Unité Mixte de Recherche 5104 CNRS - INPG - UJF

Centre Equation
2, avenue de VIGNATE
3 F-38610 GIERES
EI.ImaG tel : +33 456 52 03 40
fax : +33 456 52 03 50

http://www-verimag.imag.fr

Using BIP for Modeling and
Verification of Networked Systems —
A Case Study on TinyOS-based
Networks

Ananda Basu, Laurent Mounier, Marc Poutlsi Jacques
Pulou, Joseph Sifakis

Technical Report n* TR-2007-5

April 12, 2007

Reports are downloadable at the following address
http://www-verimag.imag.fr

e
| JOSEPH FOURIER
S THINDOE MDA, .A
s

http://www-verimag.imag.fr

Using BIP for Modeling and Verification of Networked Systems—
A Case Study on TinyOS-based Networks

Ananda Basu, Laurent Mounier, Marc Poutsi Jacques Pulou, Joseph Sifakis

April 12, 2007

Abstract

Complex heterogeneous systems such as networked systamspsed of hardware and soft-
ware, are validated by simulation of physical or virtual tptgpes. The main obstacle for
the application of verification techniques, which are ssstdly applied to complex soft-
ware or hardware, is the lack of methods for building globalels faithfully representing
their behavior. We apply a model construction methodologipig theBehavior-Interaction-
Priority (BIP) component framework, to TinyOS-based networks. Tle¢hadology consists
in building the model of a node as the composition of a modebeted from a nesC program
describing the application, and models of TinyOS companeltodels for networks are ob-
tained by composition of models for nodes by using connsdioplementing different types
of radio channels. This opens the way for enhanced analydisarly error detection by using
verification techniques.

Keywords:
Reviewers:

Notes

How to cite this report:

@techrepor{ TR-2007-5,

title = {Using BIP for Modeling and Verification of Networked Systems

A Case Study on TinyOS-based Netwoyks

authors ={Ananda Basu, Laurent Mounier, Marc Poulhies, JacquesuPd@seph Sifakis
institution ={VERIMAG },

number ={TR-2007-3 ,

year ={2007}

}

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

1 Introduction

Modeling and verification techniques have been succegsdplplied to complex software or hardware.
Currently, validation of complex heterogeneous systernhk ag networked systems, is carried out by sim-
ulation or testing of prototype implementations. Existirggification techniques could be applied to het-
erogeneous systems, provided that we have methods foir@sdecutable models faithfully representing
their behavior. The construction of such models by comjmsif models of the application software and
of the underlying execution platform is a scientific and t@chl challenge.

A main difficulty for jointly modeling an application softwa and its execution infrastructure, is that
they adopt very different execution models and views. In ponent-based software, components are
mainly used for structuring functions and associated dateractions between components are point-to-
point (e.g.function calls) through binding interface specificationhis view is far from a system-oriented
view needed to model execution mechanisms and their intenawith the external environment. For
instance, programs in the nesC language used for progragniritigOS-based applications][are sets of
components and relations betwganvidedandusedinterfaces. This programmer’s view is not sufficient
for determining the interactions between the applicataftwsare and TinyOS which manages entities such
as tasks, commands and events by applying specific schgdules.

Wireless sensor networks are complex component-baseshsystith rich dynamics subject to strong
extra-functional requirements. Their design involves¢beposition of a variety of hardware and soft-
ware components developed with different methodologiestaals. We have a limited understanding on
how specific component features impact the global behaViocope with complexity and enhance under-
standing, it is important to consider wireless sensor netgvas the composition of a relatively small set
of functions, services and components by using incremsinatturing principles. The main obstacle for
this is the lack of modeling frameworks encompassing hgtmeity. Most simulation environments use
simulation software built in a more or less ad hoc mannernkggrating the application code in specific
platforms B, 7, 11, 9, 5]. They can be useful for debugging purposes but they aredesjuate for a more
thorough exploration of a network’s non-deterministic dgmcs.

