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Abstract

We provide an algebraic formalisation @fnnectorsn BIP. These are used to structtinéer-
actionsin a component-based system. A connector relates a set of typed ports. Types are used
to describe different modes of synchronisation: rendezvous and broadcast, in particular.

Connectors on a set of porfd are modelled as terms of the algebtd(P), generated from

P by using am-ary fusionoperator and a unatypingoperator. Typing associates with terms
(ports or connectors) synchronisation typegrigger or synchron—, which determine modes

of synchronisation. Broadcast interactions are initiated by triggers. Rendezvous is a maximal
interaction of a connector including only synchrons.

The semantics afiC(P) associates with a connector the set of its interactions. It induces on
connectors an equivalence relation which is not a congruence as it is not stable for fusion. We
provide a number of properties ofC(P) used to symbolically simplify and handle connec-
tors. We provide examples illustrating applications4gf(P), including a general component
model encompassing synchrony, methods for incremental model decomposition, and efficient
implementation by using symbolic techniques.
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Figure 1: Graphical representation of rendezv@usand broadcagt) connectors.

1 Introduction

A key idea in systems engineering is that complex systems are built by assembling components (building
blocks). Components are systems characterised by an abstraction, which is adequate for composition and
re-use. Large components are obtained by composing simpler ones. Component-based design confers
many advantages such as reuse of solutions, modular analysis and validation, reconfigurability, controlla-
bility etc.

Component-based design relies on the separation between coordination and computation. Systems are
built from units processing sequential code insulated from concurrent execution issues. The isolation of
coordination mechanisms allows a global treatment and analysis.

One of the main limitations of the current state-of-the-art is the lack of a unified paradigm for describing
and analysing the coordination between components. Such a paradigm would allow system designers and
implementers to formulate their solutions in terms of tangible, well-founded and organised concepts instead
of using dispersed low-level coordination mechanisms including semaphores, monitors, message passing,
remote call, protocols etc. A unified paradigm should allow a comparison and evaluation of otherwise
unrelated architectural solutions, as well as derivation of implementations in terms of specific coordination
mechanisms.

A number of paradigms for unifying interaction in heterogeneous systems have been proposed in
[ ) ]. In these works unification is achieved by reduction to a com-
mon Iow level semantlc model. Interaction mechanisms and their properties are not studied independently
of behaviour. Coordination languages also offer mechanisms for unified and implementation-independent
interaction specification, e.g3PE, ned. Nonetheless, these are defined on an ad hoc basis, and there is no
underlying theoretical framework.

We propose thalgebra of connectorfor modelling interaction in component-based systems. The
algebra allows the description of coordination between components in terms of structured connectors in-
volving communication ports. It formalises mechanisms and concepts that have been implemented in the
Behaviour-Interaction-Priority BIP) component framework developed at Verim&pE06 ]. BIP
distinguishes between three basic entities: 1) Behaviour, described as extended automata, including a set
of transitions labelled with communication ports. 2) Interaction, described by structured connectors relat-
ing communication ports. 3) Dynamic priorities, used to model simple control policies, allowing selection
amongst possible interactions. BIP uses a powerful composition operator parametrised by a set of interac-
tions.

We present an algebraic formalisation of the conceptarinector introduced in { 3 Jas a
set of communication ports belonging to different components that may be involved in some interaction.
To express different types of synchronisation, the ports of a connector have a type (attriggées)or
synchron Given a connector involving as set of pofts, . . ., p, }, the set of its interactions is defined by
the following rule:an interaction is any non empty subset{pf, ..., p,} which contains some port that
is a trigger; otherwise, (if all the ports are synchrons) the only possible interaction is the maximal one that
is, {p1,.-.,0n}

In Figure 1, we show two connectors modelling respectively rendezvous and broadcast between ports
p1, p2, p3. For rendezvous, all the involved ports are synchrons (represented by bullets) and the only possi-
ble interaction i, paps. As usual, we simplify notation by writing; pop3 instead of the sefp;, p2, p3}-

For broadcasty, is a trigger (represented by a triangle). The possible interactions apgp2, p1ps, and
p1p2p3. A connector may have several triggers. For instance, if ppthindp, are triggers in the above
connector, thep, andpsps should be added to the list of possible interactions.

The main contributions of this paper are the following:

e The algebra of connectors extends the notion of connectors to terms built from a set of ports by using

2/30 Technical ReporthTR-2007-3
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Figure 2: Fusior{a) and structurindd) of connectors.

a n-ary fusion operator and a unary typing operator (trigger or synchron). Given two connectors
involving sets of ports; andss,, it is possible to obtain bfusiona new connector involving the set

of portss; U sy (cf. Figure2(a)). Ports preserve their types except for the case where some port
occurs in both connectors with different types. In this case, the port in the new connector is a trigger.
It is also possible to structure connectors hierarchically as shown in F2gbirewhere termg; p,

andps p4 are typed and then fused to obtain a new connector.

e The semantics of the algebra of connectors associates with a connector (a term) the set of its interac-
tions. This induces an equivalence on terms. We show that this equivalence is not a congruence as it
is not preserved by fusion. This fact has deep consequences on composability of interaction models
investigated in the paper. We show that for the subset of the terms where all the connectors have the
same type (synchron or trigger) the semantic equivalence is a congruence.

e The algebra and its laws can be used to represent and handle symbolically complex interaction pat-
terns. The number of interactions of a connector can grow exponentially with its size. We provide
applications of the algebra in modelling languages, such as BIP, and show that the use of symbolic
instead of enumerative techniques can drastically enhance efficiency in execution and transformation.

The paper is structured as follows. Sectibprovides a succinct presentation of the basic semantic
model for BIP and in particular, its composition parametrised by interactions. In S&ctimmpresent the
Algebra of Interactions. It is a simple algebra used to introduce the Algebra of Connectors presented in
Section4. The last section discusses possible applications of the algebra of connectors to efficient design,
analysis, and execution of languages with complex interaction structure, such as BIP.

2 BIP component framework

2.1 Basic semantic model

BIP is a component framework for constructing systems by superposing three layers of modelling: Be-
haviour, Interaction, and Priority. The lower layer consists of a set atomic components representing transi-
tion systems. The second layer models interactions between components, specified by connectors. These
are relations between ports equipped with synchronisation types. Priorities are used to enforce scheduling
policies applied to interactions of the second layer.

The BIP component framework has been implemented in a language and a tool-set. The BIP language
offers primitives and constructs for modelling and composing layered components. Atomic components
are communicating automata extended with C functions and data. Their transitions are labelled with sets
of communication ports. The BIP language also allows composition of components parametrised by sets
of interactions as well as application of priorities.

The BIP tool-set includes an editor and a compiler for generating from BIP programs, C++ code exe-
cutable on a dedicated platform (s&&3[506 bip]).

We provide a succinct formalisation of the BIP component model focusing on the operational semantics
of component interaction and priorities.

Definition 2.1 For a set of portd?, aninteractionis a non-empty subsetC P of ports.

Definition 2.2 A labelled transition system is a triple = (Q, P, —), where(Q is a set oftates P is a set
of communication portsand— C @Q x 2° x Q is a set oftransitions each labelled by an interaction.

Technical ReporthTR-2007-3 3/30
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Figure 3: A system with four atomic components

For any pair of stateg, ¢’ € @ and an interaction € 2°, we writeq % ¢/, iff (¢,a,q’) € —. When
the interaction is irrelevant, we simply wrige— ¢'.

An interactiona is enabledn stateg, denoted; -, iff there exists;’ € @ such thayy % ¢'. A port P
is active iff it belongs to an enabled interaction.

In BIP, a system can be obtained as the compositiom e@dmponents, each modelled by a transition
systemB; = (Q;, P;, —), for i € [1,n], such that their sets of ports are pairwise disjoint:ifgre [1, n)
(i # j), we haveP; N P; = (). We takeP = (J_, P;, the set of all ports in the system.

