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Abstract

This work presents a technique to compute symbolic non-linear approximations of the amount
of dynamic memory required to safely run a method in (Java-like) imperative programs. We do
that for scoped-memory management where objects are organized in regions associated with
the lifetime of methods. Our approach resorts to a symbolic non-linear optimization problem
which is solved using Bernstein basis.
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1 Introduction
Automatic dynamic memory management is a very powerful and useful mechanism which does not come
for free. Indeed, it is well known that garbage collection makes execution and response times extremely
difficult to predict, mainly because unbounded pause times. Several solutions have been proposed, either
by building garbage collectors with real-time performance, e.g. [2] (see [14] for a survey), or by using a
scope-based programming paradigm, e.g. [16, 5, 15, 9]. However, there is still the problem of predicting
how much memory a program will need to run without crashing with an out-of-memory exception. This
question is inherently hard [17].

In a previous work we presented a technique for computing a parametric upper-bound of the amount
of memory dynamically requested by Java-like imperative programs [7]. The idea consists in quantifying
dynamic allocations done by a method. Given a method m with parameters p1, . . . , pk we exhibit an
algorithm that computes a parametric non-linear expression over p1, . . . , pk which over-approximates the
amount of memory allocated during the execution of m. This bound is a symbolic over-approximation of
the total amount of memory the application requests to a virtual machine via new statements, but not the
actual amount of memory really consumed by the application. This is because memory freed by the garbage
collector is not taken into account. We also showed that assuming a region-based memory management
[16, 5, 15, 9] where objects are organized in regions associated with computation units, the same technique
allows to obtain non-linear parametric bounds of the size of every memory region.

Here we propose a new technique to over-approximate the amount of memory required to run a method
(or a program). Given a method m with parameters p1, . . . , pk we obtain a polynomial upper-bound of the
amount of memory necessary to safely execute the method and all methods it calls, without running out of
memory. This polynomial can be seen as a pre-condition stating that the method requires that much free
memory to be available before executing, and also as a certificate engaging the method is not going to use
more memory than the specified. To compute this estimation we consider memory deallocation that may
occur during the execution of the method. Basically, assuming a region-based memory management we
model all the potential configurations of regions stacks at run-time. Since region sizes are expressed as
polynomials, this model leads to a symbolic non-linear optimization problem. This problem can be solved
using a technique using Bernstein basis [12].

To our knowledge, the technique used to infer non-linear dynamic memory requirements under a
region-based memory manager and its effective computation using Bernstein basis is a novel approach
to memory requirements calculus.

Applications of this set of techniques are manifold, from improvements in memory management to
the generation of parametric memory-allocation certificates. These specifications would enable application
loaders and schedulers (e.g., [21]) to make decisions based on available memory resources and the memory-
consumption estimates.

Outline

In section 2 we present a definition of the problem we want to solve and some assumptions that we are
making. In section 3 propose an effective definition of a function that predict memory requirements for
a scoped-based memory management. In section 4 propose an approach to compute the memory require-
ments function. In section 3 we show some experiments. In section 6 we discuss some aspects of the
technique that we would like to improve. In section 7 we discuss some related work. In section 8 we
present our conclusions and future work.

2 Problem statement
Let Θ be a non-recursive, sequential Java-like program, given as a set M of methods. W.l.o.g., we assume
there is a distinguished method under analysis mua ∈ M, where the program starts. Each m ∈ M
is characterized by its formal parameters Pm, its local variables Vm, and its body (list of statements)
stmm ∈ S∗, where S is the set of statements (new, call, ret, ...). For the sake of simplicity, we assume
that parameters are of integer type.

A program state σ ∈ Σ consists of a control stack cst(σ) ∈ (M × N)∗, the data stack val(σ) ∈
[(V ∪ P 7→ V)∗] of valuations of variables and parameters (with V =

⋃
m∈M Vm and P =

⋃
m∈M Pm),

Verimag Research Report no TR-2007-11 1/11



V. Braberman, F. Fernández, D. Garbervetsky, S. Yovine Predicting Memory Requirements

and the heap heap(σ) ⊆ O2, O ⊆ V , modelled as a directed graph of objects. We write mk(σ), pck(σ),
and valk(σ) to denote the k-th method, control location and data valuations, respectively.

