(c1,y) and
lsv2(c2,y), respectivelly. The spatial formula x 7→ x′ states the initial condition l = v1 = v2 = 0, i.e.
no other list is pointing to x, while the halting condition is captured by l̃s

n
(x′,nil), which ensures

that the list is of finite length. The transition relation between any two intermediate configurations,
represented by the adjacent locations y and y′, is captured by the τi(l,v1,v2, l′,v′1,v

′
2) formulae, given

by the description of M. Namely, if:

• insi is [c j = c j +1;goto k], then τi : l = i∧ l′ = k∧ v′j = v j +1,

• insi is [if c j = 0 then goto k1 else (c j = c j−1; goto k2)], then
τi : l = i ∧ ((v j = 0⇒ l′ = k1)∧ (v j 6= 0⇒ (v′j +1 = v j ∧ l′ = k2))).

Verimag Research Report no TR-2007-9 5/22

Marius Bozga,Radu Iosif,Swann Perarnau

y

.

y′

q q′

...
...
...

...

c1 c′2c′1c2

. . .x nil. . .x′

Figure 3:

By taking a closer look at the form of ΨM, one can notice that the undecidability of the ∃∗∃∗N∀N∃∗∃∗N
fragment of QSL has been proved. The cause for undecidability is the alternation between (existen-
tial) location and (universal) integer quantifiers, which enables arbitrarily large and complex models to
be described. Using a similar argument, we can establish undecidability of the ∃∗∃∗N∀∃∗∃∗N fragment
of QSL, by changing the above formula into:

∃x,x′∃Nn . x 7→ x′ ∗ l̃s
n
(x′,nil) ∧ ∀y . l̃s(x′,y)⇒∃y′,q,q′,c1,c′1,c2,c′2∃Nl, l′,v1,v′1,v2,v′2 .

y ↪→ y′ ∗ lsl(q,y)∗ lsv1(c1,y)∗ lsv2(c2,y)∗ lsl′(q′,y′)∗ lsv′1(c′1,y
′)∗ lsv′2(c′2,y

′)∧Wn
i τi(l,v1,v2, l′,v′1,v

′
2)

2

In the following developments, we shall prove that logical entailment in the ∃∗{∃N,∀N}∗ fragment
of QSL is decidable. We have found no argument for (un)decidability concerning the quantifier prefix
fragment {∃,∀}∗{∃N,∀N}∗. In particular, all attempts to reduce (from) to known fragments of MSO
with cardinality constraints [14] have failed.

5 Model Theoretic Method

The validity of an entailment ϕ⇒ ψ is equivalent to the non-satisfiability of the formula ϕ∧¬ψ, i.e.
there should be no tuples 〈H,ν, ι〉 such that 〈H,ν, ι〉 |= ϕ and 〈H,ν, ι〉 6|= ψ. Our main result, leading
immediately to decidability of entailments, is that, if ϕ is of the form ∃x1 . . .∃xnQ1l1 . . .Qmlm . θ(x, l),
with Qi ∈ {∃N,∀N} and θ is a boolean combination of predicates with ¬, ∧ and ∗, all models 〈H,ν, ι〉
of ϕ can be represented using a finite number of (finite) structures called symbolic graph representa-
tions (SGR).

The decision procedure for the validity of a QSL entailment ϕ⇒ψ is based on the following idea.
We first define operators on sets of SGRs that are the counterparts of the logical connectives ∨, ∧, ∗
and the existential quantifiers ∃x, ∃Nx. Second, for each existential QSL formula ϕ, we compute a set
[[ϕ]] of SGRs that represent all models of ϕ. The construction of this set is recursive, on the structure
of ϕ. The entailment ϕ⇒ ψ is valid iff the set [[ϕ]]	 [[ψ]] is empty, where 	 is an operator defined on
SGRs, that computes the representation of the difference between the set of concrete models of the ϕ

and the one of ψ. Last, the emptiness problem for sets of SGRs is shown to be decidable, by reduction
to the satisfiability problem for the Presburger arithmetic.

5.1 Symbolic Shape Graphs

In this section we define a finite representation of (possibly infinite) sets of heaps, called symbolic
shape graphs (SSG), which is the essence of our decision method. The next section defines the SGR

Verimag Research Report no TR-2007-9 6/22

Marius Bozga,Radu Iosif,Swann Perarnau

representation for sets of heaps, which is based on SSGs and arithmetic constraints.

Definition 3 Given a heap H = 〈s,h〉 ∈ H , a location l ∈ Loc is said to be a cut point in H if either
l ∈ img(s)∪dng(H)∪{nil}, or there exists two distinct locations l1, l2 ∈ Loc such that h(l1) = h(l2) =
l.

A location l is a cut point in a heap if either (1) l is pointed to directly by a program variable, i.e.
l ∈ img(s), (2) l is dangling or nil, or (3) l has more than one predecessor in the heap. We denote
by l1 �H l2 the fact that h(l1) = l2 and l2 6= ⊥ is not a cut point in H. Let ∼H denote the reflexive,
symmetric and transitive closure of the �H relation, i.e. the smallest equivalence relation that includes
�H , and [l]∼ be the equivalence class of l ∈ Loc w.r.t. ∼H . We also refer to these equivalence classes
as to list segments. By convention, we have [⊥]∼ = ⊥. Let H/∼ = 〈s/∼,h/∼〉 be the quotient heap,
where:

• s/∼ : PVar∪LVar→ Loc/∼⊥ and s/∼(u) = [s(u)]∼, for all u ∈ PVar,

• h/∼ : Loc/∼ → Loc/∼⊥ and for all l ∈ dom(h), if h(l) = l′ and l′ is either ⊥ or a cut point in
〈s,h〉, then h/∼([l]) = [l′]∼. In particular, h/∼([l]) =⊥, for all l 6∈ dom(h).

Note that s/∼ and h/∼ are well-defined functions. We extend the rest of notations to quotient heaps,
i.e. dng(H/∼) = {[l]∼ | l ∈ dng(H)} and loc(H/∼) = {[l]∼ | l ∈ loc(H)}.

For example, in the heap from Figure 4 (a), the cut points are marked by hollow nodes and the
∼-equivalence classes are enclosed in solid boxes. The quotient heap is the heap in which these boxes
are taken as nodes, instead of the individual locations.

Definition 4 Given a set PVar of program variables, a set LVar of location variables, and a set of
counters Z = {z1, . . . ,zn}, a symbolic shape graph (SSG) is a tuple G = 〈N,D,R,Z,S,V 〉, where:

• N is a finite set of symbolic nodes, with a designated node Nil ∈ N,

• D⊆ N is a set of symbolic dangling nodes,

• R⊆ N is a set of symbolic root nodes,

• Z : N \D→ Z is an injective function assigning each node to a counter,

• S : N→ N⊥ is the successor function, where:

– S(Nil) =⊥ and S(d) =⊥, for all d ∈ D,

– S(n) 6∈ R, for all n ∈ N,

– S(n) ∈ N, for all n ∈ N \ (D∪{Nil}).

• V : PVar∪LVar→ N assigns program and location variables with nodes.

Intuitively, each node of a SSG represents a list segment of a concrete heap. The node Nil stands
for the concrete nil location, and each symbolic dangling node represents one dangling location.

