
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

j-POST: a Java Tool Chain for
Property-Oriented Software Testing

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez,
Jean-Luc Richier

Verimag Research Report no TR-2007-7

April 25, 2008

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

j-POST: a Java Tool Chain for Property-Oriented Software Testing

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

April 25, 2008

Abstract

j-POST is an integrated tool chain for property-oriented software testing. This tool chain
includes, a test designer, a test generator, and a test execution engine. The test generation is
based on an original approach which consists in deriving a set of communicating test processes/
obtained both from a requirement formula (expressed in a trace-based logic) and a behavioral
specification of some specific parts of the software under test. The test execution engine is then
able to coordinate the execution of these test processes against a distributed Java program. A
typical application of j-POST is to check the correct deployment of security policies.

Keywords: testing, tool chain, Java, partial specification, requirement, LTL, ERE

Notes:

How to cite this report:

@techreport { ,
title = { j-POST: a Java Tool Chain for Property-Oriented Software Testing},
authors = { Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier},
institution = { Verimag Research Report },
number = {TR-2007-7},
year = { 2007},
note = { }
}

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

1 Introduction

j-POST is an integrated tool chain for Property-Oriented Software Testing (POST).

Property-Oriented Software Testing. The approach proposed in j-POST relies mainly on an original
test generation technique whose theoretical framework is described in [1, 2, 3]. In this framework, a
requirement is expressed by a logical formula built upon a set of (abstract) predicates. Each predicate
corresponds to a (possibly non-atomic) operation to be performed on the system under test (SUT), and is
(user-)provided as a test module indicating how to perform this operation on the actual implementation,
and how to decide whether its execution succeeds or not. The test generation step consists in building a
set of communicating test processes from this partial specification. Each test process is either an abstract
test component or a controller. Then, the test execution engine is able to coordinate the execution of these
processes against a distributed Java program, leading to a satisfiability verdict with respect to the given
requirement.

Comparison with classical Model-Based Testing. This approach offers several advantages over the
more classical model-based test generation technique ([4, 5, 6]) implemented in several existing tools (like
TGV [7], TorX [8], Autolink [9], see [10] or [11] for a more exhaustive survey). First, j-POST is able to
deal with piecewise specifications restricted to specific functionalities. We strongly believe that this feature
is really important in practice, especially in application domains where formal modeling of software is not
a common practice. Specifying only some global requirement and some specific implementation features
in an operational way seems much easier for test engineers than building a complete model of a software.
As a consequence, the test generation step will not require the exploration of such a complete model,
avoiding the well-known state explosion problem. Furthermore, this tool chain remains open in the sense
that various logics can be considered to express the requirements, and new logic plugins can be easily
added. Finally, this tool chain integrates the whole test process, from the design of the partial specification
to the test execution. Note however that the components of this tool chain are loosely coupled, which
allows the use of the test execution engine with other test generators (like TGV).

The remainder of this report is organized as follows. The second section presents general information
about j-POST. The Sect. 3 illustrates the use of j-POST on a small example. Sect. 4,5,6 are respectively
about the test designer, the test generator, and the test execution engine. The Sect. 6 presents some
conclusions about j-POST.

2 General information about j-POST

This section provides a quick overview on j-POST: we describe the whole principle of j-POST, the history
of the tool chain, and a quick start usage guide.

2.1 Principle

An overview of the functioning principle of j-POST is depicted on Fig. 1. The user of j-POST wants to test
an application for which the interface is available. Providing it to the test designer (step 1), the user is able
to elaborate first an abstract test component library by combining the actions offered by the SUT interface.
Secondly, the user establishes one (or more) requirement(s). To do so, he uses as elementary predicate each
property for which he designed a test (available in his library). These two freshly made test entities are
run by the test generator (step 2). The result is the production of a set of instantiated communicating test
components which are purposed to test the requirement. To be launched by the test engine (step 3), the user
can provide a test objective. As so, the test engine uses it to guide the test execution and select the desired
execution among the potential multiple execution described in the generated tests.

Verimag Research Report no TR-2007-7 1/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

Designer

1

Test

Test
Generator

2

Execution
Test

Engine SUT
communication

RMI

Log informations
(pass,fail,inc)

3

Informal Requirement Specified abstract actions

Formal Requirement ATM Library

(TGV tests)

Test Objective

Mapping abstract/concrete
actions

Abstract test suite

Verdict for F

F(pi) ∈ ERE, LTL pi ↔ mi

m1 ‖ · · · ‖ mn communicating

Figure 1: Abstract view of the j-POST testing tool chain

2/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

2.2 History and changelog
Here, we list the the evolution history of the different versions of j-POST for each component of the tool
chain.

2.2.1 Test designer

For the test designer component the history is the following:

• 02 November: version 0.2 released

* Full inclusion of the test case editor as an Eclipse EMF plugin.

* Corrected a bug with the output path of the test case image.