An object o ∈ O is said to be live in heap(σ) iff it is reachable from a variable defined in the state,
that is, there exists k such that valk(σ)(v) has a path to o in the heap. The set of live objects of σ is denoted
live(σ). We define dead(σ) to be heap(σ)\ live(σ). Let size(o) ≥ 1 be the amount of memory occupied
by o. memUsed(σ) M=

∑
o∈heap(σ) size(o), is the amount of memory occupied in σ.

The semantics is given by a deterministic transition system 〈Σ,Σmua,→〉, where Σmua ⊆ Σ, is the set
of initial states, such that for all σ ∈ Σmua, cst(σ) = (mua, 0) and heap(σ) = ∅. The transition relation
→ is defined by the operational semantics without deleting dead objects from the heap. For any σ ∈ Σ, we
write succ(σ) to denote the state σ′ such that σ → σ′. This relation is assumed to be such that for any two
states σ and σ̄ that are equal except for the set of dead objects, succ(σ) is also equal to succ(σ̄), except for
the set of dead objects. Moreover, dead(σ) ⊆ dead(succ(σ)), that is, it is not possible to forge pointers.

A (finite) run is a sequence ρ = σ0, σ1, · · · ∈ Σ∗, with σi → σi+1, and σ0 ∈ Σmua. We denote ρi the
state corresponding to the i-th element of ρ. A run is uniquely determined by the values assigned to the
parameters of mua. We write ρϑ to denote the run determined by the parameter valuation ϑ.

A dynamic memory manager is a function Γ : Σ∗ 7→ Σ∗ that removes from the heap (a subset of) dead
objects, that is, for all runs ρ, Γ(ρ) is such that for all i ≥ 0, dead(Γ(ρi)) ⊆ dead(ρi), while keeping the
rest of the state unchanged. We call ideal manager the one such that dead(ideal(ρi)) = ∅. From now
on, we will indistinctly denote Γ(ρi) as Γi(ρ).

2.1 Peak consumption
The peak amount of memory consumed by a run ρϑ, is defined as follows:

peakΓ(ϑ) M= max
i

memUsed(Γi(ρϑ)) (2.1)

Clearly, we have that for all ϑ, peakideal(ϑ) ≤ peakΓ(ϑ), for all Γ.
Determining the peak consumption at compile time would enable to know “a priori” the amount of

memory required to safely execute the program (from mua) without running out of memory. However,
predicting this peak is hard for different reasons, as the following example tries to illustrate.

void m0(int mc) {
1: m1(mc);
2: m2(3 * mc);
}
void m1(int k) {
3: B[][] dummyArr = new B[k][];
4: for (int i = 1; i <= k; i++) {
5: dummyArr[i-1]= m3(i);
}

}
void m2(int k2) {
6: B[] m3Arr=m3(k2);
}

B[] m3(int n) {
7: B[] arrB = new B[n];
8: N l = new N();
9: for (int j = 1; j <= n; j++) {
10: arrB[j-1] = m4(l,j);

}
11: return arrB;
}

B m4(N l, int v)
{
12: N c = new N();
13: c.value = new B(v);
14: c.next = l.next;
15: l.next = c;
16: return c.value;
}

Figure 1: A sample program with its detailed call graph
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Example. Consider the program in Fig. 1. The objects allocated in method m4 at locations 12 and
13 (denoted as m4.12 and m4.13) cannot be collected when m4 finishes its execution because they are
referenced from outside. m4.12 can be collected when m3 finishes its execution. m4.14 can be collected
just at the end of m2 or m1 when the last reference is removed. And so on. Fig. 2 depicts the effects of
allocations and deallocations on memory occupancy for different executions (m0 invoked with mc = 3
and mc = 7, respectively) using the ideal memory manager. The figure only shows memory occupation
generated by explicit requests at allocation statements, that is, there is no allocation overhead introduced
by the memory manager. In the first run the peak is reached after m0 calls m2, and in the second one, the
peak occurs after m0 calls m1. �

m0(3) m0(7)

Figure 2: Two traces: m0(3) (above) and m0(7) (below).

