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Abstract

We provide an algebraic formalisation ofconnectorsin BIP. These are used to structureinter-
actionsin a component-based system. A connector relates a set of typed ports. Types are used
to describe different modes of synchronisation: rendezvous and broadcast, in particular.

Connectors on a set of portsP are modelled as terms of the algebraAC(P ), generated from
P by using ann-ary fusionoperator and a unarytypingoperator. Typing associates with terms
(ports or connectors) synchronisation types —trigger or synchron—, which determine modes
of synchronisation. Broadcast interactions are initiated by triggers. Rendezvous is a maximal
interaction of a connector including only synchrons.

The semantics ofAC(P ) associates with a connector the set of its interactions. It induces on
connectors an equivalence relation which is not a congruence as it is not stable for fusion. We
provide a number of properties ofAC(P ) used to symbolically simplify and handle connec-
tors. We provide examples illustrating applications ofAC(P ), including a general component
model encompassing synchrony, methods for incremental model decomposition, and efficient
implementation by using symbolic techniques.

How to cite this report:

@techreport{TR-2007-3,
title = {The Algebra of Connectors — Structuring Interaction in{BIP}},
authors ={Simon Bliudze and Joseph Sifakis},
institution ={VERIMAG},
number ={TR-2007-3} ,
year ={2007}
}



The Algebra of Connectors Simon Bliudze and Joseph Sifakis

Contents

1 Introduction 2

2 BIP component framework 3
2.1 Basic semantic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Modeling parallel composition operations in BIP. . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Communicating Sequential Processes (CSP). . . . . . . . . . . . . . . . . . . . 5
2.2.2 Calculus of Communicating Systems (CCS). . . . . . . . . . . . . . . . . . . . . 6

3 The algebra of interactions 6
3.1 Syntax, axiomatisation, and semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Correspondence with boolean functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The algebra of connectors 8
4.1 Syntax, axioms, and semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
4.3 Normal form of connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Congruence relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Sub-algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

4.5.1 The algebra of synchrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5.2 The algebra of triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Applications 18
5.1 Efficient execution of BIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 d-Synchronous component model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Incremental decomposition of connectors. . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3.1 Decomposition by rewriting rules. . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Decomposition by derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion 27

Technical Report no TR-2007-3 1/30



Simon Bliudze and Joseph Sifakis The Algebra of Connectors

e e e
p1 p2 p3

��AA
e e

p1 p2 p3

(a) (b)

Figure 1: Graphical representation of rendezvous(a) and broadcast(b) connectors.

1 Introduction

A key idea in systems engineering is that complex systems are built by assembling components (building
blocks). Components are systems characterised by an abstraction, which is adequate for composition and
re-use. Large components are obtained by composing simpler ones. Component-based design confers
many advantages such as reuse of solutions, modular analysis and validation, reconfigurability, controlla-
bility etc.

Component-based design relies on the separation between coordination and computation. Systems are
built from units processing sequential code insulated from concurrent execution issues. The isolation of
coordination mechanisms allows a global treatment and analysis.

One of the main limitations of the current state-of-the-art is the lack of a unified paradigm for describing
and analysing the coordination between components. Such a paradigm would allow system designers and
implementers to formulate their solutions in terms of tangible, well-founded and organised concepts instead
of using dispersed low-level coordination mechanisms including semaphores, monitors, message passing,
remote call, protocols etc. A unified paradigm should allow a comparison and evaluation of otherwise
unrelated architectural solutions, as well as derivation of implementations in terms of specific coordination
mechanisms.

A number of paradigms for unifying interaction in heterogeneous systems have been proposed in
[Arb05, BWH+03, BGK+06, EJL+03]. In these works unification is achieved by reduction to a com-
mon low-level semantic model. Interaction mechanisms and their properties are not studied independently
of behaviour. Coordination languages also offer mechanisms for unified and implementation-independent
interaction specification, e.g. [BPE, nes]. Nonetheless, these are defined on an ad hoc basis, and there is no
underlying theoretical framework.

We propose thealgebra of connectorsfor modelling interaction in component-based systems. The
algebra allows the description of coordination between components in terms of structured connectors in-
volving communication ports. It formalises mechanisms and concepts that have been implemented in the
Behaviour-Interaction-Priority(BIP) component framework developed at Verimag [BBS06, Sif05]. BIP
distinguishes between three basic entities: 1) Behaviour, described as extended automata, including a set
of transitions labelled with communication ports. 2) Interaction, described by structured connectors relat-
ing communication ports. 3) Dynamic priorities, used to model simple control policies, allowing selection
amongst possible interactions. BIP uses a powerful composition operator parametrised by a set of interac-
tions.

We present an algebraic formalisation of the concept ofconnector, introduced in [GS03, GS05] as a
set of communication ports belonging to different components that may be involved in some interaction.
To express different types of synchronisation, the ports of a connector have a type (attribute)trigger or
synchron. Given a connector involving as set of ports{p1, . . . , pn}, the set of its interactions is defined by
the following rule:an interaction is any non empty subset of{p1, . . . , pn} which contains some port that
is a trigger; otherwise, (if all the ports are synchrons) the only possible interaction is the maximal one that
is, {p1, . . . , pn}.

In Figure1, we show two connectors modelling respectively rendezvous and broadcast between ports
p1, p2, p3. For rendezvous, all the involved ports are synchrons (represented by bullets) and the only possi-
ble interaction isp1p2p3. As usual, we simplify notation by writingp1p2p3 instead of the set{p1, p2, p3}.
For broadcast,p1 is a trigger (represented by a triangle). The possible interactions arep1, p1p2, p1p3, and
p1p2p3. A connector may have several triggers. For instance, if bothp1 andp2 are triggers in the above
connector, thenp2 andp2p3 should be added to the list of possible interactions.

The main contributions of this paper are the following:

• The algebra of connectors extends the notion of connectors to terms built from a set of ports by using

2/30 Technical Report no TR-2007-3
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Figure 2: Fusion(a) and structuring(b) of connectors.

a n-ary fusion operator and a unary typing operator (trigger or synchron). Given two connectors
involving sets of portss1 ands2, it is possible to obtain byfusiona new connector involving the set
of portss1 ∪ s2 (cf. Figure2(a)). Ports preserve their types except for the case where some port
occurs in both connectors with different types. In this case, the port in the new connector is a trigger.
It is also possible to structure connectors hierarchically as shown in Figure2(b), where termsp1 p2

andp3 p4 are typed and then fused to obtain a new connector.

• The semantics of the algebra of connectors associates with a connector (a term) the set of its interac-
tions. This induces an equivalence on terms. We show that this equivalence is not a congruence as it
is not preserved by fusion. This fact has deep consequences on composability of interaction models
investigated in the paper. We show that for the subset of the terms where all the connectors have the
same type (synchron or trigger) the semantic equivalence is a congruence.

• The algebra and its laws can be used to represent and handle symbolically complex interaction pat-
terns. The number of interactions of a connector can grow exponentially with its size. We provide
applications of the algebra in modelling languages, such as BIP, and show that the use of symbolic
instead of enumerative techniques can drastically enhance efficiency in execution and transformation.

The paper is structured as follows. Section2 provides a succinct presentation of the basic semantic
model for BIP and in particular, its composition parametrised by interactions. In Section3, we present the
Algebra of Interactions. It is a simple algebra used to introduce the Algebra of Connectors presented in
Section4. The last section discusses possible applications of the algebra of connectors to efficient design,
analysis, and execution of languages with complex interaction structure, such as BIP.

2 BIP component framework

2.1 Basic semantic model

BIP is a component framework for constructing systems by superposing three layers of modelling: Be-
haviour, Interaction, and Priority. The lower layer consists of a set atomic components representing transi-
tion systems. The second layer models interactions between components, specified by connectors. These
are relations between ports equipped with synchronisation types. Priorities are used to enforce scheduling
policies applied to interactions of the second layer.

The BIP component framework has been implemented in a language and a tool-set. The BIP language
offers primitives and constructs for modelling and composing layered components. Atomic components
are communicating automata extended with C functions and data. Their transitions are labelled with sets
of communication ports. The BIP language also allows composition of components parametrised by sets
of interactions as well as application of priorities.

The BIP tool-set includes an editor and a compiler for generating from BIP programs, C++ code exe-
cutable on a dedicated platform (see [BBS06, bip]).

We provide a succinct formalisation of the BIP component model focusing on the operational semantics
of component interaction and priorities.

Definition 2.1 For a set of portsP , aninteractionis a non-empty subseta ⊆ P of ports.

Definition 2.2 A labelled transition system is a tripleB = (Q,P,→), whereQ is a set ofstates, P is a set
of communication ports, and→⊆ Q× 2P ×Q is a set oftransitions, each labelled by an interaction.
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Figure 3: A system with four atomic components

For any pair of statesq, q′ ∈ Q and an interactiona ∈ 2P , we writeq
a→ q′, iff (q, a, q′) ∈→. When

the interaction is irrelevant, we simply writeq → q′.
An interactiona is enabledin stateq, denotedq

a→, iff there existsq′ ∈ Q such thatq
a→ q′. A port P

is active, iff it belongs to an enabled interaction.

In BIP, a system can be obtained as the composition ofn components, each modelled by a transition
systemBi = (Qi, Pi,→i), for i ∈ [1, n], such that their sets of ports are pairwise disjoint: fori, j ∈ [1, n]
(i 6= j), we havePi ∩ Pj = ∅. We takeP =

⋃n
i=1 Pi, the set of all ports in the system.