Thecompositiorof componentg B;}_,, parametrised by a set of interactions 27 is the transition
systemB = (Q, P, —,), whereQ = ®"_, Q; and—., is the least set of transitions satisfying the rule

aey AN Vie[ln], (anP,#0=q m—lsii q})
a

: 1)
(qus- - san) =5 (9155 40)

whereg;, = ¢, forall i € [1,n] suchthatnN P, = (. We write B = v(Bj ..., By).
Notice that an interactiom € + is enabled iny(B, . .., B,,), only if, for eachi € [1, n], the interaction
anNP; is enabled inB;; the states of components that do not participate in the interaction remain unchanged.
Several distinct interactions can be enabled at the same time, thus introducing non-determinism in the
product behaviour, which can be restricted by means of priorities.

Definition 2.3 Given a systenB = ~(By, ..., B,,), apriority modelr is a strict partial order on. For
a,a’ € v, we writea < ' iff (a,a’) € w, meaning that interactiom has less priority than interactier.

For B = (Q, P,—), and a priority modefr, the transition system(B) = (Q, P, —.), is defined by
the rule

!

qg5q A Ea’:(a<a'Aqg). @)

q5nq

Notice that an interaction is enabledsi\B) only if it is enabled inB, and maximal according to.

Example 2.4 (Sender/Receivers)

Figure 3 shows a component (S, Ry, R2, R3) obtained by composition of four atomic components: a
senderS, and three receiver®;, R, R3. The sender has a parfor sending messages, and each receiver
has a port-; (i = 1,2, 3) for receiving them. The following table specifiesand = for four different
coordination schemes.

Set of interactions Priority modelr
Rendezvous {srirors} 0
Broadcast {s, sr1, sT9, ST3, ST1 T2, ST1T3,ST2 T3, ST1T2T3}
Atomic Broadcast| {s, srira7s} {(a,a’)|a C a'}
Causality Chain | {s, sr1, sr17e, Sr17273}

4/30 Technical ReporthTR-2007-3
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Figure 4: Modulo-8 counter.

Rendezvousmeans strong synchronisation betweeand all R;. This is specified by a single interaction
involving all the ports. This interaction can occur only if all the components are in states enabling
transitions labelled respectively Byr, ro, r3.

Broadcast means weak synchronisation, that is a synchronisation invol¥iagd any (possibly empty)
subset ofz;. This is specified by the set of all interactions containinghese interactions can occur
only if S'isin a state enabling. EachR; participates in the interaction only if it is in a state enabling
Ti.

Atomic broadcast means that either a message is received byzallor by none. Two interactions are
possible: s, when at least one of the receiving ports is not enabled, and the interaction r3,
corresponding to strong synchronisation.

Causality chain means that for a message to be receivedbit has to be received at the same time by
all R;, for j < 4. This coordination scheme is common in reactive systems.

For rendezvous, the priority model is empty. For all other coordination schemes, whenever several interac-
tions are possible, the interaction involving a maximal number of ports has higher priority, that is we take
7 ={(a,d')|a C a'}. |

Throughout the paper, the above rule is applied. In other words, amongst the enabled interactions, are
preferred the ones involving a maximal number of ports.

Example 2.5 (Modulo-8 counter)

Figure4 shows a model for the Modulo-8 counter, presented/iR (1], obtained by composition of three
Modulo-2 counter components. Poftsr, andt correspond to inputs, whereass, andu correspond to
outputs. It can be easily verified that the interactipgs:, p g st, andp g r s t u happen, respectively, on
every second, fourth, and eighth occurrence of an input interaction through the port [ |

2.2 Modeling parallel compaosition operations in BIP

The composition operator, introduced in the previous section, can express usual parallel composition oper-
ators, such as the ones used in C8P{89 and CCS | ]. By enforcing maximal progress, priorities
allow to express broadcast.

2.2.1 Communicating Sequential Processes (CSP)

INCSP | ], components can communicate over a satr@nnelscommon to the system. Full seman-
tics of CSP can be found for example irds97 Chapter 7], whereas, as announced above, we will limit
ourselves to the most essential case.

Atomic components (processes) in CSP can be considered as labelled transition systems consisting of a
triple (Q, C, —), whereQ is the set of state€] is the set of communication channels, ard- Q x C x Q
is the set of state transitions labelled by channels féém
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Thus, for two componentB; = (Q;, C, —;) with ¢ = 1,2 and a subsef’ C C, parallel composition
Bi||cv Bs can be defined by the following rules, where we assymg € Q; fori = 1,2 andc € C.

@14 AN @ S g

q1 ||CI q2 i qll ||C’ qé

foranyc e C’,

®3)

c /
g1 —1 4

@ o b
and 2 2 !

— - —, foranyc g C".
alle e = all. e alle e = all. &

To construct an equivalent system in BIP, we consider two comporﬁnts (Qi, B;.C,—;) with

B;.C =4 {B;.c|c € C}fori=1,2. Aninteraction model corresponding t8) (s then defined by taking

Yosp = {{Bl.c7 Bs.c} ‘ ce C’} U {{Bl.c} ‘ cd C’} U {{Bg.c} ‘ céd C’}.

2.2.2 Calculus of Communicating Systems (CCS)

In CSS | ], all communication is performed by binary interactions between complementary actions
a anda. Denoting byA the set of actions, one considers the set of lalhels A U A U {7}, wherer
represents an internal (non-observable transition).

Thus, for two component®; = (Q;, L, —;) with ¢ = 1,2, a parallel compositiorB, || B2 can be
defined by the following rules, where we assugey; € @, fori = 1,2 anda € A.

l _
q2 —2 Qé7 ZE{O,,G}
7 .
anllee = alldg

a l _
@ AN 9 a5 a1 —1 ¢;, leda,a}
) 7
a1 | a2 5 a1 |l a3 q1 ||Q2 - CI'1 ||Q2

, and

(4)
Another important operation in CSS is restrictiBn\ a, which excludes a given action from commu-
nication. Thus, i B ||B2) \ a, restriction enforces synchronisation betwégnand B,.

As in the previous section, we model this by considering two compo@nts (Qi, Bi.L,—;) with

B;.L = {B;.l|l € L} fori = 1,2. A set of interactions corresponding i || B; is then defined by

putting

Voosa = {{Bi.a,Bg_i.d}’i: 1,2} U {{Bl.l}’l c L} U {{Bg,z} ‘ le L},

The only modification to do, in order to account for restrictior{ i || B2) \ «, is then to exclude anda
from possible singleton interactions. Thus we put

Vooss = {{Bi.a,Bg,i.a} ‘i: 1,2} U {{Bl.l} ‘z c L\{a,a}} U {{32.1} ‘ le L\{a,a}}.

3 The algebra of interactions

We define the algebra of interactions that will serve as a base for building the algebra of connectors.

3.1 Syntax, axiomatisation, and semantics

Consider a family of components, indexedhbgnd equipped with a set of pol, for i € I, through which

it can communicate with the others. The communication model considered implies atomic synchronisation
of all ports participating in a given interaction. Therefore, each interaction is represented by the set of ports
it involves. Accordingly, each element in the algebra of interactions, which we define below, should be
considered as a set of possible interactions.

6/30 Technical ReporthTR-2007-3
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Syntax
Let P = U, P; be a set of all ports of the system, and assume(thiaz P. The syntax of thalgebra of
interactions AZ(P), is defined by

z == 0]llplz-xz|lz+a]|(z), (5)

with p € P an arbitrary port, and where+* and ‘-’ are binary operators, respectively calledion and
synchronisationSynchronisation has a higher order of precedence than union.

Axioms
The operations satisfy the following axioms.

1. Union ‘4 is idempotent, associative, commutative, and has an identity element(4TeP), +, 0)
is a commutative monoid;

2. Synchronisation-' is idempotent, associative, and commutative, has an identity element 1, and an
absorbing element 0; synchronisation distributes over uniof, AE(P), +, -, 0, 1) is a commutative
semi-ring.

Semantics R
The semantics of\Z(P) is defined by the functiop- | : AZ(P) — 2%, defined by

0] = 0,

1 = {0},

Ip| = {{p}}, for anyp € P, ©)
|1 + 22| = |x1|Ulz2|, foranyz,, zo € AZ(P),

Ty - z2] = {I1U$2’I1 € \x1|,z2€|x2|}, foranyzy,zs € AZ(P),

[(z)] = |z|, foranyz € AZ(P),

for arbitraryp € P, x,x1, 22 € AZ(P). Terms of AZ(P) represent sets of interactions between the ports
of P.