We apply to TinyOS-based networks, a model constructiorhauilogy for building heterogeneous
real-time systems. This opens the way for enhanced analydisarly error detection by using verifications
techniques. The methodology is not specific to TinyOS, anthelieve, can be adapted to networked sys-
tems, in general. It uses tligehavior-Interaction-PriorityBIP) component framework’]. BIP consists
of a language for modeling component-based systems andatesbexecution/simulation and verification
tools. It has sound theoretical foundations based on dpastsemantics implemented by a dedicated
execution/simulation platform.

For a given sensor node, a global BIP model is built by cormgp&8IP models for its application
software and for TinyOS. The latter is obtained by composongrollers for the execution of tasks, events,
radio and hardware devices. The models for applicatiomsoé are generated automatically from nesC
programs by a translator (shown in figurewhich takes annotated nesC code as input and generates the
corresponding BIP components and connectors. BIP modelseanalyzed by using powerful state space
exploration techniques offered by the IF tools&td].

‘ Library of
TinyOS
[in BIP
— >

BIP Model
AppIn+TinyOS

BIP compiler

[

— Ve
Figure 1. The modeling flow.

The methodology presented is characterized as follows:

Technical Report hTR-2007-5 1/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

¢ A global model for the network is built by composition of BIBraponents modeling the application
software as well as operating system and radio features.i3himain difference with existing simulation
approaches, directly using TinyOS and C code generatedebpelC compiler. The BIP model for the
TinyOS is an abstract machine driving the execution of the Blodel, obtained by translation of the
application software written in nesC.

o A significant difference with existing simulation approashis that the obtained BIP models are
non-deterministic and fully characterize the behaviorhef wireless sensor network. Furthermore, these
models have a well-defined notion of state. They can be vebiffaising state space exploration techniques
e.g., model-checking. Even if due to inherent limitatioosmplete verification of complex networks is
intractable, verification is very useful for systematic dgging and early error detection.

e Another important difference is incremental model corgtan of BIP models [(]. Incrementality
means that the global model is obtained by progressivelypoaing its atomic components. This allows
preservation of the structure through translation into. Blfat is, it is possible to identify in the global
model all its atomic components and their interactions.sEtliows in particular, to study the impact of
changes of a component’s behavior or structure on the gh#edvior and its properties.

The paper makes the following three main contributions.

¢ It provides a methodology for building global and faithfubdels for heterogeneous networked sys-
tems.

¢ Itallows a better understanding of the interplay betweatfptm-dependentand platform-independent
features. The model of a node is the composition of an atistrachine modeling TinyOS, and a
system-oriented model of its application software.

e It provides a single framework supporting both behaviogalfication and simulation of networked
systems. A comparison on common benchmarks with stathes&tt simulation environments,
shows that this is possible without significant performashegradation.

The paper is structured as follows. Sectidprovides a succinct presentation of BIP, the underlying
modeling methodology and supporting tools. An informakergation of nesC and its semantics is given in
Section3. Section4 describes the modeling principle for nesC programs. Seéttescribes the modeling
principle for TinyOS. The global model construction is eadpkd in Sectior®, as the composition between
application and TinyOS components. We present experirhesgialts for three examples in Sectidrand
conclude in Sectio8.

2 The BIP component framework

BIPY[7] is a software framework for modeling heterogeneous riead-tomponents. The BIP compo-
nent model is the superposition of three layers: the lowggrldescribes thbehaviorof a component as
a set oftransitions(i.e a finite state automaton extended with data); the internbedthger includeson-
nectorsdescribing thenteractionsbetween transitions of the layer underneath; the upper taysists of
a set ofpriority rules used to describe scheduling policies for interastiduch a layering offers a clear
separation between component behavior and structure atamsyinteractions and priorities).

