
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Joint software/hardware modeling
with FXML/Jahuel

I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

Verimag Research Report no TR-2007-13

Septembre 2007

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Joint software/hardware modeling with FXML/Jahuel

I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

VERIMAG, Centre Equation, 2 av. de Vignate, 38610 Gières, France

Septembre 2007

Abstract

This report presents an extension of FXML-JAHUEL for modeling hardware components. It
illustrates how to jointly model software and hardware components with a simple producer/-
consumer application on a bi-processor. It briefly discusses the FXML-to-PWARE translation
to enable performance-aware simulation.

Keywords:

Reviewers:

Notes: Partially supported by projects MEDEA+ NEVA and Minalogic SCEPTRE.

How to cite this report:
@techreport { ,
title = { Joint software/hardware modeling with FXML/Jahuel},
authors = { I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi},
institution = { Verimag Research Report },
number = {TR-2007-13},
year = { },
note = { }
}

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

#pragma code_block
#pragma parallel writer user
main()
{
writer(); /* /&/ */ user();

}

#pragma code_block
void writer ()
{
while (1) { write(); }

}

#pragma code_block
void user ()
{
#pragma period 15 us
while (1) { use(); }

}

int x = 0;

#pragma code_block
#pragma execution_time [0,5] us
void write()
{
x++;
printf("WRITER : x = %d\n", x);

}

#pragma code_block
#pragma execution_time [0,10] us
#pragma dependency
main.writer.write -> (x) main.user.use [0,100] us
void use()
{
printf("USER : x = %d\n", x);

}

<var-list> ... </var-list>
<pnode-sum>
<dep-list> ... </dep-list>
<body>
<!-- Producer -->
<while>
<label>Producer</label>
<condition>
<b-exp>
<boolean default-value="true"/>

</b-exp>
</condition>
<period>
<time>10</time>
<time-unit>us</time-unit>

</period>
<body>

...
<source-code>
_function_write();
</source-code>

</body>
</while>
<!-- Consumer -->
...

</pnode-sum>

FIG. 1 – Simple producer/consumer.

1 Software annotations using FXML
The underlying basic idea of our language, called FXML, is that computation units are concurrent by

default, while explicit precedences can be expressed to limit concurrency. The granularity of computation
units is not fixed, the smaller grain is the assignment or legacy code. Data dependencies are implicit, but
can be explicitely added to express data dependencies in legacy code.

FXML provides a forall primitive to declare several concurrent iterations of the same block. This
construct is similar to FORTRAN 95 with the difference that we do allow dependencies between iterations.
FXML also has “parallel” and “sequential” composition.

An important difference with other languages is that basic FXML does not provide any specific syn-
chronization or communication primitives (like channels or rendez-vous). Instead, the basic language can
be extended with non-functional information about the concrete execution model (e.g., execution times,
synchronization mechanisms, number of processors), and the target platform (e.g., OpenMP, Pthreads,
MPI).

1.1 A simple producer/consumer
Let us start with a simple producer-consumer system to informally introduce FXML. Fig. 1 (left) shows

the C program of this system, where pragmas are annotations. The abstract syntax of FXML will be given
later in this section. The concrete syntax of FXML is defined as an XML schema, which is not presented
here.

The pragma parallel writer user declares that the C functions writer() and user() in-
voked by main() are logically concurrent. The abstract syntax symbol for parallel is /&/. Func-
tions writer() and user() are non-terminating executions, user() has a period of 15µs (pragma
period). writer() calls write() which has an execution time less or equal than 5µs. user() calls
use()which completes in at most 10µs. dependency expresses that there is a data dependency between
write() and use() on x, with a freshness interval [0, 100], that is, use() can only take place if the
time elapsed since the last write() is less than 100µs.

A C compiler that analyzes the program (pragmas and C code) and understands the pragmas, would
be able to extract a description of it in the concrete XML syntax of FXML. Fig. 1 (right) shows the XML
representation of FXML.

Verimag Research Report no TR-2007-13 1/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

06/13/07 (c) Sergio Yovine, 2007 6

Semantics

W0

W1

W2

R0

R1

R2

W0

W1

W2

R0

R1

R2

W0

W1

W2

R0

R1

R2

W0

W1

W2

R0

R1

R2

W0

W1

W2

R0

R1

R2

(a) (b) (c)

FIG. 2 – Examples of executions.

