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1 Introduction
High-performance real-time embedded applications, such us HDTV, video streaming and packet routing,
motivate the use of multicore and multiprocessor hardware platforms offering multiple processing units
(e.g., VIPER [15], Philips Wasabi/Cake [35], Intel IXP family of network processors [21]. These archi-
tectures provide significant price, performance and flexibility advantages. Besides, such applications are
subject to mass customization, as many variations of the same product are delivered to the market with
different price, performance, and functionality. The key to mass customization is to capitalize on the com-
monality and to effectively manage the variation in a software product line [13]. However, in current indus-
trial practices, application requirements and design constraints are spread out and do not easily integrate
and propagate through the development process. Moreover, the increasing complexity of applications tends
to enlarge the abstraction gap between application description and hardware. Therefore, customization be-
comes a burdensome and error-prone task. In summary, the complexity of both software and hardware,
together with the stringent performance requirements (e.g., timing, power consumption, etc.), makes de-
sign, deployment, and customization extremely difficult, leading to costly development cycles which result
in products with sub-optimal performances.

During the development cycle of applications for multiprocessors, two models of execution should be
distinguished. The first one is the abstract model inherent to the specification of the application, which
typically corresponds to logically concurrent activities, with data and control dependencies. The second
one is the concrete execution model provided by a particular platform (run-time system and hardware ar-
chitecture). The customization problem consists in exploiting platform capabilities (e.g., multithreading,
pipelinening, dedicated devices, multiprocessors, etc.) to implement the abstract model, or eventually
restricting the latter because of constraints imposed by the concrete model (e.g., synchronous communica-
tion, shared memory, single processor, bus contention, etc.). In any case, the programmer must handle both
types of execution models during the development cycle.

Therefore, there is a need for design flows for software product lines (1) based on formalisms providing
appropriate mechanisms for expressing these models, and (2) supported by tools for formally relating them,
in order to produce executable code which (a) is correct with respect to application’s logic, and (b) ensures
non-functional requirements are met on the concrete execution platform.

In the context of high-performance real-time applications, two questions are particularly important:
(2) how to map software logical concurrency onto hardware physical parallelism, and (2) how to meet
application-level timing requirements with architecture-level resources and constraints. This chapter presents
a design flow that provides formal means for coping with concurrency and timing properties from the
abstract model all the way down to the concrete one. Current practices to handle these two issues are
summarized below.

Run-time libraries and compiler directives. A very common practice consists in using a language
with no support for concurrency or time (e.g., C), together with specific libraries or system calls (e.g.,
POSIX threads or MPI [19]) provided by the underlying run-time system or using compiler directives
(e.g., OpenMP [27]).1 This approach has several inconveniences. First, there is no way to distinguish
between abstract and concrete execution models at program level, and therefore, the reason that motivated
the programmer’s choice (i.e., application design or platform capability) is irrecoverable from program
code. This gives rise to a messy development cycle, where application design and system deployment
are not handled separately, and application code is customized too early for a specific target, therefore
impeding reusability and portability. Second, correctness verification is almost impossible due to system
calls (e.g., for threading and resource management [9, 31]).

Domain-specific programming languages. Another practice consists in using a language with a (more
or less formal) abstract execution model where time and concurrency are syntactic and semantic concepts
(e.g., Lustre [20], Ada [11].) It is entirely the role of the compiler to implement the abstract execution
model on the target platform. This approach enhances formal analysis. Nevertheless, these languages rely
on a fully automatic implementation phase that makes essential customization issues such as targeting,

1Java provides some mechanisms, but they are typically implemented using platform libraries.
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platform exploration, and optimization, very hard to achieve. For instance, a typical industrial practice for
exploiting multiprocessor architectures for synchronous programs consists in manually cutting the code
into pieces, and adding hand-written wrappers. This practice breaks down formal analysis and suffers from
the same inconveniences of the library/directives approach. Although there is ongoing work to solve this
problem for specific execution platforms (e.g., [12]), there is no attempt neither to provide language support
nor to develop a general framework.

Modelling frameworks and architecture description languages. To some extent, some of the above-
mentioned problems could be avoided using domain-specific architecture description languages that pro-
vide means to integrate software and hardware models (e.g., [8].) Still, in all ADL-based approaches we
are aware of, description of the application execution model is tied up to a platform-dependent execution
model, which, consequently, is implemented using platform primitives by direct translation of the appli-
cation code. Model-integrated development [22] also handles requirements composed horizontally at the
same level of abstraction. However, it is not well adapted to take care of a primary concern in software
product lines which is the vertical propagation of concurrency and timing requirements across different
abstraction layers. Platform-based design [32] is a methodology that supports vertical integration, but it is
mainly focused on composing functionality while abstracting away non-functional properties. PTOLEMY
II [29] is a design framework that supports composition of heterogeneous models of concurrent computa-
tion, but it is oriented towards modeling and simulation rather than to application-code synthesis.

Aspect-oriented software development. Aspects could help in bridging the gap between application’s
specification and the actual platform-specific implementation. However, to our knowledge, current AOP-
based approaches require an important programming effort, do not handle timing constraints, and are not
specifically focused on code synthesis for different platforms, but are typically used for monitoring and
optimization [23].

To overcome the aforementioned problems, we think code-generation tools based on formal languages and
models must play the central role of mapping platform independent software into target execution platforms
(operating system and hardware), while ensuring at compile time that non-functional requirements provided
by system’s engineers will be met at run-time. Integrating in a design flow, formal analysis and synthesis
techniques for handling non-functional constraints and heterogeneous architectures, is an innovative way
to provide correct-by-construction code. This enables code generation for specific platforms (including
software-to-processor mapping and scheduling), and platform-independent functional analysis, to be linked
together in the same tool-chain without semantic gap.

Such a framework will considerably increase the overall quality of industrial systems designed with
these tools, guaranteeing the correctness of the resulting solution. This approach enhances the applica-
bility of formal verification and analysis techniques in industrial design flows, leading to a significant
reduction in overall system’s validation time. Nevertheless, building representative models that adequately
relate functional and non-functional behavior, of both application software and execution platforms, is
challenging [34]. Multithreaded software and multicore, multiprocessor architectures bring in additional
complexity.

To circumvent this complexity, we propose a design flow consisting of a formal language and its asso-
ciated compilation chain. The purpose of the language, called FXML [1], is threefold. First, it provides
simple and platform-independent constructs to specify the behavior of the application using an abstract
execution model. Second, it provides semantic and syntactic support for correctly refining the abstract ex-
ecution model into the concrete one. Third, the language and the compilation chain are extensible to easily
support new concrete execution models, without semantic break-downs. Besides, the language can be used
by the programmer to express program structure, functionality, requirements and constraints, as well as by
the compiler as a representation to be directly manipulated to perform program analyses and program trans-
formations to generate executable code which achieves application requirements and complies to platform
constraints.

On one hand, FXML can be regarded as an algebraic language which provides constructs for expressing
concurrency and timing constraints, and means for proving whether a term in the algebra is an “implemen-
tation” of another, by term rewriting. On the other, FXML can be seen as a formal coordination language
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with general-purpose constructs for expressing concurrency (e.g, par, forall), where coordination is thought
as managing dependencies between activities. The main difference with other coordination languages and
process algebras (see [28] and [6] for comprehensive surveys) is that FXML (1) can express rich control
and data precedence constraints, and (2) can be gradually extended with more concrete constructs in or-
der to provide synchronization, communication, and scheduling mechanisms for implementing the abstract
behavior. Moreover, by design, FXML and its code-generation tool-suite JAHUEL [1], provide an extensi-
ble and customizable software production line oriented towards generating code for multiple platforms via
domain-specific semantics-preserving syntactic transformations.

Source
Application
Code

Compiler Jahuel
FXML

Specification

Runtime
Support

Customized
Application
Code

Target
Compiler

Executable

Figure 1: Design flow.

Chapter outline. This chapter presents the components of the design flow shown in Fig. 1. Gray-colored
components constitute the kernel of the design flow. Components in dotted lines are not mandatory, i.e.,
they may or may not exist in a specific tool based on FXML/JAHUEL. Non-colored elements correspond
to platform-dependent components. Sec. 2 and Sec. 3 present the gray-colored components. Sec. 2 gives
the syntax and semantics of the basic language. FXML can be used as a front-end specification language
or obtained from an application source code in some other language. The role of FXML as formal spec-
ification language is illustrated in Sec. 2 with a simple Writer-Reader program and the Smith-Waterman
local sequence matching algorithm [16]. Sec. 3 overviews the code-generation approach for FXML im-
plemented in the compilation chain JAHUEL. The Writer-Reader case-study is used to exemplify how C
code is generated from FXML for several target run-time platforms, such as pthreads and OpenMP [27].
Sec. 4 discusses two applications of FXML in the role of “intermediate” representation formalism, rather
than top-level specification language. The first one presents the integration of FXML and JAHUEL in a
C-based compilation tool-suite, where the input language is C extended with pragmas in FXML. The sec-
ond application consists in using FXML as a formalism for giving semantics to the programming language
StreamIt [36]. As an outcome, JAHUEL can be used to generate code for multiple run-time targets from the
FXML-based representation of annotated C or StreamIt programs. Sec. 5 is about another use of JAHUEL as
tool for generating customized code. It explains how to produce component-structured code from FXML,
by providing a translation into BIP [4]. This transformation enables, for instance, formal verification via
the IF framework [10] and execution on sensor networks [5].