Definition 5 An SSG G = 〈N,D,R,Z,S,V 〉 is said to be in normal form if:

• each node in n ∈ N \ {Nil} is reachable either from V (u), for some u ∈ PVar∪LVar, or from
some symbolic root r ∈ R, and

Verimag Research Report no TR-2007-9 7/22

Marius Bozga,Radu Iosif,Swann Perarnau

• either n ∈ img(V)∪D∪{Nil}, or there exist two distinct nodes n1,n2 ∈ N such that S(n1) =
S(n2) = n.

Sk denotes the set of SSGs in normal form, with |R| ≤ k and img(V)⊆ PVar∪LVar.

Sometimes we denote by S the union
S

k∈N Sk. We identify SSGs which are equivalent under renaming
of nodes and counters. The following was proved in [9]:

Lemma 1 Let G = 〈N,D,R,Z,S,V 〉 ∈ Sk be a normal form SSG. Then, |N| ≤ 2(|dom(V)|+ |R|). As
a consequence, the number of such SSGs is bounded asymptotically by
2(|PVar|+ |LVar|+ k)2(|PVar|+|LVar|+k), and the bound is tight.

The following definition relates the notions of heap and SSG.

Definition 6 Let G = 〈N,D,R,Z,S,V 〉 ∈ S be a SSG, ν : dom(V)∩LVar→ dom(h) a valuation of the
location variables of G, and ι : img(Z)→N+ a valuation of the counters in G. Let H = 〈s,h〉 ∈H be
a heap such that dom(s) = dom(V)∩PVar, and H/∼ = 〈s/∼,h/∼〉 be the quotient of H with respect
to ∼H . We say that H is the 〈ν, ι〉-concretization of G iff there exists a bijective mapping η : N⊥→
(loc(h/∼)∪{nil,⊥}) such that:

• η(Nil) = {nil} and η(⊥) =⊥,

• η(V (u)) = s/∼(u), for all u ∈ PVar,

• η(S(n)) = h/∼(η(n)), for all n ∈ N \D,

• η(n) ∈ dng(H/∼), for all n ∈ D,

• η(n) 6∈ {nil,⊥} and ι(Z(n)) = |η(n)|, for all n ∈ N \D.

We recall upon the fact that heaps are identical, up to isomorphism, which implies that the 〈ν, ι〉-
concretization is uniquely defined. We say that H is a concretization of G if there exist ν, ι such that
H is the 〈ν, ι〉-concretization of G. Roughly speaking, the 〈ν, ι〉-concretization of a SSG G is the heap
obtained by replacing each node n of G with a list segment whose length equals the value of the counter
Z(n). Moreover, if G has a 〈ν, ι〉-concretization, we must have ι(Z(n)) > 0, for all non-dangling
symbolic nodes n ∈ N \D. Notice also that dangling locations are represented by symbolic dangling
nodes. We denote by γν,ι(G) the 〈ν, ι〉-concretization of G and by Γ(G) the set of all concretizations
of G.

2 1 2 1 3

3

(a) (b)

yv

u

w

X

x

z1 z2 z5 z6

z3
w

z4

u

v

x

y

D

l1 l2 l3 l7 l8 l9 l10 l11 l12

l4 l5 l6

Figure 4: SSG and Concretization

For example, the SSG in Figure 4 (b) has as 〈ν, ι〉-concretization the heap in Figure 4 (a), for the
valuations:

Verimag Research Report no TR-2007-9 8/22

Marius Bozga,Radu Iosif,Swann Perarnau

• ν(x) = l3, ν(y) = l10, and

• ι(z1) = 2, ι(z2) = 1, ι(z3) = 3, ι(z4) = 2, ι(z5) = 1, ι(z6) = 3.

Notice that the symbolic dangling node pointed to by w corresponds to a dangling location pointed to
by w in Figure 4 (a).

The following result expresses the fact that one heap may not be the concretization of two different
(non-isomorphic) SSGs:

Lemma 2 For two non-isomorphic SSGs G1,G2 ∈ S , we have Γ(G1)∩Γ(G2) = /0.

Proof: By contradiction, assume that there exists H ∈ Γ(G1)∩ Γ(G2). By definition 6, H/∼ is
isomorphic to both G1 and G2, thus contradicting the hypothesis that G1 and G2 are non-isomorphic.
2

5.2 Symbolic Graph Representations

In this section we introduce the notion of symbolic graph representation (SGR) together with a number
of operators on these structures. In the next section, we shall provide a stepwise translation of a QSL
formula with quantifier prefix ∃∗{∃N,∀N}∗ into a set of symbolic graph representations.

A symbolic graph representation is a pair 〈G,ϕ〉, where G = 〈N,D,R,Z,S,V 〉 is a SSG in normal
form and ϕ an open formula over the counters of G, i.e. FV (ϕ)⊆ img(Z). By G we denote the set of
all SGRs 〈G,ϕ〉, where G ∈ S and the set of counters in each G is a subset of Z.

A heap H = 〈s,h〉 is the 〈ν, ι〉-concretization of 〈G,ϕ〉 iff ν : dom(V)∩LVar→ dom(h) is a val-
uation of the location variables of G, and ι : img(Z)→ N+ is a valuation of the counters in G that
satisfies ϕ, i.e. ι |= ϕ. This is denoted in the following as H = γν,ι(〈G,ϕ〉). Γ(〈G,ϕ〉) denotes the set
of all 〈ν, ι〉-concretizations of 〈G,ϕ〉. The notation is lifted to finite sets of SGRs in the obvious way:
Γ({R1, . . . ,Rn}) =

Sn
i=1 Γ(Ri).

We introduce now three operators on finite sets of SGRs, that correspond to the boolean operators
of union, intersection and set difference. Let S1,S2 ⊆ G be two finite sets of SGRs.

S1tS2 = {〈G,ϕ1∨ ϕ2〉 | 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2} ∪
{〈G,ϕ〉 ∈ S1 | 〈G, 〉 6∈ S2} ∪ {〈G,ϕ〉 ∈ S2 | 〈G, 〉 6∈ S1}

S1uS2 = {〈G,ϕ1∧ ϕ2〉 | 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2}

S1	S2 = {〈G,ϕ1∧ ¬ϕ2〉 | 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2}
∪ {〈G,ϕ〉 ∈ S1 | 〈G, 〉 6∈ S2}

Here the notation 〈G, 〉 stands for any SGR pair having G as its first component. Let G =
〈N,D,R,Z,S,V 〉 and notice that, since FV (ϕ1) ⊆ img(Z) and FV (ϕ2) ⊆ img(Z), then FV (ϕ1 ∨ϕ2),
FV (ϕ1∧ϕ2) and FV (ϕ1∧¬ϕ2) are also subsets of img(Z).

Lemma 3 SGRs are effectively closed under union, intersection and difference. In particular, we
have Γ(S1tS2) = Γ(S1)∪Γ(S2), Γ(S1uS2) = Γ(S1)∩Γ(S2) and Γ(S1	S2) = Γ(S1)\Γ(S2).

Proof: We give the proof only for t, the proofs for u and 	 being similar. “⊆” Let H ∈ Γ(S1tS2).
Then either:

Verimag Research Report no TR-2007-9 9/22

Marius Bozga,Radu Iosif,Swann Perarnau

• H ∈ Γ(〈G,ϕ1∨ ϕ2〉) for some SGRs 〈G,ϕ1〉 ∈ S1 and 〈G,ϕ2〉 ∈ S2. Then either H ∈ Γ(〈G,ϕ1〉)
or H ∈ Γ(〈G,ϕ2〉). Hence H ∈ Γ(S1)∪Γ(S2).