Thecompositionof components{Bi}n
i=1, parametrised by a set of interactionsγ ⊂ 2P is the transition

systemB = (Q, P,→γ), whereQ =
⊗n

i=1 Qi and→γ is the least set of transitions satisfying the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi 6= ∅ ⇒ qi
a∩Pi→ i q′i)

(q1, . . . , qn) a→γ (q′1, . . . , q
′
n)

, (1)

whereqi = q′i for all i ∈ [1, n] such thata ∩ Pi = ∅. We writeB = γ(B1 . . . , Bn).
Notice that an interactiona ∈ γ is enabled inγ(B1, . . . , Bn), only if, for eachi ∈ [1, n], the interaction

a∩Pi is enabled inBi; the states of components that do not participate in the interaction remain unchanged.
Several distinct interactions can be enabled at the same time, thus introducing non-determinism in the

product behaviour, which can be restricted by means of priorities.

Definition 2.3 Given a systemB = γ(B1, . . . , Bn), a priority modelπ is a strict partial order onγ. For
a, a′ ∈ γ, we writea ≺ a′ iff (a, a′) ∈ π, meaning that interactiona has less priority than interactiona′.

For B = (Q,P,→), and a priority modelπ, the transition systemπ(B) = (Q, P,→π), is defined by
the rule

q
a→ q′ ∧ 6 ∃ a′ : (a ≺ a′ ∧ q

a′→)
q

a→π q′
. (2)

Notice that an interaction is enabled inπ(B) only if it is enabled inB, and maximal according toπ.

Example 2.4 (Sender/Receivers)
Figure3 shows a componentπ γ(S, R1, R2, R3) obtained by composition of four atomic components: a
sender,S, and three receivers,R1, R2, R3. The sender has a ports for sending messages, and each receiver
has a portri (i = 1, 2, 3) for receiving them. The following table specifiesγ andπ for four different
coordination schemes.

Set of interactionsγ Priority modelπ

Rendezvous {s r1 r2 r3} ∅
Broadcast {s, s r1, s r2, s r3, s r1 r2, s r1 r3, s r2 r3, s r1 r2 r3}
Atomic Broadcast {s, s r1 r2 r3} {(a, a′) | a ⊂ a′}
Causality Chain {s, s r1, s r1 r2, s r1 r2 r3}
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Figure 4: Modulo-8 counter.

Rendezvousmeans strong synchronisation betweenS and allRi. This is specified by a single interaction
involving all the ports. This interaction can occur only if all the components are in states enabling
transitions labelled respectively bys, r1, r2, r3.

Broadcast means weak synchronisation, that is a synchronisation involvingS and any (possibly empty)
subset ofRi. This is specified by the set of all interactions containings. These interactions can occur
only if S is in a state enablings. EachRi participates in the interaction only if it is in a state enabling
ri.

Atomic broadcast means that either a message is received by allRi, or by none. Two interactions are
possible:s, when at least one of the receiving ports is not enabled, and the interactions r1 r2 r3,
corresponding to strong synchronisation.

Causality chain means that for a message to be received byRi it has to be received at the same time by
all Rj , for j < i. This coordination scheme is common in reactive systems.

For rendezvous, the priority model is empty. For all other coordination schemes, whenever several interac-
tions are possible, the interaction involving a maximal number of ports has higher priority, that is we take
π = {(a, a′) | a ⊂ a′}.

Throughout the paper, the above rule is applied. In other words, amongst the enabled interactions, are
preferred the ones involving a maximal number of ports.

Example 2.5 (Modulo-8 counter)
Figure4 shows a model for the Modulo-8 counter, presented in [MR01], obtained by composition of three
Modulo-2 counter components. Portsp, r, andt correspond to inputs, whereasq, s, andu correspond to
outputs. It can be easily verified that the interactionsp q r, p q r s t, andp q r s t u happen, respectively, on
every second, fourth, and eighth occurrence of an input interaction through the portp.

2.2 Modeling parallel composition operations in BIP

The composition operator, introduced in the previous section, can express usual parallel composition oper-
ators, such as the ones used in CSP [Hoa85] and CCS [Mil89]. By enforcing maximal progress, priorities
allow to express broadcast.

2.2.1 Communicating Sequential Processes (CSP)

In CSP [Hoa85], components can communicate over a set ofchannels, common to the system. Full seman-
tics of CSP can be found for example in [Ros97, Chapter 7], whereas, as announced above, we will limit
ourselves to the most essential case.

Atomic components (processes) in CSP can be considered as labelled transition systems consisting of a
triple (Q,C,→), whereQ is the set of states,C is the set of communication channels, and→⊂ Q×C×Q
is the set of state transitions labelled by channels fromC.
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Thus, for two componentsBi = (Qi, C,→i) with i = 1, 2 and a subsetC ′ ⊂ C, parallel composition
B1||C′B2 can be defined by the following rules, where we assumeqi, q

′
i ∈ Qi for i = 1, 2 andc ∈ C.

q1
c→1 q′1 ∧ q2

c→2 q′2

q1 ||C′ q2
c→ q′1 ||C′ q′2

, for anyc ∈ C ′ ,

q1
c→1 q′1

q1 ||C′ q2
c→ q′1 ||C′ q2

and
q2

c→2 q′2

q1 ||C′ q2
c→ q1 ||C′ q′2

, for anyc 6∈ C ′ .

(3)

To construct an equivalent system in BIP, we consider two componentsB̃i = (Qi, Bi.C,→i) with

Bi.C
def
= {Bi.c | c ∈ C} for i = 1, 2. An interaction model corresponding to (3) is then defined by taking

γ
CSP

=
{
{B1.c, B2.c}

∣∣∣ c ∈ C ′
}
∪
{
{B1.c}

∣∣∣ c 6∈ C ′
}
∪
{
{B2.c}

∣∣∣ c 6∈ C ′
}

.

2.2.2 Calculus of Communicating Systems (CCS)

In CSS [Mil89], all communication is performed by binary interactions between complementary actions
a anda. Denoting byA the set of actions, one considers the set of labelsL = A ∪ A ∪ {τ}, whereτ
represents an internal (non-observable transition).

Thus, for two componentsBi = (Qi, L,→i) with i = 1, 2, a parallel compositionB1||B2 can be
defined by the following rules, where we assumeqi, q

′
i ∈ Qi for i = 1, 2 anda ∈ A.

q1
a→1 q′1 ∧ q2

a→2 q′2
q1 || q2

τ→ q′1 || q′2
,

q1
l→1 q′1 , l ∈ {a, a}

q1 || q2
l→ q′1 || q2

, and
q2

l→2 q′2 , l ∈ {a, a}
q1 || q2

l→ q1 || q′2
.

(4)
Another important operation in CSS is restrictionB \ a, which excludes a given action from commu-

nication. Thus, in(B1||B2) \ a, restriction enforces synchronisation betweenB1 andB2.
As in the previous section, we model this by considering two componentsB̃i = (Qi, Bi.L,→i) with

Bi.L
def
= {Bi.l | l ∈ L} for i = 1, 2. A set of interactions corresponding toB1||B2 is then defined by

putting

γ
CCS,1 =

{
{Bi.a, B3−i.a}

∣∣∣ i = 1, 2
}
∪
{
{B1.l}

∣∣∣ l ∈ L
}
∪
{
{B2.l}

∣∣∣ l ∈ L
}

.

The only modification to do, in order to account for restriction in(B1||B2) \ a, is then to excludea anda
from possible singleton interactions. Thus we put

γ
CCS,2 =

{
{Bi.a, B3−i.a}

∣∣∣ i = 1, 2
}
∪
{
{B1.l}

∣∣∣ l ∈ L \ {a, a}
}
∪
{
{B2.l}

∣∣∣ l ∈ L \ {a, a}
}

.

3 The algebra of interactions

We define the algebra of interactions that will serve as a base for building the algebra of connectors.

3.1 Syntax, axiomatisation, and semantics

Consider a family of components, indexed byI and equipped with a set of portsPi, for i ∈ I, through which
it can communicate with the others. The communication model considered implies atomic synchronisation
of all ports participating in a given interaction. Therefore, each interaction is represented by the set of ports
it involves. Accordingly, each element in the algebra of interactions, which we define below, should be
considered as a set of possible interactions.

6/30 Technical Report no TR-2007-3
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Syntax
Let P = ∪i∈IPi be a set of all ports of the system, and assume that0, 1 6∈ P . The syntax of thealgebra of
interactions,AI(P ), is defined by

x ::= 0 | 1 | p | x · x | x + x | (x) , (5)

with p ∈ P an arbitrary port, and where ‘+’ and ‘·’ are binary operators, respectively calledunion and
synchronisation. Synchronisation has a higher order of precedence than union.

Axioms
The operations satisfy the following axioms.

1. Union ‘+’ is idempotent, associative, commutative, and has an identity element 0, i.e.(AI(P ),+, 0)
is a commutative monoid;

2. Synchronisation ‘·’ is idempotent, associative, and commutative, has an identity element 1, and an
absorbing element 0; synchronisation distributes over union, i.e.(AI(P ),+, ·, 0, 1) is a commutative
semi-ring.