2 The language: FXML
FXML [1] is a language for expressing concurrency, together with control and data dependencies which
can be annotated with properties to restrict parallelism because of timing or precedence constraints.

2.1 Abstract syntax
This section overviews the abstract syntax of FXML used hereinafter. It is out of the scope of this chapter
to explain the full concrete syntax of FXML pnodes used by JAHUEL, which is defined as an XML schema.

The body of an FXML specification is composed of blocks called pnodes.2

2The term pnode stands for “presentation node”. This notion comes from model theory: a pnode “presents” an abstract execution.
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Basic pnodes:

• nil denotes an empty set of executions.

• Let X be the set of variables. Variables store values from a set V . An assignment α has the form
x0 = ζ(x1, . . . , xn), where xi ∈ X, i ∈ [0, n], and ζ : V n → V is a computable function. We write
αi for xi.

Variables are assumed to be assigned in static single assignment (SSA) form, that is, there is only
one assignment statement for each variable.

• legacy B declares a block B of legacy code written in, e.g., C, C++, Java, etc.

Conditional pnodes: if ζ(x1, . . . , xn) then p else q, where p and q are pnodes, and ζ : V n → B is
a boolean function.

Sequential composition: seq p1 . . . pn.

For/while loops:
for(i = init(x1, . . . , xn);test(i);i = inc(i))〈per=P〉 p, and while(test(x1, . . . , xn))〈per=P〉 p,
express iterations: i is the iteration variable, init : V n → N is a computable function that gives the initial
value of i, inc : N → N is the increment function, and test : N → B is a boolean function that defines the
looping condition. Variable i is assumed not to be modified in p.

The optional declaration per=P states that the loop is periodic with period P , that is, there is a loop
iteration every P . The execution time of the body of the loop has to be attached to p. Different loop
iterations may have different execution times, as long as they are consistent with the loop period P and the
execution time interval attached to p (see below).

Parallel composition: par p1 . . . pn.

Forall loops: forall(i = init(x1, . . . , xn);test(i);i = inc(i)) p where i, init, inc and test are
as for for-loops specifies parallel executions of p.

Labeling: L: p is a pnode.

Dependencies: dep{〈[a,b]〉〈type〉L1 → L2}p, with a, b ∈ N, specifies a dependency between occur-
rences of two descendants Li : pi, i ∈ [1, 2], of p. The optional declaration type annotates the dependency
with a type:

• The default type is weak and means that at least one occurrence of p1 should precede every occur-
rence of p2.

• The type strong means that every occurrence of p1 should precede at least an occurrence of p2.

• The type (k, f(k)) means that the f(k)-th occurrence of p2 should be preceded by the k-th occur-
rence of p1.

The optional declaration [a,b] specifies that the timing distance between the corresponding occurrences
of p1 and p2 falls in the interval [a, b].

Verimag Research Report no TR-2007-12 4/32



Jahuel S. Yovine, I. Assayad, F.-X. Defaut, M. Zanconi, A. Basu

Execution times: p[a,b], a, b ∈ N, means that the execution time of p is in the interval [a, b].

Example 2.1 (Writer/Reader) The FXML specification of a simple program where a reader reads and
prints out a value written by a writer is as follows:

dep [0,15] W -> R
par

Writer:
seq

p = 0 [0,1]
while(true) per=10

W: seq {
x = p
p = p + 1

} [0,1]
Reader:

while(true)
R: seq {

y = x
legacy{ printf("%d\n", y); }

} [0,1]

The declaration dep W → R declares the dependency between occurrences of pnodes labelled W, in
Writer, and R, in Reader. This dependency comes from the fact that variable x must have some value
by the time Reader uses it. Since no type is attached to the dependency, it follows that it is of the default
type weak. This means that written values may not be read or read more than once, but x must have been
written at least once by Writer before it is first read by Reader.

This default behavior can be strengthen with a strong type declaration to require that every written
value must be read at least once. To specify that the value written in the i-th iteration of the Writer’s
loop must be used in the i-th iteration of the Reader’s loop, the declaration (i,i) has to be added to the
dependency dep W → R.

The period declaration attached to the while loop of the Writer states that the body of the loop
is executed periodically every 10 time units. The interval [0,15] in dep [0,15] W→R serves for
specifying a freshness constraint: the value of x cannot be read if the time distance between the write and
read operations is greater than 15 time units. The execution times of p = 0, W and R are specified to be
in the interval [0, 1]3.

Example 2.2 (Smith-Waterman) The Smith-Waterman [16] local sequence matching algorithm consists
of computing the elements of a N + 1 by M + 1 matrix A, from two strings S1 and S2 of lengths N + 1
and M + 1, respectively.

In FXML, it can be expressed as follows:

dep ((i,j), (i+1,j)) LA -> LX
dep ((i,j), (i,j+1)) LA -> LY
dep ((i,j), (i+1,j+1)) LA -> LZ
seq

forall(j = 0; j <= M; j+1)
forall(i = 0; i <= N; i+1)

LI: A[i][j] = 0
forall(j = 1; j <= M; j+1)

forall(i = 1; i <= N; i+1)
seq

3When the execution time of a pnode is not given, it means it can take an arbitrary amount of time to execute which is consistent
with all timing constraints.
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par {
LX: X = A[i-1][j] + 2
LY: Y = A[i][j-1] + 2
LZ: Z = A[i-1][j-1] + (S1[i]==S2[j]?-1:1)

}
LA: A[i][j] = MIN(0, X, Y, Z)

The dependencies state that the computation of each element (i, j) is a function of its “North” (i − 1, j),
“West” (i, j − 1), and “NorthWest” (i− 1, j − 1) neighbors A.

Hereinafter, the keyword seq will be omitted in the examples.

2.2 Semantics
2.2.1 Definitions

Before giving semantics to FXML specifications, let us introduce some definitions.

Indexed assignments: An index is a list I of natural numbers and labels. 〈`1, . . .〉 denotes the list con-
sisting of elements `1, . . ., and ◦ denotes concatenation of lists. An indexed assignment is denoted αI . A
set of indexed assignments is denoted A.

Timing: Time is modeled with a timing function τ : A → R+ × R+. We write, τ b(αI) = π1(τ(αI)),
and τe(αI) = π2(τ(αI)), which denote respectively the beginning and ending times of assignment αI .

τ satisfies A, denoted τ |= A, iff for each αI ∈ A, τ b(αI) ≤ τe(αI).

Dependencies: Let Out = {x ∈ X | ∃αI ∈ A : x = α0} be the set of variables assigned in A.

• The relation d−→⊆ A × A models data dependencies: for all βJ ∈ A, for all βj , if βj ∈ Out, then

there exists a unique αI ∈ A s.t. α0 = βj and αI d−→ βJ . We write αI βj−→ βJ as a shorthand for

αI d−→ βJ ∧ α0 = βj .

τ |= d−→ iff ∀αI , βJ ∈ A : αI d−→ βJ =⇒ τe(αI) ≤ τ b(βJ).

• The relation
;−→⊆ A×A gives an order between indexed assignments in A, thus modeling depen-

dencies derived from the sequential composition.

τ |= ;−→ iff ∀αI , βJ ∈ A : αI ;−→ βJ =⇒ τe(αI) ≤ τ b(βJ).

We define −→= d−→ ∪ ;−→. τ |=−→ iff τ |= d−→ and τ |= ;−→.

Valuations: A can be seen as a family {An}n∈N of sets of indexed assignments, where An contains only
indexed assignments αI of the form x0 = ζ(x1, . . . , xn). Let Υ = {νn}n∈N be a family of N-indexed
functions, with νn : An → V n+1, νn(αI) = (v0, v1, v2, . . . , vn), v0 = ζ(v1, v2, . . . , vn). We write
νn(αI)i for vi.

Υ |= d−→ iff ∀(αI , βJ) ∈ An ×Am: αI βj−→ =⇒ νm(βJ)j = νn(αI)0.

Executions: An execution e is a tuple (X,A, V,
d−→,

;−→, τ, Υ), such that τ |= A, τ |=−→, Υ |= d−→.

Timing constraints: The starting and ending time of e are, respectively: τ b(e) = minαI∈Ae
τ b(αI), and

τe(e) = maxαI∈Ae
τe(αI).