* Improved the distribution package.

• 01 October: version 0.1 released: now publicly available.

• 15 June 07: first beta version.

2.2.2 Test generator

For the test generator component the history is the following:

• 19 November: version 0.3 released

* Support for Extended Regular Expression as requirement formalism

• 02 November: version 0.2 released

* Improved the distribution package

• 01 October: version 0.1 released: now publicly available.

• 15 June 07: first beta version.

2.2.3 Test execution engine

For the test execution engine component the history is the following:

• 09 November: version 0.2.1 released.

* Improved graphs of execution logs

• 02 November: version 0.2 released.

* Corrected a bug in the communication between test processes.

* Improved the distribution package.

• 01 October: version 0.1 released: now publicly available.

• 15 June 07: first beta version.

2.3 Installation and usage
The three tools of j-POST are freely available separately in three archives: TestDesigner.tar.gz, TestGener-
ator.tar.gz, TestEngine.tar.gz. The tool chain is available on the j-POST web site [12].

Verimag Research Report no TR-2007-7 3/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

2.3.1 Test designer

With the graphic version Just run the executable file contained in the specific version for your operating
system. Then edit the preference, in the preference menu.

With the command line version

Installation. In order to use the test designer, you must have available on your system the following
applications.

• Eclipse EMF [13] is needed by the TestDesigner-Editor.

• DOT is needed for the TestDesigner-Visualizer. Dot is part of the GraphViz [14] distribution.

In order to install the test designer component, please follow the installation instructions:

1: Decompress the package TestDesigner.tar.gz.

Installation of the TestDesigner-Editor

2a: Put the plugins directory in your Eclipse-EMF directory

3a: Re-launch Eclipse. The plugin should appear in About Eclipse SDK→Plugins Details list

Installation of the TestDesigner-Visualizer

2b: Set the path to the dot executable on your system. Edit the ’preferences’ file and indicate the path to
the dot executable.

Generally:

LINUX: /usr/bin/dot

MAC OS X: /sw/bin/dot

Note that this step is optional as one can specify the DOT path in command line (use the -help option
for more details).

3b: Create an input directory for your XML test cases.

4b: Put the test cases in this directory.

Usage, running instructions

TestDesigner-Visualizer. There are two ways for launching the j-POST Test Designer-Visualizer.

- Launch the (UNIX) script designTest, to do so:

launchTest INPUTDIR OUTPUTDIR

where:

* INPUTDIR is the name of the directory containing the test case to be displayed.

* OUTPUTDIR is the name of the directory containing the result of the design.

- Use directly the jar TestDesigner.jar providing your desired options. Type

java -jar TestDesigner.jar –help

for the description of the available options.

4/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

TestDesigner-Editor. To use the editor, follow these instructions:

1 Create a new project in your workspace

2 Create a new TestCase Model:

* Right-Click on your project

* Select New→Other...

* Example EMF Model with creation wizard→TestCase Model

* Set a name for your test case

3 Edit your freshly made test case, by using the New Child and New Sibling commands

2.3.2 Test generator

With the graphic version Just run the executable file contained in the specific version for your operating
system. Then edit the preference, in the preference menu.

With the command line version

Installation. Please follow these steps to install the test generator.

1 Decompress the package TestGenerator.tar.gz.

2 Put the test cases in the ressource directory.

3 Indicate a requirement in a file.

Usage, running instructions. There are two ways for launching the j-POST Test Generator.

• Launch the (UNIX) script genTest which contain default option, to do so:

genTest REQUIREMENT

where REQUIREMENT is the path to the requirement file for the test generation.

The default option are:

* output path: output

* no logging

• Use directly the jar TestGenerator.jar providing your desired options. Type

java -jar TestGenerator.jar -help

for the description of the available options.

2.3.3 Test engine

With the graphic version Just run the executable file contained in the specific version for your operating
system. Then edit the preference, in the preference menu.

With the command line version

Verimag Research Report no TR-2007-7 5/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

Installation.

1 simply decompress the package TestEngine.tar.gz.

2 copy your test case directory at the location of your choice (for example in the same directory).

Usage, running instructions. There are two ways for launching the j-POST Test Engine.

• Launch the (UNIX) script launchTest, to do so type:

launchTest TESTCASE

where TESTCASE is the path to the the directory containing the test case generated with the j-POST
test generator.

• Use directly the jar TestEngine.jar providing your desired options. Type

java -jar TestEngine.jar -help

for the description of the available options.

3 Illustrating the use of j-POST on an example

We describe in this section the use of j-POST on an example. Tests are designed, generated, executed
using the j-POST toolchain to check some properties on a travel agency application [15], called Travel.
We take as inputs an informal requirement extracted from the functional specification of Travel and the
application interface. The requirement we choose for the demonstration purpose is informally expressed
as “it is impossible to create a mission in Travel before being connected”.

