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Abstract
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1 Introduction

Testing is a popular validation technique which purpose is essentially to find defects on a system imple-
mentation, either during its development, or once a final version has been completed. As such, it is still a
major step of software validation process. Therefore, and even if lots of work have already been carried out
on this topic, improving the effectiveness of a testing phase while reducing its cost and time consumption
remains a very important challenge, sustained by a strong industrial demand.

From a practical point of view, a test campaign consists of producing a test suite (test generation), and
executing it on the target system (test execution). Automating both phases helps reducing the overall cost.

Automating test generation means deriving the test suite from some initial description of the system
under test. The test suite consists of a set of test cases, where each test case is a set of interaction sequences
to be executed by an external tester. Any execution of a test case should lead to a test verdict, indicating if
the system succeeded or not on this particular test (or if the test was not conclusive).

The initial system description used to produce the test cases may be for instance the source code of
the software, some hypothesis on the sets of inputs it may receive (user profiles), or some requirements
on its expected properties at run-time (i.e., a characterization of its (in)-correct execution sequences). In
this latter case, when the purpose of the test campaign is to check the correctness of some behavioral
requirements, an interesting approach for automatic test generation is the so-called model-based testing
technique. It consists of selecting some execution sequences (or execution trees) from an operational
model of the expected behavior of the system under test (called a system specification). The selection
criteria can then be driven by some coverage directives or test purposes, depending on the requirements to
be tested. Finally, this execution tree is turned into a test case by adding some verdicts indicating whether
these requirements have been falsified or not during the test execution.

This approach happens to be rather successful in the communication protocol area, especially because
it is able to cope with some non-determinism of the system under test. A particular instance has been
standardized by the telecommunication authority, and several tools implement this approach (see for exam-
ple [1] for a survey). However, it suffers from some drawbacks that may prevent its use in other application
areas. First of all, it strongly relies on the availability of a system specification, which is not always the
case in practice. Moreover, when it exists, this specification should be complete enough to ensure some
relevance of the test suite produced. Finally, it is likely the case that this specification cannot encompass all
the implementation details, and is restricted to a given abstraction level. Therefore, to become executable,
the test cases produced have to be refined into more concrete interaction sequences. Automating this pro-
cess in the general case is still a challenging problem [2], and most of the time, when performed by hand,
the soundness of the result cannot be fully guaranteed.

We propose here an alternative approach to produce a test suite dedicated to the validation of require-
ments of a software. Instead of a complete specification, we use a partial one. Each requirement is ex-
pressed by a logical formula built upon a set of (abstract) predicates describing (possibly non-atomic)
operations performed on the system under test. A typical example of such requirements could be for in-
stance a security policy, where the abstract predicates would denote some high-level operations like “user
A is authenticated”, or “message M has been corrupted”. The approach we propose relies on the following
consideration: a perfect knowledge of the implementation details is required to produce test cases able to
decide whether such predicates hold or not at some state of the software execution. Therefore, writing
the test cases dedicated to these predicates should be left to the programmer (or tester) expertise when
a detailed system specification is not available. However, correctly orchestrating the execution of these
“basic test cases” and combining their results to deduce the validity of the overall logical formula is much
easier to automate since it depends only of the semantics of the operators used in this formula. This step
can therefore be produced by an automatic test generator, and this test generation can even be performed
in a compositional way (on the structure of the logical formula). We believe that this approach is general
enough to be instantiated with several logic formalisms commonly used to express requirements on execu-
tion traces (e.g., extended regular expressions or linear temporal logics). It could be summarized as follows
(see Fig. 1):

1. The user needs to provide three inputs: the software implementation I; a list of informal requirements
R defined over a set of abstract predicates Pi; and a set of elementary test cases Tci associated to
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Figure 1: Test generation overview

each predicate Pi for the implementation I .

2. The user also needs to formalize each requirement of R by a logic formula ϕ (choosing a suitable
logic formalism). ϕ is built upon the abstract predicates Pi and a set of operators depending on the
logic considered.

3. From the formula ϕ, a test generation function automatically produces an (abstract) tester ATϕ. This
tester consists of a set of communicating test controllers, one for each operator appearing in ϕ. Thus,
ATϕ depends only on the structure of formula ϕ.

4. Finally, ATϕ is instantiated using the elementary test cases Tci to obtain a concrete tester Tϕ for the
formula ϕ. Execution of this tester on the implementation I produces the final verdict.

This works extends some preliminary descriptions on this technique [3, 4] in several directions: first we
try to demonstrate that it is general enough to support several logical formalisms, then we apply it for the
well-known LTL temporal logic and regular expressions, and finally we evaluate it on a small case study
using a prototype tool under development.

In addition to the numerous works proposed in the context of model-based test generation for confor-
mance testing, this work also takes credits from the community of real-time verification. In fact, one of
the techniques commonly used in this area consists in generating a monitor able to check the correctness
of an execution trace with respect to a given logical requirement (see for instance [5, 6] or [7] for a short
survey). In practice, this technique needs to instrument the software under verification with a set of ob-
servation points to produce the traces to be verified by the monitor. This instrumentation should of course
be correlated with the requirement to verify (i.e., the trace produced should contain enough information).
In the approach proposed here, these instrumentation directives are replaced by the elementary test cases
associated to each elementary predicates. The main difference is that these test cases are not restricted
to pure observation actions, but they may also contain some active testing operations, like calling some
methods, or communicating with some remote process to check the correctness of an abstract predicate.

The rest of the paper is organized as follows: Sect. 2 introduces the general approach, while Sect. 3
details its sound-proved application for a particular variant of the linear temporal logic LTL and to regular
expressions. The conclusion and perspectives of this work are given is Sect. 5. Finally, the Sect. 6 gives a
discussion about our approach.
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2 The general approach
We describe here more formally the test generation approach sketched in the introduction. As it has been
explained, this approach relies on the following steps:

• generation of an abstract tester ATϕ from a formal requirement ϕ;

• instantiation of ATϕ into a concrete tester Aϕ using the set of elementary testers associated to each
atomic predicate of ϕ;

• execution of Tϕ against the System Under Test (SUT) to obtain a test verdict.

2.1 Notations
A labelled transition system (LTS, for short) is a quadruplet S = (Q,A, T, q0) where Q is a set of states,
A a set of labels, T ⊆ Q×A×Q the transition relation and q0 ∈ Q the initial state. We will denote
by p

a−→T q (or simply p
a−→ q) when (p, a, q) ∈ T . A finite execution sequence of S is a sequence

(pi, ai, qi){0≤i≤m} where p0 = q0 and pi+1 = qi. For each finite execution sequence λ, the sequence
of actions (a0, a1, . . . , am) is called a finite execution trace of S. We denote by Exec(S) the set of
all finite execution traces of S. For an execution trace σ = (a0, a1, . . . , am), we denote by | σ | the
length m + 1 of σ, by σk...l the sub-sequence (ak, . . . , al) when 0 ≤ k ≤ l ≤ m, and by σk... the
sub-sequence (ak, . . . , am) when 0 ≤ k ≤ m. Finally, σ↓X denotes the projection of σ on action set X .
Namely, σ↓X = {a0 · · · · · am | ∀i · ai ∈ X ∧ σ = w0 · a0 · · ·wm · am · wm+1 ∧ wi ∈ (A \X)∗}.