Semantics
The semantics ofAI(P ) is defined by the function| · | : AI(P ) → 22P

, defined by

|0| = ∅,
|1| = {∅},
|p| =

{
{p}
}

, for anyp ∈ P,

|x1 + x2| = |x1| ∪ |x2|, for anyx1, x2 ∈ AI(P ),

|x1 · x2| =
{

x1 ∪ x2

∣∣∣x1 ∈ |x1|, x2 ∈ |x2|
}

, for anyx1, x2 ∈ AI(P ),

|(x)| = |x|, for anyx ∈ AI(P ) ,

(6)

for arbitraryp ∈ P , x, x1, x2 ∈ AI(P ). Terms ofAI(P ) represent sets of interactions between the ports
of P .

Proposition 3.1 The axiomatisation ofAI(P ) is sound and complete, that is, for anyx, y ∈ AI(P ),

x = y ⇐⇒ ‖x‖ = ‖y‖ .

Example 3.2 (Sender/Receiver continued)
In AI(P ), the interaction for the four coordination schemes of Example2.4are:

Set of interactions

Rendezvous s r1 r2 r3

Broadcast s (1 + r1) (1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3)

Causality Chain s (1 + r1 (1 + r2 (1 + r3)))

Clearly, this representation is more compact and exhibits more information: e.g. the expression(1+ri)
suggests that the portri is optional.

Technical Report no TR-2007-3 7/30
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AI(P ) B[P ]

0 false

1 p q p q p q p q p q p q

p + 1 q + 1 p q + 1 p + q p + p q q + p q q p p q ∨ p q p q ∨ p q p q

p + q + 1 p q + p + 1 p q + q + 1 p q + p + q p ∨ q p ∨ q p ∨ q p ∨ q

p q + p + q + 1 true

Figure 5: Correspondence betweenAI({p, q}) and boolean functions with two variables.

3.2 Correspondence with boolean functions

AI(P ) can be bijectively mapped to the free boolean algebraB[P ] generated byP . We define a mapping
β : AI(P ) → B[P ] by setting:

β(0) = false , β(1) =
∧
p∈P

p ,

β(pi1 . . . pik
) =

k∧
j=1

pij ∧
∧
i 6=ij

pi ,

β(x + y) = β(x) ∨ β(y) ,

for pi1 , . . . pik
∈ P , andx, y ∈ AI(P ), where in the right-hand side the elements ofP are considered to

be boolean variables. For example, consider the correspondence table forP = {p, q} shown in Figure5.

The mappingβ is an order isomorphism, and each expressionx ∈ AI(P ) represents exactly the set of
interactions corresponding to boolean valuations ofP satisfyingβ(x).

Although techniques specific to boolean algebras can be applied to the boolean representation of
AI(P ) (e.g. BDDs),AI(P ) provides a more natural representation of interactions for two reasons.

1. Representation inAI(P ) is more intuitive as it gives directly all the interactions. For example, the
termp + p q of AI(P ) represents the set of interactions{p, p q} for any set of portsP containing
p andq. The boolean representation ofp + p q depends onP : if P = {p, q} thenβ(p + pq) = p,
whereas ifP = {p, q, r, s} thenβ(p + pq) = p r s.

2. Synchronisation of two interactions inAI(P ) is by simple concatenation, whereas for their boolean
representation there is no simple context-independent composition rule, e.g. to obtain the represen-
tation ofp q from β(p) = p q r s andβ(q) = p q r s.

4 The algebra of connectors

We provide an algebraic formalisation of the concept of connector, supported by the BIP language [BBS06].
Connectors can express complex coordination schemes combining synchronisation by rendezvous and
broadcast.

8/30 Technical Report no TR-2007-3
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4.1 Syntax, axioms, and semantics

Syntax
Let P be a set of ports, such that0, 1 6∈ P . The syntax of thealgebra of connectors,AC(P ), is defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x + x | (x) ,

(7)

for p ∈ P , and where ‘+’ is binary operator calledunion, ‘·’ is ann-ary operator calledfusion, and brackets
‘ [·]’ and ‘[·]′’ are unarytypingoperators. Fusion has a higher order of precedence than union.

Union has the same meaning as union inAI(P ). Fusion is a generalisation of the synchronisation in
AI(P ). It is not associative. Typing is used to form typed connectors: ‘[·]′’ definestriggers (which can
initiate an interaction), and ‘[·]’ definessynchrons(which need synchronisation with other ports in order to
interact).

Definition 4.1 A termx ∈ AC(P ) is amonomial, iff it does not involve union operators.

Notation 4.2
We write [x]α, for α ∈ {0, 1}, to denote a typed connector. Whenα = 0, the connector is a synchron,
otherwise it is a trigger. When the exact type is irrelevant, we write ‘[·]∗’.

In order to simplify notation, we will omit brackets on 0, 1, and portsp ∈ P , as well as ‘·’ for the fusion
operation.

The algebraic structure onAC(P ) inherits most of the axioms fromAI(P ) except for the associativity
of fusion.

Axioms
The operations satisfy the following axioms.

1. Union ‘+’ is associative, commutative, idempotent, and has the identity element[0].

2. Fusion ‘·’ is commutative, distributive, and has an identity element[1]. It is idempotent on monomial
connectors, i.e. for any monomialx ∈ AC(P ) we havex · x = x.

3. Typing ‘[·]∗’ satisfies the following axioms, forx, y, z ∈ AC(P ) andα, β ∈ {0, 1}:

(a) [0]′ = [0],

(b)
[
[x]α

]β
= [x]β ,

(c) [x + y]α = [y]α + [x]α,

(d) [x]′ [y]′ = [x]′ [y] + [x] [y]′.

Let us now give some basic properties ofAC(P ).

Lemma 4.3 For any monomialx ∈ AC(P ) and any typingα, β ∈ {0, 1} holds the following equality

[x]α · [x]β = [x]α∨β ,

whereα ∨ β = max{α, β}.

Proof — If α = β, then,[x]α also being monomial,[x]α · [x]α = [x]α follows automatically from axioms
above. Ifα = 0 andβ = 1, we have by axiom (3d), and by the idempotence of union and fusion forα = β,

[x]′ · [x] = [x]′ · [x] + [x] · [x]′ = [x]′ · [x]′ = [x]′ .
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Lemma 4.4 For an arbitrary family{xi}n
i=1 ⊂ AC(P ), holds the following equality

n∏
i=1

[xi]′ =
n∑

i=1

[xi]′ ·
n∏

i 6=j

[xj ]

 .

Proof — This lemma is a direct consequence of axiom (3d) and the idempotence of the union operation.

Notice that, by application of the above lemma, it is possible to reduce the degree of the terms to one.
For example, consider a connector between two independent senders and three receiverss′1 s′2 [r1 + r2 r3].
This connector is equal tos′1 s2 [r1 + r2 r3] + s1 s′2 [r1 + r2 r3].
Semantics
The semantics ofAC(P ) is given by the function| · | : AC(P ) → AI(P ), defined by the rules

|[p]| = p , (8)

|x1 + x2| = |x1|+ |x2| , (9)∣∣∣ n∏
i=1

[xi]
∣∣∣ =

n∏
i=1

|xk| , (10)

∣∣∣ n∏
i=1

[xi]′ ·
m∏

j=1

[yj ]
∣∣∣ =

n∑
i=1

|xi| ·

∏
k 6=i

(
1 + |xk|

)
·

m∏
j=1

(
1 + |yj |

) , (11)

for x, x1, . . . , xn, y1, . . . , ym ∈ AC(P ) andp ∈ P ∪{0, 1}. Rules (10) and (11) are applied to the maximal
fusion terms.

Notice that, through the semantics ofAI(P ), connectors represent sets of interactions. The interaction
semantics‖·‖ : AC(P ) → 22P

is defined by composing| · | : AC(P ) → AI(P ) and‖·‖ : AI(P ) → 22P

.
Rule (11) can be decomposed in two steps: 1) the application of Lemma4.4, to reduce the degree of

all terms to one; 2) the application of rule (11) for n = 1, expressing the fact that the single trigger in
each term must participate in all interactions, while synchrons are optional. Compare Example4.8 in the
following section with Examples2.4and3.2.

Example 4.5
Consider a system consisting of two Senders with portss1, s2, and three Receivers with portsr1, r2, r3.
The meaning of the connectors′1 s′2 [r1 + r2 r3] is computed as follows.

|s′1 s′2 [r1 + r2 r3]| =
(11)
= |s1| (1 + |s2|) (1 + |r1 + r2 r3|)

+|s2| (1 + |s1|) (1 + |r1 + r2 r3|)
(9)
= |s1| (1 + |s2|) (1 + |r1|+ |r2 r3|)

+|s2| (1 + |s1|) (1 + |r1|+ |r2 r3|)
(10)
= |s1| (1 + |s2|) (1 + |r1|+ |r2| |r3|)

+|s2| (1 + |s1|) (1 + |r1|+ |r2| |r3|)
(8)
= s1 (1 + s2) (1 + r1 + r2 r3)

+s2 (1 + s1) (1 + r1 + r2 r3) ,

which corresponds to exactly the set of all possible interactions containing at least one ofs1 ands2, and
possibly eitherr1 or bothr2 andr3.

Proposition 4.6 The axiomatisation ofAC(P ) is sound, that is, forx, y ∈ AC(P ),

x = y =⇒ |x| = |y| . (12)
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Figure 6: Graphic representation of connectors.

Definition 4.7 Two connectorsx, y ∈ AC(P ) areequivalent(denotedx ' y), iff they have the same sets
of interactions, i.e.

x ' y
def⇐⇒ |x| = |y| . (13)

In Section4.4, we show that this equivalence relation is not a congruence, which implies that there is
no complete axiomatisation for the semantics ‘| · |’.