Subexecutions: f is a subexecution of e, denoted f ⊆ e, iff Af ⊆ Ae, τf = τe �Af
, νn

f = νn
e �An

f
,

d−→f= d−→e�Af×Af
,

;−→f=
;−→e�Af×Af

, where � is “restricted to”.
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Partitions: A partition of e, denoted &i∈Iei, is such that for all i ∈ I , ei is a non-trivial subexecution of
e, and for all i 6= j, Aei ∩ Aej = ∅, and

⋃
i∈I Aei = A.

A sequential partition of e, denoted ;i∈Iei, is a partition such that ∀αI ∈ Aei , β
J ∈ Aej : i < j =⇒

αI ;−→e βJ .

Dependencies: For e1, e2 ⊆ e, e1 −→e e2 iff ∀αI ∈ Ae1 , β
J ∈ Ae2 : αI −→e βJ .

Indexed executions: The indexing of e with K is the execution eK where AeK is defined such that for
all αI ∈ Ae : αK◦I ∈ AeK . We write e

∼=
K

eK to denote that e is the same execution as eK modulo the
indexing with K.

2.2.2 Semantic rules

The semantics of an FXML specification is a set of executions. We use an algebraic definition of the
semantics [17]. If p is a pnode and e is an execution, e |= p means that e is an execution for p. The
semantics of p is [[p]] = {e | e |= p}.

Nil: The semantics of nil is the empty execution (∅, ∅, ∅, ∅, ∅, ∅, ∅).

Assignments: e |= α iff Ae = {αI} for some index I .

Conditional statements: e |= if ζ(x1, . . . , xn) then p else q iff e = e1; e2 s.t. e1 |= ζ(x1, . . . , xn),
with Ae1 = {αI}, and e2 |= p if νn

e1
(αI) = true, else e2 |= q.

Sequential composition: e |= seq p1 . . . pn iff e = ;i∈[1,n]ei, such that ei |= pi.

Iterations: Let K = {kj}j∈J (with J a finite or infinite interval of N) be the indexed set of the values
taken by the iteration variable i. K is defined by inc, which is increasing, that is: i < j =⇒ ki ≤ kj , for
all ki, kj ∈ K.

• The semantics of for-loops is the set of executions defined as follows:
e |= for() p iff e = ;j∈J fj

〈j〉, where fj |= p, j ∈ J , and for every αI ∈ Am
fj

(for any m ∈ N):
αI

l = i =⇒ νm
fj

(αI)l = kj (that is, the value of the iteration variable i is equal to kj in fj).

If the optional declaration [per=P] is present, e is such that: for all j ∈ J , [ τ b(fj
〈j〉), τe(fj

〈j〉) ] ⊆
[(j − 1)P, jP ).

• For while, assignments are indexed using a hidden variable j, whose values are 0, . . . , N−1, when
the loop stops after N turns:
e |= while(test(x1, . . . , xn)) p iff e = ;j∈[0,N−1]

(
cj ; fj

〈j〉
)

; cN , where cj |= test(x1, . . . , xn),
j ∈ [0, N ], fj |= p, j ∈ [0, N − 1], and the conditions evaluate to true in cj , j ∈ [0, N − 1], and
to false in cN . The semantics of a non-terminating loop is an infinite execution where conditions
evaluate to true for all cj .

If the period declaration is given, the semantics is similar to for-loop periods.

Parallel composition: e |= par p1 . . . pn iff e = &i∈[1,n]ei, such that ei |= pi.

Proposition 2.1 Parallel composition is commutative and associative.

Proposition 2.2 [[seq p1 . . . pn]] ⊆ [[par p1 . . . pn]].

Verimag Research Report no TR-2007-12 7/32



Jahuel S. Yovine, I. Assayad, F.-X. Defaut, M. Zanconi, A. Basu

Forall loops: Let K = {kj}j∈J be the indexed set of indices defined by inc. e |= forall() p iff e =
&j∈J fj

〈j〉, where fj |= p, j ∈ J , and for every αI ∈ Am
fj

(for any m ∈ N): αI
l = i =⇒ νm

fj
(αI)l = kj .

Proposition 2.3 [[for(i = init(x1, . . . , xn);test(i);i = inc(i))〈per=P〉 p]] ⊆
[[forall(i = init(x1, . . . , xn);test(i);i = inc(i))〈per=P〉 p]].

Proposition 2.4 [[par p1 . . . pn]] ∼=
〈i〉

[[forall(i=1;i<=n;i+1)p]], where ∼=
〈i〉

means equal modulo
the indexing given by the iteration variable i.

Dependencies: e |= dep{〈[a,b]〉〈type〉L1 → L2}p, iff e |= p, and

• type = weak: for every e2 ⊆ e, s.t. e2 |= L2 : p2, there exists e1 ⊆ e, s.t. e1 |= L1 : p1 and
e1 −→e e2.

• type = strong: e satisfies the condition above and for every e1 ⊆ e, s.t. e1 |= L1 : p1, there exists
e2 ⊆ e, s.t. e2 |= L2 : p2 and e1 −→e e2.

• type = (j, f(j)): for all j ∈ J , if e
〈j〉
1 ⊆ e is s.t. e

〈j〉
1 |= L1 : p1, and e

〈f(j)〉
2 ⊆ e is s.t.

e
〈f(j)〉
2 |= L2 : p2, then e

〈j〉
1 −→e e

〈f(j)〉
2 .

If the optional timing interval [a,b] is present, e is such that: for all ei ⊆ e, ei |= pi, i = 1, 2,
e1 −→e e2 =⇒ τ b(e2)− τe(e1) ∈ [a, b].

Proposition 2.5 Let q be dep{〈type〉L1 → L2}p. We have that:
[[q[type := (i, i)]]] ⊆ [[q[type := strong]]] ⊆ [[q[type := weak]]].

Proposition 2.6 ∀[a′, b′] ⊆ [a, b]:
[[dep{[a′, b′]L1 → L2}p]] ⊆ [[dep{[a, b]L1 → L2}p]] ⊆ [[dep{L1 → L2}p]].

Execution times: e |= p[a,b] iff e |= p and τe(e)− τ b(e) ∈ [a, b].

Proposition 2.7 ∀[a′, b′] ⊆ [a, b]: [[p[a′, b′]]] ⊆ [[p[a, b]]] ⊆ [[p]].

Example 2.3 (Writer/Reader) Fig. 2 shows examples of executions of Ex. 2.1 for different types of de-
pendencies between pnodes W and R: (a) weak, (b) strong, and (c) (i, i). Non-labelled assignments are
not shown. The vertical placement of W’s and R’s corresponds to their occurrence in global time, which
proceeds from top to bottom. Recall that, by Prop. 2.5, any execution of type (i, i) is also strong, and
any strong is also weak.

The executions of pnodes Writer and Reader are total orders of the form W0
;−→ W1 · · · and

R0
;−→ R1 · · · , respectively, which are consistent with the timing constraints (Writer’s loop period and

execution times). Each execution of the composed system contains the union of the executions of pnodes
Writer and Reader which are consistent with the dependency declaration dep [0,15] W → R,
together with precedences added by it. For instance, in the execution shown in (a)-left, the value written by
W0 is read by R0 and R1. This means that R0 and R1 started at most 15 time units after W0 terminated.

However, the occurrence of W1 between R0 and R1 does not prevent the value written by W0 to be
read twice. This execution models a behavior that may occur in a concrete implementation of this program
where values are buffered. We will see later in Sec. 3 how such implementation can be derived from this
FXML specification.

Example 2.4 (Smith-Waterman) Fig. 3 shows a part of the model of the Smith-Waterman program (Ex. 2.2).
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Figure 2: Examples of executions of Writer-Reader.
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Figure 3: Examples of executions of Smith-Waterman.
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3 The code generation chain

3.1 Compilation approach
Compiling an FXML specification consists in transforming it until actual executable code for a specific
platform could be generated. Let L denote a language. Concretely, L is given by an XML schema, where
each element definition has an associated type.

A transformation from L to L′ is an injective map φ : L → L′, that is, every element of the XML
schema L is in the set of elements L′. Let EL be the set of executions of type L, and Fφ : EL′ → EL
be the “forgetting” function that forgets any information specific to executions of type L′. φ : L → L′
satisfies that for all executions e′ |=L′ φ(p) it follows that Fφ(e′) |=L p.

The compilation process is a sequence of transformations L0 7→∗ L0 7→ L1 7→∗ . . .Ln, where L0

is basic FXML. Li 7→∗ Li is a sequence of transformations from Li to Li, resulting in a sequence of
programs p1

i . . . pn
i , such that [[pk+1

i ]] ⊆ [[pk
i ]]. Examples of transformations from L0 to L0 are: replacing

weak dependencies by strong or (i, i) ones; par and forall by seq and for, resp., etc.