• H ∈ Γ(〈G,ϕ〉) for some SGR 〈G,ϕ〉 ∈ S1. Then obviously H ∈ Γ(S1)∪Γ(S2).

• H ∈ Γ(〈G,ϕ〉) for some SGR 〈G,ϕ〉 ∈ S2. This case is symmetric to the above.

“⊇” Let H ∈ Γ(S1)∪Γ(S2). Suppose H ∈ Γ(S1), the case H ∈ Γ(H2) being symmetric. Then there
exists a SGR 〈G,ϕ〉 ∈ S1 such that H ∈ Γ(〈G,ϕ〉). There are two cases:

1. 〈G,ψ〉 ∈ S2 for some ψ. Then 〈G,ϕ∨ ψ〉 ∈ S1 t S2, and H ∈ Γ(〈G,ϕ∨ ψ〉), which leads to
H ∈ Γ(S1tS2).

2. 〈G,ψ〉 6∈ S2, for any ψ. Then 〈G,ψ〉 ∈ S1tS2, and H ∈Γ(〈G,ψ〉), which leads to H ∈Γ(S1tS2).

2

The � operator is defined on SGRs with the following meaning : for two SGRs R1 and R2, we
have Γ(R1 �R2) = {H1 •H2 | H1 ∈ Γ(R1) and H2 ∈ Γ(R2)}. In other words, � is the SGR counterpart
of the disjoint union operator on heaps. However, � is not a total operator, i.e. it is not defined for
any pair of SGRs, but only for the ones complying with the following definition :

Definition 7 Two SSGs Gi = 〈Ni,Di,Ri,Zi,Si,Vi〉, i = 1,2 are said to match iff there exists a mapping
µ : D1∪D2→ (N1∪N2)⊥ such that, for all u ∈ dom(V1)∩dom(V2), either:

• V1(u) ∈ D1 and µ(V1(u)) = V2(u), or

• V2(u) ∈ D2 and µ(V2(u)) = V1(u).

and µ(d) =⊥, for all d ∈ (D1∪D2)\ (dom(V1)∩dom(V2)).

Intuitivelly, two SSGs match if it is possible to relate any dangling node pointed to by a program
variable in one SSG to a node pointed to by the same variable in the other SSG. Note that two SSGs
do not match if the same variable points to some non-dangling node in both. Figure 5 gives an example
of two matching SSGs (a) and (b) together with the mapping µ between their nodes (in dotted lines).
According to Definition (7), the choice of µ is not unique.

(b)(a)

(c)

u

DD

v w v

DD

u w

u

D

v w

µ

µ

µ

Figure 5: Matching SSGs

Given two SGRs R1 = 〈G1,ϕ1〉 and R2 = 〈G2,ϕ2〉, with matching underlying SSGs Gi = 〈Ni,Di,Ri,Zi,Si,Vi〉,
(for the purposes of this definition, we can assume w.l.o.g. that N1 ∩N2 = {Nil} and img(Z1)∩
img(Z2) = /0), we define R1 �R2 = 〈G,ϕ1∧ϕ2〉, G = 〈N,D,R,Z,S,V 〉, where:

• N = (N1∪N2)\dom(µ),

Verimag Research Report no TR-2007-9 10/22

Marius Bozga,Radu Iosif,Swann Perarnau

• D = (D1∪D2)\dom(µ),

• R = (R1∪R2)\dom(µ),

• Z = Z1∪Z2,

• for all n ∈ N:

S(n) =
{

Si(n) if n ∈ Ni and Si(n) 6∈ dom(µ)
µ(Si(n)) if n ∈ Ni and Si(n) ∈ dom(µ)

i = 1,2

• for all u ∈ dom(V1)∪dom(V2):

V (u) =
{

Vi(u) if Vi(u) 6∈ dom(µ)
µ(Vi(u)) if Vi(u) ∈ dom(µ)

i = 1,2

For example, the SSG in Figure 5 (c) is the result of the �-composition of the SSGs in Figure 5 (a)
and (b).

The � operator is undefined, if G1 and G2 do not match. Notice that if G1 ∈ Sk1 , G2 ∈ Sk2 and
〈G,ϕ〉 = 〈G1,ϕ1〉� 〈G2,ϕ2〉, then G ∈ Sk1+k2 . The correctness of the definition is captured by the
following Lemma:

Lemma 4 Given two SGRs R1 = 〈G1,ϕ1〉 and R2 = 〈G2,ϕ2〉, such that G1 and G2 match, we have
Γ(R1 �R2) = {H1 •H2 | H1 ∈ Γ(R1), H2 ∈ Γ(R2)}.

Proof: Let Gi = 〈Ni,Di,Ri,Zi,Si,Vi〉, i = 1,2 and R1 �R2 = 〈G,ϕ1∧ϕ2〉, where G = 〈N,D,R,Z,S,V 〉.
W.l.o.g. we assume that N1∩N2 = {Nil} and img(Z1)∩ img(Z2) = /0. Since R1 �R2 is defined, there
exists a mapping µ : D1∪D2→ (N1∪N2)⊥, satisfying the conditions of Definition (7).

“⊆” Assume H = 〈s,h〉 ∈ Γ(〈G,ϕ1 ∧ϕ2〉). Then there exists ν : dom(V)∩LVar→ dom(h) and
ι : dom(Z)→ N+, meeting the conditions of Definition (6). In particular, we have that ι |= ϕ1 ∧ϕ2.
Let H/∼ = 〈s/∼,h/∼〉 be the quotient of H w.r.t. ∼H . There exists a bijective mapping η : N⊥ →
(loc(h/∼)∪{nil,⊥}) meeting the conditions of Definition (6). Let Hi = 〈si,hi〉, i = 1,2 be the heaps
defined as follows :

• dom(hi) =
S

n∈Ni\dom(µ) η(n), hi(l) = h(l), if l ∈ dom(hi), and hi(l) =⊥ otherwise,

• si(u) = s(u), for all u ∈ PVar.

We show that Hi is the 〈ν, ι〉-concretization of Gi, by considering the bijective mappings ηi, defined
as the restriction of η to Ni, i = 1,2. Since ι |= ϕi, we obtain that Hi ∈ Γ(〈Gi,ϕi〉). The fact that
H = H1 •H2 is an easy check, based on the facts that (1) dom(h1) ∩ dom(h2) = /0, and (2) that all
dangling locations of H1 are defined in H2, and viceversa.

“⊇” let H = H1 •H2, with Hi = 〈si,hi〉 ∈ Γ(〈Gi,ϕi〉), i = 1,2 where dom(h1)∩dom(h2) = /0. By
Definition (6) there exist νi : dom(Vi)∪ LVar → dom(hi) and ιi : img(Zi)→ N+ such that ιi |= ϕi,
i = 1,2. Since we assumed img(Z1)∩ img(Z2) = /0, we have ι1∪ ι2 |= ϕ1∧ϕ2. Let H ′i = Reachνi(H)
and H ′i /∼ be as before. There exist two bijective mappings ηi : Ni⊥→ (loc(h′i/∼)∪{nil,⊥}) meeting
the conditions of Definition (6). Let η be the following mapping :

η(n) =


η1(n) if n ∈ N1 \dom(µ)
η2(n) if n ∈ N2 \dom(µ)
⊥ otherwise

It is easily checked that η is bijective. Now it is left to be checked that η satisfies the conditions of
Definition (6) in order to conclude that H ∈ Γ(〈G,ϕ1∧ϕ2〉) :

Verimag Research Report no TR-2007-9 11/22

Marius Bozga,Radu Iosif,Swann Perarnau

• η(Nil) = η1(Nil) = η2(Nil) = {nil} and η(⊥) = η1(⊥) = η2(⊥) =⊥.