4.2 Examples
Example 4.8 (Sender/Receiver continued)
In AC(P ), the interactions for the four coordination schemes of Example2.4are:

Set of interactions

Rendezvous s r1 r2 r3

Broadcast s′ r1 r2, r3

Atomic Broadcast s′ [r1 r2 r3]

Causality Chain s′ [r′1 [r′2 r3]]

Notice thatAC(P ) allows compact representation of interactions, and, moreover, explicitly captures
the difference between broadcast and rendezvous. The four connectors are shown in Figure6. The typing
operator induces a hierarchical structure. Connectors can be represented as sets of trees, having ports at
their leaves. We use triangles and circles to represent types: triggers and synchrons, respectively.

The distinction between parentheses ‘(·)’ and the typing operator ‘[·]∗’ is important, as shown by the
following example.

Example 4.9
Consider two termsp′ (a′ c + b) andp′ [a′ c + b] of AC(P ). For the first term we have

|p′ (a′ c + b)| = |p′ a′ c + p′ b|
= p (1 + a) (1 + c) + a (1 + p) (1 + c) + p (1 + b)
= p + p a + p c + p a c + a + a c + p b ,

whereas forp′ [a′ c + b] we have

|p′ [a′ c + b]| = |p| (1 + |a′ c + b|) = p (1 + a + a c + b) = p + p a + p a c + p b .

Example 4.10 (Broadcast)
For the broadcast connectors′ r1 r2 r3 (Figure6(b), reproduced in Figure7(a)), we have

|s′ r1 r2 r3| = s (1 + r1) (1 + r2) (1 + r3) .

This connector can be constructed incrementally. For example, one can start from the connectors′ r1,
having|s′ r1| = s (1 + r1). By typing this connector as a trigger and adding the synchronr2, we obtain

|[s′ r1]′ r2| = |s′ r1| (1 + |r2|) = s (1 + r1) (1 + r2) .
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Figure 7: Some examples ofAC(P ) connectors.
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Figure 8: Modulo-8 counter.

Connectingr3 in a similar manner gives[[s′ r1]′ r2]′ r3 (Figure7(b)). The two connectors are equivalent:

|[[s′ r1]′ r2]′ r3| = s (1 + r1) (1 + r2) (1 + r3)

It is easy to verify that another incremental construction results in the equivalent connector[s′ r1]′ [r′2 r′3]
(Figure7(c)).

Example 4.11 (An observer component)
Another simple example consists in adding an observer component to an existing connector. Suppose for
example that we have three portsp, q, andr connected in an ethernet-like configurationp′ q′ r′. (In this
connector all interactions are possible, except the empty one, and any port can initiate an interaction.)

Let us now introduce an observer, registering the interactions on this connector through a given ports.
In order to do so, it is sufficient to join our existing connector (typed as trigger) ands typed as synchron,
thus obtaining[p′ q′ r′]′ s (Figure7(d)).

As intended,s cannot itself initiate an interaction, but can participate in any one of the original connec-
tor.

Example 4.12 (Modulo-8 counter)
In the model shown in Figure8, the causality chain pattern (cf. Figure6(d)) is applied to connectorsp, q r,

s t, andu. Thus interactions are modelled by a single structured connectorp′
[
[q r]′ [[s t]′ u]

]
:∣∣∣p′ [[q r]′

[
[s t]′ u

]]∣∣∣ = p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter of Figure4.

Example 4.13 (Ethernet)
Considern components, each equipped with a send port,si, and a receive portri, for i ∈ [1, n]. We model
two types of interactions:

• successful communication, where some componentk sends data through the portsk, and all the
others listen on their respective receive portsri for i 6= k;

• collision, where several components try to send data on their respective send ports{si}i∈I for some
I ⊆ [1, n], while the others listen on{ri}i 6∈I .

12/30 Technical Report no TR-2007-3



The Algebra of Connectors Simon Bliudze and Joseph Sifakis

Thus, the connector modelling the possible interactions is

n∑
i=1

s′k
∏
i 6=k

(s′i + ri) .

4.3 Normal form of connectors

In this section, we define the normal form representation of connectors fromAC(P ). First, we define the
normal form representation of monomial connectors, and we extend it to arbitrary connectors by distribu-
tivity of union.

A monomial connector is in normal form, if it does not contain synchron constants ([0] and [1]), and at
each hierarchical level it is a fusion of typed elements, such that at most one of them is a trigger.

Definition 4.14 For any termx of the form
∏

i∈I [xi]∗, we denote by#x the number of its trigger compo-
nents, which we call thedegreeof x.

In general, for an expressionx =
∑n

i=1 xi, where allxi have the form above, we define

#x
def
= max

i=1,n
#xi .

We say thatx hasstrictly positive degreeiff min{#xi|i = 1, . . . , n} > 0.

Definition 4.15 Let x ∈ AC(P ) be a monomial connector, we say that it is innormal form, iff it is either
[p]∗ for somep ∈ P ∪ {0, 1}, or x ≡

∏n
i=1[xi]αi (where ‘≡’ denotes syntactic equality) and hold the

following conditions

1. #x ≤ 1,

2. for all i ∈ [1, n], we have bothxi 6= 0 and[xi]αi 6= [1],

3. all xi are pairwise distinct normal form monomials.

We say that an arbitrary connector is in normal form, iff it is a union of a family of pairwise distinct
non-zero normal form monomials.

Example 4.16
Consider the connectorx ≡ p′ · [q′ · r + s]′. This term is not in normal form for two reasons: firstly,
#x > 1, as bothp′ and[q′ ·r+s]′ are triggers, and secondlyq′ ·r+s is not a monomial. We can, however,
representx in a normal form by transforming it in the following way (we apply the distributivity of fusion
and typing over union, and the reduction axiom (3d))

x ≡ p′ · [q′ · r + s]′ = p′ · [q′ · r]′ + p′ · s′ = p′ · [q′ · r] + p · [q′ · r]′ + p′ · s + p · s′ .

Another example of the term that is not in normal form isy ≡ p′ · [q′ · r′]. This time, it is due to the
fact that#(q′ · r′) > 1. We obtain a normal form representation by applying the same transformations

y ≡ p′ · [q′ · r′] = p′ · [q′ · r + q · r′] = p′ · [q′ · r] + p′ · [q · r′] .

Proposition 4.17 For an arbitrary connectorx ∈ AC(P ) there exists a unique normal form connector
xn ∈ AC(P ), such thatx = xn.
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Proof — Normal form ofAC(P ) connectors is defined by the four transformation rules below. These
correspond to the idempotence, distributivity and absorption axioms (and also Lemma4.3), as well the
reduction axiom (3d): for any monomialw ∈ AC(P ), arbitraryx, y, z ∈ AC(P ), andα, β ∈ {0, 1} we put

x + x
IDP
−; x , x · (y + z)

DIST
−; x · y + x · z , [0] + x

ABS
−; x ,

[w]α · [w]β
IDP
−; [w]α∨β , [x + y]α

DIST
−; [x]α + [y]α , [1] · x

ABS
−; x ,

[x]′ · [y]′
RED1
−; [x]′ · [y] + [x] · [y]′ .

It can be easily verified that the rewriting system defined by these rules is terminating and confluent.
For example, let us consider[x]′ · [x]′ for some monomialx ∈ AC(P ). We then have essentially two
possible chains of transformations:1

[x]′ · [x]′
IDP
−; [x]′ ,

and

[x]′ · [x]′
RED1
−; [x]′ · [x] + [x] · [x]′

IDP
−; [x]′ · [x]

IDP
−; [x]′ .

4.4 Congruence relation

Definition 4.18 We denote by ‘∼=’ the largest congruence relation contained in ‘'’, that is the largest
relation satisfying, forx, y ∈ AC(P ), andz 6∈ P ,

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) ' E(y/z) , (14)

where e.g.E(x/z) denotes the expression, obtained fromE by replacing all occurrences ofz by x.

Notice that, in general, two equivalent terms are not congruent. For example,p′ ' p, but p′ 6∼= p as
p′ q 6' p q, for p, q ∈ P .

Lemma 4.19 Similarly typed semantically equivalent elements are congruent, i.e. for any two connectors
x, y ∈ AC(P ), and anyα ∈ {0, 1}, we have

x ' y =⇒ [x]α ∼= [y]α . (15)

Proof — By definition of the congruence ‘∼=’, we have to show that for any expressionE ∈ AC(P ∪ {z})
we haveE(x/z) ' E(y/z). Without loss of generality we can assume thatz only occurs once inE. Due
to distributivity of fusion and typing over union, it is sufficient to prove the implication

x ' y =⇒ [x]α · w ' [y]α · w (16)

for any monomialw ∈ AC(P ) and any typingα ∈ {0, 1}. Applying this argument iteratively, we will
obtain the required equivalenceE(x/z) ' E(y/z).

Let us now prove (16) under the assumptions above. By symmetry, it is sufficient to prove that‖ [x]α ·
w ‖ ⊆ ‖ [y]α · w ‖, i.e. that for any interactiona ∈ ‖ [x]α · w ‖ we also havea ∈ ‖ [y]α · w ‖.

We have to consider four different cases according to the value ofα and the degree#w:

1. α = 0,#w = 0,

1 Indeed, although both these chains can be eventually interleaved in various ways with transformations induced by the fusion
context (e.g.[x]′ · [x]′ · y), it is clear that these would have the same effect on the final result (cf. also Lemma4.4).
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2. α = 1,#w = 0,

3. α = 0,#w > 0,

4. α = 1,#w > 0.