The BIP framework consists of a language and a toolset inmdua frontend for editing and parsing
BIP programs and a dedicated platform for the model valitatiThe platform consists of an Engine
and software infrastructure for executing models. It allstate space exploration and provides access to
model-checking tools of the IF toolset,[3]. This permits to validate BIP models and ensure that they
meet properties such as deadlock-freedom, state invaat schedulability.

The BIP language allows hierarchical constructiocaihpound componerft®m atomicones by using
connectors and priorities.

An atomiccomponent consists of a setpdrtsused for the synchronization with other components, a
set of transitions and a set of local variables. Transit@escribe the behavior of the component. They are

1BIP stands foBehavior, Interaction, Priorityand can be downloaded:
http://www-verimag.imag.fr/"async/BIP/bip.html

Technical Report hTR-2007-5 2/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis
represented as a labeled relation betwammtrol statesA transition is labeled with a poft, a guardy and
a functionf written in C. The guard is a boolean expression on local variables and the functiarbiock
of C code. Whery is true, f is executed if an interaction involvingoccurs.

Interactions between components are specifieddnnectors A connector is a list of ports of atomic
components which may interact. For instarnegki.call, task2.begin, task3.begin) is a connector
relating respectively the portsll |, begin , begin Of instancesaskl , task2 , task3 Of a generic component
Task , as shown in figur@(a). To determine the interactions of a connector, its duate the synchroniza-
tion attributescompleteor incomplete represented graphically by a triangle and a bullet, ragmdy. A
connector defines a set of interactions defined by the fotigwiles:

o If all the ports of a connector are incomplete then synctaation is byrendezvousThat is, only one
interaction is possible, the interaction including all gats of the connector.

e If a connector has one complete port then synchronizatiduy isroadcast That is, the complete port
may synchronize with the other ports of the connector. Ttssibte interactions are the non empty sublists
containing this complete port.

Figure 2. BIP port types and connectors.

Infigure2(a), all the ports are incomplete, so the only feasible adton is the rendezvowsask1.call,
task2.begin, task3.begin)

Infigure2(b), ascall is complete andegin ports are incomplete, the feasible interactionsasei(call),
(taskl.call ,task2.begin), (taskl.call ,task3.begin)and faskl.call ,task2.begin ,task3.begin).

In BIP, it is possible to associate with an interaction arivatibn condition (guard) and a data transfer
function both written in C. The interaction is possible ihgponents are ready to communicate through its
ports and its activation condition is true. Its executi@artstwith the computation of data transfer function
followed by natification of its completion to the interagjinomponents.

3 The nesC programming model — informal semantics

We briefly present nesC, an extension of C used to develogOBmgpplications].

nesC applications are built by writing and assembtogiponentsepresenting either software (e.g., a
protocol layer) or hardware (e.g., radio devices, timezassrs). Componengsovideanduseinterfaces,
which are groups of services. Interfaces contmmmandsndevents

The providers of an interface implement the commands (bynsiedcommand handlejswhile the
users implement the events (by meangwént handlefs This distinction between commands and events
within the same interface, allows to properly implementdbealledsplit phasemechanism: the execution
of a non atomic operation (e.g., sending a packet) is spdittimo distinct phases, a command call to request
the operation, and an event reception indicating its teation.

Itis also possible to use deferred computation mechanisffesitasks A nesC application is therefore
written in C code, extended with a few extra primitives,,icall a commandsignalan event, anghosta
task.

There are two types of components in nes@dulesandconfigurations Modules provide application
code, implementing one or more interfaces. Configuratioesiaed to wire components together. Note
that the wiring relation between components is not poindiop In particular, a command call performed
by a component can be bound to several Command handlerglptbloy other components. After a call,
the caller waits for completion ddll the activated callees. Return values are then merged by asin
combination function. Event signaling by software compuaés handled in a similar manner.

Technical Report hTR-2007-5 3/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

Execution of nesC applications is handled by a two-leveyDi8 scheduler.