Proposition 3.1 The axiomatisation oflZ(P) is sound and complete, that is, for anyy € AZ(P),
z=y < || = llyll-

Example 3.2 (Sender/Receiver continued)
In AZ(P), the interaction for the four coordination schemes of Exaréiplare:

Set of interactions

Rendezvous ST1ToT3

Broadcast s(1+7r) (1 +re) (L+7rs)
Atomic Broadcast] s (1+ryrar3)

Causality Chain | s(14+r1 (1 4+r2 (14 1r3)))

Clearly, this representation is more compact and exhibits more information: e.g. the exptéssioh
suggests that the port is optional. [ |

Technical ReporthTR-2007-3 7130
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AZ(P) B[]
0 false

1 p q¢ pgq Pq pq Pqg  pq
p+1 q+1 pg+1 p+q p+pq q+pq |9 P PGVpqg pPIVDq p ¢
p+qg+1 pg+p+1 pg+q+1 pg+p+g pVvq pvVq pVqg pVgq

pg+p+qg+1 true

Figure 5: Correspondence betwedf({p, ¢}) and boolean functions with two variables.

3.2 Correspondence with boolean functions

AZ(P) can be bijectively mapped to the free boolean alg@j#a] generated by’. We define a mapping
3 : AZ(P) — B[P] by setting:

BO0) = false,  p1) = N\ D,

peP
k
ﬁ(pzlplk) = /\pij A /\]Tl7
j=1 itiy

Blx+y) = Bz)V By),

for pi,,...pi, € P, andz,y € AZ(P), where in the right-hand side the elementdéire considered to
be boolean variables. For example, consider the correspondence taBle=f¢p, ¢} shown in Figure.

The mappings is an order isomorphism, and each expressi@n.AZ (P) represents exactly the set of
interactions corresponding to boolean valuation® afatisfyings(z).

Although techniques specific to boolean algebras can be applied to the boolean representation of
AZ(P) (e.g. BDDs),AZ(P) provides a more natural representation of interactions for two reasons.

1. Representation iZ(P) is more intuitive as it gives directly all the interactions. For example, the
termp + pq of AZ(P) represents the set of interactiofys p ¢} for any set of ports” containing
p andq. The boolean representationft p ¢ depends orP: if P = {p,q} theng(p + pq) = p,
whereas if? = {p, q,r, s} then3(p + pq) = pTs.

2. Synchronisation of two interactions jZ ( P) is by simple concatenation, whereas for their boolean
representation there is no simple context-independent composition rule, e.g. to obtain the represen-
tation ofp ¢ from 3(p) = pg7¥sandf(q) =pqTs.

4 The algebra of connectors

We provide an algebraic formalisation of the concept of connector, supported by the BIP larigiBagé [
Connectors can express complex coordination schemes combining synchronisation by rendezvous and
broadcast.

8/30 Technical ReporthTR-2007-3
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4.1 Syntax, axioms, and semantics

Syntax

Let P be a set of ports, such thatl ¢ P. The syntax of thalgebra of connectorsAC(P), is defined by
s == [0 [1]][p]|x] (synchrons)
toa= [0 [ [ p) | =) (triggers) @)
x = s|t|lz-z|zt+ax]|(x),

forp € P, and where+'is binary operator callednion ‘-’ is ann-ary operator callefusion and brackets
‘[-]" and ‘[-]”" are unarytypingoperators. Fusion has a higher order of precedence than union.

Union has the same meaning as uniomdifi( P). Fusion is a generalisation of the synchronisation in
AZ(P). Itis not associative. Typing is used to form typed connectdrg! definestriggers (which can
initiate an interaction), and-|’ definessynchrongwhich need synchronisation with other ports in order to
interact).

Definition 4.1 Aterma € AC(P) is amonomia)iff it does not involve union operators.

Notation 4.2
We write [x]*, for & € {0,1}, to denote a typed connector. When= 0, the connector is a synchron,
otherwise it is a trigger. When the exact type is irrelevant, we writg."

In order to simplify notation, we will omit brackets on 0, 1, and perts P, as well as - for the fusion
operation.

The algebraic structure QAC(P) inherits most of the axioms frotdZ (P) except for the associativity
of fusion.

Axioms
The operations satisfy the following axioms.

1. Union '+’ is associative, commutative, idempotent, and has the identity eleffjent

2. Fusion *’ is commutative, distributive, and has an identity elen{éhtlt is idempotent on monomial
connectors, i.e. for any monomiale AC(P) we haver -z = x.

3. Typing ‘[-]*’ satisfies the following axioms, fot, y, = € AC(P) anda, 8 € {0,1}:

(@ (0] = [0],

® o] =1

© [+ = [] e
@ [ ) = () [] + ] o]

Let us now give some basic properties4¢ (P).

Lemma 4.3 For any monomiak € AC(P) and any typingy, 8 € {0, 1} holds the following equality
[2]* - [2)° = [2]V7,
wherea V § = max{a, 8}.

Proof — If a = 3, then,[z]* also being monomia[z]* - [z]* = [x] follows automatically from axioms
above. Ifa = 0 andg = 1, we have by axiom3d), and by the idempotence of union and fusiondot 3,

Technical ReporthTR-2007-3 9/30
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Lemma 4.4 For an arbitrary family{z;}?_, c AC(P), holds the following equality

[Tl =>" (=] [l
i=1 i=1 vy

Proof — This lemma is a direct consequence of axidd) @nd the idempotence of the union operatmn.

Notice that, by application of the above lemma, it is possible to reduce the degree of the terms to one.
For example, consider a connector between two independent senders and three récgiyerst o r3].
This connector is equal tg so [r1 + r2 73] + $1 85 [r1 + r2 73]

Semantics
The semantics ofiC(P) is given by the function- | : AC(P) — AZ(P), defined by the rules
kIl = »p, (8)
lz1 + 22| = 21| + [22], 9)
\ [z = ]l (10)
i=1 i=1
TTed - TTw | = Do twel - [ TT (1 +fal) - TT (1 +1sl) | - (11)
i=1 j=1 i=1 ki j=1

forx,zy, ..., 20,91, ., ym € AC(P)andp € PU{0,1}. Rules (0) and (L1) are applied to the maximal
fusion terms.

Notice that, through the semantics.4f (P), connectors represent sets of interactions. The interaction
semantics| - || : AC(P) — 22" is defined by composing| : AC(P) — AZ(P)and|-| : AZ(P) — 22" .

Rule (L1) can be decomposed in two steps: 1) the application of Ledrao reduce the degree of
all terms to one; 2) the application of rul@l for n = 1, expressing the fact that the single trigger in
each term must participate in all interactions, while synchrons are optional. Compare Exafipléhe
following section with Example&.4and3.2.

Example 4.5
Consider a system consisting of two Senders with perts., and three Receivers with ports, o, 3.
The meaning of the connectsf s; [r1 + r2 73] is computed as follows.

|s} 84 [r1 +rars]| =

11
D 51| (A + [s2]) (1 + r1 + 72 73])

+Is2| (14 [s1]) (L + [r1 +7273])

©)
= sl (T [s2]) (L [raf + |ra7s])

Flsal (1 + [sa]) (L +[ra] + |r27a])

10
51 (14 [sa]) (1+ ] + [ra] [rs])

Fls2f (L+ [s1]) (1 + |ra] + |r2[ |rs])
(i) S1 (1 —|— 82) (1 —|— T1 —|—’I‘2 7’3)
+s2(1+51) (141 +rars),

which corresponds to exactly the set of all possible interactions containing at least gnarafs,, and
possibly either; or bothr, andrs. [ |

Proposition 4.6 The axiomatisation afAC(P) is sound, that is, for, y € AC(P),

r=y=|z|=|y|. (12)
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SEENENY s
(d)

Tt T2 T3 5 T T2 T3
(b) (c)

d

Figure 6: Graphic representation of connectors.