• for all u ∈ dom(V) = dom(V1)∪dom(V2), for i = 1,2 either :

1. u ∈ dom(Vi) and Vi(u) 6∈ dom(µ), then η(V (u)) = ηi(Vi(u)) = si/∼(u). Since dom(h1)∩
dom(h2) = /0, we have si/∼(u) = s/∼(u).

2. u∈ dom(Vi) and Vi(u)∈ dom(µ), then η(V (u))= η(µ(Vi(u)))= η(i mod 2)+1(V(i mod 2)+1(u))=
s(i mod 2)+1/∼(u). By the same argument as above, we obtain η(V (u)) = s/∼(u).

• for all n ∈ N = (N1∪N2)\dom(µ), for i = 1,2 either :

1. n ∈ Ni and Si(n) ∈ Ni \dom(µ) then η(S(n)) = ηi(Si(n)) = hi/∼(ηi(n)). Since dom(h1)∩
dom(h2) = /0, we have hi/∼(ηi(n)) = h/∼(η(n)).

2. n ∈ Ni and Si(n) ∈ Ni ∩ dom(µ). Then there exists u ∈ dom(V1)∩ dom(V2) such that
Si(n) = Vi(u) ∈Di and µ(Vi(u)) = V(i mod 2)+1(u). In this case we have S(n) = µ(Si(n)) =
V(i mod 2)+1(u). Since Si(n) =Vi(u)∈Di, by Definition (6) we have hi/∼(η(n)) = si/∼(u) =
si mod 2+1/∼(u)= η(S(n)). Since dom(h1)∩dom(h2)= /0, we have hi/∼(ηi(n))= h/∼(η(n)).

• if n ∈ D then n ∈ Di for some i = 1,2. In either case we have η(n) ∈ dng(Hi/∼)⊆ H/∼.

• if n ∈ N \D then n ∈ Ni \Di, for some i = 1,2. In either case we have ι(Z(n)) = ιi(Zi(n)) =
|ηi(n)|= |η(n)|.

2

The following projection operator captures the effect of dropping one location variable out of
the heap. Let R = 〈G,ϕ〉 be an SGR, where G = 〈N,D,R,Z,S,V 〉 is the underlying SSG, and x ∈
img(V)∩ LVar be a location variable occurring in G. For an arbitrary symbolic node n ∈ N, let
precG(n) = {m ∈ N | m 6= n, S(m) = n} be the set of predecessors of n, different from itself, in G.

We define R ↓x to be the SGR, having a normal-form underlying SSG (cf. Definition 4), from
which x is missing. Formally, let R↓x= 〈G′,ϕ′〉, where:

1. if x 6∈ dom(V) then G′ = G and ϕ′ = ϕ.

2. else, if x ∈ dom(V) and either:

(a) there exists u ∈ dom(V)\{x} such that V (u) = V (x), or

(b) there exist m1,m2 ∈ dom(S) s.t. m1 6= m2 and S(m1) = S(m2) = V (x)

then G′ = 〈N,D,R,Z,S,V [x←⊥]〉 and ϕ′ = ϕ.

3. else, if x ∈ dom(V), V (x) = n, and for all u ∈ dom(V)\{x}, we have V (u) 6= n, and either:

(a) precG(n) = /0, then G′ = 〈N,D,R∪{n},Z,S,V [x←⊥]〉 and ϕ′ = ϕ, or

(b) n ∈ D and precG(n) 6= /0, then G′ = 〈N,D,R,Z,S,V [x←⊥]〉 and ϕ′ = ϕ,

(c) n 6∈ D and m ∈ precG(n), where Z(m) = k1 and Z(n) = k2, then
G′= 〈N\{n},D,R,Z[m← k3][n←⊥],S[m← S(n)][n←⊥],V [x←⊥]〉 and ϕ′=∃k1∃k2 . ϕ∧
k3 = k1 + k2, where k3 6∈ img(Z) is a fresh counter name.

Notice the effect of the case (3.a) which increases the number of roots in G by one. The correctness
of this definition is captured in the following Lemma:

Verimag Research Report no TR-2007-9 12/22

Marius Bozga,Radu Iosif,Swann Perarnau

Lemma 5 Let R = 〈G,ϕ〉 be a SGR, G = 〈N,D,R,Z,S,V 〉 be its underlying SSG, and x ∈ LVar be a
location variable. Then Γ(R↓x) = {〈s[x←⊥],h〉 | 〈s,h〉 ∈ Γ(R)}.

Proof: By case splitting, following the cases in the definition. 2

Given a set S of SGRs, the emptiness problem Γ(S) = /0 is effectivelly decidable if all constraints
ϕ occurring within elements 〈G,ϕ〉 ∈ G are written in a logic decidable for satisfiability. In our case,
this logic is the Presburger arithmetic, for which the satisfiability problem is known to be decidable
[17].

5.3 From Formulae to Sets of SGR

We are now ready to describe the construction of a set of SGRs for a given formula :

ϕ : ∃x1 . . .∃xnQ1l1 . . .Qmlm . θ(x, l)

where Qi ∈ {∃N,∀N} and θ is a quantifier-free QSL formula. The construction is performed incremen-
tally, following the structure of the abstract syntax tree of θ. The set x = {x1, . . . ,xn} is called the sup-
port set of θ. Without losing generality, we consider that the leaves of this tree are atomic propositions
of one of the forms : T, emp, x = y, x 7→ y and lsl(x,y), where x ∈ x∪PVar and y ∈ x∪PVar∪{nil}.

From now on, let Sk(x) be the set of all SSGs with at most k root nodes, support variables from
PVar∪x, and counters from a fixed given set Z. Given a formula ϕ, we denote by [[ϕ]]x(k) the set of
SGRs with at most k root nodes, over the support set x, defining the models of ϕ.

For atomic spatial propositions, [[ϕ]]x(k) is computed according to the definitions from Table 1.
In the definition of [[emp]]x(k) we consider as parameter the partition 〈Y1, . . . ,Yp〉 ∈ Part(x). That is
[[emp]]x(k) =

S
〈Y1,...,Yp〉∈Part(x) [[emp]]Y1,...,Yp , where [[emp]]Y1,...,Yp is defined in Table 1. Intuitivelly, Yi,

1 ≤ i ≤ p is the set of variables that are aliased, pointing to the same dangling node di, in the empty
heap. In Table 1, let D = {d1, . . . ,dp−1}, R = /0 and ∆ =

Sp−1
i=1 λx : Yi.di∪λx : Yp.Nil.

In the definition of [[ϕ]]x(k) for x 7→ nil and x 7→ y, we consider two parameters: (1) a set Z ⊆
x∪ {x}, such that x ∈ Z, and (2) a partition 〈Y1, . . . ,Yp〉 ∈ Part(x \ Z). In other words, we have
[[ϕ]]x(k) =

S
{[[ϕ]]Y1,...,Yp

Z | Z ⊆ x∪{x}, x ∈ Z, 〈Y1, . . . ,Yp〉 ∈ Part(x\Z)}, where [[ϕ]]Y1,...,Yp
Z is defined

in Table 1. Intuitivelly, Z corresponds to the set of support variables that are aliased with x in some
concrete model.