The first level manages task execution, for background cdatipus. The TinyOS scheduler follows a
strict FIFO policy for tasks: pending tasks are stored infBd-fueue, and a task cannot be preempted by
another task. Posting a task is a non-blocking operatidrrétarns immediately. A return value indicates
either a successful or an unsuccessful post operation hgn the task queue is full).

The second scheduling level is used for event executiomtSvepresent either hardware interrupts, or
indicate the completion of a given requested service. Bi@tof an event handler jgreemptivewhen an
event is received, its corresponding event handler()eisfamediately activated, interrupting the current
computation (which could be either a task, or another evandlter). The suspended execution will resume
at the end of event handler execution. Note that this poliay lead to code re-entrance (e.g., when an
instance of an event handler preempts another instance shihe event handler).

Sectionst, 5, 6 present three steps for the construction of a global seretaionk model in BIP: 1) gen-
eration of BIP components from user-defined nesC compoyi@ritsstantiation of predefined BIP compo-
nents modeling TinyOS, radio and sensors and 3) composgifitimese components by using connectors
modeling communication links.

4 Modeling user-defined nesC components

We use a translator that takes annotated non re-entrantooelCas input and generates the correspond-
ing BIP components and connectors. Annotations are usexttace the structure characterized by the
set of atomic components and the connectors between theenmdheling of the behavior of the atomic
components is left to the user.

The method consists in transforming implementations of@benmands, Events and Tasks in a nesC
program into atomic BIP components representing Commandlées, Event handlers, and Task handlers,
respectively. The non re-entrancy limitation can be overedy using richer models in BIP. It is possible
to detect re-entrance in BIP models by using verificatiomstoo

call ret sig ack post

fin T e

beg fin pre res

Figure 3. A nesC module in BIP.

A generic BIP model for atomic components is shown in figiir€he interface consists of a set of ports
with associated types. The behavior is specified by the ebstatedDLE, SUSPandEXEwith transitions
between them labeled by ports corresponding to respeatiiena. EXE is a macro state and is further
decomposed into states and transitions depending on tb#isfehavior of the particular component.

The ports are classified in two groups:

e The first consists of the portseg, fin, preandres labeling the transitions for beginning, finishing,
preempting and resuming execution of a component. Thess @y be used in interactions between the
component and TinyOS or in interactions implementing itlirn mechanisms for Command handlers.
They areincompleteas they require triggering from other components.

Technical Report hTR-2007-5 4/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis
e The second consists of the poc@ll, ret, sig, ack, postabeling the transitions for call and return of
commands, signaling and acknowledgment of events andngostitasks. The portsall andsig are of
typecompleteas they are triggers of broadcast connectors.
A generated component also contains, in addition to spdeda variables, generic variables represent-
ing its unique identifierlD), the identifier of a calleeid) and the identifier of a posted Tadl (

5 Modeling TinyOS in BIP

Our TinyOS model is the composition of two sets of componehtschedulers for Events and Tasks,
2) models for hardware components representing Timersdeand Radio.

5.1 Scheduler modeling

We use two schedulers to model the two-level scheduling ar@sm of TinyOS.

The Event Scheduleffigure 4(a)) is responsible for the management of events genergtédrdware
components. When a hardware-generated eventeceived through the postg , the scheduler first pre-
empts any running component by synchronizing through timegge and stacks théi’s of the preempted
components received . Then, it triggers the execution oEthent handlers identified byby broadcasting
ethrough the porbeg. From statBUSY1 theEvent Scheduleran either be triggered by a new hardware
generated signal (postg), or by a finish notification (poftn). In the first case, it preempts the currently
running component, in the second case, depending on tleeostiite stack (empty or not), it goesloLE
or to BUSY 2from which it resumes the last preempted component.

A @ A A @

beg fin pre res Sig i gcount
1 ! A . .
beg fin post
post . oo id

fifo.push(t)

fifo.pop

() (b)
Figure 4. Event(a) and Task(b) Schedulers.