First of all, observe that case4 follows from cases3 and2 by application of the reduction axiom (3d)
(or equivalently Lemma4.4). Below we provide the proof of case3, and the other two cases can be treated
in the same way.

We assume now thatα = 0 and#w > 0, and we have to show that, for anya ∈ ‖ [x] · w ‖, we also
havea ∈ ‖ [y] · w ‖.

From the definition of the interaction semantics ‘‖ · ‖’ of AC(P ) we deduce thata can be decomposed
asa = a1 ∪ a2 for somea1 ∈ ‖x‖ or a1 = ∅ anda2 ∈ ‖w‖. If a1 6= ∅, we deduce fromx ' y that
a1 ∈ ‖y‖, and consequentlya = a1 ∪ a2 ∈ ‖ [y] · w‖, which ends the proof.

Note 4.20 Clearly the converse implication in (15) is also true.

Lemma 4.21 For x, y ∈ AC(P ),

x ∼= y ⇐⇒ ∀z ∈ AC(P ), (z is monomial⇒ x · z ' y · z) .

Proof — This lemma is a direct consequence of the Definition4.18of semantic congruence, Lemma4.19,
and distributivity laws.

Theorem 4.22 Letx, y ∈ AC(P ) be two non-zero monomial connectors, we then have

x ∼= y ⇐⇒


x ' y

x · 1′ ' y · 1′

#x > 0 ⇔ #y > 0 .

(17)

Proof — One side of the implication is obvious. (The third condition is obtained by comparingx · p · q and
y · p · q, wherep, q ∈ P are two ports that do not participate in neitherx nory.2). Therefore, we only have
to show that the three conditions on the right-hand side implyx ∼= y.

By Lemma4.21, it is sufficient to show that for any monomial termz ∈ AC(P ) we havex · z ' y · z.
As bothx andy are also monomial, we have for some{xi}n

i=1, {yi}m
i=1, and{zi}l

i=1 in AC(P ) and some
{αi}n

i=1, {βi}m
i=1, and{γi}l

i=1 in {0, 1}

x ≡ [x1]α1 · . . . · [xn]αn ,
y ≡ [y1]β1 · . . . · [ym]βm ,
z ≡ [z1]γ1 · . . . · [zl]γl .

(18)

Similarly to the proof of Lemma4.19, we have to consider four cases according to the degrees ofx, y, and
z. However, the case, where all three degrees are positive, can be derived from the other three.

In each case, we have to show that‖x · z‖ = ‖y · z‖. However, by symmetry, it is sufficient to show
that‖x · z‖ ⊆ ‖y · z‖, i.e. that for an arbitrary interactiona ∈ ‖x · z‖, we also havea ∈ ‖y · z‖.

Case 1. (#x = #y = #z = 0) By the definition of the interaction semantics ‘‖ · ‖’ of AC(P ), there exist
a0 ∈ ‖x‖ anda1 ∈ ‖z‖ such thata = a0 ∪ a1. Recall now thatx ' y, and consequently we also
havea0 ∈ ‖y‖, which immediately impliesa ∈ ‖y · z‖.

Case 2. (#x, #y > 0, #z = 0) There exista0 ∈ ‖x‖ and a family{ai ∈ ‖zi‖}i∈I indexed by some
I ⊂ [1, l] such thata = a0 ∪

⋃
i∈I ai. As above, we deduce thata0 ∈ ‖y‖, and consequently

a ∈ ‖y · z‖, as we also have#y > 0.

2 We assume here that there is always a port inP that does not participate in the considered expression, which is rather reasonable
considering that new components can be potentially added to the system offering new communication ports.
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Case 3. (#x = #y = 0, #z > 0) Similarly to the previous case, there exista0 ∈ ‖z‖ and a family{ai ∈
‖xi‖}i∈I indexed by someI ⊂ [1, n] such thata = a0 ∪

⋃
i∈I ai. Let us now considerx · 1′, and

rewrite it in the normal form. We obtain

x · 1′ =
∑

k∈T (x)

[xk]′ ·
n∏

j=1
j 6=k

[xj ] + 1′ ·
n∏

j=1

[xj ] '
∑

J⊂[1,n]

∏
j∈J

[xj ] .

In the same manner, we obtain the corresponding equivalence fory · 1′

y · 1′ '
∑

J⊂[1,m]

∏
j∈J

[yj ] .

By the choice ofai, we then have

⋃
i∈I

ai ∈

∥∥∥∥∥∏
i∈I

[xi]

∥∥∥∥∥ ⊂ ‖x · 1′‖ ,

which implies
⋃

i∈I ai ∈ ‖y · 1′‖, and consequently there existsJ ⊂ [1,m] such that

⋃
i∈I

ai ∈

∥∥∥∥∥∥
∏
j∈J

[yj ]

∥∥∥∥∥∥ ,

and we conclude the proof by observing that this implies

a = a0 ∪
⋃
i∈I

ai ∈

∥∥∥∥∥∥z ·
∏
j∈J

[yj ]

∥∥∥∥∥∥ ⊂ ‖y · z‖ .

The following two corollaries are used for the axiomatisation of the algebra of triggers, defined in the
next section.

Corollary 4.23 For x ∈ AC(P ), such thatdeg(x) > 0, we havex · 0′ ∼= x.

Proof — For monomial elements, the proof is straightforward and consists in applying the procedure
described in the previous sections to verify that bothx · 0′ ' x andx · 0′ · 1′ ' x · 1′. The condition that
the degrees of both sides be non-zero simultaneously is guaranteed by the assumption of the lemma. In
general case, we apply distributivity observing that all monomials also have non-zero degrees.

Note 4.24 Notice that the proof above does not make use of the fact thatx andy are monomials. Indeed,
it is sufficient to require that they have the form (18).

Theorem4.22can also be easily generalised to arbitraryx andy having strictly positive degree (recall
Definition4.14).

Corollary 4.25 For anyx, y, z1, . . . , zn,∈ AC(P ).

1. [x]′ · [y]′ ∼=
[
[x]′ · [y]′

]′
,

2. [x]′ ·
n∏

i=1

[zi] ∼= [x]′ ·

[
n∏

i=1

[zi]′
]

.

To finalise, let us give an example of the situation, where Theorem4.22is not applicable.
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Example 4.26
Consider two portsp, q ∈ P . We then clearly havep′ · q 6∼= p′ + p · q, as for anyr, s ∈ P the interaction
{p, q, r} is possible inp′ · q · r · s, but not in(p′ + p · q) · r · s.

At the same time, one can easily verify that hold all three conditions in the right-hand side of (17).
Indeed, we have

p′ · q ' p + p · q ' p′ + p · q
p′ · q · 1′ ' 1 + p + q ' p′ · 1′ + p · q · 1′
#(p′ · q) = 1 = #(p′ + p · q) .

This situation is explained by the fact that neitherp′ + p · q is a monomial, nor it has a strictly positive
degree.

4.5 Sub-algebras

The subsets of the terms ofAC(P ), involving only triggers or synchrons, define two sub-algebras: the
algebra of triggers, AT (P ), and thealgebra of synchrons, AS(P ). The terms of these algebras model,
respectively, coordination by rendezvous and by broadcast.

4.5.1 The algebra of synchrons

First, we consider the sub-algebraACS(P ) ⊂ AC(P ) generated by the restriction to synchrons of the
syntax (7)

s ::= [0] | [1] | [p] | [x]

x ::= s | x · x | x + x | (x) .
(19)

ACS(P ) inherits the axioms ofAC(P ), and consequently fusion is also non-associative. Thealgebra
of synchrons,AS(P ), is obtained by adding the associativity axiom[

[x] [y]
]
[z] = [x] [y] [z] = [x]

[
[y] [z]

]
, (20)

to those ofACS(P ). Thus,AS(P )
def
= ACS(P )/ASSOC, whereASSOC is the reflexive transitive clo-

sure of (20), is an associative quotient algebra, which satisfies the same axioms asAI(P ). Consequently,
dropping the brackets in the elements ofAS(P ) immediately provides an isomorphism withAI(P ).

Proposition 4.27 The axiomatisation ofAS(P ) is sound and complete.

Proof — This proposition follows from the associativity of synchronisation inAI(P ) and the rule (10) in
the definition of the semantics ofAC(P ).

4.5.2 The algebra of triggers

Similarly to the previous section we consider the sub-algebraACT (P ) ⊂ AC(P ) generated by the restric-
tion of syntax (7) to triggers:

t ::= [0]′ | [1]′ | [p]′ | [x]′

x ::= t | x · x | x + x | (x) .
(21)

Although the algebraic structure onACT (P ) is inherited fromAC(P ) in very much the same way as
that ofACS(P ), there is a slight but important difference in the structure that has to be observed here.
Indeed, as[1] 6∈ ACT (P ), the identity element for fusion is[0]′ (cf. Corollary4.23).

As in the case ofACS(P ), the algebraACT (P ) is non-associative. Again, we consider a quotient
algebraAT (P ) obtained by adding the associativity axiom[

[x]′ [y]′
]′

[z]′ = [x]′ [y]′ [z]′ = [x]′
[
[y]′ [z]′

]′
.

for arbitrary trigger connectorsx, y, z ∈ ACT (P ), to those ofACT (P ).
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Figure 9: Hierarchy of algebras.