Transformations from L0 to L0: Let us define the following transformations:

• φ; s.t. φ;(p) = seq p1 . . . pn, if p = par p1 . . . pn, else φ;(p) = p.

• φfor s.t. φfor(p) = for(...)q, if p = forall(...)q, else φfor(p) = p.

• φstrong s.t. φstrong(p) = p[weak/strong], if p = dep{weak L1 → L2} q, else φstrong(p) = p.

• φ(i,i) s.t. φ(i,i)(p) = p[type/(i,i)], with type = weak or type = strong, if p = dep{type L1 →
L2} q, else φ(i,i)(p) = p.

Proposition 3.1 For all pnode p, [[φ∗(p)]] ⊆ [[p]], with φ∗ ∈ {φ;, φfor, φstrong, φ(i,i)}.

Transformations of the form Li 7→ Li+1 add information not expressible in Li. An example consists
in inserting communication and synchronization mechanisms (e.g., semaphores, queues, etc.) to ensure
dependencies are met.

3.2 Tool: JAHUEL

A sequence of transformations defines the steps to be carried out to perform a specific customization of the
product decided by the designer. The goal is to have a tool which (1) provides the appropriate transfor-
mations, and (2) automatically performs such a specified sequence of them. Moreover, the tool must be
extensible, in the sense that it should be able to add new transformations to it.

For this purpose, we have developed JAHUEL, an FXML-based code-generation chain, constructed to
be easily extended to cope with new execution models, by extending the basic FXML XML-schema, and
by adding transformations.

JAHUEL is implemented in Java, using the Java Architecture for XML Binding (JAXB) API 4, to ma-
nipulate XML documents. FXML and its extensions are defined by XML schemes. Using JAXB, each
language is bound to a Java class which provides the appropriate data representation and manipulation
methods. Transformations are implemented on top of these Java classes.

The architecture and flow of the implementation of a transformation in JAHUEL is shown in Fig. 4. The
flow of a transformation φ : L → L′ is as follows. The input specification in L is given as an XML file
according to the L schema. The XML input file is unmarshalled to obtain its internal representation as a
Java object, to which the method implementing the transformation is applied. The result is an object which
is then marshalled into the XML output file according to L′ schema, which can be used by a subsequent
transformation. This strategy ensures traceability of implementation choices. The ultimate code generation
phase for the target platform is done via a stylesheet. A configuration of JAHUEL consists in applying a
sequence of transformations. This is done through a configuration file.

4http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
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Figure 4: Schematic architecture and flow of the implementation of a transformation in JAHUEL.

Currently, JAHUEL provides some general transformations which can be customized for different ex-
ecution and simulation platforms. We have instantiated them to generate code for, e.g., Java, C with
pthreads, SystemC, and P-Ware [3]. The compilation chain is indeed to be instantiated with the sequence
of transformations to be applied.

3.3 Examples of code generation
We illustrate here the use of JAHUEL in the Writer-Reader (Ex. 2.1) and Smith-Waterman (Ex. 2.2) exam-
ples.

3.3.1 Generic transformations

In order to generate executable code, one customization decision that needs to be made is to determine
the active components of the system, which will become processes, threads, etc., depending on the target
programming language and execution platform. For instance, in the Writer-Reader example, it is natural to
consider pnodes Writer and Reader as components.

Components: Let φc such that φc(p,L) = L:component q, if p = L:q, else φc(p,L) = p. We define:
[[component q]] = [[q]]. Trivially, Fφc([[φc(p)]]) = [[p]].

Let w and r be pnodes Writer and Reader, respectively. Then, φc allows transforming w and r as
follows:

φc(w,Writer) = Writer:component w

φc(r,Reader) = Reader:component r

Besides, most synchronization mechanisms have the same kind of behavior: a component implementing a
pnode will wait for some condition to hold before executing a piece of code involved in a dependency, and
it will signal the other activities concerned by the dependency that something has happened after executing
it.
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Synchronization: Let φwn such that φwn(L:q) = seq{waitfor L:q signal} if q is a descendant
of some p with dep{W→ L}p or dep{L→ R}p, else φwn(p) = p. We define: [[φwn(p)]] = [[p]]. Trivially,
Fφwn([[φwn(p)]]) = [[p]].

Let us first consider the Writer-Reader specification without timing constraints. We will take care of timing
constraints later. The transformed specification obtained by applying φc and φwn, is as follows:

dep W -> R
par

Writer: component
p = 0
while(true)

waitfor
W: { x = p

p = p + 1 }
signal

Reader: component
while(true)

waitfor
R: { y = x

legacy{ printf("%d\n", y); } }
signal

These “generic” transformations have no effect on the semantics, but only annotate the specification with
useful information for easing further ones.

3.3.2 Threads with lock, unlock, wait and notify primitives

JAHUEL provides a transformation of an FXML specification into a C program where concurrency is im-
plemented using the pthreads library. Roughly speaking, it works as follows. Suppose now we would like
to generate code for an execution platform providing threads, mutexes, and condition variables, such as the
pthreads library. The generated code will consist of two threads, sharing variable x. Concurrent accesses
to x must be ensured to be mutually exclusive, and for a weak dependency, x must be written at least
once by Writer, before Reader could read it. In order to do this, basic FXML is extended with the
appropriate constructs to handle theses notions, independently of the actual API provided by the run-time.
The transformed specification looks as follows:

dep W -> R
par

Writer: thread
p = 0
while(true)

mcx.lock
W: { x = p

p = p + 1 }
mcx.notify(1)

Reader: thread
while(true)

mcx.wait(1)
R: { y = x

legacy{ printf("%d\n", y); } }
mcx.unlock

The statement thread specifies that component Writer will later become a thread. The translation of
this statement into actual C code with pthreads requires a rather involved transformation which is out of
the scope of this chapter.
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mcx is a structure composed of a mutex mx and a condition variable cx to protect accesses to the shared
variable x. In pnode Writer, waitfor is implemented by mcx.lock, since a weak dependency does
not require Writer to wait, but the implementation of FXML variable x as a shared C variable imposes
mutual exclusion. mcx.lock can be directly translated into the corresponding pthreads operation, e.g.,
pthread mutex lock(&(mcx.mx)).

The code generated for the notification is mcx.notify(1), which consists in setting the value of a
flag attached to the condition variable to 1. The implementation of this statement in pthreads looks like:

/* The mutex has already been acquired */
mcx.b=1;
pthread_cond_signal(&(mcx.cx));
pthread_mutex_unlock(&(mcx.mx));

In Reader, the waitfor statement is translated into mcx.wait(1), which consists in waiting for the
condition variable to be equal to 1. It can be implemented in pthreads as follows:

pthread_mutex_lock(&(mcx.mx));
while(mcx.b==0) pthread_cond_wait(&(mcx.cx), &(mcx.mx));

The signal statement is translated into mcx.unlock, since no notification is required, and implemented
as pthread mutex unlock(&(mcx.mx)).

Proposition 3.2 Let φluwn be the transformation that translates waitfor and signal into lock,
unlock, wait, and notify. For all p, Fφluwn

([[φluwn(p)]]) ⊆ [[p]].

3.3.3 Threads communicating through buffers

JAHUEL provides another transformation that allows implementing FXML variables as buffers. This leads
to another extension of FXML. For instance, the transformed Writer-Reader specification is as follows:

dep W -> R
par

Writer: thread
p = 0
while(true)

W: { xbuf.put(p)
p = p + 1 }

Reader: thread
while(true)

R: { y = xbuf.get()
legacy{ printf("%d\n", y); } }

The FXML variable x is implemented by a shared buffer xbuf. Writing and reading x become xbuf.put(e)
and xbuf.get(), respectively.

The actual implementation (e.g., array, queue, socket, etc.) and size are to be determined later, by a
subsequent transformation. The abstract behavior depends on the type of the dependency. This is captured
in the specification by attaching the buffer to the dep declaration:

• For a weak dependency, the buffer is only requested to produce values in a way consistent with the
order of writes and reads, that is, the value returned by the i+1-th call to get() must not have been
put before the value returned the i-th time.

• For strong, get() is required to deliver all written values. This imposes a fairness constraint,
which can be realized, for instance, by implementing get() so as to return the value inserted right
after the one delivered in the previous call, if it exists, otherwise the last returned one.

• The (i, i) case can be implemented with a blocking FIFO buffer.
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Proposition 3.3 Let φbuf be the transformation that translates waitfor and signal using operations
on buffers. For all p, Fφbuf

([[φbuf (p)]]) ⊆ [[p]].

3.3.4 Translation into OpenMP

The definition of FXML has been actually inspired by OpenMP [27], and therefore, there is a natural trans-
lation into it. The basic idea consists in encapsulating sequential pnodes in sections, and compiling par
and forall into parallel sections and for-loops respectively. However, since intra-forall dependencies
are not allowed, it is necessary to perform the adequate transformations before to rule them out.