The Task Scheduleffigure 4(b)) is responsible for the scheduling of tasks. It treaéstdsks in FIFO
order and waits for a task to finish before starting a new drfead two state*REEandBUSY, depending
on whether a task is executing or not. In any of these statesnisynchronize through its pgrbstto
receive new task postings. In tlB&JSY state, it waits for the currently executing task to finish goes
back to the=REEstate. It can start a new task only if tBeent Schedules IDLE.

5.2 Hardware modeling

5.2.1 Radio Controller

Each node has a radio controller composed &aalio Sendeffigure 5(a)) and aRadio Receive(fig-
ure5(b)). We consider a packet level radio model where packetisgris an atomic operation. Sending

Technical Report hTR-2007-5 5/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

a packet is a split-phase mechanism modeled by the Commautiehaendand the Event handlesend-
Done ThesendCommand handler is called from the application, and is aestfio send a packet through
the radio. It synchronizes with tHeadio Sendethrough thesyncsendport which passes the packet to
theRadio SenderThen, theRadio Sendebroadcasts the packet. This is followed by triggering theriv
handlersendDone

The Radio Receivereceives a packet through tlisten port, and then, it triggers the Event handler
receive

_g yQ_sen
broadca @

broadcast
A 4

(@)

Figure 5. Radio controller components.

5.2.2 Timers and sensors

A Timer component is a simple BIP component with a singleestead two transitions. One transition is
labeled by porsig to signal an expiration event. The other is labeled by a speoirttick and is used to
count time steps. To ensure time consistencytittieports of all the Timers are incomplete and strongly
synchronized by using a single connector.

In nesC, Sensors are hardware modules offering interfacsglfit-phase operation. The BIP description
consists of a model for the Sensor itself, along with the nefte the Command handlgetDataand Event
handledataReadyThe actual value read by the Sensor component can be eithedam value or a value
provided by a model of the environment. The latter can alsexipdicitly modeled in BIP.

6 Modeling interaction between the components - the globalrahitecture

In this section we describe the composition of the BIP congpigusing connectors, to build the model
of a node as well as the model of the network by specifyingauons between the nodes.

6.1 Interactions in a node

We explain the principles of construction of BIP model fodee by using two sets of connectors.

The first set models interactions foall statements ansignalstatements issued by software. A typical
call statement will generate@all connector and a set éieturn,; connectors as shown in figuée

TheCall connector is &roadcastonnecting theall port of the caller €) to thebegports of the possible
callees f,q,r). The component may call eitherp andq jointly leading to the interactionc(call,
p.beg, g.beg), orcallr leading to the interactiorc(call, r.beg).

The selection of interactions is by using activation cand# involving comparisons between callee
identifiers (D) and the calling identifieri().

The Return; connectors synchronize tfie ports of the callees to ttret port of the caller.

Thesignalstatements representing software event signalling argléadexactly in the same manner as
the call statements explained above. However, signals repregdmitiware events are treated separately
and are processed by the event scheduler.

The second set of connectors deal with interactions betiBéercomponents for the application and
BIP components for TinyOS (see figure

Technical Report hTR-2007-5 6/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

sig
Timer/

pre res fin beg

. sig
Scheduler i Event Scheduler

Figure 7. The global architecture in BIP.

The connectord Beginand EBegindeal respectively with interactions between Tasks haafllask
Scheduler and Event handlers/Event Scheduler. The camsddiinish; andEFinish; are used by Tasks
and Event handlers to notify their completion. TReemptconnector triggers preemption of the appli-
cation components. THeesumeonnector is used to resume execution of the last suspeiotegonent.
The connectorSignal are used to signal any hardware-generated events.

Task posting is through connectors between the postof the Task Scheduler and the popisstof
software components (not shown in the figure).