In the definition of [[lsl(x,nil)]]x(k) we consider an ordered sequence of disjoints subsets of x,
namely Z1, . . . ,Zk, where Xi ⊆ x∪{x}, 1 ≤ k ≤ n, such that x ∈ Z1, and Xi ∩X j = /0, for all 1 ≤ i <
j ≤ k. Similarly, in the definition of [[lsl(x,y)]]x(k) we consider sets Z1, . . . ,Zk where Xi ⊆ x∪{x,y},
1 ≤ k ≤ n, such that x ∈ Z1, y ∈ Zk, and Xi∩X j = /0, for all 1 ≤ i < j ≤ k. In both cases we consider
also a partition 〈Y1, . . . ,Yp〉 ∈ Part(x\ (

Sk
i=1 Zi)).

As an example, in Figure 6 in Appendix A we show the result of computing [[ls(u,x1)]]Z1,...,Zk
,

1 ≤ k ≤ 3, for Zi ⊆ {u,x1,x2}, in the following cases: (a) Z1 = {u,x1}, (b) Z1 = {u,x1,x2}, (c)
Z1 = {u}, Z2 = {x1}, (d) Z1 = {u,x2}, Z2 = {x1}, (e) Z1 = {u}, Z2 = {x1,x2}, and (f) Z1 = {u},
Z2 = {x2}, Z3 = {x1}. The dangling nodes are labeled with D. For simplicity here we avoided showing
all combinations resulting from the different partitionings of dangling variables.

The pure formulae x = nil (x = y) correspond to sets of SGRs are the ones in which x points to nil
(y), and the counters occur unconstrained. Their SGR semantics is defined as follows:

[[x = nil]]x(k) = {〈G,>〉 | G = 〈N,D,R,Z,S,V 〉 ∈ Sk(x), V (x) = Nil}
[[x = y]]x(k) = {〈G,>〉 | G = 〈N,D,R,Z,S,V 〉 ∈ Sk(x), V (x) = V (y)}

Verimag Research Report no TR-2007-9 13/22

Marius Bozga,Radu Iosif,Swann Perarnau

[[emp]]Y1,...,Yp [[x 7→ nil]]Y1,...,Yp
Z [[x 7→ y]]Y1,...,Yp

Z [[lsl(x,nil)]]Y1,...,Yp
Z1,...,Zk

[[lsl(x,y)]]Y1,...,Yp
Z1,...,Zk

N D∪{Nil} D∪{n,Nil} D∪{n,Nil} D∪{n1, . . . ,nk,Nil} D∪{n1, . . . ,nk,Nil}
Z /0 {〈n,z1〉} {〈n,z1〉} {〈ni,zi〉}k

i=1 {〈ni,zi〉}k
i=1

S /0 {〈n,Nil〉} {〈n,dk〉}, if y ∈ Yk {〈ni,ni+1〉}k−1
i=1 ∪{〈nk,Nil〉} {〈ni,ni+1〉}k−1

i=1
V ∆ λx : Z.n∪∆ λx : Z.n∪∆

Sk
i=1 λx : Zi.ni∪∆

Sk
i=1 λx : Zi.ni∪∆

ϕ > z1 = 1 z1 = 1 ∑
k
i=1 zk = l ∧ ∑

k
i=1 zk = l ∧

(x ∈ Zk→ l = 0) (x,y ∈ Zk→ l = 0)

Table 1: SGR for atomic spatial propositions

The SGR semantics for the QSL connectives is defined as follows:

[[T]]x(k) = {〈G,>〉 | G ∈ Sk(x)}
[[ψ1∧ψ2]]x(k) = [[ψ1]]x(k)u [[ψ2]]x(k)

[[¬ψ]]x(k) = {〈G,>〉 | G ∈ Sk(x)}	 [[ψ]]x(k)
[[ψ1 ∗ψ2]]x(k) = [[ψ1]]x(k)� [[ψ2]]x(k)

If π is a purely arithmetic formula, then we have:

[[ψ∧π]]x(k) = {〈G,θ∧π〉 | 〈G,θ〉 ∈ [[ψ]]x(k)}

The semantics for the existential quantifiers is as follows:

[[∃x . ψ]]x(k) = {R↓x | R ∈ [[ψ]]x∪{x}(k−1)}, k ≥ 1
[[∃Nl . ψ]]x(k) = {〈G,∃l . θ〉 | 〈G,θ〉 ∈ [[ψ]]x(k)}

Let FVL(ϕ) = FV (ϕ)∩LVar and FVI(ϕ) = FV (ϕ)∩ IVar denote the sets of location and integer
free variables of ϕ, respectivelly. The following lemma formalizes the correctness of our construction.

Lemma 6 Given ϕ a QSL formula containing only numeric quantifiers (∃N, ∀N), and x = {x1, . . . ,xn}⊆
FVL(ϕ), we have:

Γ
(
[[∃x . ϕ]]FVL(ϕ)\x(n)

)
= {H | ∃ν : FVL(ϕ)\x→ Loc,∃ι : FVI(ϕ)→ N+ . 〈H,ν, ι〉 |= ∃x . ϕ}

Proof: Let L = FVL(ϕ), I = FVI(ϕ) and Γν,ι(S) = {〈G,ψ〉 | 〈G,ψ〉 ∈ S, ι |= ψ}/ in the following. It
is enough to prove that, for all ν : F → Loc and ι : I→ N+, we have:

Γν,ι([[ϕ]]L(0)) = {H | 〈H,ν, ι〉 |= ϕ} (1)

Verimag Research Report no TR-2007-9 14/22

Marius Bozga,Radu Iosif,Swann Perarnau

For, assuming that (1) is true, we have:

Γ
(
[[∃x . ϕ]]L\x(n)

)
= {R↓x | R ∈ [[ϕ]]L(0)} by Lemma 5

=
[

R∈[[ϕ]]L(0)

{〈s[x←⊥],h〉 | 〈s,h〉 ∈ Γ(R)}

=
[

R∈[[ϕ]]L(0)

[
ν : L→ Loc
ι : I→ N+

{〈s[x←⊥],h〉 | 〈s,h〉 ∈ Γν,ι(R)}

=
[

ν : L→ Loc
ι : I→ N+

{〈s[x←⊥],h〉 | 〈s,h〉 ∈ Γν,ι([[ϕ]]L(0))}

= {〈s[x←⊥],h〉 | ∃ν : L→ Loc, ∃ι : I→ N+ . 〈〈s[x←⊥],h〉,ν, ι〉 |= ϕ} by (1)

= {H | ∃ν : L\x→ Loc, ∃ι : I→ N+ . 〈H,ν, ι〉 |= ∃x . ϕ}

For the rest of this proof, let us fix ν : L→ Loc and ι : I→ N+. We prove (1) by induction on the
structure of ϕ. Before we proceed, for a given valuation ν of location variables, let Y ν

1 , . . . ,Y ν
p be the

partition of L induced by the following equivalence relation : xi 'ν x j iff ν(xi) = ν(x j).
For the basic cases we will prove the following statement, equivalent to (1) : for all H ∈ H ,

ν : L→ Loc and ι : I→ N+ :

〈H,ν, ι〉 |= ϕ ⇐⇒ exists 〈G,ψ〉 ∈ [[ϕ]]L(0), where G = 〈N,D,R,Z,S,V 〉 and (2)

κ : img(Z)→ N+ such that ι∪κ |= ψ and H ∈ Γν,ι∪κ(G)

• T : “⇒” Let H = 〈s,h〉 be a heap over PVar and H ′ = 〈s∪ ν,h〉. By definition, [[T]]L(0) =
{〈G,>〉 | G ∈ S0(L)}. Choose G to be the SSG isomorphic to the quotient heap H ′/∼ w.r.t ∼H ′ .
“⇐” Trivial, since always 〈H,ν, ι〉 |= T.