Example 3.1 (Smith-Waterman) The dependencies in the Smith-Waterman program characterize the well-
known wavefront-like scheduling where the matrix elements on a diagonal are computed in parallel, us-
ing elements on matrix diagonals previously computed: all elements (i, j) such that i + j = d, for
all d ∈ [2,M + N ], can be simultaneously computed, as they only depend on elements (i′, j′), with
i′ + j′ = d′ < d (Fig. 5). This behavior can be expressed in FXML without intra-forall dependencies:

for(d = 2; d <= M+N; d+1)
forall(k = 1; cond(k, d, M, N); k+1) {

i = indexi(k, d, M, N);
j = indexj(k, d, M, N);
LX: X = A[i-1][j] + 2;
LY: Y = A[i][j-1] + 2;
LZ: Z = A[i-1][j-1] + (S1[i]==S2[j]?-1:1;
LA: A[i][j] = MIN(0, X, Y, Z);

}

where cond(), indexi() and indexj() are appropriately defined functions. The resulting C+OpenMP
code looks as follows:

#pragma omp section
for(int d = 2; d <= M+N; d=d+1)

#pragma omp parallel for
for(k = 1; cond(k, d, M, N); k+1) {

i = indexi(k, d, M, N);
j = indexj(k, d, M, N);
LX: X = A[i-1][j] + 2;
LY: Y = A[i][j-1] + 2;
LZ: Z = A[i-1][j-1] + (S1[i]==S2[j]?-1:1;
LA: A[i][j] = MIN(0, X, Y, Z);

}

Indeed, this and other code transformations issued from research on loop parallelization [14] could be
specified in terms of FXML transformations.

3.3.5 General code-generation flow

So far, we have left aside several important issues, such as, whether the FXML semantics is ensured by the
target platform, how do we cope with target language limitations, and how timing constraints are handled
by JAHUEL.

Concerning semantics, our approach relies on the existence of an abstract formal model of the tar-
get concrete execution platform onto which basic FXML can be translated to, by performing successive
transformations whose correction is proved formally inside the FXML semantic world. The underlying as-
sumption is that the concrete platform is indeed an implementation of the model, and that this relationship
can be proved by some other means such as theorem proving or model checking.
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Every transformation from a language L to L′ has to deal with the question of how L statements are
implemented in terms of L′. If this cannot be done in general, then the transformation is typically defined
only for a translatable subset of L. Like any other compiler, JAHUEL performs static sanity checks to the
input specification and rejects those which do not conform to the restrictions imposed by the transformation.

Nevertheless, our approach handles semantics, language limitations and non-functional constraints
(which are sometimes not directly supported by the target execution platform) homogeneously follow-
ing the general code-generation flow shown in Fig. 6. The basic approach has been first proposed in [25],
and implemented for Java in [24], in the context of a Java-to-native code-generation tool-chain.

The idea is as follows. JAHUEL generates two outputs, namely, the application code and a timed model
of it, both generated from the FXML specification. The former, rather than calling platform primitives
directly, it calls a generic primitive jahuel call(), implemented on top of the target platform, which
is responsible for ensuring the correct behavior. For a thread-based implementation, the pseudo-code of
jahuel call() looks like this:

void jahuel_call(th_id tid, state curr, call_op cop, params p)
{

system_lock(scheduler_mutex);
jahuel_scheduler(tid, curr, cop, p);
system_unlock(scheduler_mutex);

}

where system lock() and system unlock() are the corresponding platform lock and unlock func-
tions, scheduler mutex is a platform mutex used to insure mutual exclusion access to the scheduler by
concurrent application threads, and jahuel scheduler() is the platform-dependent function that per-
forms the appropriate scheduling in order to preserve the semantics. This includes, in particular, ensuring
that timing constraints are met. For this, the application provides some reflexive information, such as its
thread id (tid) and its current state (curr), as well as the primitive to be called (cop) together with its
parameters (p).
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The timed model is fed into a scheduler synthesis algorithm, based on the controller synthesis ap-
proach presented in [26], which generates an application scheduling table, if a scheduler exists. This table
determines for each application’s state with which the scheduler is called, which action has to be taken to
preserve the semantics. Typically, such action consists in choosing a thread to execute and updating its state
according to the scheduling table. The schematic view of the run-time is shown in Fig. 7. If a scheduling
table cannot be computed, the algorithm returns useful information which can be used by the designer to
understand the reasons of this and to modify its design accordingly.

In this setting, the generated code for the Writer-Reader looks as follows:

dep [0,15] W -> R
par

Writer: thread
state(wr0)
jahuel_execute(Writer, wr0, {p = 0}, [0,1])
jahuel_setclock(WPER)
while(true)

state(wr1)
jahuel_call(Writer, wr1, lock)
state(wr2)
W: jahuel_execute(Writer, wr2,

{ x = p; p = p + 1; }, [0,1])
jahuel_setclock(CLK)
state(wr3)
jahuel_call(Writer, wr3, notify)
state(wr4)
jahuel_waitforperiod(Writer, wr4, WPER, 10)

Reader: thread
while(true)

state(rd0)
jahuel_call(Reader, rd0, wait, CLK, [0,15])
state(rd1)
R: jahuel_execute(Reader, rd0,

{ y = x; legacy{ printf("%d\n", y); } }, [0,1])
state(rd2)
jahuel_call(Reader, rd2, notify)

Roughly speaking, calls with arguments lock and notify will behave like for pthreads. The call
jahuel setclock(CLK) sets clock CLK to 0. Thus, CLK counts the time elapsed since the last oc-
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currence of W. jahuel call(Reader, rd0, wait, CLK, [0,15]) will block Reader if the
value of CLK is not in the interval [0,15]. In this case, Reader will be awaken next time Writer
executes jahuel setclock(CLK). The call jahuel waitforperiod() makes Writer to wait
until the value of clock WPER reaches its loop’s period (10), and resets WPER to 0 when it returns, to start
counting another period. If execution times are satisfied, the scheduler synthesis algorithm ensures that
Writer never misses its period.

The function jahuel execute() executes a block of code, updates the thread state, and checks
whether specified execution times are respected. In principle, execution times should be checked to hold
using worst- and best-case execution-time analysis techniques (e.g., [30]). In this case, run-time monitoring
of execution times could be disabled.

In this example, the scheduling table generated by the synthesis algorithm depends on the type of the
dependency, either weak, strong, or (i,i), as well as on the timing constraints. The reader is referred
to [24, 25] for more detailed information about this technique.

4 From code to FXML
FXML can be used as an intermediate format to represent program behavior. Besides providing formal
semantics, translating a language into FXML enables performing program transformations and compiling
programs to different target platforms, as explained in Section 3, and also doing, for instance, performance-
driven design-space exploration [3], application-oriented scheduler synthesis [25], etc.

In this section, we study two examples of this approach. The first one consists in extending C with
FXML-driven pragmas. The second one is about giving semantics to StreamIt [36].

4.1 C with pragmas
A common embedded-software programming practice in industry consists in using pragmas to annotate the
program with extra-functional information about the behavior of the program, the target execution platform
(run-time system and hardware). Such annotations are used to produce optimized code by the industrial C-
compiler FlexCC2 [7] developed by STMicroelectronics. This approach has two major drawbacks. First,
pragmas typically do not have formally defined meaning. Second, they are compiler-dependent. Using
FXML allows to overcome these two issues.

To illustrate the idea, let us use again the Writer-Reader application. The following writer-reader.c
C program is given in the actual syntax used by FlexCC2:

int x = 0;

#pragma code_block
#pragma dependency
main.writer.write -> (x)
main.reader.read [0,15] us

#pragma parallel writer reader
main()
{
writer(); /* /&/ */ reader();

}

#pragma code_block
void writer()
{
int p;
write_init();

#pragma period 10 us
while (1) { write(); }

}

#pragma code_block
#pragma execution_time [0,1] us
void write_init()
{

p = 0;
}

#pragma code_block
#pragma execution_time [0,1] us
void write()
{

x = p++;
}

#pragma code_block
void reader()
{
while (1) { read(); }

}

Verimag Research Report no TR-2007-12 17/32



Jahuel S. Yovine, I. Assayad, F.-X. Defaut, M. Zanconi, A. Basu

#pragma code_block
#pragma execution_time [0,1] us
void read()
{

int y = x;
printf("%d\n", y);

}

FlexCC2 analyzes the program (pragmas and C code) and extracts a description of it in the concrete
XML syntax of FXML. The FXML specification obtained is similar to the one used in Sec. 2. The main
difference is that assignments and calls to C functions are considered to be legacy code:

dep [0,15]
main.writer.write -> main.reader.read
main:

legacy{ #include writer-reader.h }
par

main.writer:
legacy{ int p; write_init(); } [0,1]
while(true) per=10

main.writer.write: legacy{ write(); } [0,1]
main.reader:

while(true)
main.reader.read: legacy{ read(); } [0,1]

Then, JAHUEL can be used to generate code for different execution platforms as explained in Section 3.
An industrial application of the tool-chain composed by FlexCC2 and JAHUEL is presented in [2].