2.2 Formal requirements
We assume in the following that the formal requirements ϕ we consider are expressed using a logic L .
Formulas of L are built upon a finite set of n-ary operators Fn and a finite set of abstract predicates
{p1, p2, . . . , pn} as follows:

formula ::= Fn(formula1, formula2, . . . , formulan) | pi

We suppose that each formula of L is interpreted over a finite execution trace of a LTS S, and we say
that S satisfies ϕ (we note S |= ϕ) iff all sequences of Exec(S) satisfy ϕ. Relation |= is supposed to be
defined inductively on the syntax of L in the usual way: abstract predicates are interpreted over Exec(S),
and the semantics of each operator Fn(ϕ1, . . . , ϕn) is defined in terms of sets of execution traces satisfying
respectively ϕ1, . . . , ϕn.

2.3 Test process algebra
In order to outline the compositionality of our test generation technique, we express a tester using an
algebraic notation. We recall here the dedicated “test process algebra” introduced in [4], but other existing
process algebras could also be used.

2.3.1 Syntax.

Let Act be a set of actions, T be a set of types (with τ ∈ T ), Var a set of variables (with x ∈ Var ), and Val
a set of values (union of values of types T ). We denote by exprτ (resp. xτ ) any expression (resp. variable)
of type τ . In particular, we assume the existence of a special type called Verdict which associated values
are {pass, fail, inconc} and which is used to denote the verdicts produced during the test execution.The
syntax of a test process t is given by the following grammar:

t ::= [b] γ ◦ t | t+ t | nil | recX t | X
b ::= true | false | b ∨ b | b ∧ b | ¬b | exprτ = exprτ
γ ::= xτ := exprτ | !c(exprτ ) | ?c(xτ )
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γ ∈ Act
(◦)

[b]γ ◦ t [b]γ
⇀ t

t[recX ◦ t/X]
[b]γ
⇀ t′ γ ∈ Act

(rec)

recX ◦ t [b]γ
⇀ t′

γ ∈ Act t1
[b]γ
⇀ t′1 (+)

t1 + t2
[b]γ
⇀ t′2

γ ∈ Act t2
[b]γ
⇀ t′2 (+)

t1 + t2
[b]γ
⇀ t′2

Figure 2: Rules for term rewriting

ρ(exprτ ) = v t
[b]xτ :=exprτ

⇀ t′ ρ(b) = true
(:=)

(t, ρ) xτ :=v−→ (t′, ρ[v/xτ ])

ρ(exprτ ) = v t
[b]!c(exprτ )

⇀ t′ ρ(b) = true
(!)

(t, ρ)
!c(v)−→ (t′, ρ)

v ∈ Dom(τ) t
[b]?c(xτ )
⇀ t′ ρ(b) = true

(?)

(t, ρ)
!c(v)−→ (t, ρ[v/xτ ])

Figure 3: Rules for environment modification

In this grammar t denotes a basic tester (nil being the empty tester doing nothing), b a boolean ex-
pression, c a channel name, γ an action, ◦ is the prefixing operator, + the choice operator, X a term
variable, recX allows recursive process definition (with X a term variable)1. When the condition b is true,
we abbreviate [true]γ by γ. Atomic actions performed by a basic tester are either internal assignments
(xτ := exprτ ), value emissions (!c(exprτ )) or value receptions (?c(xτ )) over a channel c2.

2.3.2 Semantics.

We first give a semantics of basic testers (t) using rewriting rule between uninterpreted terms in a CCS-like
style (see Fig. 2).

The semantics of a basic test process t is then given by means of a LTS St = (Qt, At, T t, qt
0) in the

usual way: states Qt are “configurations” of the form (t, ρ), where t is a term and ρ : V ar → V al is an
environment. States and transition of St (relation −→) are the smallest sets defined by the rules given
in Fig. 3 (using the auxiliary relation ⇀ defined in Fig. 2). The initial state qt

0 of S is the configuration
(t0, ρ0), where ρ0 maps all the variables to an undefined value. Finally, note that actions At of St are
labelled either by internal assignments (xτ := v) or external emission (!c(v)). In the following we denote
by At

ext ⊆ At the external emissions and receptions performed by the LTS associated to a test process t.
Complex testers are obtained by parallel composition of test processes with synchronisation on a chan-

nel set cs (operator ‖cs), or using a so-called “join-exception” operator (nI), allowing to interrupt a
process on reception of a communication using the interruption channel set I. We note ‖ for ‖∅ and
Act chan(s) all possible actions using a channel in the set s. To tackle with communication in our se-
mantics, we give two sets of rules specifying how LTSs are composed relatively to the communication
operators (‖cs,nI). These rules aim to maintain asynchronous execution, communication by rendez-vous.
Let St

i = (Qt
i, A

t
i, T

t
i , q

t
0i) be two LTSs modelling the behaviours of two processes t1 and t2, we define the

LTS S = (Q,A, T, q0) modelling the behaviours of St
1 ‖cs S

t
2 (resp. St

1 nI St
2) as the product of St

1 and
St

2 where Q ⊆ (Qt
1 ∪ {⊥})×Qt

2 and the transition rules are given in Fig. 4 (resp. in Fig. 5).

1We will only consider ground terms: each occurrence of X is binded to recX .
2 To simplify the calculus, we supposed that all channels exchange one value. In the testers, we also use “synchronisation

channels”, without exchanged argument, as a straightforward extension.
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p1
a−→ p′1 a /∈ Act chan(cs)

(‖lcs)
(p1, p2)

a−→ (p′1, p2)

p2
a−→ p′2 a /∈ Act chan(cs)

(‖rcs)
(p1, p2)

a−→ (p1, p
′
2)

p1
a−→ p′1 p2

a−→ p′2 a ∈ Act chan(cs)
‖cs

(p1, p2)
a−→ (p′1, p

′
2)

Figure 4: LTS composition related to ‖cs

p1
a−→ p′1 a /∈ Act chan(I)

(nI)
(p1, p2)

a−→ (p′1, p2)

p2
a−→ p′2 a ∈ Act chan(I))

(nI)
(p1, p2)

a−→ (⊥, p′2)

Figure 5: LTS composition related to nI

2.4 Test Generation
The test generation technique we propose aims to produce a tester process tR associated to a formal re-
quirement R of a logic L and it can be formalized by a function called GenTestL in the rest of the paper
(GenTestL (R) = tR).