• emp : “⇒” Let H = 〈s,h〉 be a heap such that dom(h) = /0 (H |= emp). Let {〈G,>〉} =
[[emp]]Y

ν
1 ,...,Y ν

p (note that [[emp]]Y
ν
1 ,...,Y ν

p is a singleton set). Clearly ι |= > and H ∈ Γν,ι(G).
“⇐” Let H = 〈s,h〉 ∈ Γν,ι(G), for some SSG G such that 〈G,>〉 ∈ [[emp]]L(0). By defini-
tion of [[emp]]L(0), dom(h) = /0, since G has only dangling nodes and the Nil node. Hence
〈H,ν, ι〉 |= emp.

• x 7→ nil : “⇒” Let H = 〈s,h〉 be a heap over PVar such that s(x) = l and h = {〈l,nil〉}. Let
{〈G,z1 = 1〉}= [[x 7→ nil]]Y

ν
1 ,...,Y ν

p and κ = {〈z1,1〉}. Clearly κ |= z1 = 1, and H ∈ Γν,κ(G). “⇐”
Let κ be a valuation such that κ(z1) = 1, and H = 〈s,h〉 ∈ Γν,ι∪κ(G), for some SSG G such that
〈G,z1 = 1〉 ∈ [[x 7→ nil]]L(0). The fact that s(x) = l and h = {〈l,nil〉} for some l ∈ Loc is now a
trivial check.

• x 7→ y : Similar to the case x 7→ nil.

• lsm(x,nil) : “⇒” Let H = 〈s,h〉 be a heap over PVar such that s(x) = l1 and h = {〈li, li+1〉 | 1≤
i < M}∪ {〈lM,nil〉}, and ι be a valuation such that ι(m) = M. We consider the case M > 0,
the other case M = 0 being left to the reader. Let H ′ = 〈s∪ν,h〉, and H ′/∼ be the quotient heap
w.r.t. ∼H ′ . Let [li1]∼, . . . , [lik]∼, lik = nil, be the equivalence classes of ∼H ′ , ordered such that
i1 < .. . < ik, and let Z1, . . . ,Zk be subsets of {x1, . . . ,xn}∪{x} such that forall y ∈ Z j we have

Verimag Research Report no TR-2007-9 15/22

Marius Bozga,Radu Iosif,Swann Perarnau

s′/∼(y) = [li j]∼, for all 1 ≤ j ≤ k. Let {〈G,ψ〉} = [[lsm(x,nil)]]
Y ν

1 ,...,Y ν
p

Z1,...,Zk
, where ψ : ∑

k
i=1 zi = m.

Notice that x 6∈ Zk, since M > 0. Let κ be a valuation of z1, . . . ,zk such that κ(z j) = |[li j]|,
1≤ j≤ k. We have ι∪κ |= ψ and H ∈ Γν,ι∪κ(G). “⇐” Assume that ι(m) > 0, the case ι(m) = 0
being left to the reader. Let κ be a positive valuation of z1, . . . ,zk such that ∑

k
i=1 κ(zi) = ι(m)

and H ∈ Γν,ι∪κ(G), for some 〈G,ψ〉 ∈ [[lsm(x,nil)]]L(0). The fact that 〈H,ν, ι〉 |= lsm(x,nil) is a
simple check.

• lsm(x,y) : Similar to the case lsm(x,nil).

• x = nil : Let H = 〈s,h〉 be a heap such that s(x) = nil, and H ′ = 〈s∪ ν,h〉. By definition,
[[x = nil]]L(0) = {〈G,>〉 | G = 〈N,D,R,Z,S,V 〉 ∈ S0(L), V (x) = Nil}. Choose G to be the
SSG isomorphic to the quotient heap H ′/∼ w.r.t ∼H ′ . “⇐” Let G = 〈N,D,R,Z,S,V 〉 where
V (x) = Nil. For any ν and ι, if H = 〈s,h〉 ∈Γν,ι(G), we have s(x) = nil, hence 〈H,ν, ι〉 |= x = nil.

• x = y : Similar to the case x = nil.

For the induction steps, we consider the following cases for ϕ :

• ϕ1∧ϕ2 :

Γν,ι([[ϕ1∧ϕ2]]L(0)) = Γν,ι([[ϕ1]]L(0)u [[ϕ2]]L(0))
= Γν,ι([[ϕ1]]L(0))∩Γν,ι([[ϕ2]]L(0)) by Lemma 3

= {H | 〈H,ν, ι〉 |= ϕ1}∩{H | 〈H,ν, ι〉 |= ϕ2} by induction hypothesis

= {H | 〈H,ν, ι〉 |= ϕ1∧ϕ2}

• ¬φ :

Γν,ι([[¬φ]]L) = Γν,ι({〈G,>〉 | G ∈ S0(L)}	 [[φ]]L(0))
= Γν,ι({〈G,>〉 | G ∈ S0(L)})\Γν,ι([[φ]]L(0)) by Lemma 3

= H \{H | 〈H,ν, ι〉 |= φ} by induction hypothesis

= {H | 〈H,ν, ι〉 |= ¬φ}

• ϕ1 ∗ϕ2 :

Γν,ι([[ϕ1 ∗ϕ2]]L(0)) = Γν,ι([[ϕ1]]L(0)� [[ϕ2]]L(0))
= {H1 •H2 | H1 ∈ Γν,ι([[ϕ1]]L(0)), H2 ∈ Γν,ι([[ϕ2]]L(0))} by Lemma 4

= {H1 •H2 | 〈H1,ν, ι〉 |= ϕ1, 〈H2,ν, ι〉 |= ϕ2} by induction hypothesis

= {H | 〈H,ν, ι〉 |= ϕ1 ∗ϕ2}

• φ∧π, where π is a purely arithmetic formula :

Let Sν,ι = {H | 〈H,ν, ι〉 |= φ∧π}. We distinguish two cases:

1. If ι 6|= π then Sν,ι = /0. In this case

Γν,ι([[φ∧π]]L) = Γν,ι({〈G,φ∧π〉 | 〈G,ψ〉 ∈ [[φ]]L(0)}
=

[
〈G,ψ〉∈[[φ]]L(0)

Γν,ι(〈G,ψ∧π〉) = /0

Verimag Research Report no TR-2007-9 16/22

Marius Bozga,Radu Iosif,Swann Perarnau

2. If ι |= π then

Sν,ι = {H | 〈H,ν, ι〉 |= φ}
= Γν,ι([[φ]]L(0)) by induction hypothesis

= Γν,ι([[φ∧π]]L(0))

• ∃Nl . φ :

Γν,ι([[∃Nl . φ]]L(0)) = Γν,ι({〈G,∃l . ψ〉 | 〈G,ψ〉 ∈ [[φ]]L(0)})
=

[
〈G,ψ〉∈[[φ]]L(0)

Γν,ι(〈G,∃l . ψ〉)

=
[

〈G,ψ〉∈[[φ]]L(0)

Γν,ι[l←n](〈G,ψ〉), for some n ∈ N+

= Γν,ι[l←n]([[φ]]L(0))
= {H | 〈H,ν, ι[l← n]〉 |= φ}
= {H | 〈H,ν, ι〉 |= ∃l . φ}

2

As a result, we obtain the decidability of the entailment problem in the ∃∗{∃N,∀N}∗ fragment of
QSL.