4.2 StreamIt to FXML
StreamIt [36] 5 is a language designed for programming streaming applications. StreamIt semantics is
defined by its compiler infrastructure which provides native compilation for the MIT Raw machine [18]
and code-generation into a C++ run-time library for execution on general-purpose processors.

Here, we provide a translation of a subset of StreamIt into FXML.

4.2.1 StreamIt syntax

StreamIt is built around the notion of stream. A stream is an ordered (unbounded) sequence of data.
Streams are implicit, that is, they do not have a name and can only be accessed through specific built-in
functions. A StreamIt process S is defined as follows.

Filters: The basic StreamIt process is the filter. Filters are (endless) loops with (at most) one input stream
and (at most) one output stream. The syntax is as follows: filter init Cinit work pop k1 peek k2 push k3 Cwork.
C is a block of sequential code. A filter executes the init block Cinit once and the work block Cwork at
every iteration.

Filters manipulate the input stream via the function pop(), that returns and removes the first element
of the stream, and the function peak(i), that returns the i-th element. Filters manipulate the output stream
via the function push(data) that appends data to the output stream.

The number of inserted, peeked and deleted elements at each iteration, that is the pop, peek and push
rates, are specified by the pop, peek, and push declarations. The peek rate specifies the maximum index
that is allowed to be peeked in any iteration. It is required to be greater than or equal to the pop rate.

Pipelines: Processes can be grouped in a pipeline connected through input/output streams: pipeline S1 . . . Sn.
Connections are made sequentially following the declaration order.

Example 4.1 (Writer/Reader) In StreamIt, the writer-reader application of Example 2.1 is as follows:

5http://www.cag.csail.mit.edu/streamit/index.shtml
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void -> void pipeline PC() {
add Writer();
add Reader();

}
void -> int filter Writer() {

init int p = 0;
work push 1 {

push(p);
p++;

}
}
int -> void filter Reader() {

work pop 1 {
print(pop());

}
}

Writer and Reader are implemented as filters connected in a pipeline. A filter repeatedly executes the
work function: Writer pushes a value of p at a time, expressed by a push rate of 1, while Reader pops
one element at each iteration, expressed by a pop rate of 1, and in the same order. Clearly, this StreamIt
program behaves like the FXML one in Example 2.1, with a dependency of type (i, i).

Example 4.2 (Writer/Reader with peek) Now consider the following StreamIt program where Reader
peeks two values from the input stream and sums them up:

void -> void pipeline PC2() {
add Writer();
add Reader();

}
void -> int filter Writer() {

int p = 0;
work push 1 {

push(p);
p++;

}
}
int -> void filter Reader() {

work pop 1 peek 2 {
print(peek(0) + peek(1));
pop();

}
}

In this case, the translation to FXML is not as simple as before. A compositional and systematic way
of doing it consists in adding a buffer in-between 6:

var int soutP
var int sinC[2]
dep (0,0) push -> init
dep (i+1,i) push -> get
dep (i,i) put -> peek
par

Writer:
var int p = 0

6To enhance readability, we explicitly declare variables through the var statement.
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while(true)
push: soutP = p
p++

Buffer:
init: sinC[1] = soutP
while(true)

put: {
shift: sinC[0] = sinC[1]
get: sinC[1] = soutP

}
Reader:

var int x[]
while(true)

peek: for(k=0; k<2; k++) x[k] = sinC[k]
print(x[0]+x[1])

This example provides the basis for a systematic translation of StreamIt into FXML.

StreamIt provides other constructs, such as splitjoin, which allows an input stream to be split in several
copies to be handled by multiple filters simultaneously, and feedbackloop, that allows making the out-
put stream available as input stream. For simplicity, we do not consider here these operators since their
translation into FXML is more involved, but can be done following the same ideas.

4.2.2 StreamIt semantics in FXML

Let S be a syntactically correct StreamIt program. We assume that for every work construct in a filter F
pop rate popr(F ) and peek rate peekr(F ):

• Pops are grouped at the end in a loop of the form:

for(k = 0; k < popr(F ); k++)pop().

We denote this block pop(popr(F )).

• Peeks appear in a loop of the form:

for(k = 0; k < peekr(F ); k++){x[k] = peek(k)},

where x[] is a local array of dimension peekr(F ). We denote this block peek(peekr(F )).

The translation from StreamIt to FXML is as follows.

Filter: A filter F is a sequential pnode, with two associated variables sin
F and sout

F :

Γ(filter init Cinit work rates Cwork) M= seq Γ(init Cinit)
Γ(work rates Cwork)

Work: The translation of work functions is independent of the push, peek and pop rates:

Γ(work rates C) M= while(true){Γ(C)}.

Push: Pushing a value in the output stream of a filter F is translated into storing the value in the variable
sout

F :

Γ(push(f(. . .))) M= pushF: sout
F = Γ(f(. . .)).
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Pop: Popping values is done in the corresponding buffer. Then:

Γ(pop(n)) M= nil.

Peek: Γ(peek(n)) M= peekF: forall(k = 0; k < n; k++){ x[k] = sin
F [k] }.

Pipeline: The pnode of a pipeline consists in composing its processes with a par and connecting them
with intermediate buffers: Γ(pipeline S1 . . . Sn) is the pnode

dep D1,...,n par Γ(S1) BS1,S2 . . . BSn−1,Sn Γ(Sn)

with

BSi,Si+1

M= B(sout
Si

, sin
Si+1

, peekr(Si+1), popr(Si+1))

where B(bin, bout, peekr, popr) is the pnode:

B:
for(k = 0; k < peekr - popr; k++)

init: bout[k + popr] = bin
while(true)

put: {
forall(k = 0; k < peekr - popr; k++)

shift: bout[k] = bout[k + popr]
for(k = 0; k < popr; k++)

get: bout[k + peekr - popr] = bin
}

such that bin is instantiated with the output variable sout
Si

of the process Si pushing values into the stream,
bout[] is instantiated with the corresponding vector sin

Si+1
[] to store the pushed values, and peekr and

popr are the peek peekr(Si+1) and pop popr(Si+1) rates of Si+1, respectively.
B starts by initializing the vector bout[] with peekr-popr elements, from index popr. After-

wards, it keeps forever shifting left the contents of the vector, which corresponds to popping popr items,
and inserting popr new ones.

D1,...,n
M=

⋃
1≤i≤n−1 Di,i+1 with Di,i+1 the set of dependencies from Γ(Si) to Bi,i+1 and from Bi,i+1

to Γ(Si+1), defined as follows:

• The first k pushed values, k ∈ [0, peekr(Si+1) − popr(Si+1)) serve to initialize the buffer, that is
init〈k〉 in Bi,i+1 depends on push〈k〉 in Γ(Si):

{(k, k) | k ∈ [0, peekr(Si)− popr(Si)]} pushSi
→ initBi,i+1

• Every occurrence peek〈j〉 in Γ(Si+1) is required to be preceded by put〈j〉 in Bi,i+1 in order to
ensure that peekr(Si+1) values have been pushed:

(j, j) putBi,i+1
→ peekSi+1

• Every occurrence get〈j,k〉 in Bi,i+1, k ∈ [0, peekr(Si+1)− popr(Si+1)), gets the value pushed by
Γ(Si) in the assignment push〈h〉, with index h = peekr(Si+1)− popr(Si+1) + j · popr(Si+1):

{(h, (j, k)) | h = peekr(Si+1)− popr(Si+1) + j · popr(Si+1)
∧ k ∈ [0, peekr(Si+1)− popr(Si+1)) } pushSi

→ getBi,i+1

The translation of StreamIt into FXML gives a formal semantics to StreamIt and enables verification
and scheduler synthesis. Besides, it allows using JAHUEL to generate code for target platforms other than
those supported by the StreamIt compiler infrastructure.
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full

empty
in
[0<x]
y:=f(x)

in

ou
t

out

component Reactive
port in, out
data int x, y
behavior

state empty
on in provided 0 < x
do y:=f(x) to full

state full
on out to empty

end
end

Figure 8: An atomic component.

5 FXML to BIP
For embedded software product lines, where new functionalities and services are continuously developed,
the main challenge is to provide design frameworks capable of supporting software componentization to
ease integration and evolution. BIP (Behavior, Interaction, Priority) [4] has been designed to overcome
the difficulties of state-of-the-art component-based approaches [33]. BIP provides a language and a the-
ory for incremental composition of heterogeneous components, ensuring correctness-by-construction for
essential system properties such as mutual exclusion, deadlock-freedom and progress. Besides, it enables
verification through model-checking via the IF tool-suite [10].