2.4.1 Principle

This generation step depends of course of the logical formalism under consideration, but it is composition-
ally defined in the following way:

• a basic tester tpi is associated with each abstract predicate pi of R;

• for each sub-requirement r = Fn(r1, · · · , rn) of R, a test process tr is produced, where tr is a
parallel composition between test processes tr1 , . . . , trn and a test process {Fn called a test controller
for operator Fn.

The purpose of test controllers {Fn is both to schedule the test execution of the trk (starting, stopping
or restarting their execution), and to combine their verdicts to produce the overall verdict associated to r.
As a result, the architecture of a tester tR matches the abstract syntax tree corresponding to requirement
R: leaves are basic tester processes corresponding to abstract predicates pi of R, intermediate nodes are
controllers associated with operators of R.

2.4.2 Hypothesis

To allow interactions between the internal sub-processes of a tester tR, we assume the following hypothe-
ses:

• Each tester sub-process trk (basic tester or controller) owns a special variable used to store its local
verdict. This variable is supposed to be set to one of these values when the test execution terminates
– its intuitive meaning is similar to the conformance testing case:

• pass means that the test execution of trk did not reveal any violation of the sub-requirement
associated to trk ;

• failmeans that the test execution of trk did reveal a violation of the sub-requirement associated
to trk ;

• inconc (inconclusive) means that the test execution of trk did not allow to conclude about the
validity of the sub-requirement associated to trk .

Verimag Research Report no TR-2007-4 5/21



Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier, Jean-Luc Richier

• Each tester process trk (basic tester or controller) owns a set of four dedicated communication
channels csk = {c startk, c stopk, c loopk, c verk} used respectively to start its execution, to
stop it, to resume it from its initial state and to deliver a verdict. In the following, we denote by
{(cs, cs1, · · · , csn) each controller { where cs is the channel set dedicated to the communication
with the embracing controller whereas the (csi) are the channel sets dedicated to the communication
with the sub-test processes. Finally, a “starter” process is also required to start the top most controller
associated to t and to read the verdict it delivered.

• Each basic tester process tpi associated to an LTS Stpi
is supposed to have a subset of actions

A
tpi
ext ⊆ Atpi used to communicate with the SUT. Considering tR = GenTestL (R), the set AtR

ext is
defined as the union of the A

tpi
ext where pi is a basic predicate of R.

2.4.3 Test-generation function definition

GenTestL can then be defined as follows, using GTL as an intermediate function:

DEFINITION 2.1 (TEST GENERATION FUNCTION GenTestL ) The test generation function GenTestL

is defined by structural induction on its argument: a requirement R.

GenTestL (R)
def
= GTL (R, cs) ‖{c start,c ver} (!c start()◦?c ver(x) ◦ nil)

where cs is the set {c start, c stop, c loop, c ver} of channel names associated to tR.

GTL (pi, cs)
def
= Test(tpi , cs)

GTL (F n(φ1, . . . , φn), cs)
def
= (GTL (φ1, cs1) ‖ · · · ‖ GTL (φn, csn)) ‖cs′ {Fn(cs, cs1, . . . , csn)

where cs1, . . . , csn are sets of fresh channel names and cs′ = cs1 ∪ · · · ∪ csn.

Test(tp, {c start, c stop, c loop, c ver}) def
=

recX (?c start() ◦ tp◦!c ver(ver)◦?c loop() ◦X) n{c stop} (?c stop() ◦ nil)

We now deal with the notions of test execution and test verdicts.

2.5 Test execution and test verdicts

As seen in the previous subsections, the semantics of a tester represented by a test process t is expressed
by a LTS St = (Qt, At, T t, qt

0) where At
ext ⊆ At denotes the external actions it may perform. Although

the system under test I is not described by a formal model, its behaviour can also be expressed by a LTS
SI = (QI , AI , T I , qI

0). A test execution is a sequence of interactions (on At
ext) between t and I in order to

deliver a verdict indicating whether the test succeeded or not. We define here more precisely these notions
of test execution and test verdict.

Formally speaking, a test execution of a test process t on a SUT I can be viewed as an execution trace
of the parallel product ⊗Atext

between LTSs St and SI with synchronizations on actions of At
ext. This

product is defined as follows:

DEFINITION 2.2 (EXECUTION OF A TEST RELATIVELY TO A SUT) St⊗Atext
SI is the LTS (Q,A, T, q0)

where Q ⊆ Qt ×QI , A ⊆ At ∪AI , q0 = (qt
0, q

I
0), and

T = {(pt, pI) a−→ (qt, qI) | (pt, a, qt) ∈ T t ∧ (pI , a, qI) ∈ T I ∧ a ∈ At
ext} ∪ {(pt, pI) a−→ (qt, pI) |

(pt, a, qt) ∈ T t ∧ a ∈ At \At
ext} ∪ {(pt, pI) a−→ (pt, qI) | (pI , a, qI) ∈ T I ∧ a ∈ AI \At

ext}.

We associate to test exection a notion of verdict defined as follows:

DEFINITION 2.3 (TEST VERDICT) For any test execution σ ∈ Exec(St ⊗Atext
SI), we define the verdict

function: VExec(σ) = pass (resp. fail , inconc) iff σ = c start() · σ′ · c ver(pass) (resp. σ = c start() ·
σ′ · c ver(fail), σ = c start() · σ′ · c ver(inconc)) and c start (resp. c ver) is the starting (resp. the
verdict) channel associated to the top most controller of t.
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3 Applications
This section presents an instantiation of the previous framework for a (non atomic) action-based version of
LTL-X, the next-free variant of LTL [8] and extended regular expressions[9].

Preliminaries. We first introduce the following notations:

• To each atomic predicate pi we associate a subset of actionsApi and two subsets Lpi and Lpi ofA∗pi .
Intuitively, Api denotes the actions that influence the truth value of pi, and Lpi (resp. Lpi) the set of
finite execution traces satisfying (resp. non satisfying) pi. We suppose that the action sets Api are
such that {(Api)i} forms a partition of A, that for all i, j, Lpi ∩ Lpi = ∅ and (Lpi ∪ Lpi) ∩ (Lpj ∪
Lpj ) = ∅. The sets of actions for a predicate are easily extended to sets of actions for a formula:

ALTL: A¬ϕ = Aϕ, Aϕ1∧ϕ2 = Aϕ1 ∪Aϕ2 , Aϕ1Uϕ2 = Aϕ1 ∪Aϕ2 .

AR: A¬R = AR, AR1+R2 = AR1 ∪AR2 , AR1·R2 = AR1 ∪AR2 , AR+ = AR.