Proposition 4.28 The axiomatisation ofAT (P ) is sound. It becomes complete with the additional axiom

[x]′ y = [x]′ y + [x]′ . (22)

Proof — The soundness of this axiomatisation follows from Corollaries4.23and4.25(1), the idempotence
of union and synchronisation inAI(P ), and the rule (11). The completness is proven by showing that
the associativity of fusion and the absorbtion axiom (22) allow to define a normal form, coinciding for
equivalent terms.

− o −

We have so far defined six algebras on a given set of portsP : AI(P ), AS(P ), AT (P ), ACS(P ),
ACT (P ), andAC(P ), which can be arranged in a diagram shown in Figure9. In this diagram, ‘⊂’ is the
set inclusion, ‘< · >’ represent the projections ofACS(P ) (resp.ACT (P )) onAS(P ) (resp.AT (P ))
induced by associativity. The left branch can be associated with the construction ofAI(P )-semantics of
AC(P ). The remaining arrows are obtained by composing the existing ones. Observe that the definition of
monomials, can be naturally formulated for elements of all six of these algebras.

5 Applications

The algebra of connectors formalises the concept of structured connector already used in the BIP lan-
guage. It finds multiple applications in improving both the language and its execution engine. The three
applications presented in this section, show its expressive power and analysis capabilities.

5.1 Efficient execution of BIP

The proposed algebraic framework can be used to enhance performance of the BIP execution Engine. The
Engine drives the execution of (the C++ code generated from) a BIP program. A key performance issue is
the computation of the set of the possible interactions of the BIP program from a given state. The Engine
has access to the set of the connectors and the priority model of the program. From a given global state,
each atomic component of the BIP program, waits for an interaction through a set of active ports (ports
labelling enabled transitions) communicated to the Engine. The Engine computes from the set of all the
active ports and the connectors, the set of the maximal interactions involving active ports. It chooses one
of them, computes associated data transformations and notifies the components involved in the chosen
interaction.

Currently, the computation of the maximal set of interactions involves a costly exploration of enumera-
tive representations for connectors. This leads to a considerable overhead in execution times. For instance,
for an MPEG4 encoder in BIP obtained by componentisation of a monolithic C program of 11,000 lines of
code, we measured almost 100% of overhead in execution time. We provide below the principle of a not
yet implemented, symbolic method which could be used to drastically reduce this overhead.
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Given a seta of active ports, we use the following algorithm to find the maximal interactions contained
in a connectorK.

1. Let {p1, . . . , pk} be the set of ports that do not belong toa. ComputeK(0/p1, . . . , 0/pk) (substitute
0 for all pi, with i = 1, . . . , k).

2. In the resulting connector, erase all primes to obtain a termK̃ ∈ AI(P ).

3. ConsiderK̃ as a star-free regular expression and build the associated (acyclic) automaton with states
labelled by sub-interactions ofa.

4. The final states of the obtained automaton correspond to maximal enabled interactions withinK.

Example 5.1
Suppose that only portsq, r, s, andt are enabled, and compute the maximal interactions of the connector
p′ [q [s + r] + r q′]′[t + u].

Substitute 0 forp andu to obtain

0′
[
q [s + r] + r q′

]′
[t + 0] =

[
q [s + r] + r q′

]′
t ,

which becomes
[
q [s + r] + r q

]
t by erasing the primes. The associated automaton is:

i��*
H

Hj

iqir @
@R-

-

q r

q s

-

-

q r t

q s t

The final states of this automaton correspond to two interactions,q r t andq s t, and it can be easily
verified that those are, indeed, the two maximal interactions in the given connector, when portsp andu are
disabled.

5.2 d-Synchronous component model

The evaluation of the BIP language on complex case studies, has shown that some coordination schemes
need a number of connectors increasing exponentially with the number of ports. Nonetheless, these con-
nectors can be obtained by combination of a reasonably small number of basic connectors.

To avoid tedious and error prone enumerative specification, we propose an extension of the current
component model where a transition of the product component may involve synchronous execution of
interactions from several connectors. This leads to ad-synchronous extension of the BIP component model
discussed below.

To motivate the proposed extension, we modeljoint function call inspired from constructs found in
languages such as nesC and Polyphonic C# [Com, nes]. A function call for a functionfi, involves two
strong synchronisations between theCaller and theCalleei: 1) through the connectorKi = ci bi to begin
the execution offi; 2) through the connectorLi = ri fi for finish and return (see Figure10 for an example
with two Callees).

Joint function calls involve the computation in parallel of several functions. TheCaller awaits for
all the invoked functions to complete their execution. For instance, modeling a joint function call for
functionsf1 and f2, entails a modification of existing connectors by adding the links in dashed lines,
shown in Figure10, to obtain

[b1 c1]′ [b2 c2]′ ' b1 c1 + b2 c2 + b1 c1 b2 c2 .

Depending on the number of ports involved in the call, an exponential number of connectors can be re-
quired. To avoid connector explosion, we extend the composition operator of BIP in the following manner.

Definition 5.2 An interconnected systemis given by a pair({Bi}n
i=1, {Kj}m

j=1), whereBi = (Qi, Pi,→i)
with →i⊆ Qi × 2Pi ×Qi, are components, andKj ∈ AC(P ) with P =

⋃n
i=1 Pi.
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Figure 10: Modeling a joint call of two functions.
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Figure 11: Causality loop.

For a integer parameter0 < d ≤ m, thed-synchronous semanticsof ({Bi}n
i=1, {Kj}m

j=1) is the system
γd(B1, . . . , Bn) defined by applying the rule (1) with γ = γd, where

γd =
∑

I⊆[1,m]

|I|=d

∏
i∈I

[Ki]′ .

Thesynchronous semanticscorresponds to the case, whered is maximal (i.e.d = m).

Notice thatγd contains all the interactions obtained by synchronisation of at mostd connectors. Thus,
in particular, we haveγ1 ⊆ γ2 ⊆ . . . ⊆ γm.

The application of rule (1) for thed-synchronous semantics withd > 1, requires the nontrivial compu-
tation of all the possible interactions. For this the following proposition can be used.

Proposition 5.3 Let({Bi}n
i=1, {Kj}m

j=1) be an interconnected system. The set of possible interactions for
its d-synchronous semantics is

n∏
i=1

[Gi]′ ∩ γd , (23)

where, fori ∈ [1, n], we putGi =
∑

qi∈Qi
Gqi

with Gqi
=
∑

qi
a→ a.

Notice thatGi, in (23), is the set of all interactions offered by the componenti alone. Thus,
∏n

i=1[Gi]′

is the set of all the interactions offered by the components, whereasγd is the set of the interactions allowed
by thed-synchronised connectors. Therefore, the intersection of the two sets characterises all the possible
interactions in thed-synchronous semantics.

Example 5.4 (Causality loop)
Consider the interconnected system shown in Figure11. For d = 2 (synchronous semantics), the only
possible interaction is

[p′ q]′ [r′ s]′ ∩ [q r]′ [p s]′ = p q r s ,

which corresponds to a causality loop, in the synchronous languages terminology [BG92, HCRP91].
Notice that, ford = 1, the set of possible interactions is empty:

[p′ q]′ [r′ s]′ ∩
(
q r + p s

)
= ∅ .
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Figure 13: Synthesised connector for mod-8 counter.

Example 5.5 (Modulo-8 counter)
The synchronous semantics of the system in Figure12 is equivalent to the modulo-8 counter given in
Example4.12of Section4.2. The synchronous model is a more natural representation of this system. Its
interactions can be computed by application of Proposition5.3:

[p + p q]′ [r + r s]′ [t + t u]′ ∩ p′ [q r]′ [s t]′ u′ =

= p + p q r + p q r s t + p q r s t u .

This example illustrates the importance of being able to compute the interactions of a system for the
d-synchronous semantics withd > 1. As shown in the above examples, the execution ofd-synchronous
models withd > 1, requires a computation of intersection of connectors. To avoid costly enumeratuve
techniques we have developed an alternative technique, based on dependency graph analysis. We illustrate
this technique below, by applying it to the Modulo-8 counter.

The dependency graph analysis consists in building a directed acyclic graph, based on relations induced
by connectors between the components of an interconnected system and labels of the transitions of these
components. The resulting graph allows to determine the set of the possible interactions in the synchronous
semantics, without having to enumerate them explicitly.

For the modulo-8 counter, the interconnected system in Figure12 provides the following relations:
p → q (p can triggerq), r → s, t → u, q = r (q andr must synchronise), ands = t. All these relations
together, are represented by the graph

p → q r → s t → u . (24)

Observe that each path in such dependency graph represents a causality chain. The graph in (24)
represents the connectorp′ [[q r]′[[s t]′u]], shown in Figure13(cf. also Figure8). In general, this technique
allows the synthesis of the connectors of a1-synchronous model which is equivalent to a given synchronous
model.

5.3 Incremental decomposition of connectors

In [GS05, Sif05], it has been argued that incrementality, which means that models can be constructed by
adding and removing components in such a way that the resulting system is not affected by the order of
operations, is an important property of the system composition.

For instance, the following incremental construction for the broadcast connectors′ r1 r2 r3 is provided
in Example4.10.

s′ r1 r2 r3 ' [s′ r1 r2]′ r3 '
[
[s′ r1]′ r2

]′
r3 .

We studied techniques for computing incremental decompositions for connectors. These techniques
are based on the iterative application of decompositions as defined by the following problem.
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Figure 14: Hierarchical connector transformation

Problem 5.6 (Decomposition of Connectors)Given a connectorK ∈ AC(P ) and a subset of portsP0 ⊂
P , construct a connector̃K

K ≡
n∑

i=1

Ki ·Ki ,

with Ki ∈ AC(P0) andKi ∈ AC(P \ P0), for i = 1, . . . , n, such thatK ' K̃.