3.1 Test design

We start by presenting the test design stage, that is the requirement formalization and the edition of test
modules.

Requirement formalization. A possible understanding of our requirement could be that a behaviour in
which it is possible to create a mission before performing the identification action is not desired. In other
words, we can say that we require no mission creation until a connection is open. This informal statement
refers to two abstract operations: “create a mission”, and “open a connection”. In the following we re-
spectively designate these two operations by the predicates missionCreation() and connection(). The
requirement can be expressed formally by an LTL formula: (¬missionCreation()) U connection().

Test module edition. The test module edition in j-POST is represented on the Fig. 2. The user of the
designer adds (left-hand side) transition and the corresponding graph is pictured (right-hand side).

Test modules have to be created by the user for the predicates missionCreation() and connection().
Each of this module should describe:

• how to perform the abstract operation using the Travel interface;

• what is the test verdict obtained (depending on how Travel reacts).

6/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

Figure 2: Edition of a test module with the designer

Possible test modules are proposed in Fig. 3, produced with the j-POST test designer. The connection
test module (left-hand side) contains three possible execution sequences: a correct call to the connec-
tion method identify (the user is “Falcone”, the correct password is “azerty”, which corresponds to a
registered user of Travel), an incorrect one (the password is “qwerty”, it is not valid), and an execution
where the connection procedure is never called. Note that the call to the identify() method returns
an identification number which is stored in a shared variable (between test components) called id. The
createMission test module (right-hand side) consists of calling the missionRequest() method, sup-
plying the shared variable id as an identification number. Depending on the return value (createOk), it
delivers the corresponding verdict.

Inside the toolchain these modules are represented using an XML format, but, from a practical point of
view, the j-POST test designer facilitates their writing and edition.

Figure 3: Test modules for predicates connection() and createMission()

Verimag Research Report no TR-2007-7 7/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

Figure 4: Generation of a test case with the test generator

3.2 Test generation

The requirement stated, and the test modules designed (Fig. 3), we are now able to perform the test gen-
eration. On Fig. 4, the generation is illustrated by a screenshot of the test generator. In order to illustrate
such a generation process, we give an insight of the generated test case on Fig. 5. The structure of this
test case follows the structure of the formula. It contains a test controller for each operator appearing in
the formula (Until and Not), and a test module for each predicate (missionCreation() and Connection()).
The testCaseLauncher is in charge of managing the execution of the testcase and emitting the final
verdict. The c start (resp. c stop, c loop, c ver) channels are used by the processes to perform starting
(resp. stopping, rebooting, verdict transmission) operations.

3.3 Test execution

The next operation to perform is to choose a test objective in order to restrict the set of potential test
executions. Regarding the requirement we consider (“no mission creation until a connection is open”), an
interesting objective is to try to falsify this requirement in order to exhibit an incorrect behaviour of the
software under test. Falsifying such a requirement means for instance producing an execution sequence
where :

• the verdict delivered by missionCreation() is pass (possibly after several previous fail results) ;

• in the meantime, the verdict delivered by connection() remains always fail.

8/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

rootTestCase

Controller
until

Controller
not

mission_creation

connection

c start2, c stop2, c ver2, c loop2

c start0, c stop0, c ver0, c loop0

c start3, c stop3, c ver3, c loop3

c start1, c stop1, c ver1, c loop1

Figure 5: Test case produced from ¬(missionCreation)U connection

Such a test objective can be obtained from the test modules given on Fig. 3. However, obtaining a fail
verdict for a connection operation can be fully controlled by the test execution engine (e.g., by supplying
an incorrect password), whereas the verdict returned by a mission creation cannot be controlled (it only
depends on the SUT behaviour).

The test objective defined, and the test case generated, one can use the test execution engine to execute
the test case against the SUT. Such an operation is illustrated on Fig. 6.

Three versions of the Travel application have been tested:

• Experiment 1. In the first (erroneous) version of Travel a mission creation request is always accepted,
therefore our requirement is false (a mission can be created by a non connected user). The test
execution engine detects this error (it delivers a fail verdict) and produces the test execution traces
and graphs for the test case and each module.

• Experiment 2. In the second (erroneous) version of Travel a mission creation request is accepted
either if the identification number supplied is correct (it corresponds to a return value of a connection
request), or if it is the third attempt to create this mission. Therefore our requirement is still false: if a
non connected user tries repeatedly to create a mission, it eventually succeeds. This error is detected
by the test engine, which delivers a fail verdict.

• Experiment 3. Finally, the third version of Travel always refuses a mission request as long as the
identification number supplied is invalid. Thus, the only way for a non connected user to create a
mission is to “guess” a correct identification number. This cannot be achieved by our test execution
engine, which delivers here a pass verdict.

4 Test Design
This section describes how it is possible to design test entities (abstract test case library and requirement)
with the j-POST Test Designer (Fig. 7).