• The truth value of a formula ϕ or an expression R is given in a three-valued logic matching our
notion of test verdicts: e.g. a formula ϕ can be evaluated to true on a trace σ (σ |=T ϕ), or it can be
evaluated to false (σ |=F ϕ), or its evaluation may remain inconclusive (σ |=I ϕ). The principle is
similar for a regular expression.

3.1 Application to a variant of LTL
Now we present an instantiation of the previous framework for a (non atomic) action-based version of
LTL-X, the next-free variant of LTL [8]. This choice is typical in the verification community as LTL-X is
insensitive to stuttering [10]. We also have a time notion not related to the sampling time of actions but
more on global patterns of actions related to the predicates.

3.1.1 The logic

Syntax. The syntax of a formula ϕ is given by the following grammar, where the atoms {p1, . . . , pn} are
action predicates.

ϕ ::= ¬ϕ | ϕU ϕ | ϕ ∧ ϕ | pi

Semantics. Formulas ϕ are interpreted over the finite execution traces σ ∈ A∗ of a LTS.
The semantics for a formula ϕ is defined by three sets. The set of sequences that satisfy (resp. violate) the
formula ϕ is noted [[ϕ]]T (resp. [[ϕ]]F ). We also note [[ϕ]]I the set of sequences for which the satisfaction
remains inconclusive.

• [[pi]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′↓Api ∈ Lpi}

[[pi]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′↓Api ∈ Lpi}

• [[¬ϕ]]T = [[ϕ]]F

[[¬ϕ]]F = [[ϕ]]T

• [[ϕ1 ∧ ϕ2]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′↓Aϕ1
∈ [[ϕ1]]T ∧ ω′↓Aϕ2

∈ [[ϕ2]]T }

[[ϕ1 ∧ ϕ2]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′↓Aϕ1
∈ [[ϕ1]]F ∨ ω′↓Aϕ2

∈ [[ϕ2]]F }

• [[ϕ1Uϕ2]]T = {ω | ∃ω1, . . . , ωn, ω
′ · ω = ω1 · · ·ωn · ω′

∧∀i < n · ωi↓Aϕ1
∈ [[ϕ1]]T ∧ ωn↓Aϕ2

∈ [[ϕ2]]T }

[[ϕ1Uϕ2]]F = {ω | ∃ω1, . . . , ωn, ω
′ · ω = ω1 · · ·ωn · ω′

∧
“
∀i ≤ n · ωi↓Aϕ2

∈ [[ϕ2]]
F ∨ (∃l ≤ n · ωl↓Aϕ2

∈ [[ϕ2]]
T ∧ ∃k < l · ωk↓Aϕ1

∈ [[ϕ1]]
F )

”
}
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• [[ϕ]]I = A∗ \ ([[ϕ]]P ∪ [[ϕ]]F )

Finally we note σ |=T ϕ (resp. σ |=F ϕ, σ |=I ϕ) for σ ∈ [[ϕ]]T (resp. σ ∈ [[ϕ]]F ,σ ∈ [[ϕ]]I ).

3.1.2 Test generation

Following the structural test generation principle given in Sect.2.4, it is possible to obtain a GenTestLTL

function for our LTL-like logic. The GenTestLTL definition can be made explicit simply by giving con-
troller definition. So, we give a graphical description of each controller used by GenTestLTL. To simplify
the presentation, the stop transitions are represented using a graphical trick: the receptions all lead from
each state of the controller to some “sink” state corresponding to the nil process, and emissions are sent by
controllers to stop sub-tests when their execution is not needed anymore for the verdict computation.

• The {¬({c start, c stop, c loop, c ver}, {c start′, c stop′, c loop′, c ver′}) controller is shown on Fig. 6.
It inverts the verdict received by transforming pass verdict into fail verdict (and conversely) and
keeping inconc verdict unchanged.

• The {∧({c start, c stop, c loop, c ver}, {c startl, c stopl, c loopl, c verl}, {c startr, c stopr, c loopr, c verr})
controller is shown on Fig. 7. It starts both controlled sub-tests and waits for their verdict returns,
and sets the global verdict depending on received values.

• The {U ({c start, c stop, c loop, c ver}, {c startl, c stopl, c loopl, c verl}, {c startr, c stopr, c loopr, c verr})
controller is shown on Fig. 8 and Fig. 9. It is composed of three sub-processes executing in parallel
and starting on the same action ?c start(). The fist sub-process corresponds to the one represented
on Fig. 8 namely {m. The second and third ones corresponds to two instantiations

{l({c start, c stop, c loop, c ver}, {c startl, c stopl, c loopl, c verl}),
{r({c start, c stop, c loop, c ver}, {c startr, c stopr, c loopr, c verr})

of {x({c start, c stop, c loop, c ver}, {c startx, c stopx, c loopx, c verx}) for the two controlled sub-formula.
An algebraic expression of this controller could be

{U (· · · ) =
(
{l(· · · ) ‖ {r(· · · )

)
‖{r fail,l fail,r pass,l pass} {m(· · · )

.

One could understand {l and {r as two sub-controllers in charge of communicating with the con-
trolled tests that send relevant information to the “main” sub-controller {m deciding the verdict. The
reception of an inconclusive verdict from a sub-test process interrupts the controller which emits an
inconclusive verdict (not represented on the figure). If no answer is received from the sub-processes
after some finite amount of time, then the tester delivers its verdict (timeout transitions). For the
sake of clarity we simplify the controller representation. First, we represent the emission of the con-
troller verdict and the return to the initial state under a reception of a loop signal (?c loop()) by a
state which name represents the value of the emitted verdict. Second, we do not represent inconc
verdict, the controller propagates it.

3.1.3 Soundness proposition

We express that an abstract test case produced by the GenTestLTL function is always sound, i.e. it delivers
a pass (resp. fail) verdict when it is executed on a SUT behavior I only if the formula used to generate it is
satisfied (resp. violated) on I .
This proposition relies on one hypothesis, and two intermediate lemmas.