1.2 Parallel software specification in FXML
The body of an FXML specification is composed of blocks called pnodes. The basic pnode types are

assignments, variable declarations, e.g., var int x, or legacy code, e.g., {# p = 0 #}. Basic pnodes
are executed atomically. Legacy declarations can be used to encapsulate either pre-existing or newly de-
veloped “hazard-free” (e.g., without system calls) code, which can be safely compiled with an optimizing
compiler. Tags can be used to provide summaries of legacy code in order to highlight dependencies hidden
inside legacy declarations. For instance, the tag </ p :w />, states that variable p is written by the le-
gacy code. Pnodes can be labeled : e.g., W : {# x = p++ #}. Pnodes inside while (and for) loops
are automatically indexed. The semantics of the producer’s while loop is a sequence W0W1 . . . , where
Wi is the i-th occurrence of the assignment labeled W.

The statement dep W → R specifies a dependency between occurrences of pnodes labelled W and R.
Notice that variables x and p are declared in FXML, but only used in legacy C code. This declaration,
together with the annotations about variable usage, allows the compilation chain to eventually synthesize
the data dependency dep W → R, if not explicitly declared, even if it is hidden in the legacy code. The
arrow→means that variable x must be written at least once, before being read. This weak semantics can be
further constrained : W [strong]→ Rmeans that every value of xmust be read at least once (no losses).
Dependencies can also be specified to relate specific iterations, e.g., W (i, i)→ R specifies that the value
of x read at the i-th iteration of the Consumer’s while loop, is the one written by the i-th iteration of the
Producer’s loop. In general, indexed dependencies have the form p (i, f(i)) → q, where f(i) is affine.

The semantics of a pnode p, denoted [[p]], is a (possible infinite) set of partial orders, called executions.
Fig. 2 shows examples of executions of the producer-consumer system for different types of dependencies
between pnodes W and R : (a) weak, (b) strong, and (c) (i, i). Each execution of the composed system
contains the union of the executions (in this case, total orders) of the Producer and Consumer pnodes,
namely, W0W1 . . ., and R0R1 . . ., resp., with precedences added by the dependency declaration dep W
→ R. Notice that, the (i, i) dependency results in a single execution.

The semantics of FXML [1] consists of partial orders consistent with the conjunction of constraints
imposed by dependencies. This allows, for instance, specifying the case of a (consumer-like) pnode C
which computes, say y = f(x1, . . . , xn), for xi written by (producer-like) pnodes Pi, i ∈ [1, n]. Another
case consists of a pnode P broadcasting the value of a variable x to several consumers Ci, computing
yi = fi(x), i ∈ [1, n]. The conjunctive semantics does not allow, for instance, easily capturing the case
where the value of variable x written by P is to be read by a single non-deterministically chosen consumer.
The other case where a single consumer C needs the value produced by any of many producers P1 . . . Pn

is not easily specified, either.
To overcome this inconvenience, we have extended FXML with hyper-dependencies of the form P1 . . . Pn{φ} →

C, and P{φ} → C1 . . . Cn, where φ specifies the composition of the individual dependencies Pi → C
and P → Ci. For simplicity, we only consider here the case where φ is the exclusive disjunction of the
dependencies, and restrict individual depedencies to be weak or strong.

Verimag Research Report no TR-2007-13 2/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

2 The compilation chain : Jahuel
Jahuel is a FXML-based prototype compilation chain. Compiling a FXML specification consists in

transforming it until actual executable code for a specific platform could be generated. Let L denote a
language. Concretely, L is given by an XML schema, where each element definition has an associated
type.

A transformation from L to L′ is an injective map φ : L → L′, that is, every element of the XML
schema L is in the set of elements L′. Let EL be the set of executions of type L, and Fφ : EL′ → EL be
the “forgetting” function that forgets any information specific to executions of type L′. φ : L → L′ satisfies
that for all executions e′ |=L′ φ(p) it follows that Fφ(e′) |=L p.

The compilation process is a sequence of transformations L0 7→∗ L0 7→ L1 7→∗ . . .Ln, where L0

is basic FXML. Li 7→∗ Li is a sequence of transformations from Li to Li, resulting in a sequence of
programs p1

i . . . pn
i , such that [[pk+1

i]] ⊆ [[pk
i]]. An example of a transformation from L0 to L0 consists in

replacing weak dependencies by strong ones. Li 7→ Li+1 is a transformation that adds information not
expressible in Li. An example consists in inserting communication and synchronization mechanisms (e.g.,
semaphores, queues, ...) to ensure dependencies are met.