4.1 Overview
The interface of the SUT contains a set of public variables and methods. Using this input, the user writes a
library of abstract test modules, corresponding to high-level operations that can be performed on the SUT.
These components can be viewed as terms of a “test calculus” [1]. Roughly speaking, this calculus offers
the basic primitives required to compose elementary actions in order to describe more complex behaviours.
These primitives include sequential and parallel composition, non-deterministic choice, recursion, and data
manipulations. The elementary actions can be either internal actions of the test components (like internal

Verimag Research Report no TR-2007-7 9/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

Figure 6: Execution of a test case with the test engine

variable assignments) or external calls to the SUT interface. Note that the execution of an external action
is considered atomic.

The test designer of j-POST provides a user interface to design these abstract test modules and visualize
them in an intelligible way. The XML format has been chosen as an internal representation of these
components. We used the Eclipse Modeling Framework [13] to generate a test writer: users of j-POST test
designer can produce their test cases by composing interface actions without error-prone manipulation of
XML. Also, we provide a test case viewer representing the test case as a labelled transition system. This
part of the test designer uses GraphViz [14] to generate the test case image.

5 Test Generation

This section describes the functioning of the test generator and the test generation process (Fig. 8).

5.1 Overview

The j-POST test generator consists mainly in a test generation function. This function takes as input a
formal requirement φ, written in a trace-based logical formalism. It produces a complete test case following
a syntax-driven approach:

• For each atomic predicate Pi of φ, an instance of the corresponding abstract test component ti is
produced ;

10/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

Requirement
Editor

Formal Requirement ATM Library

TestDesigner

Graph representation

Specified Abstract ActionsInformal Requirement

Editor
Test Module

Test ModuleTest Modules
Visualizer

F(pi) ∈ ERE, LTL pi ↔ mi

(png, jpeg, . . .)

Figure 7: Architecture of the test designer of j-POST

Requirement

Test

Instanciation

Test Tree

Builder

Requirement
Parser

Instanciated tests

ATC Library

GeneratorTest

F(pi) ∈ ERE, LTL

t1 ‖ · · · ‖ tn communicating

pi ↔ ti

Figure 8: Architecture of the test generator of j-POST

Verimag Research Report no TR-2007-7 11/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

• For each subformula φ = F (φ1, · · · , φn) of φ, the test generator function instantiates a (generic) test
controller dedicated to the operator F , to be executed in parallel with the test processes (recursively)
obtained for each φi. The purpose of the test controller is both to schedule the test execution of the
sub-testers and to combine their verdicts in order to produce the verdict associated to φ.

Generic test controllers and test generation algorithms have been defined for different specification for-
malisms. So far, j-POST supports two common-use formalisms.

• Temporal logics [16] like LTL are frequently used in the verification community to express require-
ments on reactive systems. We consider here fragments of such logics whose models are set of finite
execution traces. Our case studies have shown however that many concepts of access control security
policies fall in the scope of these logics.

• Extended Regular Expressions. Regular expressions [17] are another formalism to define behavior
patterns expressed by finite execution traces. They are commonly used and well-understood by
engineers. We provide support for for the negation operator to allow the specification of not desired
behaviors.

5.2 Parsing of the requirement
The first stage is the construction of a communication tree obtained from the abstract syntax tree of the for-
mula. This tree expresses the communication architecture between the test processes that will be produced
by the test generator. Its leaves are abstract test components corresponding to the atomic predicates of the
formula, as they are provided by the user. Its internal nodes are (copies of) generic test controllers, corre-
sponding to the logical operators appearing in the formula (they are obtained from a finite set of generic
controllers provided by the logic plugin). Finally, the root of this tree is a special test process, called
testCaseLauncher, whose purpose is to initiate the test execution and delivers the resulting verdict.

The analysis of the formula (expressing the requirement) is performed thanks to a syntactic analyzer.
To realize the parsing, we chose Java-CC [18]. This a Java parser/scanner generator. It generates a set of
Java classes by analyzing a set of grammar rules (see Sect. B) describing the language to be analyzed and
the Java code inserts to be performed.

p3(a, b, c)

p1() p2

U

∨

Figure 9: Abstract syntax tree corresponding to (p1() ∨ p2())Up3(a, b, c)

5.3 Implementation of the test generation function (Test tree building + Test in-
stanciation)

To apply the test generation principle ([3], Sect. 3), we build the abstract syntax tree. For instance, if we
consider the LTL expression: (p1() ∨ p2())Up3(a, b, c), the abstract tree is represented on Fig. 9. In the
following, we illustrate only the implementation for the LTL version of GenTest, the principle is identical
for the EREs. Thanks to the syntactic analyzer, we built the syntactic tree. In order to represent the tree in
memory, we defined the following classes:

• Node.java: This is an abstract class containing all the information shared by the tree nodes. Each of
the following classes representing the nodes inherit from this class. It rules the implementation of
the needed methods for the generation.