6.2 Interactions between nodes - Radio Links

Radio links are modelled as BIP connectors linking the gandadcasiandlistenof the radio controller.
We consider networks with static topology and use only omeotor pebroadcasiport. This connector
links thebroadcastport with all the receivers, through thdistenport. For each connector, activation con-
ditions depending on the distance between sender and eeee® used to define the feasible interactions.
More complex activation conditions allow modelling los8ke.

7 Experimental results

We consider 3 exampleBlinkTask SenseToLedsndSenderReceiver

The first example illustrates the utilization of verificatitechniques. The two others compare our
method to specific state-of-the-art simulation methodse @ould expect that the use of a general pur-
pose modeling technique instead of a specific one, wellddoea particular execution platform, would
have a strongly negative impact on performance. Furthexnmbe use of rich (non-deterministic) models

Technical Report hTR-2007-5 7110

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

instead of deterministic ones, could also have a similaceff Experimental results show no significant
performance degradation.

BlinkTask1] describes a node with a variabdtaterepresenting the state of its LED. This variable is
shared between the Tapkocessingwhich reads it, and the Event hand®Bmer.fired() which modifies
it. For BlinkTaskwe generated a timed BIP model with 4 user-defined atomic ocompts, 3 TinyOS
components (2 schedulers and 1 Timer) and 11 connectorsaustihe state space exploration allows
detecting error states where a new timer interrupt arriveigvthe Taskprocessings still being executed.
Traces leading to such error states can be obtained by mgdaliObservercomponent in BIP, keeping
track of the sequence of interactions of the node. As an elartige analyzed state graph has 28,701
states and 46,197 transitions for the following executioretintervals:Timerperiod[50, 50], Timer.fired()
[2,9], Leds.redOn(}2, 7], Leds.redOff()2, 7], processing()20, 32]. The selected values ensure a correct
behavior of the example. However, changing the timer petgodalues less thafig, 48] leads to error
states as detected by thbserver

The second example BenseTolLefls] which is a node sampling data from a photo Sensor and dis-
playing them in the LEDs. Its nesC code consists of 4 compisnerhe translation to BIP produces 8
user-defined components, 4 TinyOS components (2 scheduil€mser and 1 Sensor), and 21 connectors.

We consider a network @enseToLed®des without radio links. We show in figudesimulation times
as a function of the number of nodes for a virtual run time d® 38conds, considering a 4 Hz timer on
each node. We performed the tests on an AMD Athlon XP 2800b,df(RAM running GNU/Linux. The
execution time for the network increased linearly with tlhieer of nodes, as expected.

708

608 -

580 -

488 -

308

200

188 -

simulation time in secs. for 300 virtual secs.

a 58 108 158 200 250
number of nodes

Figure 8. SenseTolLed=sxample.

The third exampleésenderReceiveas a network of senders and receivers, with lossless charamel
static topology. Each sender is connected to a fixed numbercefversy. Each receiver has a unique
sender (no collision). The sender nodes execut€ititdoLedsAndRffn] nesC program, and the receiver
nodes execute thefmToLedg!] program. Figured shows real execution times for 300 virtual seconds
considering a 4 Hz timer on each node, as a function of the rarmbsenders: and the number of
receivers per sendgr

8 Conclusion

Currently, validation of complex heterogeneous systenueh s networked systems, is carried out
by simulation or testing of prototype implementations. ifiesition techniques such as model-checking
and static analysis are already successfully used for aoéhor hardware. They could be extended to
heterogeneous systems, provided that we have methodsilidinigiexecutable models for these systems.

Technical Report hTR-2007-5 8/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

Simulation time in secs.
for 300 virtual secs.

988 -
888 -
708 -
688 -
588 -
480 -
380 -
288 -
188 -

a

25

14
. 1! b
number of receivers 370 number of
per sender (y) senders (x)

Figure 9. SenderReceivesxample.

The paper applies to TinyOS, a methodology for modeling ardivation of networked systems. The
methodology is based on the use of the BIP component frankewbich encompasses description of
heterogeneous real-time systems. It allows the constructi global models obtained as the composition
of models of nodes. These are obtained by composition of madé¢he application software and of the
execution platform.