Theorem 2 The validity of entailments between formulae in the ∃∗{∃N,∀N}∗ fragment of QSL is a
decidable problem.

Proof: This proof is a direct consequence of Lemma 6. 2

As an example, in Figure 6 and 7 in Appendix A we detail the SGR construction used to show the
validity of the following entailment:

[∃x1,2∃Nl1,2,3 . lsl1(u,x1)∗ lsl2(x1,x2)∗ lsl3(x2,nil)∧ lsl1(u,x2)∗ lsl2(x2,x1)∗ lsl3(x1,nil)]
→ [∃Nl . lsl(u,nil)]

The validity of the entailment is equivalent to the validity of the following Presburger formula:

∀k3[∃l1,2,3 . (l1 = k3∧ l2 = 0∧ l3 = 0)∨ (l1 = 0∧ l2 = 0∧ l3 = k3)∨
(∃k1,2 . k1 + k2 = k3∧ l1 = k1∧ l2 = 0∧ l3 = k2)]→ [∃l . l = k3]

The various combinations resulting from the different partitionings of dangling variables have
been skipped for obvious simplicity reasons.

6 Application of the Model Theoretic Method for QSL

The translation between QSL formulae with quantifier prefix of the form ∃∗{∃N,∀N}∗ and sets of
SGRs gives a method for deciding the validity of entailments in this logic. Moreover, there is another,

Verimag Research Report no TR-2007-9 17/22

Marius Bozga,Radu Iosif,Swann Perarnau

more practical advantage to this approach, that gives us a effective method for the verification of both
shape and numeric properties of programs with lists.

The L2CA tool [3] is a tool for verifying safety and termination properties of programs with
singly-linked lists, based on the translation of programs into counter automata [9]. A counter automa-
ton generated by L2CA has control states of the form 〈l,G〉, where l is a control label of the original
program, and G is a SSG over the set PVar of pointer variables of the input program. By Lemma 1,
the set of control states of a counter automaton generated by L2CA is finite, which guarantees that
each program with lists will be translated into a finite-control counter automaton. The semantics (set
of runs) of the counter automaton generated by L2CA is in a bisimulation relation with the semantics
of the original program, therefore all results of the analysis of the counter automaton (e.g. safety
properties, termination) carry over to the original program.

The fact that any ∃∗{∃N,∀N}∗ QSL formula ϕ corresponds to a set [[ϕ]] of pairs 〈G,ψ〉, where G is
an SSG and ψ is a Presburger constraint, allows us to extend the L2CA tool to check total correctness
of Hoare triples in which the pre- and post-conditions are expressed as ∃∗{∃N,∀N}∗ QSL formulae.
Suppose that {ϕ} P {ψ} is such a triple. Then for each SGR 〈Gk,φk〉 ∈ [[ϕ]] the L2CA tool will
generate a counter automaton Ak with initial state 〈l0,Gk〉, where l0 is the initial control label of the
program P. This automaton corresponds to the semantics of P when started in an initial control state
〈l0,H0〉, where H0 ∈ Γ(〈Gk,φk〉). Let A be the union of all such Ak.

By using a combination of existing tools for the analysis of counter automata, e.g. [6, 2, 1] we can
verify whether A, started in each control state 〈l0,Gk〉with values of counters satisfying the Presburger
constraint φk, reaches a final control state 〈l f ,G f 〉 with the counters satisfying some Presburger con-
straint φ1 such that |= φ→ φ′, for some 〈G f ,φ

′〉 ∈ [[ψ]]. This suffices for checking partial correctness.
On what concerns total correctness, we use a termination analysis tool for counter automata, e.g. [1],
to check whether P, started with any heap H0 such that H0 |= ϕ, terminates.

6.1 Experimental Results

Table 2 presents some experimental results of verifying Hoare triples of the form {ϕ} P {ψ}, where
ϕ and ψ are QSL formulae, and P is a program handling lists. The ListReversal example receives
in input a non-circular list pointed to by u of length l and returns a non-circular list pointed to by v
containing the cells of the first list in reversed order. The BubbleSort and InsertSort programs are
classical sorting algorithms for which we verified that the length of the input list stays the same. The
ListCounter example is a simple loop traversing a list pointed to by u, while incrementing an integer
counter c. InsertDelete is the example from Figure 2.

{ϕ} P {ψ} Size Gen (s) Verif (s) Tool Result
{lsl(u,nil)} ListReversal {lsl(v,nil)} 25 0.4 0.1 Aspic ok
{lsl(u,nil)} BubbleSort {lsl(u,nil)} 500 0.4 0.9 Aspic ok
{lsl(u,nil)} InsertSort {lsl(u,nil)} 880 0.6 2 Aspic ?

{lsl(u,nil)∧ c = 0} ListCounter {lsl(u,nil)∧ c = l} 16 0.2 0.1 Aspic ok
{c = 0∧ emp∧u = nil} InsertDelete {c = 0∧ emp} 6 1.5 0.5 Fast ok

Table 2: Experimental Results using the L2CA and ASPIC tools

1In general this is an over-approximation of the set of reachable configurations, obtained using a combination of precise
(acceleration) and abstract (widening) methods.

Verimag Research Report no TR-2007-9 18/22

Marius Bozga,Radu Iosif,Swann Perarnau

For all examples, the size (number of control locations) of the automata generated by L2CA is
given in the second (Size) column, the time needed for generation in the third (Gen) column, and the
time needed to verify partial correctness of the model is given in the fourth (Verif) column. Finally
the tool used (either Aspic [2] or Fast [6]) is given in the fifth column.

7 Conclusions

We have developed an extension of Separation Logic interpreted over singly-linked heaps, that allows
to specify properties related to the sizes of the lists. This logic is especially useful for reasoning about
programs that combine dynamically allocated data with variables ranging over integer domains.

The decidability of the extended logic is studied, the full quantifier fragment being shown to be
undecidable, by a reduction from the halting problem for 2 counter machines. However the validity
of entailments in the ∃∗{∃N,∀N}∗ fragment of the logic is decidable, which allows the use this frag-
ment to specify Hoare triples for programs with lists. The verification of total correctness properties
specified in this way was made possible by an extension of the L2CA tool.