Note 5.7 We require thatK ' K̃. Indeed, the semantic congruence ‘∼=’ is too strong to allow interesting
transformations. However, semantic equivalence ‘'’ is sufficient in a large number of applications as it is
transformed into congruence by typing (cf. Lemma4.19).

Clearly, it is possible to solve this problem by computing explicitly all the interactions ofK, and, for
each interaction, separating the ports ofP0. This involves exhaustive enumeration of possible interactions,
and thus leads to a combinatorial explosion of terms. We have developed two techniques for decomposing
connectors, avoiding this explosion.

Both techniques, involve an iterative application of decompositions. The first technique is based on
term rewriting rules, whereas the second uses the notion of derivation.

5.3.1 Decomposition by rewriting rules

In the context presented above, the required connectorK̃ can be constructed taking the group of ports
{pi}k

i=1 up the hierarchical levels iteratively. This procedure can be separated into the following three
steps illustrated in Figure14.

Step 1. Regrouping the ports{pi}k
i=1 into a single typed connector (transition from(a) to (b) in Figure14).

More precisely, we transform a connector of the form

[p1 · . . . · pk · pk+1 · . . . · pn] · [y] · [z] (25)

into another one of the form[
[p1 · . . . · pk] · [pk+1 · . . . · pn]

]
· [y] · [z] , (26)

where in both cases (as well as in Figure14) we skip all synchron/trigger typing to avoid overcharg-
ing the expressions. Observe that this transformation is a congruence, as all the changes are made
inside an typed connector (cf. Lemma4.19).

Step 2. Regrouping the sibling connectors into a single typed one (transition from(b) to (c) in Figure14).
Here, we continue the transformation by replacing the connector of the form (26) by an equivalent
one of form [

[p1 · . . . · pk] · [pk+1 · . . . · pn]
]
·
[
[y] · [z]

]
. (27)
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Step 3. Finally, we perform a rotation taking the connector containing ports{pi}k
i=1 outside (transition

from (c) to (d) in Figure 14). This is obtained by substituting the connector constructed in the
previous step by an equivalent one of the form

[p1 · . . . · pk] ·
[
[pk+1 · . . . · pn] ·

[
[y] · [z]

]]
. (28)

In the case where the initial connector considered in Step 1 above is itself an typed sub-connector of
a more complex one, we consider the next hierarchical level of the connector obtained by these trans-
formations. This level then automatically has the form (26), and therefore we can continue by iteratively
applying Steps 2 and 3 until we reach the top level of the hierarchy, at which moment we obtain the required
connectorK̃.

To finalise this procedure, we state the three following lemmas that describe in a formal way the trans-
formations of the steps enumerated above.

Lemma 5.8 (Step 1: Regrouping of ports)The following decomposition rule holds for any portspi, qj ∈
P , wherei ∈ [1, n] andj ∈ [1,m], and for any1 ≤ l < n and0 ≤ k ≤ m

p′1 . . . p′n q1 . . . qm ' [p′1 . . . p′l q1 . . . qk]′ · [p′l+1 . . . p′n qk+1 . . . qm]′

+ [p′1 . . . p′l q1 . . . qk]′ · [q′k+1 . . . q′m]
+ [q′1 . . . q′k]′ · [p′l+1 . . . p′n qk+1 . . . qm]′ .

(29)

For the two cases, wherel = n or n = 0, we have respectively the following two equivalences

p′1 . . . p′n q1 . . . qm ' [p′1 . . . p′n q1 . . . qk]′ · [q′k+1 . . . q′m] , (30)

and

q1 . . . qm ' [q1 . . . qk] · [qk+1 . . . qm] . (31)

Note 5.9 Clearly, this lemma remains valid if we replace any number of portspi or qi by typed connectors,
i.e. [x] for somex ∈ AC(P ).

Lemma 5.10 (Step 2: Regrouping of siblings)Let {xi}n
i=0 be a family of arbitrary elements ofAC(P ),

and{αi}n
i=1 be a corresponding{0, 1}-typing such thatαk = 1 for at least onek ∈ [1, n]. Then hold the

following four properties

[x0] ·
n∏

i=1

[xi] ' [x0] ·

[
n∏

i=1

[xi]

]
, (32)

[x0]′ ·
n∏

i=1

[xi] ' [x0]′ ·

[
n∏

i=1

[xi]′
]

, (33)

[x0] ·
n∏

i=1

[xi]αi ' [x0] ·

[
n∏

i=1

[xi]αi

]′
, (34)

[x0]′ ·
n∏

i=1

[xi]αi ' [x0]′ ·

([
n∏

i=1

[xi]αi

]′
+

[∏
i∈S

[xi]′
])

, (35)

where, in the last one, we putS = {i ∈ [1, n] |αi = 0}.

Lemma 5.11 (Step 3: Rotation)For arbitrary connectorsx, y, z ∈ AC(P ) and typesα, β, γ, δ ∈ {0, 1},
holds the equivalence [

[x]α[y]β
]δ

[z]γ ' [x]αδ
[
[y]δ[z]α

]
+ w , (36)
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wherew ∈ AC(P ) is defined by

w =


0, if β = 0 andγ = 0

z, if β = 0 andγ = 1

[y]δ[z]γ , if β = 1 .

5.3.2 Decomposition by derivation

Theorem 5.12 Letp ∈ P be an arbitrary port, andK ∈ AC(P ) be a connector. Then there exist a unique
dK/dp ∈ AI(P \ {p}) such that

K ' p ·
[
dK

dp

]
+ K(0/p) , (37)

whereK(0/p) denotes the connector obtained by substituting all occurrences ofp in K by0.

Proof — It is, indeed, sufficient to consider the flattening|K| ∈ AI(P ) of the connectorK. This flattening
|K| is a union of interactions that can be regrouped in two parts according to whether they containp or not,
thus proving the theorem.

Definition 5.13 We call the connectordK/dp in (37) thederivative ofK byp.

Observe that Theorem5.12only states the uniqueness of such decomposition inAI(P ). InAC(P ), it is
possible to have several distinct representations ofdK/dp, which are, however, all semantically equivalent.
Thus by restricting the discussion to semantic equivalence, we can consider any representation ofdK/dp
in AC(P ).

Proposition 5.14 The derivative possesses the following basic properties.

1. K(1) ' dK

dp
+ K(0),

2. ∀K ∈ AI(P \ {p}), d(p ·K)
dp

' K and
d(p′ ·K)

dp
' 1′ ·K,

3.
d

dp

(
K1 + K2

)
' dK1

dp
+

dK2

dp
,

4. ∀α, β ∈ {0, 1}, d

dp

(
[K1]α · [K2]β

)
'
[
dK1

dp

]α

· [K2(1)] + [K1(1)] ·
[
dK2

dp

]β

,

whereK(1)
def
= K(1/p).

Proof — Only property4 is non-trivial. First, let us prove it for the caseα = 0 andβ = 0. We have, by
definition of derivative and by Lemma4.19,

[K1] · [K2] '
[
p ·
[dK1

dp

]
+ K1(0)

]
·
[
p ·
[dK2

dp

]
+ K2(0)

]
,

which transforms, by distributivity of fusion into

[K1] · [K2] ' p ·
[dK1

dp

]
·
[dK2

dp

]
+ p ·

[dK1

dp

]
· [K2(0)] + p ·

[dK2

dp

]
· [K1(0)] + [K1(0)] · [K2(0)] ,

adding, by idempotence of the union, a second copy of the first summand in the right-hand side and re-
grouping again, we obtain

[K1] · [K2] ' p ·
[dK1

dp

]
·
[[dK2

dp

]
+ [K2(0)]

]
+ p ·

[dK2

dp

]
·
[[dK1

dp

]
+ [K1(0)]

]
+ [K1(0)] · [K2(0)] ,
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which, by the first property above, results in the equivalence

[K1] · [K2] ' p ·
[dK1

dp

]
· [K2(1)] + p ·

[dK2

dp

]
· [K1(1)] + [K1(0)] · [K2(0)]

' p ·
[[dK1

dp

]
· [K2(1)] +

[dK2

dp

]
· [K1(1)]

]
+ [K1(0)] · [K2(0)] ,

thus proving the required property forα = β = 0.
For the caseα = 1 andβ = 0 we have

d

dp

(
[K1]′ · [K2]

)
' d

dp

(
[K1] + [K1] · [K2]

)
'

[dK1

dp

]
+
[dK1

dp

]
· [K2(1)] +

[dK2

dp

]
· [K1(1)]

'
[dK1

dp

]′
· [K2(1)] +

[dK2

dp

]
· [K1(1)] .

The proof for the caseα = β = 1 is obtained in the same way.

The last property in the proposition above can be generalised to a fusion of any number of typed
connectors.