JAHUEL is a FXML-based compilation framework, constructed to be easily extended to cope with new
execution models, by extending the basic FXML XML-schema, and by adding transformations. JAHUEL is
implemented in Java, using the Java Architecture for XML Binding API 1, to manipulate XML documents.
JAHUEL provides some general transformations which can be customized for different execution and simu-
lation platforms. Currently, it generates executable code for, e.g., Java, C with pthreads, and simulation
code for P-Ware [2], a SystemC-based simulation platform, for jointly predicting and analyzing perfor-
mance of software and hardware components generated by JAHUEL. The compilation chain is indeed to be
instanciated with the sequence of transformations to be applied. Each transformation reads an input XML
file and outputs another XML file to be used by the next one, thus ensuring traceability of implementation
choices. The code generation phase for the target platform is done via a stylesheet.

3 Hardware modeling

3.1 Hardware support in FXML
FXML has been extended to support hardware modeling. A hardware architecture model is compo-

sed of architecture components, their connections and timed-level transaction behavior of the components.
Components and connections are described in a textual XML-based format, an extension of FXML, whe-
reas timed-level transaction behaviors are either meta-modelled P-WARE components or predefined C++
components included from P-WARE library. FXML has also been extended to allow specifying the map-
ping between software and hardware components. This part would be used to specify the application de-
ployment, that is, software and data placements, locality issues, etc. The binding between architecture
components and their behavior, as well as the actual deployment, is to be done using JAHUEL.

Fig. 3 shows the structure of FXML.

1http ://java.sun.com/developer/technicalArticles/WebServices/jaxb/

Verimag Research Report no TR-2007-13 3/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

FIG. 3 – Structure of FXML for software/hardware modeling

The basic block of FXML “archi” is called anode for Architecture Node. An anode can be of the
following types :

1. Processor, to represent processor components.

2. Memory, to model memory components.

3. Bus, to model generic bus components.

Each of these types comes with its own set of attributes, defined by the appropriate FXML schema, together
with the attributes inherited from anode, such as, for instance, Qin and Qout. These two attributes define,
respectively, the input and output interfaces of a component. The number of Qin and Qout instances may
be null, and it is not bounded. Fig. 4 gives an overview of the FXML extension for modeling hardware
architectures.

FIG. 4 – Part of FXML support for hardware specification (FXML archi)

Verimag Research Report no TR-2007-13 4/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

3.2 Producer/consumer
A simple producer/consumer application on a two-processor architecture with a memory bank connec-

ted via a command and a data buses is shown in Fig. 5.

4

CHANNEL
1

3

2

5
M

EM
O

R
Yw

ri
te

 d
at

a

w
ri

te
 d

at
a

P2

P1
write cmd

write(a,32B)

Consumer Producer

NTp

write cmd CMD BUS

DATA BUS

write data

OK

OK

NTc

(SW Model)

(HW Model)

FIG. 5 – Producer/consumer application

The following listings show part of the hardware model in FXML “archi”. As indicated by the usage of
qoutput element, the first output port bus component named CHANNEL is bound to the first transaction
request input queue of DMA component named DMA1.

Listing 1 – Bus label
<Bus><!−− CHANNEL d e f i n i t i o n −−>

<arch−l a b e l >CHANNEL</ arch−l a b e l >
<id >1 </ id >
<qin >RBUS_BF</ qin >
< q o u t p u t >

<qout >DMA1</ qout >
<number >1 </ number >

</ q o u t p u t >
. . .
< c lock−p o r t >CLK</ c lock−p o r t >

</ Bus>
. . .