12/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

?c loop()

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Figure 10: Instantiation of an abstract test component tp

• FormulaNode.java: Represents the always, eventually controller of arity 1.

• PredicateNode.java: Represents the test predicate of the formula.

• BinaryOperationNode.java: Represents the controllers and, or, involve and until of arity two

Each of these classes (representing the controllers or the predicates) owns one or several attributes
representing their operands. As the GT function is recursive, it is defined in each of the controller class,
the Test function in the class PredicateNode and GenTest in the class Node.

As seen before, the test processes (predicates, and controllers) are represented in XML. Each of the test
being instantiated by GenTest, their structure or parameters are modified. We used JDOM [19], a tool
permitting the manipulation and modification of XML data.

For each of the requirement formalism, the principle is:

• GenTest: Creates the master controller managing the test process at the highest level in the tree. In
a second time, it calls the generation method of this process passing in parameter a fresh canal name
allowing the instantiation.

• GT (Fn(φ1, · · · , φn), cs): Takes a channel number and generates as new numbers as the operator
F has operands. Then the controller is instantiated by modifying the channel names to instantiate.
After, we call successively the generation method on the children processes given them in parameter
the generated channel names.

• Test(tp, {c start, c stop, c loop, c ver}) Takes a channel number and generates control states and
transitions of this predicate and implements it in the structure (see Fig. 10).

Once this stage finished, we obtain a list of XML files representing the instantiated test processes.
They can be used then as an entry for the test execution engine. Furthermore, the test execution needs the
existence of two supplementary files. The first one is the list of all actions that each of the tests process
can perform. The second one is the list of the channel used in the potential internal communication of the
test processes. This files are also defined in a XML scheme. These two files are produced during the tree
browsing by GenTest.

6 Test Execution
This section describes how tests are executed with the j-POST test execution engine (Fig. 11).

6.1 Overview

The purpose of the test execution engine is to produce a verdict for the initial requirement. To do so, it uses
the complete test case produced by the test generator and a test objective.

Verimag Research Report no TR-2007-7 13/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

ATC Engine

Concretisation
Wrapper

Scheduler

Logger

Instanciated tests

Objective
Engine

Test case
Loader

SUT

EngineTest Execution

communication
RMI

information
execution

Execution traces

Execution graphs

(pass,fail,inc)

Test Objective

abstract external
actions

t1 ‖ · · · ‖ tn communicating

Verdict for F

Figure 11: Architecture of the test execution engine of j-POST

Test selection using dynamic test objectives. The test case produced by the test generator may contain
a bunch of possible test executions (due to possible non-determinism in the abstract tests components,
and and parallel composition). To bring some determinism in the test execution and to avoid inconclusive
verdicts, the test execution engine uses dynamic test objectives. We distinguish two kinds of objectives.
The first one are related to the verdict of the requirement formula: we select among the possible execution
sequences the ones that are the more likely to lead toward a desired evaluation (depending whether we
want to exhibit a correct or an incorrect behaviour of the SUT with respect to this requirement). Thus, this
global objective (finding a valid or invalid execution sequence) is transformed into a set of local objectives,
one for each test component. An interesting feature is that the local objectives can change during the
test execution: for instance, to falsify the formula φ1 ⇔ φ2, the verdict obtained for subformula φ1 may
influence the local objective associated to the subformula φ2. The second kind of test objective is more
classical in the sense that they consist in “scenarios” (or execution patterns) the user wants to see during
the test execution.

Multi-threaded test execution with “on-the-fly” concretisation. Once the test process has to perform
an external action, this action is concretised “on-the-fly”. To do so, the user furnishes a mapping between
the external action and the SUT interface actions. Using this mapping, the test execution engine concretises
the action and produces the corresponding interface call. Each test process produced by the test generator
is executed in a separate Java thread. It also allows a user to define scheduling policies and priority order
between each type of interaction.

6.2 Functionning principle

The purpose of this tool is to execute a set of test processes to decide a verdict allowing to validate or not the
requirement used to generate the tests. A set of communicating test processes is used as an input of the tool.
In the first time, the files containing the channel, and the action list are analyzed. Then in a second time,
the file of each of the given test process is analyzed in order to the corresponding automaton in memory.
Each of the test process is modeled by a Java thread in memory. As so, to launch the corresponding test
process, we just have to launch the thread.

14/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

6.2.1 Construction and evaluation of the test automaton

Each of the test processes owns a memory containing the set of variables and parameters. There is also
a set of states and transition which actions are of several types (see the next section). Moreover, the test
processes detain a shared memory allowing to stock common values. When a test process is launched, it
starts evaluate the guard of the transitions which departure state is the initial state. The guard are boolean
expression, their evaluation is ensured by a parser generated by Java-CC. The grammar of the boolean
expression can be found in Sect. A. The test process is going to obtain the list of the possible transitions
and will be able to choose later the one it will perform. The next subsection explains how this choice
is done. Once the action determined, the test process tries to realize it. If it succeeds, the stage change
is executed and the execution is pursued following the same principle. If not, the test process makes
another choice with the remaining transitions and tries to execute the recently chose action. If no action is
performed well, the test process stops its execution.