This example pinpoints the issues that need to be considered for estimating the peak: it is necessary
(1) to estimate the amount of memory requested by a method, and (2) to determine when objects will be
collected, both in terms of the parameters of mua, as different peak consumptions could occur at different
places (control locations, method instances, ...) depending on initial parameters.

2.2 Peak consumption for scoped-memory management
The ideal memory manager is optimal in terms of memory consumption. This collector is used in works
that verify memory usage certificates such as [11, 3]. However, it is not well understood how to predict
memory consumption for it.

In this work we follow a different strategy: we assume the presence of a scoped-memory manager that
reclaims memory only at the end of the execution of every method. The collector is only allowed to claim
for dead objects created during the execution of the method (and the method it transitively calls). Objects
created in an outer scope cannot be collected by the current method and may be reclaimed by some of the
methods in the call stack. In particular, we will choose a scoped-based memory management where objects
are organized in regions and each method has an associated region (denoted as an m-region) whose lifetime
corresponds with its associated method’s lifetime [15]. To be safe, objects in a region can point to objects
in the same region or a parent region (corresponding to a method that is in the call stack). This scoping
restriction can be satisfied inferring regions at compile-time by performing escape analysis [15, 23, 22].

Let r ⊆ O be a region. We assume there is one (possibly empty) region per method occurrence in the
call stack: for any σ ∈ Σ, the region stack is rst(σ) = r1 . . . rt where m(σ) = m1 . . .mt. The set of nodes
of the heap is a disjoint union of regions. A region-based memory manager Γ only eliminates rt. For all ρ,
Γ(ρ) is as follows:

• Γ0(ρ) = ρ0,

• and for all i ≥ 0, Γi+1(ρ) is:

– if stm(pct(ρi)) = ret, then

∗ heap(Γi+1(ρ)) = heap(Γi(ρ)) \ rt, and
∗ rst(Γi+1(ρ)) = rst(Γi(ρ)) \ rt,

– otherwise Γi+1(ρ) = succ(Γi(ρ)) and rst(Γi+1(ρ)) is:
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∗ if the statement is a call, a new (empty) region is attached to the method pushed on top
of the stack,

∗ if an object o is created (new), it is equal to rst(Γi(ρ)), except for the region to which o is
assigned to,

∗ otherwise it remains unchanged.

Furthermore, to ensure that only dead objects are removed, the assignment of new objects into regions is
supposed to be done in such a way that on the return of the method on the top of the stack, all objects in
the top region are dead. This holds from the fact that inter-region references comply with scoping rules.

The memory peak of a run collected by a region-based memory manager Γ is a function of the size of
the regions. Let size(r) =

∑
o∈r size(o). Then:

peakΓ(ϑ) = max
i

∑
1≤k≤|cst(ρϑ

i )|

size(rstk(Γi(ρϑ))) (2.2)

The rest of this paper is devoted to develop a computational technique to approximate the right-hand
side of Eq. 2.2.

3 Computing peak consumption for scoped-memory
Let Πmua ⊆ (M× N)∗ be the set of call stacks whose first element is (mua, 0). For π ∈ Πmua, we write
π[1..k] to denote the prefix of length k, and πk to denote the k-th method. Σ can be partioned according to
call stacks: σ, σ′ ∈ Σ are in the same class iff cst(σ) = cst(σ′). Then, from Eq. 2.2 it follows that:

peakΓ(ϑ) = max
π∈Πmua

max
i st.π=cst(ρϑ

i )

∑
1≤k≤|π|

size(rstk(Γi(ρϑ))) (3.1)

The right-hand side of Eq. 3.1 can be over-approximated by summing up the maximum region sizes along
the run:

peakΓ(ϑ) ≤ max
π∈Πmua

∑
1≤k≤|π|

max
i st.π=cst(ρϑ

i )
size(rstk(Γi(ρϑ))) (3.2)

We can further over-approximate the right-hand side of Eq. 3.2 by considering a partition for each stack-
depth k, that is, σ, σ′ ∈ Σ are in the same class for depth k, iff cst(σ)[1..k] = cst(σ′)[1..k]. Thus:

peakΓ(ϑ) ≤ max
π∈Πmua

∑
1≤k≤|π|

max
i st.π[1..k]=cst(ρϑ

i )[1..k]
size(rstk(Γi(ρϑ))) (3.3)

Since Πmua is finite and all π ∈ Πmua are of finite length, it follows that computing an over-approximation
of the peak reduces to computing maximum region sizes.