Listing 2 – DMA label
<DMA><!−− DMA1 d e f i n i t i o n −−>

<arch−l a b e l >DMA1</ arch−l a b e l >
<id >1 </ id >
<qin >DMA1_BF1</ qin >
<qin >DMA1_BF2</ qin >
<qout >CHANNEL</ qout >
< c lock−p o r t >CLK</ c lock−p o r t >
<dma−dbuf−t a b l e name="DBUF1">

<dma−dbuf >
< s r c−id >1 </ s r c−id >
< s i z e >10 </ s i z e >
</dma−dbuf >

</dma−dbuf−t a b l e >
</DMA>

Listing 3 – Memory label
<memory><!−− MEMORY d e f i n i t i o n −−>
<arch−l a b e l >MEMORY</ arch−l a b e l >

<id >1 </ id >
<qin >1 </ qin >
<qout >CHANNEL</ qout >

Verimag Research Report no TR-2007-13 5/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

< c lock−p o r t >CLK</ c lock−p o r t >
</memory>

4 Integration in a design/ analysis/implementation flow
A proposal of integration of FXML/JAHUEL/P-WARE into a design, analysis, and implementation flow

is schematically depicted in Fig. 6. This research axis will be further studied during the rest of the project.

User mapping strategy
(eg. data parallel, pipeline,
hybrid parallesization, etc)

(eg. adding memories,
processors, etc.)

User hardware dimensioning

HW Model

Automated Translation

Simulation

Code Generation

SW components HW components

Simulation
Engine

Executable

Constraints Synthesis
(Automated)

(Automated) (Automated)

SW Model

SW Model"RAW"

SW Model

Hardware!level scheduler

Hardware performances are satisfactory ?

Software requirements are met for the actual inputs ?

Mapping
(User!driven)

Software!level (task) scheduler

Software!level scheduler

FIG. 6 – Design, analysis and implementation flow

Software and hardware models. The “raw” software model is the initial FXML specification obtained
from code annotations. The model specifies parallelism and timing constraints corresponding to real-time
requirements of software, that is, software tasks’ deadlines, and dependencies between software tasks and
between these tasks and hardware. The hardware model is the FXML description of the hardware architec-
ture.

Constraints synthesis. The goal of this phase is to synthesize a real-time software-level scheduler. This
scheduler is hardware independent. However, it takes into account software interactions with hardware
through dependencies.

The synthesized scheduler guarantees that timing requirements are met, assuming tasks’ execution
times are respected. The execution times for these tasks will depend on their actual mapping and commu-
nication model, which are defined in the mapping step.

Mapping. The goal of this phase is to define a hardware-level scheduler of software. Therefore, the
sofwatre graph is flattened considering all levels of hierarchy. This mapping is achieved using a choice
between different types of mapping strategies, and is driven by the designer.

The following listing shows the mapping for the producer/consumer example.

Listing 4 – Part of Producer/Consumer mapping
<map−pnode >

<node−l a b e l > Produce r < / node−l a b e l >
< p r o c e s s o r−l a b e l >P1 </ p r o c e s s o r−l a b e l >

Verimag Research Report no TR-2007-13 6/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

</map−pnode >
<map−pnode >

<node−l a b e l >Consumer < / node−l a b e l >
< p r o c e s s o r−l a b e l >P2 </ p r o c e s s o r−l a b e l >

</map−pnode >
. . .

Translation to P-Ware. This phase achieves a translation of the hardware model into P-WARE C++
components, and a given mapping of the software model into software components.

Currently, for the software specification, two XML-based transformations are operated by JAHUEL.
– The componentization phase encapsulates the task nodes into software components, either using

component names attached to nodes or by mapping each leaf node, i.e., which have no parallel or
sequential node as a descendent, to a component.

– The synchronization step acts a pre-processor. It formats task dependencies and constraints informa-
tion in such a way to make the next code generation step easier.

C++ program including software components, hardware components architecture, and a main entry is
then produced by simply applying a translation stylesheet. Stylesheet contains a set of code generation tem-
plates which are applied to the XML-based models, and mapping file, where a template is a pair composed
of a node name, and a rule to apply when this node is matched.

Componentization

generation
Components code

P!Ware SW components (C++)

HW model (XML)

Translation

Synchronization

SW model (XML)

Simulation

components library (C++)
P!Ware SW and HWMapping (XML)

P!Ware HW components
architectur (C++)
P!Ware main entry (C++)

FIG. 7 – From FXML to P-Ware.

Simulation. P-WARE is used for predicting tasks and hardware components performance on an obser-
vation time interval defined by designer. As an example, the predicted performance data are available bus
bandwidths, memory conflicts, cache misses, tasks communication times, synchronization times, and exe-
cution times.