6.2.2 Types of actions and execution policies

A test can perform three different kinds of actions.

• Internal. These actions are local to the process, typically data manipulations, or temporisation ac-
tions.

• Internal communication. These are synchronization operations with other processes. The process
wants to receive or emit a signal with parameters or not through a specified channel. All processes
that want to synchronize using this channel wait that other participants are in the rendez-vous. De-
pending on the policy, the processes will have to wait for all expected participants or only for a
subset. At least, one emission and one reception is required in order to realize the communication.

• External. These are actions to performed involving the SUT. It is possible to use several different
parameters and wait for a returning value that can be used in the following actions of a test pro-
cess. This type of action needs a synchronization stage as this action are in an abstract form. This
concretisation translates the action in an action realizable on the architecture to be tested (see next
subsection).

In some state a conflict can appear as soon as several actions can be performed (several guard true).
The possible conflicts are:

• between internal actions,

• between external actions,

• between internal communication actions,

• between internal and external actions,

• between internal and internal communication actions,

• between external and internal communication actions,

• between all kind of actions.

6.2.3 Local policy of the test process

Several policies can be considered to favor one kind of actions or an other. In order to be modular as
possible, a specific class encodes the policy that one might want to choose. In the default policy, the
process privileges internal actions among all the other kinds, then external actions are preferred, and finally
the internal communications. The scheduler has to solve conflicts when only internal communications are
involved. One can easily implements several can of policy. For instance, it seems interesting to realize all
execution possibilities when a conflict occurs, angle the test dynamically or change dynamically the policy
during the execution.

Verimag Research Report no TR-2007-7 15/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

<interaction guard="true" type="emission_reception" scope="external">
<call name="identify">

<param type="string" value="A_Possible_Login" />
<param type="string" value="A_Password" />

</call>
<var name="id" type="integer" />

</interaction>

Figure 12: Example of how an external action is XML-coded

6.2.4 Scheduling policy

For the scheduler several policies can be also implemented. The scheduler is in charge of solve conflicts
for the test processes when a choice need to be done about several internal communication actions. In the
implemented policies the scheduler examines the conflicting set of actions. The process is blocked as long
as a solution to the conflict is not found. Once freed, the scheduler has decided the action to be performed,
the process executes it. But if there is no action, that means the process is in deadlock and no action is no
longer possible.

6.3 Concretisation of external actions
The external actions are represented in an abstract form in the test processes. This abstraction allows to
be independent towards the tested architecture. A concretisation phase is so needed for these actions to
become executable on the SUT. To be as general as possible the concretisation stage is independent from
the test execution engine. It uses a mapping allowing the translation of external actions. For now, the
concretisation towards Java RMI [20] is supported. We are studying how other technologies can be used
with our test execution engine. One seems interesting, JMS [21] is a technology offering asynchronous
message passing.

6.3.1 Modelization of external actions

The possible kinds of action for an external action are:

• emission: corresponds to a call on the SUT. No answer is waited

• reception

• emission-reception: the test processes performs a call on the SUT and a return value is waited.

On Fig 6.3.1 is an example of XML code describing an external action. In order for an action to be
external, the scope attribute value must be external. The type is one of those predefined. In the provided
example, the test process will process the abstract action “identify”, to do so, it gives two string parameters
and waits for a return value of type integer which is supposed to be stored in the variable id.

In order for an action external action to be executed, the scope attribute value has to be external. The
type is one of those previously defined. In this example, the test process will perform the abstract action
“identify”, to do so, it gives two parameters of type string and waits for a return value of type integer that
will be stored in the id variable.

6.3.2 Elements needed for the mapping

The mapping principle is to translate an abstract action in a concrete one in an easy and elegant way. It is
needed to know the targetted architecture. For now, j-POST supports black box testing via RMI technology.
The elements for which a concretisation is necessary are:

• Call name: The possible calls are the available methods in the remote interfaces made available by
the SUT. It is so needed to define the interfaces, their locations, and the callable methods.

16/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

<mapping>
<interface name="diag" url="rmi://distanceHost/">
<method abstractName="identify" realName="identify" arity="2" />
</interface>
</mapping>

• Types of the input parameters and returning values. A correspondence is needed between abstract
types and their equivalent in the target value. For now the abstract corresponds simply to the equiv-
alent in Java. The XML scheme is given in Sect. A.

In this file, an interface, named diag is declared. The url corresponds to the object location. In the RMI
technology, to get a distant object, it is needed to use rmiregistry: a directory listing all available remote
interfaces. From the interface name and the url, the rmiregistry will return a reference on the remote object.