3.1 Approximating region sizes
Given a method m ∈M, let rsizem(Pm) be a function of m’s parameters that yields an over-approximation
of the size of any region associated to m, that is, for every state σ that contains a region rk associated with
method m at position k in the stack, size(rk) ≤ rsizem(valk(σ)(Pm)). Thus, it follows that:

peakΓ(ϑ) ≤ max
π∈Πmua

∑
1≤k≤|π|

max
i st.π[1..k]=cst(ρϑ

i )[1..k]
rsizeπk

(valk(ρϑ
i )(Pπk

)) (3.4)

Eq. 3.4 does not depend on Γ because valk(ρϑ
i )(Pπk

) = valk(Γi(ρϑ))(Pπk
).

The rsize functions can be computed using the techniques presented in [7]. Here, we illustrate the
approach with an example.
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Example. For instance, rsize functions for our motivating example are:

rsizem0 = 0

rsizem1 = size(B[])k + (size(B[]) + size(B))(
1
2
k2 +

1
2
k)

rsizem2 = (size(B[]) + size(B))k2
rsizem3 = size(N) + size(N)n
rsizem4 = 0

where size(B) and size(B[]) are the sizes of objects of type B and B[]. �

3.2 Approximating maximum region sizes
Equation 3.4 still depends on the run determined by the valuation ϑ of Pmua to obtain the values of the
parameters to evaluate rsize. These values can be approximated by an invariant binding Pmua with the
parameters of all methods in given call chain π. This binding invariant constrains the possible valuations
of variables stored in stack frames of methods invoked in π. Such an invariant, denoted Imua

π , can be
obtained, for instance, from local invariants as in [7].

Example. For instance a valid binding invariant Im0.1.m1.5.m3
mua in our example is {k = mc, 1 ≤ i ≤

k, n = i}. �
For m ∈ M and π.m ∈ Πmua, the maximum value of rsizem in all states σ where π.m is a prefix of
cst(σ), can be over-approximated by its maximum value over a binding invariant Iπ.m

mua . Now, let:

maxrsizeπ.m
mua (Pmua)

M= Maximize rsizem(Pm) sbj.to Iπ.m
mua (Pmua, Pm,W ) (3.5)

where W are local variables appearing in the methods in π. Clearly,

max
i st.π[1..k]=cst(ρϑ

i )[1..k]
rsizeπk

(valk(ρϑ
i )(Pπk

)) ≤ maxrsizeπ[1..k]
mua (ϑ) (3.6)

Example. rsizem3(n) = size(N) + size(N)n and Im0.1.m1.5.m3
mua = {k = mc, 1 ≤ i ≤ k, n = i},

imply maxrsizem0
m0.1.m1.5.m3(mc) = size(N) + size(N)mc. �

Let

memRq(ϑ) M= max
π∈Πmua

∑
1≤k≤|π|

maxrsizeπ[1..k]
mua (ϑ) (3.7)

It follows that: For all ϑ, peakΓ(ϑ) ≤ memRq(ϑ).

Example. Table 1 shows maxrsizeπ.m
m0 for the example of Fig. 1. Call chain for this example are prefixes

of m0.1.m1.5.m3.10.m4 and m0.2.m2.6.m3.10.m4. Since we compute a sum over all regions for a given
call chain, the sum over any prefix of these call chains will give a value which is lower or equal. Thus, it is
enough to apply the maximum to the result of these chains. Using the resulting maxrsize expressions we
can reduce memRqm0 to:

memRqm0(mc) = max{

(size(B[]) + size(B))(
1
2
mc2 +

1
2
mc) + size(B[])mc + size(N)(1 + mc),

(size(B[]) + size(B))3mc + size(N)(1 + 3mc)}

Here, for simplicity, we will assume that size(T ) = 1 for all T . Then:

memRqm0(mc) = max{mc2 + 2mc + 1 + mc, 6mc + 1 + 3mc}
= 1 + max{mc2 + 3mc, 9mc} = 1 + 3mc + max{mc2, 6mc}