Hypothesis 3.1 Each test case tpi associated to a predicate pi is strongly sound in the following sense:
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!c start′()?c start() ?c ver′(x′
v) [xv = inc]xv := inc

[x′
v = fail]xv := pass

[x′
v = pass]xv := fail

!c ver(xv )

?c loop()!c loop′()

�
{c stop}?c stop()◦!c stop′() ◦ nil

Figure 6: The {¬ controller

!c startl()

?c verr(xvr )

?c verl(xvl
)

[¬(xvl
= fail)]?c verr(xvr )

[¬(xvr = fail)]?c verl(xvl
)

[othercases]xv := inc

[xvl
= fail ∨ xvr = fail]xv := fail

[xvl
= pass ∧ xvr = pass]xv := pass

!c ver(xv )

?c loop()

!c loopr()

!c loopl()

!c startr()

?c start()

[xvl
= fail]xv := fail

!c stopr()

[xvr = fail]xv := fail

!c stopl()

�
{c stop}?c stop()◦!c stopr()◦!c stopl() ◦ nil

Figure 7: The {∧ controller
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?c start()

?l fail()

?l pass()

Pass

Fail

?l fail()

Pass

?r pass()

?r fail() ?r pass()

?r fail()

?l pass()

?l pass() ?r pass()

?r fail()

?r pass()

Pass

?l pass()

Fail

?l fail()

?l pass()
?r fail()

Fail

Pass

?l fail()

?r pass()

?r fail()

Fail

?l fail()

�
{c stop}?c stop() ◦ nil

Cm

Figure 8: The {U controller, athe {m part

?c start() !c startx() ?c verx(xvx ) [xvx = fail]!x fail()

Cx�
{c stop}?c stop()◦!c stopx() ◦ nil

[xvx = pass]!x pass()

?c loop()

?c loop()!c loopx()

?c loop()

!c loopx()

?c loop()

Figure 9: The {U controller, the {x part
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∀σ ∈ Exec(tpi ⊗Api
I),VExec(σ) = pass⇒ σ |=T pi

∀σ ∈ Exec(tpi ⊗Api
I),VExec(σ) = fail⇒ σ |=F pi

The lemmas state that the verdict computed by tϕ on a sequence σ only depends on actions of σ
belonging to Aϕ.

LEMMA 3.1 All execution sequences with the same projection on a formula ϕ actions have the same
satisfaction relation towards ϕ. That is:

∀σ, σ′ · σ↓Aϕ = σ′↓Aϕ ⇒ (σ |=T ϕ⇔ σ′ |=T ϕ) ∧ (σ |=F ϕ⇔ σ′ |=F ϕ)

LEMMA 3.2 For each formula ϕ, each sequence σ, the verdicts pass and fail of a sequence do not change
if we project it on ϕ’s actions. That is:

∀ϕ,∀σ · σ |=T ϕ⇒ σ↓Aϕ |=T ϕ
∀ϕ,∀σ · σ |=F ϕ⇒ σ↓Aϕ |=F ϕ

These lemmas come directly from the definition of our logic and the controllers used in GenTestLTL.
Now we can formulate the proposition.

THEOREM 3.1 Let ϕ be a formula, and t = GenTestLTL(ϕ), S a LTS, σ ∈ Exec(t⊗Aϕ S) a test execu-
tion sequence, the proposition is:

V Exec(σ) = pass =⇒ σ |=T ϕ
V Exec(σ) = fail =⇒ σ |=F ϕ

Lemmas and the soundness proposition are proved in Appendix. A.

3.2 Application to Regular Expressions
This section presents an application of the framework where the requirements are expressed with some
kind of regular expressions [9].

3.2.1 Regular expressions

Syntax. Original regular expression did not consider the negation. We have decided to include them in
the syntax, as so one could specify undesired behavior. The syntax of a regular expression R is given by
the following grammar, where the atoms {p1, . . . , pn} are action predicates.

R ::= ∅ | pi | ¬R | R+R | R+ | R.R

Semantics. We now give the semantics of the regular expression chosen in our framework. In a same
fashion as for the temporal logic used, the semantics of a regular expression is the set of action sequences
it describes.

• [[∅]]T = A∗

[[∅]]F = ∅

• [[pi]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′↓Api ∈ Lpi}

[[pi]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′↓Api ∈ Lpi}

• [[¬R]]T = [[R]]F

[[¬R]]F = [[R]]T

• [[R+R′]]T = [[R]]T ∪ [[R′]]T

[[R+R′]]F = [[R]]F ∩ [[R′]]F
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• [[R.R′]]T = {ω | ∃ω′ · ω′′ω = ω′ · ω′′ ∧ ω′ ∈ [[R]]T ∧ ω′′ ∈ [[R]]T }
[[R.R′]]F = {ω | ∃ω′ · ω′′ω = ω′ · ω′′ ∧ ω′ ∈ [[R]]F ∨ ω′′ ∈ [[R]]F }

• [[R+]]T = {ω | ∃n > 0 · ω = ω1 · · ·ωn · ∀i ≤ n · wi ∈ [[R]]T }
[[R+]]F = {ω | ∃ω′, ω′′, ω′′′ · ω = ω′ · ω′′ · ω′′′ ∧ ω′′ ∈ [[R]]F }

• [[R]]I = A∗ \ ([[R]]T ∪ [[R]]F )

3.2.2 Test generation

Following the same principle used for the LTL-X like logic, we describe the GenTestERE function by the
controllers used in its expression.

• The {¬({c start, c stop, c loop, c ver}, {c start′, c stop′, c loop′, c ver′}) controller is the same as the
one for the future time logic (shown on Fig. 6). It inverts the verdict received by transforming pass
verdict into fail verdict (and conversely) and keeping inconc verdict unchanged.

• The {choice({c start, c stop, c loop, c ver}, {c startl, c stopl, c loopl, c verl}, {c startr, c stopr, c loopr, c verr})
controller is shown on Fig. 10. It realizes the semantics of the + operator, i.e. the choice. It starts
both controlled sub-tests and waits for their verdict returns. To decide a pass verdict, it needs to
receive at least one pass verdict from one of the controlled subtest. To decide a fail verdict, both of
the subcontrolled subtests have to respond fail. The inconclusive verdict are then decided when one
of the controlled emits an inconclusive verdict and the other one do not respond pass.

• The {·({c start, c stop, c loop, c ver}, {c startl, c stopl, c loopl, c verl}, {c startr, c stopr, c loopr, c verr})
controller realizes the sequentialization of the controlled subtests (shown on Fig. 11). It starts the
first controlled subtest, and waits for its verdict. If the verdict received from the first subtest is pass,
it starts the second subtest. Otherwise, the second subtest is not started and the first subtest verdict
is the verdict for the controller. The verdict of the second subtest is the verdict corresponding to the
global test.

• The {+({c start, c loop, c ver}, {c start′, c stop′, c loop′, c ver′}) controller realizes the semantics of
the + operator (shown on Fig. 12). It allows the controlled sub-test to execute several times (at
least one). To decide a pass verdict, all executions of the controlled test should emit a pass verdict.
Since inn testing we consider finite execution, the controller has to decide at a time that the formula
is satisfied or not. A timer mechanism is included in the controller when the controlled subtest is
supposed to be finished. The intuitive meaning of the timer purpose is to allow the controller to take
a decision about the verdict only considering previous received verdicts.

3.2.3 Soundness proposition

We express that an abstract test case produced by the GenTestERE function is always sound, i.e. it delivers
a pass (resp. fail) verdict when it is executed on a SUT behavior I only if the expression used to generate
it is satisfied (resp. violated) on I .
Similarly to the LTL-proposition, this one relies on one hypothesis, and two intermediate lemmas.