Definition 4.7 Two connectors;, y € AC(P) areequivalenf{denotedr =~ y), iff they have the same sets
of interactions, i.e.

def
Ty = |z =ly|. (13)

In Section4.4, we show that this equivalence relation is not a congruence, which implies that there is
no complete axiomatisation for the semantics|™

4.2 Examples

Example 4.8 (Sender/Receiver continued)
In AC(P), the interactions for the four coordination schemes of Exaraglare:

Set of interactions

Rendezvous ST1T9T3
Broadcast s'ryre,r3
Atomic Broadcast| s’ [ry ro 73]
Causality Chain | s’ [r] [ 73]]

Notice thatAC(P) allows compact representation of interactions, and, moreover, explicitly captures
the difference between broadcast and rendezvous. The four connectors are shown ifi. Fitperéyping
operator induces a hierarchical structure. Connectors can be represented as sets of trees, having ports at
their leaves. We use triangles and circles to represent types: triggers and synchrons, respective.

The distinction between parentheség’and the typing operator-]*’ is important, as shown by the
following example.

Example 4.9
Consider two termg’ (a/ ¢ + b) andp’ [a’ ¢ + b] of AC(P). For the first term we have

lp' (a’ c +b)| Ip"a’ ¢+ p'bl
p(l4+a)(l+c)+a(l+p) (1+c)+p(1+b)

= p+pa+pct+pac+a+ac+pb,

whereas fop’ [a’ ¢ + b] we have

Ip'[a"c+b]| = |p|(1+]a’c+b]) = p(l+a+ac+b) = p+pa+pac+pb.

Example 4.10 (Broadcast)
For the broadcast connectdrr; 5 r3 (Figure6(b), reproduced in Figuré(a)), we have

|s" rirars] = s(14+71) (1+7r2) (1+73).

This connector can be constructed incrementally. For example, one can start from the corimggctor
having|s’r1| = s(1 4+ r1). By typing this connector as a trigger and adding the synchspwe obtain

[s" 1) ra| = |s" 1| (14 |ra]) = s(1471) (1+72).
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) (b) (

S 71 S KT T2 T3 P q r S
) )

(a (d

Cc

Figure 7: Some examples gfC(P) connectors.

4]
p\ Jra r\ Jrs t\ Jiu

Figure 8: Modulo-8 counter.

Connecting-s in a similar manner givegs’ 1]’ 2]’ r3 (Figure7(b)). The two connectors are equivalent:
[[s"ri] ro] 73] = s(1+71) (1 +72) (1 +73)

Itis easy to verify that another incremental construction results in the equivalent corlaectpirs 5]
(Figure7(c)). [ |

Example 4.11 (An observer component)
Another simple example consists in adding an observer component to an existing connector. Suppose for
example that we have three pogtsq, andr connected in an ethernet-like configuratigny’ /. (In this
connector all interactions are possible, except the empty one, and any port can initiate an interaction.)

Let us now introduce an observer, registering the interactions on this connector through a gien port
In order to do so, it is sufficient to join our existing connector (typed as triggery ayped as synchron,
thus obtainindp’ ¢’ ']’ s (Figure7(d)).

As intendeds cannot itself initiate an interaction, but can participate in any one of the original connec-
tor. ]

Example 4.12 (Modulo-8 counter)
In the model shown in Figurg, the causality chain pattern (cf. Figus&d)) is applied to connectors g r,

st, andu. Thus interactions are modelled by a single structured connpchpjr]’ [[st] u]] :

P’ {[qr]’ [[st]’u”‘ =p+pgr+pqgrst+pgrstu.

These are exactly the interactions of the Modulo-8 counter of Figure [ |

Example 4.13 (Ethernet)
Considem components, each equipped with a send pgriand a receive port;, for i € [1,n]. We model
two types of interactions:

e successful communication, where some comporesgnds data through the port, and all the
others listen on their respective receive peoftéor i # k;

e collision, where several components try to send data on their respective senflsppets for some
I C [1,n], while the others listen ofr; }i¢r.

12/30 Technical ReporthTR-2007-3



The Algebra of Connectors Simon Bliudze and Joseph Sifakis

Thus, the connector modelling the possible interactions is

Z s}, H(S; +75).

i=1 ik

4.3 Normal form of connectors

In this section, we define the normal form representation of connectorsA@(¥). First, we define the
normal form representation of monomial connectors, and we extend it to arbitrary connectors by distribu-
tivity of union.

A monomial connector is in normal form, if it does not contain synchron constants ([0] and [1]), and at
each hierarchical level it is a fusion of typed elements, such that at most one of them is a trigger.

Definition 4.14 For any termz of the form[[,,[x;]*, we denote byt the number of its trigger compo-
nents, which we call thdegreeof x.
In general, for an expressian= Z?Zl x;, where allz; have the form above, we define

d
#x ef max H#x; .

=1,

We say that: hasstrictly positive degredf min{#ax;|i =1,...,n} > 0.

Definition 4.15 Letz € AC(P) be a monomial connector, we say that it ismormal form iff it is either
[p]* for somep € P U {0,1}, orz = [[;_,[x;]* (where & denotes syntactic equality) and hold the
following conditions

1. #z2 <1,
2. for all i € [1, n], we have bottr; # 0 and[z;]* # [1],
3. all z; are pairwise distinct normal form monomials.

We say that an arbitrary connector is in normal form, iff it is a union of a family of pairwise distinct
non-zero normal form monomials.

Example 4.16
Consider the connectar = p’ - [¢/ - » + s]’. This term is not in normal form for two reasons: firstly,
#x > 1, as bothy’ and[¢’ - r + s]’ are triggers, and secondy- » + s is not a monomial. We can, however,
represent: in a normal form by transforming it in the following way (we apply the distributivity of fusion
and typing over union, and the reduction axiosal)j
z=p g rts] =p g4y =l e ld ) P s+ s

Another example of the term that is not in normal fornyiss p’ - [¢’ - r/]. This time, it is due to the

fact that#(¢’ - ') > 1. We obtain a normal form representation by applying the same transformations

y=p ¢ =p-ld r+q =0l r+p [qg-r].

Proposition 4.17 For an arbitrary connectorr € AC(P) there exists a unique normal form connector
2™ € AC(P), such thatr = z™.
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Proof — Normal form of AC(P) connectors is defined by the four transformation rules below. These
correspond to the idempotence, distributivity and absorption axioms (and also Lérfimas well the
reduction axiomgd): for any monomialv € AC(P), arbitraryz, y, z € AC(P), anda, 8 € {0, 1} we put

IDP DIST ABS

T+ — T, x-(y+z2) —~ z-ytz-z, 0+z — =x,
IDP y DIST ABS

[w]* - [w)?  —s WY, eyl s 1]+ [y, -z — =,

) ) S ) [+ o] )

It can be easily verified that the rewriting system defined by these rules is terminating and confluent.
For example, let us considér]’ - [x]’ for some monomiak € AC(P). We then have essentially two
possible chains of transformatiohs:

IDP

4.4 Congruence relation

Definition 4.18 We denote by %’ the largest congruence relation contained 4, ‘that is the largest
relation satisfying, for, y € AC(P), andz ¢ P,

r=y=VEcAC(PU{z}), E(x/z)~E(y/z), (14)
where e.gE(x/z) denotes the expression, obtained fréahby replacing all occurrences ofby z.

Notice that, in general, two equivalent terms are not congruent. For exapplep, butp’ & p as
P q#pg forp,qe P.

Lemma 4.19 Similarly typed semantically equivalent elements are congruent, i.e. for any two connectors
z,y € AC(P), and anyx € {0, 1}, we have

vy = [2]" = [y]”. (15)

Proof — By definition of the congruencé?, we have to show that for any expressiéne AC(P U {z})
we haveE(z/z) ~ E(y/z). Without loss of generality we can assume thamnly occurs once irf. Due
to distributivity of fusion and typing over union, it is sufficient to prove the implication

ey = [z]* w ~ [y]* w (16)

for any monomiakw € AC(P) and any typingx € {0,1}. Applying this argument iteratively, we will
obtain the required equivalenégx/z) ~ E(y/z).

Let us now prove16) under the assumptions above. By symmetry, it is sufficient to prove| tht -
w| €| [y]* - w], i.e. that for any interaction € || [z]* - w || we also have € || [y]* - w .