Nevertheless, many high-performance embedded applications, such as video compression (e.g., MPEG-
4), are not programmed following a component-based approach, but most likely a data-flow one. These
applications are better described using languages such as StreamIt and FXML. Here, we provide an auto-
mated method for generating componentized implementations in BIP of data-driven applications specified
in FXML. We illustrate the concept with an industrial MPEG-4 video encoder [2].

5.1 The BIP language
BIP is formally defined in [33]. It supports a methodology for building components from atomic ones, using
connectors, to specify interaction patterns between ports of atomic components, and priority relations, to
select amongst possible interactions. Here, we review the basic concepts through illustrative examples.

Fig. 8 shows an atomic component with two ports in, out, local variables x, y, and control states
empty, full. Ports are action names used for synchronization with other components. Control states
denote locations at which the components await for synchronization. Variables are used to store local data.
Transitions model atomic computation steps. In general, a transition is a tuple of the form (s1, p, gp, fp, s2),
representing a step from control state s1 to s2. It can be executed if the guard gp is true and some interaction
including port p is offered. Its execution is an atomic sequence of two microsteps: 1) an interaction
including p which involves synchronization between components with possible exchange of data, followed
by 2) an internal computation specified by the function fp. In the example, component Reactive can take
the transition labeled in at empty if 0 < x. When an interaction through in takes place, the variable x
is eventually modified and a new value for y is computed. From control state full, the transition labeled
out can occur. The omission of guard and function for this transition means that the guard is true and the
internal computation microstep is empty.

A compound component is a component consisting of atomic or compound sub-components. An ex-
ample of a compound component named System is shown in Fig. 9. It is the connection of three instances
of Reactive.

Components are connected through connectors, which are sets of ports that contain at most one port
from each atomic component. An interaction is any non-empty subset of a connector. In System there
are four connectors: C1, consisting of port r1.in alone, C2 consisting of ports r1.out and r2.in, and so
forth. There are two types of interactions, namely complete and incomplete. An interaction of a connector
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full

ou
tin

empty

full

ou
tin

full
ou
tin

C2 C3
emptyempty

Systemr2r1 r3

C1 C4

component System
contains Reactive r1, r2, r3

connector C1 = r1.in
complete = r1.in
connector C2 = r1.out|r2.in
behavior

on r1.out|r2.in do r2.x := r1.y
end
connector C3 = r2.out|r3.in
behavior

on r2.out|r3.in do r3.x := r2.y
end
connector C4 = r3.out
complete = r3.out
priority P1 r1.in < r2.out|r3.in
priority P2 r1.in < r3.out
priority P3 r1.out|r2.in < r3.out

end

Figure 9: A compound component.
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is feasible if it is complete or if it is maximal. We denote graphically an incomplete interaction by a
bullet and a complete one by a triangle. For instance: C1 is complete, meaning that System can engage
in an interaction containing port in if r1 can; C2 is maximal, meaning that components r1 and r2 must
synchronize on r1.out and r2.in, that is, neither one can proceed alone on transitions labelled out and in,
respectively. Connectors may have behavior specified as for transitions, by a set of guarded commands
associated with feasible interactions. For instance, whenever the interaction r2.out|r3.in takes place, r2.x
receives the value of r1.y. In general, guards and statements are C expressions and statements, respectively.

Priorities are used to choose amongst simultaneously enabled interactions. They are a set of rules,
each consisting of an ordered pair of interactions associated with a condition. When the condition holds
and both interactions are enabled, only the higher-priority one is possible. Conditions can be omitted for
static priorities. The rules are extended for composition of interactions, e.g., b1 < b2 means that any
interaction of the form b2|α has higher priority than all interactions of the form b1|α, for all interactions
α. In our example, r1.in < r2.out|r3.in means that System will not take any transition where r1.in
is involved, whenever the synchronization between r2.out and r3.in is enabled. Indeed, the priorities
specified in System enforce a causal order of execution as follows: once there is an in through C1, data are
processed and propagated sequentially through sub-components r1, r2, and r3, finally producing an out
through C4 before a new in occurs through C1. This is achieved by a priority order which is the inverse of
the causal order.

5.2 Translation scheme
To illustrate the idea of the FXML-to-BIP translation scheme, let us start with the writer-reader FXML
specification of Ex. 2.1, without timing constraints. Pnodes Writer and Reader become BIP compo-
nents:

component Writer
port out
data int x, p
behavior initial do p = 0; to S

state S
on out do x = p; p = p + 1; to S

end
end

component Reader
port in
data int y
behavior initial to S

state S
on in do y = x; {# printf("%d\n", y); #} to S

end
end

Communication between the two is done through a component Buffer which is added for several rea-
sons: (1) to encapsulate x, because BIP does not allow shared variables; (2) to realize the synchronization
protocol ensuring the dependency W → R, to comply with FXML semantics; and (3) to implement the
buffering scheme. In BIP, legacy code is written between “{#” and “#}”.

The composed system in BIP is:

component System
contains Buffer B
contains Writer P
contains Reader C
connector C1 = P.out | B.put
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Figure 10: BIP model for weak dependency
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Figure 11: BIP model for strong dependency

behavior do B.x = P.x; end
complete P.out | B.put
connector C2 = C.in | B.get

behavior do C.x = B.x; end
complete C.in | B.get

end

Connectors C1 and C2 implement the data transfer. The behavior of Buffer depends on the depen-
dency type and the storage policy. For a weak dependency with single-storage (Fig. 10), Buffer is:

component Buffer
port put, get
data int x, b
behavior initial do b=0; to S

state S
on put do b=1; to S
on get provided (b==1) to S

end
end

For a strong dependency with single-storage (Fig. 11), Buffer uses variable r to notify whether the
latest written value of x has been read, and therefore whether a new put can be accepted, and w, to notify
whether x has been written (at least once), to condition interactions on get. The BIP model of Buffer
(Fig. 11) is as follows:

component Buffer
port put, get
data int x, b
behavior initial do r=1; w=0; to S

state S
on put provided (r==1) do w=1; r=0; to S
on get provided (w==1) do r=1; to S

end
end

For a (i, i) dependency with single-storage, Buffer (Fig. 12):
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Figure 12: BIP model for (i, i) dependency

component Buffer
port put, get
data int x, b
behavior initial do b=0; to S

state S
on put provided (b==0) do b=1; to S
on get provided (b==1) do b=0; to S

end
end

The writer-reader example provides a basis for a general translation scheme.

• Consider the case of multiple dependencies incoming into an assignment ` : y = f(x1, . . . , xn)
of a pnode C from assignments `i : xi = . . . in pnodes Pi, i ∈ [1, n]. The FXML semantics is
the conjunction of constraints imposed by the dependencies. In BIP, this can be modeled by setting
up buffer components Bi, one for each dependency `i → `, i ∈ [1, n], whose role is to realize
the corresponding control policy depending on the dependency type, as well as to implement the
desired buffering policy (if any). W.l.o.g., we assume Bi is a single storage buffer, with a local
variable Bi.x, i ∈ [1, n]. Other buffering policies only require changing the behavior of connectors.
The conjunctive semantics is ensured in BIP by the maximal interaction in|get1| . . . |getn, where
buffered values Bi.x are copied to C-local variables C.xi (Fig. 13).

• The other paradigmatic case consists of multiple dependencies ` → `i outgoing from a (writer-like)
pnode P , executing the assignment ` : x = . . ., to many (consumer-like) pnodes Ci, computing
yi = fi(x), i ∈ [1, n]. The translation is similar to the previous case where a buffer Bi is used for
each dependency ` → `i, i ∈ [1, n]. The conjunctive semantics is ensured by the maximal interaction
out|put1| . . . |putn, whose behavior is to set Bi.x = P.x for all i ∈ [1, n]. (Fig. 14).
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Figure 13: Multiple incoming dependencies
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ME : Motion Estimation

DIFF : Difference On Prediction

DCT : Discrete Cosine Transf.

Quant : Quantization

Figure 15: MPEG block diagram view

5.3 Case study: MPEG-4 encoder
In this section we apply the translation scheme presented in previously to a MPEG-4 video encoder. For
lack of space, we only present here a (significant) part of the FXML and BIP models. The full FXML
specification is given in [2]. This model describes all the existing concurrency in the compression algorithm
at the macroblock level. Such concurrency does not appear in the simplified MPEG-4 block diagram shown
in Fig. 15.

