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Abstract

Platform-based design is an approach to cope with increasing costs in developing com-
plex embedded systems. In order to support performance analysis at system-platform
level, this report presents a methodology and tool which provide a joint SW/HW
component-based modelling and simulation framework. Our framework allows for spec-
ifying variable transaction latencies, and separates functional and timed behavior of
components. We apply the framework for analyzing several implementations of an
IPv4 forwarder application on an Intel’s dual IXP2800. The analysis allows evaluating
both SW and HW performance such as packets throughput, threads utilization, bus
bandwidth and channels conflicts.
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1 Introduction

Many embedded applications such as video compression, HDTV and packet routing require higher
and higher performance. The HW solution is to ressort to multiprocessor chips, such as the
Intel’s IXP2XXX NP family [2] and the Philips Wasabi chip [4]. However, due to the complexity
of developing SW for complex multiprocessor architectures, developers are often unable to fully
optimize the performance of their programs on these advanced chips [1]. This motivates the
need for the definition of performance-aware models for building predictable systems, in terms of
resource usage, timing behavior and bandwith usage for embedded SW and HW.

Current practices for system-level design and analysis do not provide satisfactory solutions for
coping with the increasing complexity of embedded systems. System-design approaches can be
classified according to their modelling scope, i.e., the defined articulation points and layers in the
design flow. Three categories can be distinguished: SW-based design (SBD), HW-based design
(HBD) and platform-based design (PBD).

On one hand, SBD relies on a high-level representation of communication between components
which is then optimized and resolved through middlewares. A number of parallel programming
models have been presented for multi-processor chips [16, 8, 6, 12]. SBD is not concerned with
HW performance.

On the other hand, HBD does not consider application programming as part of the design and
thus no model articulation point at SW level is defined. The SW running on HW components,
usually written in assembly, is independent of the structure of the application. This approach
focuses on architectural and system-level modelling. For instance, [5] provides flexible wrappers
between functional code and HW-specific I/O interfaces. The tool introduced in [13] generates
a SystemC-based multiprocessor SoC representation from a library of parameterized communi-
cation components specific for packet-switching networks. HBD approaches reduce design time
for HW/SW interface refinement and component integration, but are not concerned with SW
performance.

A key concept in PBD [17] is the notion of system-platform which provides the abstraction layer
allowing for composing SW- and HW-level views using the “meet-in-the-middle” principle. The
framework proposed in [18] is specific to clock-driven concurrent HW components with message-
passing communication. The methodology presented in [14] is specific to SW models given as
acyclic task graphs. The behavior of a task is abstracted to the best- and worst-case execution
times and input/output data packet communication. Such model does not allow for obtaining
intrinsic HW performance. The framework proposed in [15] does not provide any component
model for clearly articulating SW and HW interactions. [3] proposed a methodology and tool
dedicated to MIMD architectures using Kahn Process Networks for modelling SW. [9] describes
an approach centered around a single communication component model (COM), which abstracts
away the overall system interconnection. Therefore, only coarse grain COM-level performance can
be observed. In order to handle performance in PBD, we have developed P-Ware, a component-
based methodolgy and tool for performance-aware modelling and analysis at system-platform level.
P-Ware combines several timed transaction-level HW components and user-level SW components.
P-Ware allows for specifying components having variable transaction latencies, and separates
their functional and timed behaviors. P-Ware allows for performance simulation of components
in isolation (e.g. SW components tasks execution times, HW components idle time).

We apply the framework for analyzing the performance of several implementations of an
IPv4 forwarder application on an embedded multiprocessor HW architecture, namely Intel’s dual
IXP2800. Several network processor models have been introduced to support IPv4 forwarding.
The model presented in [7] is a high level timing abstraction of HW. Although sufficient for SW
performance measurements, it does not support evaluation of any HW metric. [11] proposed an
analytical model for both IPv4 and IXP1200 architecture used for evaluating different design al-
ternatives. The model however does not allow for capturing components with dynamic effects
such as history-dependent memory bank latencies. [10] developed a coloured Petri nets model for
IXP2400 where packet arrivals and memory conflicts parameters are inputs given as exponential
distributions and probabilities, respectively. In contrast, P-Ware allows evaluating both appli-
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cation and HW performance such as packets throughput, threads utilization, bus bandwidth and
channels conflicts.