Elements of type method are declared for the diag interface. These elements correspond to the callable
methods

6.4 Choice of a test objective
The classical notion of test objective has been adapted to fit in the Property-Oriented Software Testing
approach. We introduced a first version of the test objectives in [22] in which we expose the motivations
and the theoretical definition of test objectives.

From an abstract point of view, the test selection guided by a test objective is performed by the scheduler
component of the engine. Once some test processes request to perform an operation (either a communica-
tion or an interaction with the SUT), the scheduler “follows” the test objective. The choice of the performed
action is given by the semantic rule of test selection.

7 Conclusion
This report presents a Java tool chain for testing properties on software, funded on an original approach.
The test generation is driven by a formal requirement and works from partial specifications and algebraic
test composition. The development architecture allows extensions by adding logical formalisms via logic
plugins. One of the motivation of this approach is to validate the correct deployment of security policies,
e.g. in the Politess [23] project.

Verimag Research Report no TR-2007-7 17/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

A XML scheme descriptions

A.1 Test process description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- Tag testCase -->
<xs:element name="testCase">
<xs:complexType>
<xs:sequence>
<!-- param marker : parameters of the testCase -->
<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="channelList" minOccurs="0" maxOccurs="3">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="startC" type="xs:string" use="required" />
<xs:attribute name="stopC" type="xs:string" use="required" />
<xs:attribute name="loopC" type="xs:string" use="required" />
<xs:attribute name="verC" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="channelSet" />
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
</xs:complexType>

</xs:element>

<!-- declare marker : declaration of a variable -->
<xs:element name="declare" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
<xs:attribute name="shared" type="xs:boolean" use="optional" />
</xs:complexType>

</xs:element>

18/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

<!-- Tag state : declaration d’un etat de l’automate -->
<xs:element name="state" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<!-- Tag transition : description d’une transition de l’automate -->
<xs:element name="transition" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<!-- Tag interaction : description d’une action de la transition -->
<xs:element name="interaction">
<xs:complexType>
<xs:sequence>
<xs:element name="channel" type="xs:string" minOccurs="0" />
<xs:element name="expression" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="optional" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="required" />
</xs:complexType>

</xs:element>

<!-- For external action -->
<xs:element name="call" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="channelSet" />
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

Verimag Research Report no TR-2007-7 19/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

<xs:element name="var" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="emission"/>
<xs:enumeration value="reception" />
<xs:enumeration value="emission_reception" />
<xs:enumeration value="affectation" />
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="scope" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="internal"/>
<xs:enumeration value="external" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="guard" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="nextState" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="initial" type="xs:boolean" use="optional" />

</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:schema>

20/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

A.2 Channel description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="channelList">
<xs:complexType>
<xs:sequence>
<xs:element name="channel" maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
<xs:element name="type" minOccurs="0" maxOccurs="unbounded" >
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="name" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="arity" type="xs:integer" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

A.3 Action description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="actionList">
<xs:complexType>

<xs:sequence>
<xs:element name="interaction" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="channel" type="xs:string" minOccurs="0" />
<xs:element name="expression" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="optional" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

Verimag Research Report no TR-2007-7 21/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

<!-- For external action -->
<xs:element name="call" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="channelSet" />
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
<xs:element name="var" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="verdict" />
<xs:enumeration value="boolean" />
<xs:enumeration value="integer" />
<xs:enumeration value="string" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="type" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="emission"/>
<xs:enumeration value="reception" />
<xs:enumeration value="emission_reception" />
<xs:enumeration value="affectation" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="scope" use="required" >
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="internal"/>
<xs:enumeration value="external" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="guard" type="xs:string" use="required" />
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

22/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

B Requirement formalism grammar

B.1 Linear Temporal Logic

The initial syntax of a formula ϕ in LTL is given by the following grammar, where the atoms {p1, . . . , pn}
are action predicates.

ϕ ::= ¬ϕ | ϕ U ϕ | ϕ ∧ ϕ | pi

To be used with Java-CC we modified the grammar as follows.

Spec ::= Formula ;
Formula ::= Mod Term | Term
Term ::= Term OpBin Factor | not Factor | Factor
Factor ::= Predicate | (Formula)
OpBin ::= and | or | => | until
Mod ::= always | eventually
Predicate ::= name (ListParam)
ListParam ::= name EndListParam | epsilon
EndListParam ::= , name | epsilon

Notice that we used the following conventions:

• the axiom is Spec

• the non-terminals start with a capital letter, the terminals are {; , () ⇒ always eventualy or and not until}.