The specification is composed of forall nodes, C-code blocks of the corresponding MPEG-4 com-
putations, and dependencies of the MPEG-4 phases. The basic data structure is a matrix of W × H
macroblocks. FXML specification uses x and y as the iteration variables, i.e., x ∈ [0,W ) is the row, and
y ∈ [O,H) the column, of the macroblock. A pnode specifying the behavior of an MPEG-4 computation
step s (e.g., MVP, ME, etc.) has the following structure:

forall(x = 0; x < W; x + 1)
forall(y = 0; y < H; y + 1)

legacy{ M_s[x][y] = F_s( ... ); }

where M s is the output matrix of step s, and F s is the computation applied at step s. F s depends on
a matrix computed in a preceding step, e.g., M MVP[x][y] depends on M ME[x][y], M ME[x-1,y],
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encode

par

iiiiiiiiiiiiiiiiiiiiii

ddddddddddddddddddddddddddddddddddddddddd

TTTTTTTTTTTTTTTTTT

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

forall(x, y) forall(x, y) forall(x, y) forall(x, y) MB
(5)

VLC
(6)

ME (1)

MVP (2)
(2,(x, y)) → (1,(x, y))
(1,(x-1,y)) → (2,(x, y))
(1,(x,y-1)) → (2,(x, y))

(1,(x + 1, y − 1)) → (2,(x, y))

Choice (3)
(1,(x, y)) → (3,(x, y))

MVD (4)
(1,(x, y)) → (4,(x, y))
(2,(x, y)) → (4,(x, y))

Figure 16: FXML specification of encode

VLC

par

fffffffffffffffffffffff

XXXXXXXXXXXXXXXXXXXXXXXXX

forall(x, y) forall(x, y) forall(x, y)

Zigzag (6.1)
(5.4,(x, y)) → (6.1,(x, y))

RLE (6.2)
(6.1,(x, y)) → (6.2,(x, y))

Layer (6.3)
(4,(x, y)) → (6.3,(x, y))

(6.3,(x, y)) → (6.3,(x + 1, y))
(6.2,(x, y)) → (6.3,(x, y))

Figure 17: FXML specification of VLC

M ME[x,y-1], and M ME[x-1,y-1].
For readability, we use a tree-like representation, instead of a textual pseudo-code, where pnodes are

labeled with numbers in brackets (Fig. 16). We note (1,(x, y)) the computation corresponding to the execu-
tion of the ME (motion estimation) phase on the frame macroblock at position (x, y). The arrows indicate
dependencies between these computations. There are three types of dependencies : (1) data dependencies
resulting from the MPEG-4 standard specification (e.g., in Fig. 16, (1,(x, y)) → (3,(x, y)) is a data depen-
dency expressing that the ME phase on macroblock (x, y) must finish before starting the Choice phase on
the same macroblock), (2) functional dependencies necessary for the correct functioning of the application
(e.g., there is a functional dependency from macroblock (x, y) to macroblock (x+1, y) in the specification
of VLC (Fig. 17) because generated headers and blocks are sequentially written in the output bitstream),
and (3) dependencies resulting from implementation decisions (e.g., using input and output buffers with
one-frame capacity) of encoding frames one after another.

The overall specification is 7650 lines of FXML, including 7500 lines of C code corresponding to
encoding computations. Indeed, the FXML specification can be obtained from the sequential C code
annotated with special purpose pragmas [1] using FlexCC2 [7].

Before applying the translation scheme to obtain a BIP model, we perform several FXML-to-FXML
transformations. The main problem to face is to determine the granularity of the componentization. Here,
we take each MPEG-4 computation step to be implemented inside a single atomic component. To achieve
this, the parallelism inside each step is eliminated, by making each forall statement to become a for. To
code the nested for in BIP, we need to add two complete ports tau and stop, together with two singleton
connectors, to model internal component transitions. Therefore, the component C s is as follows:

component C_s()
port in, out
port complete tau, stop
data int x, y
behavior initial x = 0; y = 0; to WAIT

state WAIT
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on in provided ((x < W) && (y < H)) to WORK
on tau provided ((x < W) && (y == H))

do x = x + 1; y = 0; to WAIT
on stop provided (x == W) do x = 0; to WAIT

state WORK
on out do {# M_s[x][y] = F_s(...); #}; y = y + 1; to WAIT

end
connector conn_tau = tau

behavior
end

connector conn_stop = stop
behavior
end

end

C s has a local matrix variable M s[][] to store the computed value at each iteration. For each
component C s, there is a single output buffer B s which encapsulates the output matrix of macro-blocks.
This is because there is only one outgoing dependency out of each component. The transfer of each macro-
block M s[x][y] from the (writer) component C s to the buffer B s is done in the connector connecting
ports C s.out and B s.put. From B s to the (consumer) component C s’, corresponding to the step
s’ following s, the transfer occurs in the connector connecting ports B s.get and C s’.in. Fig. 18
depicts the schematic view of the BIP components for VLC, where diamonds represent buffers.

C_Quant

C_ZigZag

C_MVD

C_RLE C_Layer

B_Quant C_MVD

B_ZigZag B_RLE

Figure 18: VLC

The connector T 4 62 63 defining the interaction between B4, B62, and C63, is as follows:

connector T_4_62_63 = B4.get,B62.get,C63.in
behavior

do C63.M_4[x][y] = B4.M[x][y], C63.M_62[x][y] = B62.M[x][y]
end

The other connectors are obtained similarly.

The resulting BIP model consists of 37 components, 21 of which are buffers, and 32 connectors. The BIP
source code has 8150 lines, including 650 lines of pure BIP and the 7500 lines of C code of the (original
sequential) encoder.

It is worth noticing that the BIP model characterizes the set of all possible schedulings of the compu-
tations. This non-deterministic behavior can be constrained by adding priorities, eventually resulting on a
sequential execution of the encoder. To start with, we have considered single-storage buffers, so producers
are prevented from re-writing values until consumer(s) have read them. Clearly, by changing the size of
buffers and their policy, we can obtain a higher degree of parallelism. Moreover, this change does not
affect the FXML specification, but only the last phase of the code generation chain. The latter just implies
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re-generating the behavior of the buffer component in BIP, but not its ports and connectors, thus achieving
modular code generation.

We have also compared the BIP model obtained from the FXML description with a BIP model of
the encoder written by hand. The latter consists of 15% fewer lines of BIP (548 instead of 650), almost
50% less components (11 MPEG components and 9 buffers), and 33 connectors. The larger number of
components is mainly due to the fact that the hand-written model encapsulates VLC and QuantI/DCI in
single components. Besides, most dependencies are between two successive components and hence all
connectors are of arity two (creating a chain of dependencies). In the FXML specification, dependencies
allow more parallelism and relate more than two components, resulting in more than one incoming buffers
and n-ary connectors in some cases (with n > 2) (see Fig. 18, for instance).

6 Conclusions
FXML is a formal language for specifying concurrent real-time applications. It has a simple abstract
execution model based on the notion of assignments and dependencies. It can be incrementally extended
with information related to refinements of the abstract model into more concrete ones. FXML can be used
as a modelling language by itself, that is, FXML specifications can be directly written by designers, or as
semantic framework for other languages, such as StreamIt, where FXML specifications are obtained by a
compiler.

An FXML-compiler is a sequence of transformations going from a language (or model) to another
(more concrete one). Based on this idea, we have developed the compilation chain JAHUEL which imple-
ments several translation phases which can be easily customized for different platforms. Hence, JAHUEL
provides tool support for handling concurrency and timing constraints in software product lines. In partic-
ular, we have shown how to generate code for several execution platforms, such as pthreads and OpenMP.
JAHUEL provides an FXML-to-BIP transformation which enables formal verification via the IF framework.

The FXML and JAHUEL are grounded on well established notions from process algebras, program anal-
ysis and transformation, refinement and scheduler synthesis. The main contribution of this work is to have
shown that these techniques could be put together into a pre-industrial, extensible, and customizable code-
generation chain for software product lines, without semantic break-downs from an abstract specification
all the way down to executable code.

Ongoing work includes applying FXML and JAHUEL in other industrial applications, strengthening the
integration into an end-to-end industrial design flow, and generating code for other platforms. Special effort
is being put on generating code for the simulation infrastructure P-WARE [3]. The main motivation for this
is early prototyping, verification and testing of embedded applications on simulated hardware platforms,
since automated generation of both executable and simulation code from the same formal model ensures
simulation results are trustworthy.
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Philippe Gerner, Christos Kloukinas and Olivier Quévreux for their contribution to the early stages of
the definition and development of FXML and JAHUEL, and to J. Sifakis who motivated the FXML-to-
BIP transformation. The work reported in this chapter has been partially supported by projects MEDEA+
NEVA, Minalogic SCEPTRE, Crolles-II ANACONDA, STIC-AmSud TAPIOCA, IST SPEEDS and RNTL
OpenEmbeDD. This chapter has been written while S. Yovine was Visiting Professor at DC/FCEyN/UBA
and UADE, Argentina, partially funded by BID-ANPCyT PICTO-CRUP 31352 and MINCyT “César Mil-
stein” grant.

References
[1] I. Assayad, V. Bertin, F. Defaut, Ph. Gerner, O. Quévreux, S. Yovine. JAHUEL: A formal framework
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