References

[1] ARMC. http://www.mpi-sb.mpg.de/˜rybal/armc/. 6, 1

[2] ASPIC. http://www-verimag.imag.fr/˜gonnord/aspic/aspic.html. 6, 6.1

[3] L2CA. http://www-verimag.imag.fr/˜async/L2CA/l2ca.html. 1, 6

[4] Smallfoot. http://www.dcs.qmul.ac.uk/research/logic/theory/projects/smallfoot/index.html. 1

[5] A. Annichini, A. Bouajjani, and M.Sighireanu. Trex: A tool for reachability analysis of complex
systems. In Proc.CAV, volume 2102 of LNCS, pages 368 – 372. Springer, 2001. 1

[6] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: Fast accelereation of symbolic transition
systems. In Proc. TACAS, volume 2725 of LNCS. Springer, 2004. 1, 6, 6.1

[7] M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data structures. In
Springer Verlag, editor, Proc. European Symposium On Programming. LNCS, 1999. 1.1

[8] J. Berdine, C. Calcagno, and P. O’Hearn. A Decidable Fragment of Separation Logic. In
FSTTCS, volume 3328 of LNCS, 2004. (document), 1, 1.1

[9] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists are
counter automata. In Springer Verlag, editor, Proc. Computer Aided Verification (CAV). LNCS,
2006. 1, 5.1, 6

[10] M. Bozga, R. Iosif, and S. Perarnau. Quantitative separation logic and programs with lists.
Technical Report TR 2007-15, VERIMAG, 2007. 1.1

[11] R. M. Burstall. Some techniques for proving correctness of programs which alter data structures.
Machine Intelligence, 7:23–50, 1972. 1.1

[12] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via Structure
Simulation. In CAV, volume 3114 of LNCS, 2004. 1.1

Verimag Research Report no TR-2007-9 19/22

Marius Bozga,Radu Iosif,Swann Perarnau

[13] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In POPL,
2001. 1, 1.1, 2

[14] F. Klaedtke and H. Ruess. Monadic second-order logics with cardinalities. In Proc.30th Inter-
national Colloquium on Automata, Languages and Programming. LNCS, 2003. 4

[15] S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmetic Strengthening for Shape Analysis. In
SAS, volume 4634 of LNCS, 2007. 1.1

[16] P. O’Hearn, C. Calcagno, and H. Yang. Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In FSTTCS, volume 2245 of LNCS, 2001. 4

[17] M. Presburger. Über die Vollstandigkeit eines gewissen Systems der Arithmetik. Comptes rendus
du I Congrés des Pays Slaves, Warsaw 1929. 2, 5.2

[18] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Springer Verlag,
editor, Proc. 17th IEEE Symposium on Logic in Computer Science. LNCS, 2002. 1, 1.1, 2

[19] P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In Proc.
CAV, volume 1427 of LNCS, pages 88–97. Springer, 1998. 1

[20] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable patterns
in linked data-structures. In Proc. Foundations of Software Science and Computation Structures.
LNCS, 2006. 1.1

A Deciding Validity of an Entailment

[∃x1,2∃Nl1,2,3 . lsl1(u,x1)∗ lsl2(x1,x2)∗ lsl3(x2,nil)∧ lsl1(u,x2)∗ lsl2(x2,x1)∗ lsl3(x1,nil)]
→ [∃Nl . lsl(u,nil)]

The validity of the entailment is equivalent to the validity of the following Presburger formula:

∀k3[∃l1,2,3 . (l1 = k3∧ l2 = 0∧ l3 = 0)∨ (l1 = 0∧ l2 = 0∧ l3 = k3)∨
(∃k1,2 . k1 + k2 = k3∧ l1 = k1∧ l2 = 0∧ l3 = k2)]→ [∃l . l = k3]

Verimag Research Report no TR-2007-9 20/22

Marius Bozga,Radu Iosif,Swann Perarnau

(a) (b)

(c) (d) (e)

(f)

D

u,x1

x1

D

u

k1

D

u,x1,x2

u x1,x2

Dk1

u,x2 x1

Dk1

D

u,x1,x2

u,x1 x2

Dk1

x1

D

u x2

k1 k2

u,x2 x1

k2k1

u

k1

x1

k2

l1 = k1 ∧ l2 = k2

x2

D

k1 = l1

Nil

x1,x2

x1,x2

Nilk1

x2 x1

k1 k2

x2

k1

Nil

x2

Nil

Nil

[[lsl2 (x1,x2)]]{x1 ,x2}

x1

k1

D

x1,x2

x2

D k1 = l2

k1 + k2 = l1

k1 + k2 = l3

l1 = 0

l2 = 0

[[lsl3 (x2,nil)]]{x1 ,x2}

[[lsl1 (u,x1)∗ lsl2 (x1,x2)]]{x1 ,x2}

l3 = 0

k1 = l3

u,x1,x2

k1

l1 = 0∧ l2 = 0

l1 = k1 ∧ l2 = 0 l1 = 0∧ l2 = k1

l1 = 0∧ k1 = l2

u x1,x2

Dk1

l1 = k1 ∧ l2 = k2

u x1,x2

k1 k2

l1 = k1 ∧ l2 = k2

x2 x1

k3k2

u

k1

l1 = k1 + k2 ∧ l2 = k3

[[lsl1 (u,x1)]]{x1 ,x2}

Figure 6: Solving entailment validity with SGRs (1/2)

Verimag Research Report no TR-2007-9 21/22

Marius Bozga,Radu Iosif,Swann Perarnau

[[lsl1 (u,x1)∗ lsl2 (x1,x2)∗ lsl3 (x2,nil)]]{x1 ,x2}

[[lsl1 (u,x1)∗ lsl2 (x1,x2)∗ lsl3 (x2,nil)∧ lsl1 (u,x2)∗ lsl2 (x2,x1)∗ lsl3 (x1,nil)]]{x1 ,x2}

l1 = 0∧ l2 = 0∧ l3 = 0

Nil

u,x1,x2

u

Nilk1

x1,x2

l1 = k1 ∧ l2 = 0∧ l3 = 0

l1 = 0∧ l2 = 0∧ l3 = 0

Nil

u,x1,x2

u

k1

l1 = 0∧ l2 = 0∧ l3 = k1l1 = k1 ∧ l2 = 0∧ l3 = 0

x1,x2

k2 Nil

u

k1

x1,x2

k2 Nil

u

k1

[[∃x1,x2 . lsl1 (u,x1)∗ lsl2 (x1,x2)∗ lsl3 (x2,nil)∧ lsl1 (u,x2)∗ lsl2 (x2,x1)∗ lsl3 (x1,nil)]]{x1 ,x2}

u

Nilk1

x1,x2

l1 = 0∧ l2 = 0∧ l3 = k1

l1 = k3 ∧ l2 = 0∧ l3 = 0∨
l1 = 0∧ l2 = 0∧ l3 = k3∨

u,x1 x2

Nilk1

l1 = k1 ∧ l2 = 0∧ l3 = k2

x2

k2

l1 = 0∧ l2 = k1 ∧ l3 = k2

Nil

u,x1

k1

x1

k2

l1 = k1 ∧ l2 = k2 ∧ l3 = 0

x2

Nil

l1 = 0∧ l2 = k1 ∧ l3 = 0

u,x1,x2

Nilk1

l1 = k1 ∧ l2 = 0∧ l3 = k2

u,x1,x2

Nilk1

[[lsl (u,nil)]]

Nil

u

Nil

u

l = k3l = 0

u

Nilk3

l1 = 0∧ l2 = 0∧ l3 = 0

∃k1,k2 . k1 + k2 = k3 ∧ l1 = k1 ∧ l2 = 0∧ l3 = k2

u

Nilk3

Figure 7: Solving entailment validity with SGRs (2/2)

Verimag Research Report no TR-2007-9 22/22

	 Introduction
	 Related Work

	 Definitions
	Motivating Example
	 Undecidability of QSL
	 Model Theoretic Method
	Symbolic Shape Graphs
	Symbolic Graph Representations
	From Formulae to Sets of SGR

	 Application of the Model Theoretic Method for QSL
	 Experimental Results

	 Conclusions
	Deciding Validity of an Entailment