= 1 + 3mc +
{

mc2 if mc < 0 ∨mc > 6
6mc if 0 ≤ mc ≤ 6
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Table 1: Expression for function maxrsize for the example
π.m Im0

π.m \ maxrsizeπ.m
m0 (mc)

m0 true \ 0

m0.1.m1 {k = mc} \ (size(B[]) + size(B)).( 1
2 mc2 + 1

2 mc) + size(B[])mc

m0.1.m1.5.m3 {mc ≥ 1, k = mc, 1 ≤ i ≤ k, n = i} \ size(N) + size(N)mc

m0.1.m1.5.m3.10.m4 {mc ≥ 1, k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, v = j} \ 0

m0.2.m2 {k2 = 3mc} \ (size(B[]) + size(B))3mc

m0.2.m2.6.m3 {k2 = 3mc, n = k2} \ size(N) + size(N)3mc

m0.2.m2.6.m3.10.m4 {mc ≥ 1, k2 = 2mc, n = k2, 1 ≤ j ≤ n, v = j} \ 0

Fig. 3 shows that memRqm0 is an upper-bound of the actual memory requirements of the example of
Fig. 1. It also shows how regions are created when methods are invoked and released when they return.
Light gray bars depict rsizem1, dark gray bars rsizem3, and the others rsizem2. �

Figure 3: Consumption, rsize, and memRqm0 for m0(3) and m0(7).

4 Computing maxrsize and memRq
The formulation of maxrsize characterizes a non-linear maximization problem, where the polynomial
rsize represents the input and the binding invariant for the control stack represents the restriction, whose
solution is an expression in terms of Pmua. Since our goal is to avoid expensive runtime computations, we
need to perform off-line reduction as much as possible at compile time. Off-line calculation also means
that the problem must be stated and solved symbolically. As a consequence, it is not possible to resort to
non-linear numerical optimization.

4.1 Computing maxrsize
To compute maxrsize, we resort to [12] which proposes an extension of Bernstein expansion [4] for sym-
bolically bounding the range of a polynomial over a linear domain. The idea is as follows: Bernstein poly-
nomials form a basis for the space of polynomials, such that the coefficients of a polynomial in Berstein
basis give minimum and maximum bounds on the polynomial values. Here, we do not go into the details,
which can be found in [13]. Let ~x = (x1, . . . , xk) be a vector of variables, and ~p = (p1, . . . , pn) a vector
of parameters. Given a polynomial pol ∈ Q[~x], and a convex polytope I ∈ Q|~x×~p|, there is a function

Ber : Q[~x]×Q|~x×~p| 7→ 2Q|~p|×2Q[~p]

that yields a set {(Di, Ci)}i∈[1,l] where Di ∈ Q|~p| is a linear domain and Ci ⊆ Q[~p] is a set of “candidate”
polynomials such that, for all p ∈ Qn:

max{pol(x) | I(p, x)} ≤

 max{q(p) ∈ C1} if D1(p)
...
max{q(p) ∈ Cl} if Dl(p)

(4.1)
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We compute maxrsize by applying the Bernstein expansion to rsize, constrained by a linear binding
invariant, with parameters Pmua. Di. That is:

maxrsizeπ.m
mua = Ber(rsizem, Iπ.m

mua ) (4.2)

Example. Table 2 shows the results for the example in Fig. 1. �

Table 2: Computing the function maxrsize using Bernstein basis

maxrsizem0.1.m1.5.m3
m0 = Ber(Im0

m0.1.m1.5.m3, rsizem3)
Domain: {mc ≥ 1} Candidates: {mc + 1}
Domain: {mc < 1} Candidates: {0}
maxrsizem0.2.m2.6.m3

m0 = Ber(Im0
m0.2.m2.6.m3, rsizem3)