We have to consider four different cases according to the valueaoid the degreétw:

1. a=0,#w =0,

1 Indeed, although both these chains can be eventually interleaved in various ways with transformations induced by the fusion
context (e.g[z]" - [z]’ - y), itis clear that these would have the same effect on the final result (cf. also Lénma
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2. a=1,#w=0,
3. a=0,#w >0,
4. a=1,#w > 0.

First of all, observe that cagkfollows from cases and2 by application of the reduction axion3q)
(or equivalently Lemma.4). Below we provide the proof of casg and the other two cases can be treated
in the same way.

We assume now that = 0 and#w > 0, and we have to show that, for anye || [z] - w ||, we also
havea € || [y] - w ||

From the definition of the interaction semantigs ||’ of AC(P) we deduce that can be decomposed
asa = aj U ag for somea; € |jz| ora; = @ andas € |Jw|. If a1 # 0, we deduce from: ~ y that
a1 € |ly||, and consequently = a; U ag € || [y] - w||, which ends the proof. ]

Note 4.20 Clearly the converse implication in9) is also true.

Lemma 4.21 For z,y € AC(P),
x =y <= Vze AC(P), (zismonomial= x -z >~y - 2).

Proof — This lemma is a direct consequence of the DefinitidiBof semantic congruence, Lemmal9
and distributivity laws. [ |

Theorem 4.22 Letz,y € AC(P) be two non-zero monomial connectors, we then have

T~y
r=2y<=4q z-1'~y-1 a7
#xr >0 #y>0.

Proof — One side of the implication is obvious. (The third condition is obtained by comparipgq and
y-p-q, wherep, ¢ € P are two ports that do not participate in neithemory.?). Therefore, we only have
to show that the three conditions on the right-hand side imglyy.

By Lemma4.21, it is sufficient to show that for any monomial teare AC(P) we haver - z ~ y - z.
As bothz andy are also monomial, we have for sorfe; }7_,, {y;}™,, and{z;}!_, in AC(P) and some

i=1
{aitisy, {Bi}ie,, and{y:}i, in {0,1}

x = [z (2],
Yy = [yl]ﬁl et [ym]ﬁm ’ (18)
z = [z [z

Similarly to the proof of Lemma.19 we have to consider four cases according to the degreegofind
z. However, the case, where all three degrees are positive, can be derived from the other three.

In each case, we have to show thjat- z|| = ||y - z||. However, by symmetry, it is sufficient to show
that||z - z|| C ||y - 2|, i-e. that for an arbitrary interactione ||z - z||, we also have € ||y - z||.

Case 1. ¢z = #y = #=z = 0) By the definition of the interaction semantids |’ of AC(P), there exist
ag € ||z|| anda; € ||z|| such thatw = ag U a;. Recall now thatr ~ y, and consequently we also
havea € ||y||, which immediately implies, € ||y - z||.

Case 2. ¢x,#y > 0, #z = 0) There existay € |z|| and a family{a; € | zi| }icr indexed by some
I C [1,1] such thata = ag U |J,.;a;. As above, we deduce thag < ||y||, and consequently
a € |ly- 2|, as we also havgty > 0.

2 \We assume here that there is always a poR ithat does not participate in the considered expression, which is rather reasonable
considering that new components can be potentially added to the system offering new communication ports.
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Case 3. {2 = #y = 0, #z > 0) Similarly to the previous case, there existe ||z|| and a family{a; €
llzi|| }icr indexed by somé C [1,n] such thats = ag U | J,; a;. Let us now consider - 1/, and
rewrite it in the normal form. We obtain

n n
w1 = 3 [ [Jleg] + v [Jle] = > [l
keT (x) ;;}C Jj=1 JC[1,n]jeJ

In the same manner, we obtain the corresponding equivalenge fiér

y-1 =~ > ]l

JC[1,m]jeJ

By the choice of:;, we then have

Uai e ||[Tl=d|| € ll=- 1|,
i€l i€l
which implieslJ,; a; € ||y - 1’|, and consequently there existsC [1,m] such that

Uai € H[Zl/g] )

i€l JjeJ

and we conclude the proof by observing that this implies

azaOUUaiG Z-H[yj] Clly-z].

iel jed

[ |
The following two corollaries are used for the axiomatisation of the algebra of triggers, defined in the
next section.

Corollary 4.23 For 2z € AC(P), such thatdeg(x) > 0, we haver - 0/ & z.

Proof — For monomial elements, the proof is straightforward and consists in applying the procedure
described in the previous sections to verify that both)’ ~ z andz - 0’ - 1’ ~ z - 1’. The condition that

the degrees of both sides be non-zero simultaneously is guaranteed by the assumption of the lemma. In
general case, we apply distributivity observing that all monomials also have non-zero degrees. m

Note 4.24 Notice that the proof above does not make use of the factitaaty are monomials. Indeed,
it is sufficient to require that they have the forf).

Theorem4.22can also be easily generalised to arbitrargndy having strictly positive degree (recall
Definition 4.14).

Corollary 4.25 Foranyz,y, z1, . . . , 2n, € AC(P).

Ll [ = [l W],
2. o lsi) = lal lH[zi]'].

To finalise, let us give an example of the situation, where Thedr@is not applicable.
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Example 4.26
Consider two portp, ¢ € P. We then clearly have’ - ¢ 2 p’ + p - ¢, as for anyr, s € P the interaction
{p,q,r} is possibleiny’ - q-r-s,butnotin(p’ +p-q)-r-s.

At the same time, one can easily verify that hold all three conditions in the right-hand side)of (
Indeed, we have

Pq =~ ptp-q = p+pg
pgl" =~ 1+p+tqg =~ p-1'+p-q-V
#0'-q) = 1 = #0W'+p-9
This situation is explained by the fact that neitpés- p - ¢ is a monomial, nor it has a strictly positive
degree. [ |

4.5 Sub-algebras

The subsets of the terms gfC(P), involving only triggers or synchrons, define two sub-algebras: the
algebra of triggers A7 (P), and thealgebra of synchrons4AS(P). The terms of these algebras model,
respectively, coordination by rendezvous and by broadcast.

4.5.1 The algebra of synchrons

First, we consider the sub-algeh#s(P) C AC(P) generated by the restriction to synchrons of the
syntax ()

5 O 1 (1] [ [] | [x] (19)

x = s|lz-zxlzta]|(x).

ACs(P) inherits the axioms afAC(P), and consequently fusion is also non-associative. alpebra
of synchronsAS(P), is obtained by adding the associativity axiom

(21 1] [2] = [l W l2] = o] [l (20)

to those ofAC5(P). Thus, AS(P) e ACs(P)/ASSOC, whereASSOC is the reflexive transitive clo-
sure of @0), is an associative quotient algebra, which satisfies the same axia#i5(#5. Consequently,
dropping the brackets in the elements4f (P) immediately provides an isomorphism wittiZ (P).

Proposition 4.27 The axiomatisation oflS(P) is sound and complete.

Proof — This proposition follows from the associativity of synchronisatiotdih( P) and the rule 10) in
the definition of the semantics ofC(P). ]

4.5.2 The algebra of triggers

Similarly to the previous section we consider the sub-algetita(P) C AC(P) generated by the restric-
tion of syntax {) to triggers:

t
T

o1 [ 1 [ [p]" | [=]'
tle-z|le+az]|(z). (21)

Although the algebraic structure ofCr(P) is inherited fromAC(P) in very much the same way as
that of AC¢(P), there is a slight but important difference in the structure that has to be observed here.
Indeed, asl] ¢ ACr(P), the identity element for fusion i8]’ (cf. Corollary4.23).

As in the case ofACs(P), the algebradCr(P) is non-associative. Again, we consider a quotient
algebraA7 (P) obtained by adding the associativity axiom

for arbitrary trigger connectors, y, z € ACr(P), to those ofAC(P).
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Figure 9: Hierarchy of algebras.