Hypothesis 3.2 Each test case tpi associated to a predicate pi is strongly sound in the following sense:

∀σ ∈ Exec(tpi ⊗Api
I),VExec(σ) = pass⇒ σ |=T pi

∀σ ∈ Exec(tpi ⊗Api
I),VExec(σ) = fail⇒ σ |=F pi

The lemmas state that the verdict computed by tR on a sequence σ only depends on actions of σ
belonging to AR.
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!c startl()

?c verr(xvr )

?c verl(xvl
)

[¬(xvl
= pass)]?c verr(xvr )

[¬(xvr = pass)]?c verl(xvl
)

[othercases]xv := inc

[xvl
= fail ∧ xvr = fail]xv := fail

[xvl
= pass ∨ xvr = pass]xv := pass

!c ver(xv )

?c loop()

!c loopr()!c loopl()

!c startr()

?c start()

[xvl
= pass]xv := pass

!c stopr()

[xvr = pass]xv := pass

!c stopl()

�
{c stop}?c stop()◦!c stopr()◦!c stopl() ◦ nil

Figure 10: The {choice controller

?c start() ?c verl(xvl
)!c startl() [xvl

= pass]!c startr()

[¬(xvl
= pass)]xv := xvl

!c ver(xv )

?c verr(xvr )

xv := xvr

�
{c stop}?c stop()◦!c stopr()◦!c stopl() ◦ nil

Figure 11: The {· controller
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?c start()

[¬(xvl
= pass)]xv := x′

v

!c ver(xv )

�
{c stop}?c stop()◦!c stop′() ◦ nil

?c ver′(x′
v)

[timeout]xv := x′
v

!c start′() start timer

[¬timeout ∧ x′
v = pass]!c loop′()

Figure 12: The {+ controller

LEMMA 3.3 All execution sequences with the same projection on an expression R actions have the same
satisfaction relation towards R. That is:

∀σ, σ′ · σ↓AR = σ′↓AR
⇒ (σ |=T R⇔ σ′ |=T R) ∧ (σ |=F R⇔ σ′ |=F R)

LEMMA 3.4 For each expression R, each sequence σ, the verdicts pass and fail of a sequence do not
change if we project it on R’s actions. That is:

∀R,∀σ · σ |=T R⇒ σ↓AR |=T R
∀R,∀σ · σ |=F R⇒ σ↓AR |=F R

These lemmas come directly from the definition of our logic and the controllers used in GenTestERE.
Now we can formulate the proposition.

THEOREM 3.2 Let R be a regular expression, and t = GenTestERE(R), S a LTS, σ ∈ Exec(t⊗AR S)
a test execution sequence, the proposition is:

V Exec(σ) = pass =⇒ σ |=T R
V Exec(σ) = fail =⇒ σ |=F R

4 Conclusion
In this work we have proposed a testing framework allowing to produce and execute test cases from a
partial specification of the system under test. The approach we follow consists in generating the test cases
from some high-level requirements on the expected system behaviour (expressed in a trace-based temporal
logic), assuming that a concrete elementary tester is provided for each abstract predicate used in these
requirements. This “partial specification” plays a similar role to the instrumention directives currently
used in run-time verification techniques, and we believe that they are easier to obtain in a realistic context
than a complete operational specification. Furthermore, we have illustrated how this approach could be
instantiated on a particular logic (an action-based variant of LTL-X) and the regular expressions. We believe
that we have also shown that it is general enough to be applied to other similar trace-based formalism.
Finally, a prototype tool implementing this framework is available and preliminary experiments have been
performed on a small case study.

Our main objective is now to extend this prototype in order to deal with larger examples. A promising
direction is to investigate how the so-called MOP technology [6] could be used as an implementation
platform. In particular, it already offers useful facilities to translate high-level requirements (expressed in
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various logics) into (passive) observers, and to monitor the behaviour of a program under test using these
monitors. A possible extension would then be to replace these observers by our active basic testers (using
the aspect programming techniques supported by MOP).

Acknowledgement The authors thank the reviewers of the TESTCOM/FATES’07 conference for their
helpful remarks.

5 Discussion
Implementing our approach we noticed some issues. First problem regards verdict emission and schedulling
of different processes. A situation may occur where a verdict has been decided on an abstract test case and
can not be emitted because the listening process is not ready to do so either because the global scheduler
“forget” these processes. This leads us to maka a fairness hypothesis about the global scheduler. We believe
that a prioritized verdict transmission is sufficient in most of the cases. So our implementation includes a
mechanism to favour verdict propagation in controllers.

A Proofs for the LTL instantiations
This section contains the different proofs disseminated along this report.

A.1 Proof of Lemma 1

This proof is done by structural induction on ϕ.

A.1.1 For the predicates pi.

Let σ, ω two sequences of A∗ such that σ↓Api = ω↓Api
. Suppose that σ |=T pi. By definition that means:

∃σ′, σ′′ · σ = σ′ · σ′′ ∧ σ′↓Api ∈ Lpi

σ′↓Api
is a prefix of σ↓Api , i.e. ∃s ∈ A∗ · σ↓Api = σ′↓Api

· s And, ω↓Api = σ↓Api
. Then ∃ω̃, ω̃′ · ω↓Api =

ω̃ ·ω̃′∧ω̃ = σ′↓Api
. So, ω̃ ∈ Lpi . Let ω♣ be a prefix of ω s.t. ω♣↓Api = ω̃. So it existsw♣ s.t. ω = ω♣ ·ω′♣

and ω♣↓Api ∈ Lpi

That is ω |=T pi. So we have σ |=T pi ⇒ ω |=T pi.

Similarly we can show that σ |=F pi ⇒ ω |=F pi.

A.1.2 For the ¬ operator.

In this case ϕ = ¬ψ, the induction hypothesis is on ψ, that is:

∀σ, σ′ · σ↓Aψ = σ′↓Aψ
⇒ (σ |=T ψ ⇔ σ′ |=T ψ) ∧ (σ |=F ψ ⇔ σ′ |=F ψ)

We consider two sequences σ, ω of A∗ such that σ↓Aϕ = ω↓Aϕ . Let suppose that σ |=T ϕ, we have to
show that ω |=T ϕ.
By definition of σ |=T ϕ we have σ |=F ψ. And as ∀ϕ · Aϕ = A¬ϕ, we have σ↓Aψ = ω↓Aψ . We can then
apply the induction hypothesis on ψ, i.e. σ |=F ψ gives us ω |=F ψ. That is ω |=T ¬ψ.

Similarly we can show that σ |=F ϕ⇒ σ′ |=F ϕ
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A.1.3 For the ∧ operator.