Domain: true Candidates: {3mc}

maxrsizem0.1.m1
m0 = Ber(Im0

m0.1.m1, rsizem1)
Domain: true Candidates: {mc2 + 2mc}
maxrsizem0.2.m2

m0 = Ber(Im0
m0.2.m2, rsizem2)

Domain: true Candidates: {6mc}

4.2 Evaluating memRq
Recall that memRq(ϑ) (Eq. 3.7) is basically a comparison between values to choose the largest one. Here
we present an alternative definition of memRq where instead of comparing all potential call chains we
recursively generate an evaluation tree that gets the same results: memRqmua = memRqmua

mua where

memRqπ.m
mua = maxrsizeπ.m

mua + max
(m,l,mi)∈Emua

memRqπ.m.l.mi

mua (4.3)

where Emua is the set of edges of the call graph rooted at mua.

Figure 4: Evaluation tree of the computation of the amount of memory required to run m0 and its correla-
tion with the application (unfolded) call graph

Evaluation trees enable symbolic compile-time manipulation in order to reduce the runtime effort of
evaluation of the peak consumption prediction. An evaluation tree for our example is presented in Fig. 4.
The tree has a direct relation with the application call graph: max nodes are associated with branches in
the call graph (i.e. independent regions); sum nodes are related with adjacencies in the call graph (i.e.
regions that can live at the same time); leaves are associated with each node of the unfolded call graph (i.e.
potential memory regions) by using maxrsize as the operation that yields the largest region size. To model
the output of Ber for maxrsize evaluation, trees feature a case node (not shown in Fig. 4) which provides
a more general construction and models a set of pairs (condition, evaluation-tree). Evaluation trees can be
easily evaluated at runtime. Nevertheless, reductions can be done at compile-time, for instance, by applying
powerful symbolic techniques for polynomial manipulation or by assuming some loss of precision of the
upper-bounds. Details can be found in [6].

Example Fig. 5 shows the evolution of the evaluation tree for the example Fig. 1. The first tree is the
evaluation tree after applying Ber for solving the maximization problem for maxrsize. The next two trees
are successive simplifications. To go from the first tree to the second one, we start by removing the Case
node by taking directly the case m+1 by using the fact that the binding invariant forces mc ≥ 1. Then, we
sum the nodes in the left part of the max node getting the expression 1 + 3mc + mc2. Since 3mc appears
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also in the right side (6mc = 3mc + 3mc) we can factor that node. Then, to move from the second tree to
the third we convert the max node to a Case node after finding the interval where one polynomial mc2 is
above 6mc and vice versa. �

Finally, evaluation trees are translated into Java code to be executed at runtime. Assuming the number of
domains and candidates is fixed, in the worst case, the number of evaluations is bounded by the number of
branches of the call graph (i.e., the number of edges of a compacted version of the call graph). In practice
the size of the evaluation tree is much smaller than the call graph, since many of the comparisons can be
solved off-line.

Figure 5: Evaluation tree after computing maxrsize and two successive reductions.

5 Preliminary experiments
The initial set of experiments were carried out on a subset of programs from JOlden [8] benchmarks.
It is worth mentioning that these are classical benchmarks and they are not biased towards embedded
and loop intensive applications the target application classes we had in mind when we devised the tech-
nique. In order to make the result more readable, the tool computes the number of object instances
created when running the selected method, rather than the actual memory allocated by the execution of
the method. Table 3 shows the computed peak expressions, and the comparison between real executions
and estimations obtained by evaluating the polynomials. The last column shows the relative error ((#Objs
- Estimation)/Estimation).