Proposition 5.15 Let {Ki}n
i=1 and {Lj}m

j=1 be two families of arbitrary connectors fromAC(P ). We
then have the following equivalence for the derivative of the connectors formed by the fusion inside each
of these families.

d

dp

 n∏
i=1

[Ki]′ ·
m∏

j=1

[Lj ]

 '

'
n∑

i=1

[dKi

dp

]′
·
∏
k 6=i

[Kk(1)] ·
m∏

j=1

[Lj(1)] +
m∑

j=1

[dLj

dp

]′
·
∏
k 6=j

[Lk(1)]

 · [ n∏
i=1

[Ki(1)]′
]

Proof — We prove this proposition by induction onn + m. Property4 in Proposition5.14constitutes its
base. We prove the induction step for the casem,n > 0. The casesm = 0 or n = 0 are treated in the
similar manner. We then have, by Corollary4.25of Theorem4.22,

d

dp

 n∏
i=1

[Ki]′ ·
m∏

j=1

[Lj ]

 ' d

dp

[ n∏
i=1

[Ki]′
]′
·

 m∏
j=1

[Lj ]′

 ,

which, by property4 in Proposition5.14, can be developed to

d

dp

 n∏
i=1

[Ki]′ ·
m∏

j=1

[Lj ]

 '

[
d

dp

n∏
i=1

[Ki]′
]′
·

 m∏
j=1

[Lj(1)]′

+

 d

dp

m∏
j=1

[Lj ]′

 · [ n∏
i=1

[Ki(1)]′
]

,

and subsequently, by induction assumption,

d

dp

 n∏
i=1

[Ki]′ ·
m∏

j=1

[Lj ]

 '

'

 n∑
i=1

[dKi

dp

]′
·
∏
k 6=i

[Ki(1)]

′ ·
 m∏

j=1

[Lj(1)]′

+

 m∑
j=1

[dLj

dp

]′
·
∏
k 6=j

[Lj(1)]

 · [ n∏
i=1

[Ki(1)]′
]

.

Once again, applying Corollary4.25of Theorem4.22to the first summand, and distributing fusion over
union in the second one, we obtain the desired result.
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Example 5.16
Consider the connectorK = p′ ·[qr]′ ·[rs]. This corresponds to a situation, where the components providing
portsq ands require a certain resource to operate. This resource is provided by another component during
a communication over the portr. Once this resource available, both these components are connected with
a third one, which communicates over portp.

Suppose now that we want to restructureK in order to separate the component providing the resource
in question from the ones that utilise it. To do so, we differentiateK by r, applying Proposition5.15

dK

dr
'
[
dp

dr

]′
· [q] · [s] +

[
d(qr)
dr

]′
· [p] · [s] +

[[
d(sr)
dr

]′]
· [p′q′] ' q′ps + s[p′q′] . (38)

We calculate alsoK(0), by substituting0 instead ofr in K,

K(0) ≡ p′ · [q · 0]′ · [0 · s] ∼= p′ · [0]′ · [0] ∼= p′ ' p . (39)

Substituting (38) and (39) into (37), we obtain the following decomposition

K ' r ·
[
q′ps + s[p′q′]

]
+ p ,

which can now be easily verified.

In the above example, portr is only present inK as a synchron, and therefore, when we calculate the
derivative, it is absorbed directly, whereas, if it was a trigger, we would obtain an expression containing
1′, which has to be eliminated in the final decomposition. To do so, we apply one of the two following
equivalences.3 For anyx, y ∈ AC(P ), we have

x · [1′ · y] ' [x]′ · y , (40)

x · [1′ · y]′ ' [x]′ · y + 1′ · y . (41)

Example 5.17
Consider the connectorK =

[
[p′q]′r

]′
s, and assume that we want to decompose it with respect to portp.

Clearly, we haveK(0) ' 0 and
dK

dp
'
[
[1′q]′r

]′
s .

Substituting these equivalences into (37) and applying (41), we obtain

K ' p ·
[[

[1′q]′r
]′

s

]
' p ·

[[
r′q + 1′q

]′
s

]
' p ·

[
[r′q]′s + s′q + 1′q

]
' p ·

[
[r′q]′s + s′q

]
+ p′q .

− o −
Clearly, both decomposition techniques presented above are sub-optimal. For instance, both connectors

of Examples5.16and5.17can also be represented in the following — less complex — forms

p′ · [qr]′ · [rs] ' r ·
[
q′ps + ps

]
+ p ,[

[p′q]′r
]′

s ' p′ · [q′r′s′] .

However, in general, to obtain such representations, one has to flatten completely — to the level of
AI(P ) interactions — the connector in question and regroup subsequently the resulting terms using ad
hoc methods.

On the contrary, both presented techniques have the advantage of being straightforward and provid-
ing decompositions that preserve some trigger/synchron typing without making explicit reference to the
semantics of the decomposed connectors.

3 These two equivalences are special cases of Lemma5.11.
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6 Conclusion

AC(P ) provides an abstract and powerful framework for modelling control flow between components. It
allows the structured combination of two basic synchronisation protocols: rendezvous and broadcast. It
is powerful enough to represent any kind of coordination by interaction, avoiding combinatorial explosion
inherent to broadcast.

Connectors are constructed by using two operators having a very intuitive interpretation. Triggers
initiate asymmetric interactions; they are sources of causal interaction chains. Synchrons are passive ports
which either can be activated by triggers or can be involved in some maximal symmetric interaction. Fusion
allows the construction of new connectors by assembling typed connectors. Typing induces a hierarchical
structuring, naturally represented by trees.

The concept of structured connectors is directly supported by the BIP language where connectors de-
scribe a set of interactions as well as associated data transformations. Its interest has been demonstrated
in many case studies including an autonomous planetary robot, wireless sensor networks [BMP+07], and
adaptive data-flow multimedia systems. The BIP language is used in the framework of industrial projects,
as a semantic model for the HRC component model (IST/SPEEDS integrated project), and for AADL
(ITEA/SPICES project).

We believe thatAC(P ) provides an elegant mathematical framework to deal with interactions. The
comparison with boolean algebra shows its interest: fusion becomes a context-sensitive and rather compli-
cated operation on boolean functions. Boolean algebra representation allows the use of existing powerful
decision techniques, e.g. to decide that an interaction belongs to a connector or equivalence between con-
nectors. The relations betweenAC(P ) and boolean algebra should be further investigated.

The notation has been instrumental for formalising the semantics of the synchronous component model.
Axiomatisation and properties of derivatives inAC(P ) allow an efficient incremental decomposition of
connectors avoiding enumeration of interactions. Finally, algebraic representation is a basis for symbolic
manipulation and transformation of connectors which is essential for efficient implementation of the BIP
framework.

To our knowledge,AC(P ) is the first algebraic framework for modelling interaction. It can be a seman-
tic model for formalisms used for modelling architecture, and provides a basis for comparing coordination
mechanisms supported by existing languages, such as coordination languages.
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Appendix: Idempotent regular expressions on ports

In this paper, we have presented an algebra of connectorsAC(P ), which provides a flexible and powerful
instrument to represent interaction models, i.e. sets of possible interactions between components of an
integrated system.

Although connectors fromAC(P ) can always be transformed into terms of the algebra of interactions
AI(P ), the former have an advantage of representing the same interactions in a compact manner, preserv-
ing an important semantic aspect — the trigger/synchron typing.

We will now present succinctly another way of representing interactions in a more compact way than
that provided byAI(P ). We do so by assigning a different kind of types to ports participating in a given
connector:requiredor optional. We adopt the notation used in regular expressions, and writep∗ if this
port is optional, whereasp without an asterisk represents an obligatory port.4 On the axiomatic level, this
corresponds to adding the equality

p∗ = p + 1

to the axioms ofAI(P ) presented in Section3.
Thus, an expressionp1 . . . pnq∗1 . . . q∗m denotes a connector, where portsp1, . . . , pn are required (oblig-

atory) andq1, . . . , qm are optional. It is easy to verify that the resulting set of possible interactions is
exactly that corresponding to anAI(P )-expression

p1 . . . pn(1 + q1) . . . (1 + qm) . (42)

Connectors can be converted in a straightforward manner between the regular expression notation and
that ofAC(P ). It is sufficient to observe that for a flatAC(P ) connector in normal form we have the
following equivalence

p′q1 . . . qn ' p q∗1 . . . q∗n .

The conversion in the other direction is based on a similar equivalence

p1 . . . pn q∗1 . . . q∗m ' [p1 . . . pn]′q1 . . . qm .

Although the two representations of connectors appear to be similar, it is important to observe that,
whileAC(P ) connectors reflect the trigger/synchron typing and, consequently, allow a natural representa-
tion of both broadcast and rendezvous communication, the regular expression form is just an abbreviation
of AI(P ), and, therefore, it cannot capture this difference in a natural manner.

Example .1
Consider a situation, where an emitterp is broadcasting information to receiversq1, q2. This can be easily
represented in both approaches, by writing respectivelyp′q1q2 andp q∗1q∗2 .

Suppose, now, that another emitterr has to be connected to the system. In terms ofAC(P ), this
operation is trivial: we addr′ to the initial expression, thus obtainingp′q1q2r

′. At the same time, in terms
of regular expressions, we have to modify the existing connector to reflect the fact that, amongp andr,
it is sufficient that only one participates in the interaction. The simplest way to express this is to write
(p∗r + p r∗)q∗1q∗2 .

The advantage of the regular expressions approach is that it allows us to consider equations of the type

x = A · x + B ,

where all three ofx, A,B ∈ AI(P ) are sets of interactions. Due to the idempotence of synchronisation,
the minimal solution of such equations is finite.

Example .2
It is easy to verify that the minimal solution of the equationx = A · x, with A = a1 + a2, is a∗1a2 + a1 a∗2.

4 Due to the idempotence of synchronisation inAI(P ), the regular expressionp∗ is reduced to “zero or one occurrence ofp”,
which is equivalent to saying thatp is optional.
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