Proposition 4.28 The axiomatisation afl7 (P) is sound. It becomes complete with the additional axiom
(2] y = [2]"y + [2]'. (22)

Proof — The soundness of this axiomatisation follows from Corolladi@8and4.251), the idempotence
of union and synchronisation idZ(P), and the rule 11). The completness is proven by showing that
the associativity of fusion and the absorbtion axidtd)(allow to define a normal form, coinciding for
equivalent terms. [ |

— 0 —

We have so far defined six algebras on a given set of gortsiZ(P), AS(P), AT (P), ACs(P),
ACr(P), and AC(P), which can be arranged in a diagram shown in Figurtn this diagram, £’ is the
set inclusion, & - >’ represent the projections oACs(P) (resp.ACr(P)) on AS(P) (resp. A7 (P))
induced by associativity. The left branch can be associated with the constructithi( 6f)-semantics of
AC(P). The remaining arrows are obtained by composing the existing ones. Observe that the definition of
monomialscan be naturally formulated for elements of all six of these algebras.

5 Applications

The algebra of connectors formalises the concept of structured connector already used in the BIP lan-
guage. It finds multiple applications in improving both the language and its execution engine. The three
applications presented in this section, show its expressive power and analysis capabilities.

5.1 Efficient execution of BIP

The proposed algebraic framework can be used to enhance performance of the BIP execution Engine. The
Engine drives the execution of (the C++ code generated from) a BIP program. A key performance issue is
the computation of the set of the possible interactions of the BIP program from a given state. The Engine
has access to the set of the connectors and the priority model of the program. From a given global state,
each atomic component of the BIP program, waits for an interaction through a set of active ports (ports
labelling enabled transitions) communicated to the Engine. The Engine computes from the set of all the
active ports and the connectors, the set of the maximal interactions involving active ports. It chooses one
of them, computes associated data transformations and notifies the components involved in the chosen
interaction.

Currently, the computation of the maximal set of interactions involves a costly exploration of enumera-
tive representations for connectors. This leads to a considerable overhead in execution times. For instance,
for an MPEG4 encoder in BIP obtained by componentisation of a monolithic C program of 11,000 lines of
code, we measured almost 100% of overhead in execution time. We provide below the principle of a not
yet implemented, symbolic method which could be used to drastically reduce this overhead.
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Given a set: of active ports, we use the following algorithm to find the maximal interactions contained
in a connectols’.

1. Let{p1,...,pr} be the set of ports that do not belongitocComputeK (0/p1, .. .,0/pi) (substitute
0 forall p;, withi =1,... k).

2. In the resulting connector, erase all primes to obtain a tErm AZ(P).

3. ConsiderK as a star-free regular expression and build the associated (acyclic) automaton with states
labelled by sub-interactions af

4. The final states of the obtained automaton correspond to maximal enabled interactiongswithin

Example 5.1
Suppose that only portg r, s, andt are enabled, and compute the maximal interactions of the connector
Plals+r]+7rdT[t+ul.

Substitute 0 fop andw to obtain

o’ [q[s—i—r]—i—rq’}/[t—i—O] = {q[s—&—r}—&-rq’}/t,

which become{q [s+7r]+r q] t by erasing the primes. The associated automaton is:
O D<—T@>—@sD
“ @—@D
The final states of this automaton correspond to two interactipns,andq st, and it can be easily

verified that those are, indeed, the two maximal interactions in the given connector, whemgatisare
disabled. [ |

5.2 d-Synchronous component model

The evaluation of the BIP language on complex case studies, has shown that some coordination schemes
need a number of connectors increasing exponentially with the number of ports. Nonetheless, these con-
nectors can be obtained by combination of a reasonably small number of basic connectors.

To avoid tedious and error prone enumerative specification, we propose an extension of the current
component model where a transition of the product component may involve synchronous execution of
interactions from several connectors. This leadsdesgnchronous extension of the BIP component model
discussed below.

To motivate the proposed extension, we magdait function callinspired from constructs found in
languages such as nesC and Polyphonic @#j, ned. A function call for a functionf;, involves two
strong synchronisations between theller and theCallee;: 1) through the connectdt; = ¢; b; to begin
the execution off;; 2) through the connectdr; = r; f; for finish and return (see Figufi& for an example
with two Callees).

Joint function calls involve the computation in parallel of several functions. dQtaer awaits for
all the invoked functions to complete their execution. For instance, modeling a joint function call for
functions f; and f», entails a modification of existing connectors by adding the links in dashed lines,
shown in Figurel0, to obtain

[bl Cl]/ [bg 02}/ ~ bici +bacog+bicrbacs.

Depending on the number of ports involved in the call, an exponential number of connectors can be re-
quired. To avoid connector explosion, we extend the composition operator of BIP in the following manner.

Definition 5.2 An interconnected systeisigiven by a paif{ B; }7_;, { K} ), whereB; = (Q;, P;, —:)
with —;C Q; x 2% x Q;, are components, anid; € AC(P) with P = |J_, P;.
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by M €1 yC2 yC1C2 M ba
W] B & B i

Figure 10: Modeling a joint call of two functions.

4 4

[P]
%—i—pq r—4+1rs

[4o——q7]

Figure 11: Causality loop.

For ainteger parametér< d < m, thed-synchronous semantic$ ({ B;};;, { K}~ ) is the system
va(B1, ..., By,) defined by applying the rulelf with v = ~,4, where

o=y [[El-

1C(1,m] i€
[I|=d

Thesynchronous semanticerresponds to the case, wheris maximal (i.ed = m).

Notice thaty, contains all the interactions obtained by synchronisation of at choghnectors. Thus,
in particular, we have; C v, C ... C yp,.

The application of ruleX) for the d-synchronous semantics with> 1, requires the nontrivial compu-
tation of all the possible interactions. For this the following proposition can be used.

Proposition 5.3 Let({ B}, { K}~ ) be an interconnected system. The set of possible interactions for
its d-synchronous semantics is

n

H[Gz‘]/ MY, (23)

i=1

where, fori € [1,n], we putG; = 3 o Gg WithGy, = Eq,i a.

Notice thatG;, in (23), is the set of all interactions offered by the componeaibne. Thus[];, [G;]’
is the set of all the interactions offered by the components, whetgiaghe set of the interactions allowed
by thed-synchronised connectors. Therefore, the intersection of the two sets characterises all the possible
interactions in thel-synchronous semantics.

Example 5.4 (Causality loop)
Consider the interconnected system shown in FidureFord = 2 (synchronous semantics), the only
possible interaction is

' g [v"s]' Ngr]' [ps] =pqrs,

which corresponds to a causality loop, in the synchronous languages termindiegy, [ 1.
Notice that, ford = 1, the set of possible interactions is empty:

a5/ 0 (ar+ps) =0.
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— o—qr] =\ Bp—d
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Figure 12: Synchronous modulo-8 counter.

p q r S t U

Figure 13: Synthesised connector for mod-8 counter.

Example 5.5 (Modulo-8 counter)

The synchronous semantics of the system in Fidiités equivalent to the modulo-8 counter given in
Example4.12 of Section4.2. The synchronous model is a more natural representation of this system. Its
interactions can be computed by application of Proposhi@n

p+pg [r+rs][t+tul Nnp'lgr)[st]v =
= p+pqgr+pgrst+pgrstu.

This example illustrates the importance of being able to compute the interactions of a system for the
d-synchronous semantics with> 1. As shown in the above examples, the executiod-efnchronous
models withd > 1, requires a computation of intersection of connectors. To avoid costly enumeratuve
technigues we have developed an alternative technique, based on dependency graph analysis. We illustrate
this technique below, by applying it to the Modulo-8 counter.

The dependency graph analysis consists in building a directed acyclic graph, based on relations induced
by connectors between the components of an interconnected system and labels of the transitions of these
components. The resulting graph allows to determine the set of the possible interactions in the synchronous
semantics, without having to enumerate them explicitly.

For the modulo-8 counter, the interconnected system in Figanerovides the following relations:

p — ¢ (p can triggerq), r — s, t — u, ¢ = r (¢ andr must synchronise), and= t. All these relations
together, are represented by the graph
p—qr—st—u. (24)

Observe that each path in such dependency graph represents a causality chain. The d4@ph in (
represents the connect@i{[q r]'[[s ]’ v]], shown in Figurel3 (cf. also Figures). In general, this technique
allows the synthesis of the connectors dfsynchronous model which is equivalent to a given synchronous
model.