Table 3: Experimental results
Example memRq Param. #Objs Estimation Err%
MST(nv) 1 + 9

4 nv2 + 3nv + 5 + max{nv − 1, 2} 10 253 270 6%
20 943 985 4%
100 22703 22905 1%
1000 2252003 2254005 0%

Em3d(nN, nD) 6nN.nD + 2nN + 14 + max{6, 2nN} (10,5) 344 354 3%
(20,6) 804 814 1%
(100,7) 4604 4614 0%
(1000,8) 52004 52014 0%

BiSort(n) 6 + n 10 13 16 19%
20 21 26 19%
200 69 135 45%
64 69 70 1%
128 133 134 1%

Power() 32656 - 32420 32656 1%

These experiments show that the technique produced quite accurate results, actually yielding almost
exact figures in most benchmarks. In some cases, the over-approximation was due to the presence of
allocations associated with exceptions (which did not occur in the real execution), or because the number
of instances could not be expressed as a polynomial. For instance, in the bisort example, the reason of the
over-approximation is that the actual number of instances is always bounded by 2i − 1, with i = blog2nc.
Indeed, the estimation was exact for arguments power of 2.
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6 Discussion
Peak consumption for an arbitrary method:

Our technique assumes that mua is the program’s starting method. If we want to use our technique for an
arbitrary method m we need to consider the fact that m (or some method it may transitively call) may allo-
cate some object whose lifetime exceeds its m’s lifetime. In this case, objects should be allocated in some
region of a caller of m. To deal with this situation we introduce a new function denoted memEscapesm

which yields an over-approximation, in terms of Pm, of the amount of dynamic memory allocated by ob-
jects created during the execution of m that cannot be released, meaning that they have to be allocated in
other callers’ regions. memEscapes provides useful information to callers of m as they must consider
that the call to m will require some additional space of their own regions. As we do for rsize in [7] we
propose technique to automatically infer memEscapes.

To cope with this extension, we only need to take into account the amount of memory escaping m as
escape information is absorbent. By absorbent we mean that any object escaping the scope of a method
m′, transitively called by m, is eventually captured by some method in the call stack m, . . . ,m′. Thus,
memRq is redefined as follows:

memRqmua
M= memEscapesmua + memRqmua

mua (6.1)

About the parameterization of memRq:

We defined peak in terms of Pmua and we assumed Pmua are of integer type. Nevertheless, a method may
be invoke with parameter of more complex data types and consumption may be more directly related with
other expressions derivable from the parameters. For instance, suppose that we want to know the amount of
memory required to run a method clone(c: Collection) that returns a fresh copy of a collection
c. Clearly, the size of c is relevant for computing the memory requirements. To cope with this, we can use
a new variable size for the peak calculation and relate it with c using a predicate size = c.size().

For this, we devise an alternative definition of peak that allows introducing new variables and a uses
a predicate relating these variables with the method’s formal parameters and the objects reachable from
the parameters. In practice, this definition is supported by relating these new variables with the formal
parameters using the binding invariant.

Another related issue is the fact that the method under analysis may start with a non-empty heap,
holding an input data structure (such as a collection).Nevertheless, we can easily deal with non-empty
initial heaps, by modifying the peak definition as:

peakΓ(ϑ) M= max
i

memUsed(Γi(ρϑ))− memUsed(ρϑ
0 ) (6.2)

The rest of the derivations follow similarly.

Dealing with recursion and complex data structures:

Two major shortcomings of our technique are the restriction about recursion and support for more complex
data structures. We do not allow recursion because our technique relies on having a finite evaluation tree.
Although we believe that this restriction is acceptable for embedded systems, we are working in alternative
solutions. For instance, it is possible to provide and use peak memory-requirements specification for whole
mutually recursive set of methods considering them as being only one method. Besides, some particular
cases, such as tail-recursion can be handled by working with a compacted call graph, provided binding
invariants are available. This is the way the bisort case study has been analyzed in Section 3.

In [7] we present some solutions to deal with some typical iteration patterns in collections. We are
also studying the possibility of combining our technique with approaches like [10, 11] that seems to be
suitable for the verification of Presburger expressions accounting for memory consumption annotations for
class methods. We believe that it is possible to devise a technique integrating our analysis together with
those mentioned type-checking based ones. The approach would be as follows. While methods for data
container classes (like the ones provided by standard libraries) are annotated and verified by type-checking
techniques, loop-intensive applications built on top of those verified libraries may be analyzed using our
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approach. Benefits are twofold: first, work done by our technique would be reduced since we would have to
deal with significatively smaller call graphs, and second, our ability to synthesize non-linear consumption
expressions would entail an increase of expressive power of type-checking based techniques.