In this case ϕ = ϕ1 ∧ ϕ2, the induction hypothesis is on ϕ1 and ϕ2, that is:

∀σ, σ′ · σ↓Aϕ1
= σ′↓Aϕ1

⇒ (σ |=T ϕ1 ⇔ σ′ |=T ϕ1) ∧ (σ |=F ϕ1 ⇔ σ′ |=F ϕ1)

∀σ, σ′ · σ↓Aϕ2
= σ′↓Aϕ2

⇒ (σ |=T ϕ2 ⇔ σ′ |=T ϕ2) ∧ (σ |=F ϕ2 ⇔ σ′ |=F ϕ2)

We consider two sequences σ, ω of A∗ such that σ↓Aϕ = ω↓Aϕ . Let suppose that σ |=T ϕ, we have to
show that ω |=T ϕ.
From σ |=T ϕ1 ∧ ϕ2 we deduce using the definition that σ |=T ϕ1 and σ |=T ϕ2.
And σ↓Aϕ1∧ϕ2

= ω↓Aϕ1∧ϕ2
⇔ σ↓Aϕ1∪Aϕ2

= ω↓Aϕ1∪Aϕ2
. We deduce that σ↓Aϕ1

= ω↓Aϕ1
. We can now

use the induction hypothesis twice. Then we find that: ω |=T ϕ1. Using the same reasoning on ϕ2 we find
that ω |=T ϕ2.
So we have ω |=T ϕ1 and ω |=T ϕ2. That is by definition ω |=T ϕ1 ∧ ϕ2.

Same arguments apply to show that σ |=F ϕ1 ∧ ϕ2 ⇒ ω |=F ϕ1 ∧ ϕ2

A.1.4 For the U operator.

In this case ϕ = ϕ1Uϕ2 and we consider two sequences σ, ω of A∗ such that σ↓Aϕ = ω↓Aϕ . Let suppose
that σ |=T ϕ, we have to show that ω |=T ϕ.
By definition of σ |=T ϕ1Uϕ2:

∃n ∈ N · ω = σ1 · · ·σn · σ′ ∧ ∀i ≤ n · σi↓Aϕ1
|= ϕ1 ∧ σn |=T ϕ2

Also, from σ↓Aϕ1Uϕ2
= ω↓Aϕ1Uϕ∈

we deduce σ↓Aϕ1∪ϕ2
= ω↓Aϕ1∪ϕ2

and then σ↓Aϕ1
= ω↓Aϕ1

. We can
then find sub-sequences ω1, . . . , ωn, ω

′ of ω such that ω = ω1 · · ·ωn · ω′ and ∀i < n · ωi↓Aϕ1
= σi↓Aϕ1

.
We can apply the induction hypothesis n− 1 times and find ∀i < n · ωi↓Aϕ1

|= ϕ1.
In a same fashion we show ωn |=T ϕ2.

A.2 Proof of Lemma 2
This lemma is a straightforward corollary of the Lemma 1. Indeed for any sequence σ in A∗, and for any
formula ϕ we have σ↓Aϕ = (σ↓Aϕ )↓Aϕ .

A.3 Proof of the Theorem 1
The proof is done by structural induction on ϕ.

A.3.1 For the predicates

The proof relies directly on predicate strong soundness (Hypothesis 1).

A.3.2 For the ¬ operator.

Let suppose ϕ = ¬ϕ′. We have to prove that:

∀σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I),VExec(σ) = pass⇒ σ |=T ¬ϕ′
∀σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I),VExec(σ) = fail⇒ σ |=F ¬ϕ′

Let σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I) suppose that VExec(σ) = pass.
By definition of GT ,

GT (¬ϕ′,L) = GT (ϕ′,L′) ‖L′ {¬(L,L′)
Since controller {¬ does not trigger the c loop transition of its subtest when it is used as a main tester
process, execution sequence σ is necessarily in the form:
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c start() · σI · σ′ · σI ·
([xv = pass]xvg := fail | [xv = fail]xvg := pass | [xv = inc]xvg := inc) · σI · c ver(xvg )

with σ′ ∈ Exec(GT (ϕ′,L′) ⊗Aϕ′ I), σI denoting SUT’s actions, and ω · (a | b) · ω′ denoting the
sequences ω · a · ω′ and ω · b · ω′.
As the controller emits a pass verdict (!c ver(xvg ) with xvg evaluated to pass in the {¬’s environment)
it means that it necessarily received a fail verdict ([xv = fail]xvg := pass) on c ver′ from the sub-test
corresponding to GT (ϕ′,L′). So we have σ′ ∈ Exec(GT (ϕ′,L′)⊗A′

ϕ
I) and VExec(σ′) = fail.

The induction hypothesis implies that σ′ |=F ϕ′. The Lemma 2 gives that σ′↓A
ϕ′
|=F ϕ′. And we have:

σ′↓A
ϕ′

= σ′↓Aϕ (∀ϕ,Aϕ = A¬ϕ)

= σ↓Aϕ (c start, σI /∈ Aϕ
∗)

So σ↓Aϕ |=F ϕ′. We conclude using the Lemma 1 that σ |=F ϕ′ that is σ |=T ¬ϕ′. The proof for
∀σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I),VExec(σ) = fail⇒ σ |=F ¬ϕ′ is similar.

A.3.3 For the ∧ operator.

The principle for this proof is exactly the same, the general expression of the execution sequence is just a
little bit more complex.

A.3.4 For the U operator.

Let suppose ϕ = ϕlUϕr. We have to prove that:

∀σ ∈ Exec(GT (ϕlUϕr,L)⊗Aϕ I),VExec(σ) = pass⇒ σ |=T ¬ϕ′
∀σ ∈ Exec(GT (ϕlUϕr,L)⊗Aϕ I),VExec(σ) = fail⇒ σ |=F ¬ϕ′

Let σ ∈ Exec(GT (ϕlUϕr,L)⊗Aϕ I) suppose that VExec(σ) = pass.
For this controller we can not give a general expression of an execution sequence. We proceed by a
backward analysis of the controller. In each state in which a pass verdict is emitted we follow the path
leading to verdict emissions from the sub-controlled test in a way that the semantics of the tested formula
is respected. As so, for each emission of verdict we give prominence to an execution sequence pattern that
respects the semantics of our logic. First notice that the two instantiations of the {x controller are doing
the same job, they abstract the reception of verdict for the {m controller and loop the sub-controlled tests
which allows us to reason only on the {m.
Suppose that the {U emits a pass verdict via this state and consider σ ∈ Exec(GT (ϕlUϕr,L)⊗Aϕ I), an
execution sequence. We have to show for each possible emission of a pass verdict that the corresponding
execution sequence satisfies the formula ϕ.