5.3 Incremental decomposition of connectors

In[ ) ], it has been argued that incrementality, which means that models can be constructed by
adding and removing components in such a way that the resulting system is not affected by the order of
operations, is an important property of the system composition.

For instance, the following incremental construction for the broadcast connéetor, r3 is provided
in Example4.1Q

/
s'rirary ~ [§'rim) ry ~ [[s’ 7’1]/7‘2:| rs.

We studied techniques for computing incremental decompositions for connectors. These techniques
are based on the iterative application of decompositions as defined by the following problem.
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I

)
J

() (d)

Figure 14: Hierarchical connector transformation

Problem 5.6 (Decomposition of Connectors)Given a connectok € AC(P) and a subset of pori&, C
P, construct a connectdt

i=1
with K; € AC(Py) andK; € AC(P\ Py),fori =1,...,n, such thatk ~ K.

Note 5.7 We require thafs ~ K. Indeed, the semantic congruenég is too strong to allow interesting
transformations. However, semantic equivaleneeis sufficient in a large number of applications as it is
transformed into congruence by typing (cf. Lem#ha9).

Clearly, it is possible to solve this problem by computing explicitly all the interactioris ,adind, for
each interaction, separating the portd%f This involves exhaustive enumeration of possible interactions,
and thus leads to a combinatorial explosion of terms. We have developed two techniques for decomposing
connectors, avoiding this explosion.

Both techniques, involve an iterative application of decompositions. The first technique is based on
term rewriting rules, whereas the second uses the notion of derivation.

5.3.1 Decomposition by rewriting rules

In the context presented above, the required connédctaan be constructed taking the group of ports
{p:}%_, up the hierarchical levels iteratively. This procedure can be separated into the following three
steps illustrated in Figur#4.

Step 1. Regrouping the port§p; }~_, into a single typed connector (transition frga) to (b) in Figure14).
More precisely, we transform a connector of the form

[P1- o Pk Prs1 - Da] - [Y] - 2] (25)

into another one of the form
[Lpl'~~'pk]'[pk+l'~~'pn} [y][z], (26)

where in both cases (as well as in Figarg we skip all synchron/trigger typing to avoid overcharg-
ing the expressions. Observe that this transformation is a congruence, as all the changes are made
inside an typed connector (cf. Lemmal9).

Step 2. Regrouping the sibling connectors into a single typed one (transition@oio (¢) in Figure14).
Here, we continue the transformation by replacing the connector of the &&niby an equivalent

one of form
[l sl - [0 2] (27)
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Step 3. Finally, we perform a rotation taking the connector containing pppt$*_, outside (transition
from (c) to (d) in Figure 14). This is obtained by substituting the connector constructed in the
previous step by an equivalent one of the form

pr- e pi) - [P pal - [ 1] (28)

In the case where the initial connector considered in Step 1 above is itself an typed sub-connector of
a more complex one, we consider the next hierarchical level of the connector obtained by these trans-
formations. This level then automatically has the fo&tf)( and therefore we can continue by iteratively
applying Steps 2 and 3 until we reach the top level of the hierarchy, at which moment we obtain the required
connectork.

To finalise this procedure, we state the three following lemmas that describe in a formal way the trans-
formations of the steps enumerated above.

Lemma 5.8 (Step 1: Regrouping of ports)The following decomposition rule holds for any pasfsq; €
P, wherei € [1,n]andj € [1,m], andforanyl <! <nand0 <k <m

S R PO 8 ¥ T P |
+ Pieemia @) (G - 4 (29)
+ (@1 @] [Py Ph@rr- - dm] -

Pl PGl Gm

For the two cases, whefe= n or n = 0, we have respectively the following two equivalences

Pl D@ G [p'l...p;qu...qk]'-[q,’€+1...q;,L], (30)
and
I =S [/ R/ 3 N [/ N e (31)

Note 5.9 Clearly, this lemma remains valid if we replace any number of pgrts ¢; by typed connectors,
i.e.[x] for somex € AC(P).

Lemma 5.10 (Step 2: Regrouping of siblings).et {x;}"_, be a family of arbitrary elements ofC(P),
and{«;}" ; be a corresponding0, 1}-typing such thaty, = 1 for at least oné: € [1,n]. Then hold the
following four properties

[wo] - [[lws] = [wo]- [H[M] ; (32)

[xo}’-H[xi} >~ [xo] - H[l‘i]/] ; (33)

wol - [l =~ [wo] - [H[xi]ai] , (34)
i=1 i=1

[wo] - [[lw =~ [xo1'~<[ﬂm1m + HM'D, (35)
=1 =1 i€S

where, in the last one, we pSt= {i € [1,n]|a; = 0}.

Lemma 5.11 (Step 3: Rotation) For arbitrary connectorse, y, z € AC(P) and typesy, 8,v,d € {0,1},
holds the equivalence

(2 [)° ] 12 = o1 |21 + (36)
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wherew € AC(P) is defined by

0, if 6=0andy =20
w=1q z if 6=0andy =1
[W°[2]", ifB=1.

5.3.2 Decomposition by derivation

Theorem 5.12 Letp € P be an arbitrary port, andk” € AC(P) be a connector. Then there exist a unique
dK/dp € AT(P \ {p}) such that

K ~ p- [‘ilfp{] + K(0/p), (37)

where K (0/p) denotes the connector obtained by substituting all occurrencesof{ by 0.

Proof — Itis, indeed, sufficient to consider the flattenjig| € AZ(P) of the connectoK. This flattening
| K| is a union of interactions that can be regrouped in two parts according to whether they pantaot,
thus proving the theorem. [ |

Definition 5.13 We call the connectaf K /dp in (37) thederivative of K’ by p.

Observe that Theorem12only states the uniqueness of such decompositiofitP). In AC(P), itis
possible to have several distinct representationd9fdp, which are, however, all semantically equivalent.
Thus by restricting the discussion to semantic equivalence, we can consider any represenddtigapof
in AC(P).

Proposition 5.14 The derivative possesses the following basic properties.
dK
1. K1) ~ — + K(0),
(1) =5 -+ KO

2. VK € AZ(P\ {p}), A K) _ e and ng-m

dp dp
3, d%(KlJrKQ) ~ ddL;l + ddL;?,
4. Va, § € {0, 1}, %([Kﬂ“-[Kﬂﬁ) ~ [CZI;]&'[KZ(U] + (K (1) - {dc?r’

wherek (1) < K(1/p).

Proof — Only property4 is non-trivial. First, let us prove it for the case= 0 and3 = 0. We have, by
definition of derivative and by Lemma19

[Ky] - [Ko] ~ [p' {ddi[;l} +K1(0)} : [p' {%} +K2(0)} ;
which transforms, by distributivity of fusion into
K] ) = e [S2] [52] o [S2] - a0+ [2] - (100 + (K (0] (K (0)

adding, by idempotence of the union, a second copy of the first summand in the right-hand side and re-
grouping again, we obtain

dKl] . Hng dKs dK;

[K4] - [K2] ~ p- {Tp %} + [KQ(O)]] +p- [%} : Hdp} + [K1(0)]} + [K1(0)] - [K2(0)],
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which, by the first property above, results in the equivalence

K ) = pe [T ]+ [42] - (K0 )]+ 15 0)] - [K2(0)]

=y [ e+ [42] - ] + 0] o),

thus proving the required property for= 5 = 0.
For the caser = 1 and3 = 0 we have

%([Kﬂ/ . [Kz]) = CZ)([Kl} [Kl] ’ [KQ])
= [+ [5] re + [2] )
[%]/ [Ka(1)] + [?} [K1(1)].
The proof for the case = § = 1 is obtained in the same way. |

The last property in the proposition above can be generalised to a fusion of any number of typed
connectors.

Proposition 5.15 Let { K}, and {L;}7*, be two families of arbitrary connectors frodC(P). We
then have the following equivalence for the derivative of the connectors formed by the fusion inside each
of these families.