As shown on the figure 6 by the two loops, the designer may re-iterate the design cycle to analyze
another possible implementation, either by using different mapping for tasks, and/or by using different
hardware architecture configuration. Therefore, design loops convergence is controlled by designer.

Code generation. This phase generates the actual code to be compiled onto the real hardware.

Références
[1] I. Assayad, V. Bertin, F-X. Defaut, Ph. Gerner, O. Quevreux, S. Yovine. Jahuel : A formal framework

for software synthesis. In Proceedings of ICFEM 2005 Seventh International Conference on Formal
Engineering Methods". 1-4 November 2005, Manchester, UK. LNCS 3785, Pages : 204-218. Springer,
2005. 1.2

[2] I. Assayad, S. Yovine. P-Ware : A precise and scalable component-based simulation tool for embedded
multiprocessor industrial applications. EUROMICRO Conference on Digital System Design (DSD
2007), August 2007. IEEE Computer Society Press. 2

Verimag Research Report no TR-2007-13 7/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

A XML schema of FXML “archi” V.0
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="1.0"
xmlns="http://www.verimag.fr/Step1_PreProcessing/fxmlarchi"
targetNamespace="http://www.verimag.fr/Step1_PreProcessing/fxmlarchi">

<xs:element name="testtest" type="xs:string"/>

<xs:element name="architecture">
<xs:complexType>
<xs:sequence>
<xs:element ref="anode" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="anode-type">
<xs:sequence>
<xs:element name="arch-label" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="qin" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="qout" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="anode" type="anode-type" abstract="true"/>

<xs:complexType name="processor-type">
<xs:complexContent>
<xs:extension base="anode-type">
<xs:sequence>
<xs:element name="clock-port" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="number" type="xs:integer" minOccurs="1" maxOccurs="1"/>
<xs:element name="latency" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="dmadbuf" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="database" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="processor" type="processor-type" substitutionGroup="anode"/>

<!-- #####################
Memory definition
##################### -->

<xs:complexType name="memory-type">
<xs:complexContent>
<xs:extension base="anode-type">
<xs:sequence>
<xs:element name="clock-port" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="memory" type="memory-type" substitutionGroup="anode"/>

<!-- ##################
Bus definition
################## -->

<xs:complexType name="bus-type">
<xs:complexContent>
<xs:extension base="anode-type">
<xs:sequence>
<xs:element name="clock-port" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="dunit-number" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="dmatable" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="banks-number" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="bus" type="bus-type" abstract="true" substitutionGroup="anode"/>

<xs:element name="Rbus" type="bus-type" substitutionGroup="bus"/>

<xs:element name="PRbus" type="bus-type" substitutionGroup="bus"/>

<xs:element name="Wbus" type="bus-type" substitutionGroup="bus"/>

<xs:element name="PWbus" type="bus-type" substitutionGroup="bus"/>

<xs:element name="Cbus" type="bus-type" substitutionGroup="bus"/>

<!-- #####################
Buffer definition
##################### -->

<xs:complexType name="buffer-type">
<xs:complexContent>
<xs:extension base="anode-type">
<xs:sequence>
<xs:element name="size" type="xs:integer" minOccurs="1" maxOccurs="1"/>
</xs:sequence>

Verimag Research Report no TR-2007-13 8/9

Joint SW/HW modeling in FXML I. Assayad, F.X. Defaut, S. Yovine, M. Zanconi

</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="buffer" type="buffer-type" abstract="true" substitutionGroup="anode"/>

<xs:element name="Data-buffer" type="buffer-type" substitutionGroup="buffer"/>

<xs:element name="Transaction-buffer" type="buffer-type" substitutionGroup="buffer"/>

<!-- ####################
Clock definition
#################### -->

<xs:complexType name="clock-port-type">
<xs:complexContent>
<xs:extension base="anode-type">
<xs:sequence>
<xs:element name="period" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="duty-cycle" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="start-time" type="xs:integer" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="clock-port" type="clock-port-type" substitutionGroup="anode"/>

</xs:schema>

Verimag Research Report no TR-2007-13 9/9

	Software annotations using FXML
	A simple producer/consumer
	Parallel software specification in FXML

	The compilation chain: Jahuel
	Hardware modeling
	Hardware support in FXML
	Producer/consumer

	Integration in a design/ analysis/implementation flow
	XML schema of FXML ``archi'' V.0