• Let us proceed first with the case shown on Fig. 13. A backward execution analysis underlines the
red path on the {m controller. An execution trace on this level (that is projected on the controller
controllerm must be in the form c start()·(l pass())∗·r pass(), which corresponds to an execution
sequence c start()·(c startl()·δ ·c verl(pass)·l pass())∗ ·(c startr()·δ ·c verr(pass)·r pass()),
where δ denotes some intermediate actions.. Applying the induction hypothesis on the subsequences
c startl() · δ · c verl(pass) · l pass() and the subsequence c startr() · δ · c verr(pass) · r pass(),
that means for the global execution sequence σ that there exists n ∈ N s.t. σ = σ1 · · ·σn · σ′ · σ′′
with ∀i ∈ {1 · · ·n} · σi |= ϕl and σ′ |= ϕr. That is σ |= ϕ.

• Now we deal with the emission of a pass verdict throughout the state shown on Fig. 14. Starting
from the Pass state and getting back on the automaton to the initial state we show a pattern that any
execution sequence should have:

c start() · (l pass())∗ · l fail() ·
(
l pass() | l fail()

)∗·?r pass()
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?c start()

?l fail()

?l pass()

Pass

Fail

?l fail()

Pass

?r pass()

?r fail() ?r pass()

?r fail()

?l pass()

?l pass() ?r pass()

?r fail()

?r pass()

Pass

?l pass()

Fail

?l fail()

?l pass()
?r fail()

Fail

Pass

?l fail()

?r pass()

?l pass()

Fail

?l fail()

�
{c stop}?c stop() ◦ nil

Cm

Figure 13: A path in the {m part of the {U controller

That is without projection (omitting parenthesis for actions without arguments):

c start · (c startl ·δ ·c verl(pass) · l pass)
∗ · (c startl ·δ ·c verl(fail) · l fail) ·π∗ · (c startr ·δ ·c verr(pass) ·r pass)

with:

– π = ((c startl · δ · c verl(pass) · l pass) | (c startl · δ · c verl(fail) · l fail))

– δ denoting some intermediate actions.

Applying the induction hypothesis, that means σ is in the form σ′ · σ′′, and it exists n,m ∈ N s.t.

σ = ω0 · · ·ωn · ωl fail · ω′0 · · ·ω′m
and ∀i ≤ n · ωi↓Aϕl

|=T ϕl

and ∀i ≤ m · (ω′i↓Aϕl
|=T ϕl ∨ ω′i↓Aϕl

|=F ϕl

and
(
ω0 · · ·ωn · ωl fail · ω′0 · · ·ω′m

)
↓Aϕl

|=T ϕr

That means that σ can be view as s · s′ with s |= ϕr. That is σ |=T ϕr

• Now we treat the of an emission of a pass verdict via the state shown on Fig. 15. Using the same
principle, one could see that the projection on {m of the execution sequence σ must be in the form:

c start() · (l pass())∗ · r fail() ·
“
l pass()+ · r fail() | r fail() | r pass()+ · r fail()

”∗
· r pass()+ · l pass()
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Cm

Figure 14: A path in the {m part of the {U controller

That is without projection (omitting parenthesis for actions without arguments):

c start · (c startl · δ · c verl(pass) · l pass)
∗ · (c startr · δ · c verr(fail) · r fail) · π

∗ · r pass
+ · l pass

with:

– π = (c startl ·δ ·c verl(pass) · l pass)+ ·(c startr ·δ ·c verr(fail) ·r fail) | (c startr ·δ ·c verr(fail) ·r fail) |

(c startr · δ · c verr(pass) · r pass)+ · (c startr · δ · c verr(fail) · r fail)

– δ denoting some intermediate actions.

What is important to notice is that the last two verdicts received from the sub-test are a pass verdict
from the left sub-formula (?l pass()) and previously pass verdicts for the right sub-formula.(?r pass()).
We can apply the induction hypothesis on each subsequence of σ producing a verdict for each sub-
formula, we found then that the execution sequence is then in the form:

ω = ω′ · ω♥ · ω♣ · ω♠
with ω♣ |= ϕr

with ω♥ · ω♣ · ω♠ |= ϕl

Analyzing paths in ω′, one can see that it does not contain l fail(). As so the last l pass() received
is the unique one, or there might be others in the trace. This can be easily shown by recurrence
on the number of occurrence of the π pattern in the trace ω. That means that ω′ |= ϕl, and so as
ω′ · ω♥ · ω♣ · ω♠. That is ω |= ϕ.
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?r fail()
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�
{c stop}?c stop() ◦ nil
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Figure 15: A path in the {m part of the {U controller

• For the case shown on Fig. 16, the principle is exactly the same as the previous one.

B Proofs for the ERE instantiations

This section sketches proofs for the propositions given in the ERE instantiation of the framework. These
proofs are naturally following the same way as the ones for the LTL instantiation. Each Lemma and
the propostion are shown by a structural induction on the extended regular expressions. Basic cases of
the induction are exactly the same as the previously presented ones as they scope the basic predicates.
The proof step of a negation does not change either. For the choice operator (+) it is also very similar
as it corresponds to a disjunction. Indeed, either one could see the proof as a direct consequence of a
combination using conjunction and negation used in the LTL’s proofs. Or one could see that controllers
only differ by the labelling edges. Proofs of the concatenation operator (·) and the Kleene star rely on a
slicing of the sequences.
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[6] Chen, F., D’Amorim, M., Roşu, G.: Checking and correcting behaviors of java programs at runtime
with java-mop. In: Workshop on Runtime Verification (RV’05). Volume 144(4) of ENTCS. (2005)
3–20 1, 4

[7] Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M., Pasareanu, C., Rosu,
G., Sen, K., Visser, W., Washington, R.: Combining test case generation and runtime verification.
Theor. Comput. Sci. 336 (2005) 209–234 1

[8] Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer-Verlag New York,
Inc., New York, NY, USA (1995) 3, 3.1

[9] Kleene, S.C.: Representation of events in nerve nets and finite automata. In Shannon, C.E., McCarthy,
J., eds.: Automata Studies. Princeton University Press, Princeton, New Jersey (1956) 3–41 3, 3.2

[10] Clarke, E., Grumberg, O., Peled, S.: Model Checking. The MIT Press (1997) 3.1

Verimag Research Report no TR-2007-4 21/21


	Introduction
	The general approach
	Notations
	Formal requirements
	Test process algebra
	Syntax.
	Semantics.

	Test Generation
	Principle
	Hypothesis
	Test-generation function definition

	Test execution and test verdicts

	Applications
	Application to a variant of LTL
	The logic
	Test generation
	Soundness proposition

	Application to Regular Expressions
	Regular expressions
	Test generation
	Soundness proposition


	Conclusion
	Discussion
	Proofs for the LTL instantiations
	Proof of Lemma 1
	For the predicates pi.
	For the  operator.
	For the  operator.
	For the U operator.

	Proof of Lemma 2
	Proof of the Theorem 1
	For the predicates
	For the  operator.
	For the  operator.
	For the U operator.


	Proofs for the ERE instantiations