2 HW view

2.1 Component model

The HW view is composed of a connection of several builiding components whose general model
is depicted on figure 1. Time is taken into account using a clock characterized by its frequency.
Behaviors are described by an automaton where Y.xxx denotes the state of automaton Y, [xxx]
denotes a condition on the transition, ?xxx and !xxx denote synchronous communications.

TLTB

Controller

Clock

Buffer

OK

Transaction

Buffer

Arbiter

OKTransaction

Figure 1: HW component model

TLTB is the set of timed-level behaviors of component’s transactions. A transaction is a set of
sequences of operations to be executed by the component for a given request. Several transactions
can be executing at a given time inside a component. Two transactions T1 and T2 which are
about to perform operations o1 and o2 may be in conflict if o1 and o2 use a shared resource r.
We call the set of operations which are in conflict a “conflict group”. Formally, a transaction is
a pair 〈T, (C;L)〉 where T is the automaton shown in figure 2(d), C is either a chain or a multi-
chains operations graph with one conditional source node prolonged with at least two chains,
and L is a function giving for each operation the corresponding latency. TLTB is a pair (T ;R)
composed of T , the set of transactions, and of R, the set of conflict groups. An example is given
later. Hereinafter, we use the term transaction to denote both a transaction request and a TLTB
transaction when there is no risk of confusion.
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Buffer (IB) stores transactions and signals if the component accepts or refuses new requests.
It is characterized by its storage capacity, the number of internal queues, back pressure thresholds
and latency. Sending a transaction to a buffer is done by giving the destination queue and the
input when OK is true, i.e., when the buffer accepts inputs. Receiving a transaction is operated
in a similar way.

Arbiter (A) is characterized by an arbitration function, which computes the buffer source queue,
and a latency. Figure 2(a) shows the functional-behavior model of the arbiter where IB denotes
the input buffer.

Controller (C) actions are twofold, TLTB-control actions and output-control actions. C decides
when to launch a transaction: if the transaction is enabled it immediately fires it, otherwise, the
firing is delayed. C resolves conflicts. When a transaction completes, C stalls until recipient
buffer accepts input, then it sends the result as a transaction. The model of the controller is the
composition of automata 2(b) and 2(c).
In experiments, we have put special attention on accurately modelling read and write transactions
due to the impact they have on HW performance. Figure 3 illustrates a read transaction flow on
a HW model whose component blocks are not detailed.

1 2 3

4

CHANNELCMD BUS

5

6

PROC

DATA BUS

MEMORY

read cmd read cmd read cmd

read data

read data

read data

Figure 3: read transaction flow

2.2 Performance

Observers collect temporal traces for the buffer, the arbiter, the controller and the TLTB states
along components execution. A trace of a block B is a sequence of pairs (c, s), where s is a state
of B and c is the clock cycle value when B enters state s.

Profiling consists of maintaining performance counters on observed traces during a predefined
observation time interval I. Performance metrics are component available bandwidth, conflicts
and output rate. Idle time is the time during which the arbiter, the controller and the TLTB
are all idle. Available bandwidth is the amount of transactions that can be handled during the
component idle time when considering either minimal or maximal duration of TLTB transactions.
The per TLTB-transaction available bandwidth is computed similarly. Component conflicts and
output rate are the average input buffer size and number of outgoing transactions, respectively,
over I.