>[5 Tl ﬁ +i[[ e >]]~[f[[m<1>]’]

k#j i=1

Proof — We prove this proposition by induction ean+ m. Property4 in Proposition5.14 constitutes its
base. We prove the induction step for the case: > 0. The casesn = 0 orn = 0 are treated in the
similar manner. We then have, by Corollaty250f Theorem4.22,

C;;(E[KL]/H[LJ]) ~ C;;(Ll:[l[[(z]'] . Ll:[l[lj]}/]) ’

which, by propertyt in Proposition5.14, can be developed to

- (H Qi ) ~ [;‘;Hm] o[_ﬂwm

1

and subsequently, by induction assumption,

li[‘gj}'ﬂ[mm] [ﬁ ]+L§2[ }-kl;[ ~<1>]]-Lf[1u<i<1>r].

Once again, applying Corolla.25 of Theorem4.22to the first summand, and distributing fusion over
union in the second one, we obtain the desired result. [ |
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Example 5.16
Consider the connectdf = p’-[qr]’-[rs]. This corresponds to a situation, where the components providing
portsq ands require a certain resource to operate. This resource is provided by another component during
a communication over the patt Once this resource available, both these components are connected with
a third one, which communicates over pprt

Suppose now that we want to restructiéifen order to separate the component providing the resource
in question from the ones that utilise it. To do so, we differentfétby r, applying Propositiors.15

%( =~ [jﬂ “la] - [s] + [d?p} “[p] - [s] + {d(jp} ] [p'd'] = dps+sp'd].  (38)
We calculate alsd( (0), by substitutind) instead ofr in K,
K(0) =p'[q-0]-[0-s] = p'-[0] 0] = p ~p. (39)

Substituting 88) and @9) into (37), we obtain the following decomposition
K ~r- [q’ps +s[p'd]| +p,
which can now be easily verified. [ |

In the above example, portis only present ink” as a synchron, and therefore, when we calculate the
derivative, it is absorbed directly, whereas, if it was a trigger, we would obtain an expression containing
1/, which has to be eliminated in the final decomposition. To do so, we apply one of the two following
equivalences.For anyz,y € AC(P), we have

w1yl = [2] -y, (40)
-yl = o)y + 1y (41)
Example 5.17 ,
Consider the connectdt = |[p’q|'r| s, and assume that we want to decompose it with respect tgport

Clearly, we have{ (0) ~ 0 and
dK !
s ~ {[1’q]’r} s.

Substituting these equivalences ingdY and applying 41), we obtain
/ /
K ~p- H[l'q}’r} 8} ~ p- Hr’qu 1’(1} 8] ~p- [[T’q}’8+8’q+ l’q} ~p- [[T'q}’8+8’q} +7q.
[

— 0 —

Clearly, both decomposition techniques presented above are sub-optimal. For instance, both connectors
of Exampless.16and5.17can also be represented in the following — less complex — forms

plgr]) - rs] =~ - [q’ps +ps} +p,

!
|:[p/q]/7,:| s ~ pl . [q/rlsl] .

However, in general, to obtain such representations, one has to flatten completely — to the level of
AZ(P) interactions — the connector in question and regroup subsequently the resulting terms using ad
hoc methods.

On the contrary, both presented techniques have the advantage of being straightforward and provid-
ing decompositions that preserve some trigger/synchron typing without making explicit reference to the
semantics of the decomposed connectors.

3 These two equivalences are special cases of Lemfiia
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6 Conclusion

AC(P) provides an abstract and powerful framework for modelling control flow between components. It
allows the structured combination of two basic synchronisation protocols: rendezvous and broadcast. It
is powerful enough to represent any kind of coordination by interaction, avoiding combinatorial explosion
inherent to broadcast.

Connectors are constructed by using two operators having a very intuitive interpretation. Triggers
initiate asymmetric interactions; they are sources of causal interaction chains. Synchrons are passive ports
which either can be activated by triggers or can be involved in some maximal symmetric interaction. Fusion
allows the construction of new connectors by assembling typed connectors. Typing induces a hierarchical
structuring, naturally represented by trees.

The concept of structured connectors is directly supported by the BIP language where connectors de-
scribe a set of interactions as well as associated data transformations. Its interest has been demonstrated
in many case studies including an autonomous planetary robot, wireless sensor nefi@rk<)[], and
adaptive data-flow multimedia systems. The BIP language is used in the framework of industrial projects,
as a semantic model for the HRC component model (IST/SPEEDS integrated project), and for AADL
(ITEA/SPICES project).

We believe thatAC(P) provides an elegant mathematical framework to deal with interactions. The
comparison with boolean algebra shows its interest: fusion becomes a context-sensitive and rather compli-
cated operation on boolean functions. Boolean algebra representation allows the use of existing powerful
decision technigues, e.g. to decide that an interaction belongs to a connector or equivalence between con-
nectors. The relations betwegt€ (P) and boolean algebra should be further investigated.

The notation has been instrumental for formalising the semantics of the synchronous component model.
Axiomatisation and properties of derivatives C(P) allow an efficient incremental decomposition of
connectors avoiding enumeration of interactions. Finally, algebraic representation is a basis for symbolic
manipulation and transformation of connectors which is essential for efficient implementation of the BIP
framework.

To our knowledge AC(P) is the first algebraic framework for modelling interaction. It can be a seman-
tic model for formalisms used for modelling architecture, and provides a basis for comparing coordination
mechanisms supported by existing languages, such as coordination languages.
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Appendix: Idempotent regular expressions on ports

In this paper, we have presented an algebra of connedi®f#), which provides a flexible and powerful
instrument to represent interaction models, i.e. sets of possible interactions between components of an
integrated system.

Although connectors fromdC(P) can always be transformed into terms of the algebra of interactions
AZ(P), the former have an advantage of representing the same interactions in a compact manner, preserv-
ing an important semantic aspect — the trigger/synchron typing.

We will now present succinctly another way of representing interactions in a more compact way than
that provided byAZ(P). We do so by assigning a different kind of types to ports participating in a given
connector:requiredor optional We adopt the notation used in regular expressions, and wiritethis
port is optional, whereas without an asterisk represents an obligatory poBin the axiomatic level, this
corresponds to adding the equality

pr=p+1

to the axioms ofAZ(P) presented in Sectiod

Thus, an expressian ... p,q5 - . . ¢, denotes a connector, where pasts. . ., p,, are required (oblig-
atory) andq,, ..., q,, are optional. It is easy to verify that the resulting set of possible interactions is
exactly that corresponding to a4 ( P)-expression

pro-Pn(L+q) ... (14 qm). (42)

Connectors can be converted in a straightforward manner between the regular expression notation and
that of AC(P). It is sufficient to observe that for a flatC(P) connector in normal form we have the
following equivalence

Vo an~pdt .. .

The conversion in the other direction is based on a similar equivalence

PLeeDn Qs g =P )@ G

Although the two representations of connectors appear to be similar, it is important to observe that,
while AC(P) connectors reflect the trigger/synchron typing and, consequently, allow a natural representa-
tion of both broadcast and rendezvous communication, the regular expression form is just an abbreviation
of AZ(P), and, therefore, it cannot capture this difference in a natural manner.

Example .1
Consider a situation, where an emitteis broadcasting information to receivers ¢». This can be easily
represented in both approaches, by writing respectiwelyy. andp ¢;q¢;.

Suppose, now, that another emitiehas to be connected to the system. In termsd6{P), this
operation is trivial: we add’ to the initial expression, thus obtainipf;;g2r’. At the same time, in terms
of regular expressions, we have to modify the existing connector to reflect the fact that, arandg,
it is sufficient that only one participates in the interaction. The simplest way to express this is to write

(p*r +pr¥)aigs. u
The advantage of the regular expressions approach is that it allows us to consider equations of the type

r=A-z+ B,

where all three ofc, A, B € AZ(P) are sets of interactions. Due to the idempotence of synchronisation,
the minimal solution of such equations is finite.

Example .2
It is easy to verify that the minimal solution of the equatior= A - x, with A = a1 + a9, iSajas + a1 a3.
[ |

4 Due to the idempotence of synchronisationAf (P), the regular expressigp is reduced to “zero or one occurrencepdf
which is equivalent to saying thatis optional.
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