7 Related Work
The problem of dynamic memory estimation has been studied for functional languages in [18, 19, 25]. The
work in [18] statically infers, by typing derivation and linear programming, linear expressions that depend
on function parameters. The technique is stated for functional programs running under a particular memory
mechanism (free list of cells and explicit deallocation in pattern matching). The computed expressions
are linear constraints on the sizes of various parts of data. Our technique is meant to work for java like
programs, is better suited for a region-based memory manager and it does compute non-linear parametric
expressions. [19] proposed a variant of ML extended with region constructs [24] together with a type
system based on the notion of sized types [20] (linear constrains), such that well typed programs are proven
to execute within the given memory bounds given as linear constrains. Although, their work is meant for
first-order functional languages, they also rely on regions to control objects deallocation. The technique
proposed in [25] consists in, given a function, constructing a new function that symbolically mimics the
memory allocations of the former. The computed function has to be executed over a valuation of parameters
to obtain a memory bound for that assignment. The evaluation of the bound function might not terminate,
even if the original program does.

For imperative object-oriented languages, solutions have been proposed in [17, 10, 11, 1]. The tech-
nique of [17] manipulates symbolic arithmetic expressions on unknowns that are not necessarily program
variables, but added by the analysis to represent, for instance, loop iterations. The resulting formula has
to be evaluated on an instantiation of the unknowns left to obtain the upper-bound. No benchmarking is
available to assess the impact of this technique in practice. Nevertheless, three points may be made. Since
the unknowns may not be program inputs, it is not clear how instances are produced. Second, it seems to be
quite over-pessimistic for programs with dynamically created arrays whose size depends on loop variables
and third, it does not consider any memory collection mechanism. The method proposed in [10, 11] relies
on a type system and type annotations, similar to [19]. It does not actually synthesize memory bounds,
but statically checks whether size annotations (Presburger’s formulas) are verified. It is therefore up to the
programmer to state the size constraints, which are indeed linear. Their type system allows aliasing and
object deallocation (dispose) annotations. Our technique does not allow such annotations and indeed our
memory model is more restricted. But as a counterpart we we can infer non-linear bounds. The reason
we do not support individual object deallocation is our current impossibility of computing lower bounds
which are required for safely compare the difference between allocations and deallocations. More recently
Alter et al. [1] propose a technique for parametric cost analysis for sequential Java code. The code is trans-
lated to a recursive representation with a flattened stack. Then, they infer size relations which are similar
to our linear invariants. Using the size relation, and the recursive program representation they compute
cost relations which are set of recurrent equation in term of input parameters. Applied to memory con-
sumption the bounds that this technique is able to infer are not limited to polynomials. However, solving
recurrence equations is not a trivial task and is not always possible to obtain closed form solutions for a set
of recurrence equations. They outline some proposals to approximate solutions. Object deallocation is not
considered.

8 Conclusions and Future work
We presented a novel technique to compute non-linear parametric upper-bounds of the amount of dynamic
memory required by a method. The technique is developed for region-based dynamic memory manage-
ment, when regions are directly associated with methods, but it can be used safely to predict memory
requirements for memory management mechanism that free memory by demand. The inputs of the tech-
niques are the application call graph enriched with binding invariant information to constraint calling con-
texts, a set of parametric expressions that bounds the size of every region and a mapping from allocation
points to regions (we can compute both information using the technique proposed in [7]) and yields a para-
metric certificate of the memory required to run a method (or program). This certificates are given in the
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form of evaluation trees that can be easily translated to code that can be evaluated in runtime to pre-allocate
regions. The size of the evaluation trees are known at compile time and can be reduced either using math-
ematical tools to symbolically solve maximums between polynomials or by compromising some accuracy
of run-time calculations.

The precision of the technique relies on several factors: the precision of the inputs (region sizes and
invariants), the structure of the program that may allow or disallow two active regions get its maximum
size at the same time, the precision of the Bernstein approximation and reductions applied to the evaluation
tree. More benchmarks would be needed to assess its precision, but results on JOlden let us think it is a
promising approach. We are working to enhance our technique to support recursion and to combine it with
others which are better suited for more complex or recursive data structures.
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