The methodology is general and can be applied to buildingajlmodels of heterogeneous systems. It
consists in modeling the execution platform as an abstracthme driving the execution of the applica-
tion software. For this, a formalization of the language imak application software is written must be
provided, in terms of the primitives offered by the platforiiis is certainly not an easy task. The formal-
ization should be made at the right abstraction level. Cdatfmn granularity should be chosen so as to
include in the model all the events which are relevant fortoperties to be verified. Furthermore, to keep
model complexity low, it should ignore computation sequesnot involving such events. For instance, for
the verification of synchronization and resource propgriteshould assemble atomic sequences of code.
The model generation methodology applied to nesC, can lgedit any language used for programming
applications. Its parser can be adequately engineere@difigin the source code, constructs generating
relevant events and determine computation granularitis @& be used for (compositionally) generating
BIP code.

We spent two marmonths for developing the methodology for TinyOS. For othlatforms, much
more effort would be needed for feature componentizatidimeatight abstraction level. Such an investment
seems to be the only way for overcoming current limitatiohsnodel-based design and for designing
systems of guaranteed quality.

Currently, behavioral aspects of networks are validatedguspecific simulation environments built
in some ad hoc manner and integrating application codeppots and platforms. Our approach allows
the use of a single modeling framework supporting a disegali system construction methodology. It
allows the systematic construction of global models spamuail possible system execution sequences.
The results show that using such a non-specific frameworkrishdmodels does not entail significant
performance overhead. The advantages are numerous,imgkrthanced analysis and verification as well
as comparison of implementations of the same applicatiadiféerent platforms.

References

[1] http://www.tinyos.net/. 7, 7

[2] A.Basu, M. Bozga, and J. Sifakis. Modeling HeterogerseeReal-Time Components in BIP. 8EFMO06, IEEE
Computer Society1, 2

[3] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Validation @ronment for Component-Based Real-Time Sys-
tems. CAV02.1, 2

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The tolBet. InSchool on Formal Methods for the Design
of Computer, Communication and Software Syst&aptember 20041, 2

Technical Report hTR-2007-5 9/10

Ananda Basu, Laurent Mounier, Marc Pougisi Jacques Pulou, Joseph Sifakis

[5] E. A. L. Elaine Cheong and Y. Zhao. Joint modeling and giesif wireless networks and sensor node software.
Technical Report UCB/EECS-2006-150, EECS Departmentédsity of California, Berkeley, November 2006.
1
[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, andCDller. The nesc language: A holistic approach to
networked embedded systemsSIiGPLAN Conference on Programming Language Design anceimgrhtation
2003. 1,3
[7] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, DriksE. Osterweil, and T. Schoellhammer. A system
for simulation, emulation and deployement of heterogeaesamsor networks. [Bnd International Conference
on Embedded Networked Sensor Syst&@#/1 Press, 2004.1
[8] P.Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accarand scalable simulation of entire tinyos applications.
In SenSys '03: 1st international conference on Embedded nedcensor systempages 126-137. ACM
Press. 1
[9] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Ba#d&MU: A Fine-grained Sensor Network Simulator.
In Proceedings of SECQIR004. 1
[10] J. Sifakis. A framework for component-based constaict In SEFMO5, pages 293-30pages 293-300. IEEE
Computer Society.1
[11] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: ScataBkensor Network Simulation with Precise Timing. In
IPSN 05 2005. 1

Technical Report hTR-2007-5 10/10

	Introduction
	The BIP component framework
	The nesC programming model -- informal semantics
	Modeling user-defined nesC components
	Modeling TinyOS in BIP
	Scheduler modeling
	Hardware modeling
	Radio Controller
	Timers and sensors

	Modeling interaction between the components - the global architecture
	Interactions in a node
	Interactions between nodes - Radio Links

	Experimental results
	Conclusion