And the same grammar LL(1) :

Formula ::= Mod Term Dir = {always, eventually}
| Term Dir = {not, name, (}

Term ::= Term1 Term2 Dir = {name, not}

Term2 ::= OpBin Term1 Term2 Dir = {and, or, =>, until}
| epsilon Dir = {), ;}

Term1 ::= Factor Dir = {name}
| not Factor Dir = {not}

Factor ::= Predicate Dir = {name}
| (Formula) Dir = { (}

OpBin ::= and | or | => | until
Mod ::= always | eventually

Predicate ::= name (ListParam)

ListParam ::= name EndListParam Dir = {name}
| epsilon Dir = {) }

EndListParam ::= , name Dir = { , }
| epsilon Dir = {) }

Verimag Research Report no TR-2007-7 23/25

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier j-POST

B.2 Extended Regular Expressions
To Be Done

References
[1] Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A Test Calculus Framework Applied to

Network Security Policies. In: FATES/RV. (2006) 1, 4.1

[2] Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A Compositional Testing Framework Driven
by Partial Specifications. In: TESTCOM/FATES. (2007) 1

[3] Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A partial specification driven compositional
testing method. Technical Report TR-2007-04, Vérimag Research Report (2007) 1, 5.3

[4] Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software - Concepts and
Tools 17(3) (1996) 103–120 1

[5] ISO/IEC 9946-1: OSI-Open Systems Interconnection, Information Technology - Open Systems In-
terconnection Conformance Testing Methodology and Framework. International Standard ISO/IEC
9646-1/2/3 (1992) 1

[6] Brinksma, E., Alderden, R., Langerak, R. Van de Lagemaat, J., Tretmans, J.: A Formal Approach
to Conformance Testing. In De Meer, J., Mackert, L., Effelsberg, W., eds.: Second International
Workshop on Protocol Test Systems, North Holland (1990) 349–363 1

[7] Jard, C., Jéron, T.: TGV: theory, principles and algorithms, A tool for the automatic synthesis of con-
formance test cases for non-deterministic reactive systems. Software Tools for Technology Transfer
(STTT) 6 (2004) 1

[8] Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing - Côte de Resyste. In: Pro-
ceedings of the First European Conference on Model-Driven Software Engineering. (2003) 13–25
1

[9] Koch, B., Grabowski, J., Hogrefe, D., Schmitt, M.: Autolink: A tool for automatic test generation
from sdl specifications. wift 00 (1998) 114 1

[10] Hartman, A.: Model Based Test Generation Tools Survey. Technical report, AGEDIS Consortium
(2002) 1

[11] Belinfante, A., Frantzen, L., Schallhart, C.: Tools for test case generation. In Broy, M., Jonsson, B.,
Katoen, J.P., Leucker, M., Pretschner, A., eds.: Model-Based Testing of Reactive Systems. Volume
3472 of Lecture Notes in Computer Science., Springer (2004) 391–438 1

[12] j-POST Reference Page: http://www-verimag.imag.fr/jpost. (2007) 2.3

[13] The Eclipse Foundation: Eclipse Modelling Framework. http://www.eclipse.org/modeling/emf
(2007) 2.3.1, 4.1

[14] AT&T Research: Graph Visualization Software. http://www.graphviz.org (2007) 2.3.1, 4.1

[15] Falcone, Y.: A Travel Agency Application. Technical report, Vérimag (2007) 3

[16] Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer-Verlag New York,
Inc., New York, NY, USA (1995) 5.1

[17] Kleene, S.C.: Representation of events in nerve nets and finite automata. In Shannon, C.E., McCarthy,
J., eds.: Automata Studies. Princeton University Press, Princeton, New Jersey (1956) 3–41 5.1

[18] SUN Java.net: Java-CC. http://javacc.dev.java.net (2007) 5.2

24/25 Verimag Research Report no TR-2007-7

j-POST Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier

[19] Jason Hunter: JDOM. http://www.jdom.org (2007) 5.3

[20] Java Remote Method Invocation: Java RMI. http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
(2007) 6.3

[21] Java Message Service: JMS. http://java.sun.com/products/jms/ (2007) 6.3

[22] Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: j-POST: a Java Toolchain for Property-
Oriented Software Testing. In: Model-Based Testing (MBT). (2008) 6.4

[23] Project Politess: ANR-05-RNRT-01301. http://www.rnrt-politess.info (2007) 7

Verimag Research Report no TR-2007-7 25/25

	Introduction
	General information about j-POST
	Principle
	History and changelog
	Test designer
	Test generator
	Test execution engine

	Installation and usage
	Test designer
	Test generator
	Test engine

	Illustrating the use of j-POST on an example
	Test design
	Test generation
	Test execution

	Test Design
	Overview

	Test Generation
	Overview
	Parsing of the requirement
	Implementation of the test generation function (Test tree building + Test instanciation)

	Test Execution
	Overview
	Functionning principle
	Construction and evaluation of the test automaton
	Types of actions and execution policies
	Local policy of the test process
	Scheduling policy

	Concretisation of external actions
	Modelization of external actions
	Elements needed for the mapping

	Choice of a test objective

	Conclusion
	XML scheme descriptions
	Test process description
	Channel description
	Action description

	Requirement formalism grammar
	Linear Temporal Logic
	Extended Regular Expressions