2.3 Example

Component. Figure 4 shows the model of a DRAM TLTB. It has a 3 cycle latency arbiter,
includes two independent banks b1 and b2 operated at 125MHz, with a precharge (A) latency of
3 cycles (24ns), a row access (B) latency of 3 cycles (24ns) and a column access (C) of 1 cycle
(8ns). Operations A and B are common to sequential access patterns. Such accesses are reduced to
operation C after the first one, and are thus performed with a throughput of one per cycle. TLTB
is thus composed of four paths: there are two possible transactions T11 and T12 for bank b1 and two
other transactions T21 and T21 for bank b2 where Tk1 is composed of operations A, B and C while
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Figure 4: TLTB block model of a DRAM

Figure 5: Idle time for the two DRAM configurations

Tk2 is composed of operation C only (figure 4). All transactions are in conflict at operation C.
The controller operates as follows. Upon receiving a transaction request R = (i, j, k) concerning a
memory access for data in column i, row j and bank k, the controller tests if transactions Tk1 and
Tk2 are enabled. If it is the case, it fires either Tk1 or Tk2 according to the preceeding transaction
request (Rlast

k ) of bank bk : if Rlast
k .j = R.j then it fires Tk2 otherwise it fires Tk1.

Performance. Let us consider the following sequence of DRAM memory transaction requests
over an observation interval of 100 cycles: (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), 30∗, (1, 0, 0), (1, 1, 0),
(1, 0, 1), (1, 1, 1), 62∗. For convenience we denoted n∗ an absence of transaction request during n
cycles. We consider two configurations of DRAM. The first configuration includes a buffer with
two queues storing b1 and b2 transaction requests. The arbiter uses a ROUND-ROBIN arbitration
policy for selecting the source queue. The second configuration includes an in-order FIFO buffer
composed of one internal queue.

A simulation trace is shown in figure 5. Controller states are coded as follows: idle 0, runing
1, waiting for T1k to be enabled is coded by 2 (i.e. waiting for bank b1) and waiting for T2k to be
enabled is coded by 3 (i.e. waiting for bank b2). Bank state 0 codes the enabled state while k,
with k ≥ 1, indicates that the bank is in the not-enabled state because of the execution of the k-th
transaction request of the input sequence. The idle time deduced from these states corresponds
to time when arbiter, controller and banks are all idle, i.e., at state 0. Idle time is denoted by I.

Simulation shows that DRAM bandwidth availability is 31% higher with ROUND-ROBIN
arbitration (59 cycles) than with FIFO one (45 cycles) for the same input sequence over I.
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3 SW view

3.1 Component

The SW-view is a set of components whose model is described in figure 6. It is composed of a
hierarchical task graph, HTG, describing application logic, a scheduler, and a controller of HTG
tasks execution.

Controller

Clock

Observer (O)

Dispatcher (D)

HTG Scheduler (S)

ET

IT

OK

NT

PE Buffer (OB)

AT

NT input space

output space

IS

OS

NTj

Figure 6: SW component model

Scheduler (S) computes and sends the set of enabled tasks (ET) to the controller. IT is the set
of HTG tasks. NTj is the set of tasks of component j whose end-time were notified. The behavior
of S is depicted in Fig. 7(a).

Controller (D and O) is composed of a dispatcher (D) (7(b)) and an observer (O) (7(c)).
Every task in ET evolves through three states: “waiting”, “executing” and “completed”. The
behavior of D is described by Fig. 7(b). “waiting” state indicates that D is waiting for an input
(IS) or output (OS) memory space, or a processor. “runing” state corresponds to the ordering and
mapping operation. The behavior of O consists of updating NT with completed tasks and sending
it to D and S.

3.2 Peformance

Performance Observer (PO). After reception of a message from either D or O, say s for a
task T , PO stores a pair (c, s) indicating that T enters state s at cycle c. Stored data are used
for computing SW performance, i.e., tasks waiting times, tasks execution times and memories
occupation times.
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Figure 7: Software behaviors

4 Experiments

IXP 2800 includes an XScale processor, multi-threaded microengines (ME), channels, DRAMs,
buses and dedicated HW-unit. Details of channels, DRAMs and buses components are depicted
in figure 8.

IPv4 is composed of Ingress- and Egress-Data Planes tasks and the Control Plane tasks. Tasks
are mapped to a dual IXP2800 system where one NPU handles ingress traffic and the other
handles egress traffic [12]. Packet pointers are communicated through cyclic buffers located in
DRAM. Figure 9 shows part of the mapping of Ingress Data- and Control-Planes: pkt rx is the
packet receiver, ipv4 fw is the packet forwarder, PEP is the protocol exception packet, PIM is the
protocol information manager, and CPDP is the control agent.

Hereinafter, we show the impact of various IXP2800 configurations on both SW- and HW-
performance. A configuration denoted by X-YxZ means that IXP uses the X-interleaving mode and
that DRAM channels are populated with Y DRAM devices with Z independent banks inside each
device. We considered 1, 2 and 3-interleaving modes with 2, 4 or 8 banks for each. Configurations
are noted A, B, C, D, E, F, G, H and I, respectively. Over an observation interval of 10E6 ME-
cycles, we evaluated (1) packet throughput, i.e., the number of completed packets without any
errors; (2) average of processor-threads utilizations; (3) average of the available bandwidth for
the PUSH and PULL buses, expressed as a percentage of their respective best-case bandwidth
(2.8 GB/s for each bus); (4) DRAM conflicts, i.e., the average number of transactions waiting for
DRAM banks of enabled channels. Fig. 10 is a synthesis of SW and HW performance evaluated
with P-Ware.

Throughput (TP). With fixed number of channels, throughput increases when channels are
populated with more banks (2, 4 and 8). This phenomenon is more contrasted for 1-way than for
3-way interleaving. With 1 channel, throughput practically doubles when passing from 2 to 4 and
4 to 8 banks. With 2 channels, however, throughput increase is smaller and turns around 5% when
passing from 4 to 8 banks. For fixed number of banks throughput increases when using 1,2 and
3 channels. Nevertheless, performance gain is slightly more important when increasing number of
banks rather than channels. F, H and I provide the highest throughput.

Utilization (U). Average per ME-thread utilization remains under a boundary of 20% for all
configurations due to communications with DRAM.

Bandwidth (PUSH and PULL). Available bandwidth is under 1.12 GB/s. PUSH bus is more
available than PULL bus due to the fact that IPv4 generates more read- than write-transactions.
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Figure 8: Part of the IXP2800 Components

When augmenting the number of banks or channels, available bandwidth decreases for the inter-
nal buses. Furthermore, for the highest-throughput configurations, F, H and I, bandwidth reaches
its smaller values for PULL bus while PUSH bus is fully used. Compared to throughput perfor-
mance, we notice that the lowest-throughput configurations A, B and D are the highest available
bandwidth configurations.

Channels conflicts (Ci-Bj). Average amount of DRAM requests in the whole channels queues
remains under a boundary of 60% of channel buffering capacity (256). DRAM load is distributed
among all used banks and channels. By using more channels or banks, the per-channel and the
per-bank load is also diminished. This is explained by the fact that load distribution results in
a smaller number of waiting requests. It is around 150 requests for configurations A, B and D
and falls by 50% to around 75 requests for configurations F, H and I. We denote Ci-Bj conflicts of
bank j in channel i.

5 Conclusion

We have presented the P-Ware framework allowing for analyzing both SW and HW performance
using flexible and variable transaction-level latency components. Experimental results on a real-
life application show that P-Ware is able to perform fast system-platform simulation for early
evaluating quantitative impact (in terms of throughput, processor-utilization, bus bandwith and
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Figure 9: Mapping of INGRESS IPv4.

memory conflicts) of implementing embedded applications on various configurations of network
processors.

The P-Ware tool implementation takes advantage from the separation of functional and timed
behavior. A part of simulation code computes the processing result by fast classical software
approach (without taking into account the internal structure of the component), while another
part is devoted to the control of input/output and timed behavior of transactions.
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