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Abstract

We extend the DPLL(T) framework for satisfiability modulo theories to address richer theo-
ries by means of increased flexibility in the interaction between the propositional and theory-
specific solvers. We decompose a rich theory into a chain of increasingly more complex sub-
theories, and define a corresponding propagation strategy which favors the simpler subtheo-
ries using two mechanisms. First, subtheory propagation is prioritized so that more expensive
propagation is avoided whenever possible. Second, constraints are filtered along the path from
simpler to more complex propagation, thus easing the task of propagation for each subtheory.
We present this strategy formally in a refined abstract DPLL(T) system and provide a concrete
algorithmic skeleton with a proof of correctness.
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Scott Cotton and Oded Maler

1 Introduction
The problem of determining the satisfiability of a Boolean combination of constraints is a fundamental and
computationally-intractable problem with applications in many fields including model checking, theorem
proving, scheduling, circuit analysis and planning. The field of satisfiability modulo theories (SMT) studies
effective mechanisms for solving this problem in its full generality, that is, in a manner independent of the
form of the constraints. Thus far, the field has focused on modular integration of standard decision proce-
dures for propositional logic together with pluggable decision procedures for the theory that corresponds
to the specific type of constraints.

Amongst a plethora of recent research on satisfiability modulo theories [
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c as a propositional variable, and interacts with SolverT in the following way.
SetTrue. DPLL(X) calls SolverT after assigning a truth value of some constraint c. SolverT then per-

forms a consistency check on the current assignment. If the assignment is consistent, SolverT may
optionally return a list I(c) of constraints which are implied by the theory under the current assign-
ment. Otherwise, it indicates that the current assignment is unsatisfiable. In this case, SolverT may
moreover identify a small subset of the assignment which is unsatisfiable. The DPLL(X) solver is
expected to backtrack in response.

Explain. DPLL(X) may ask SolverT to provide a list of reasons Rc for any implied constraint c previously
returned by SetTrue. This occurs when learning new clauses. The reasons Rc for c must not
include c and it must be the case that c follows from the reasons under the theory, i.e. that Rc |=T c.
Moreover, every c′ ∈ Rc must have been assigned prior to c.

BackTrack. DPLL(X) calls SolverT every time backtracking occurs, indicating those constraints which
are removed from the partial truth assignment.

In hopes of making this paper both self-contained and readably short, the high level description given
here of DPLL, and DPPL(T) is prosaic and informal. The reader is referred to [
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Rule Transition Conditions
U-prop A ◦ F,C ∨ l → A, l ◦ F,C ∨ l A |=T ¬C

T-prop A ◦ F → A, l ◦ F A |=T l

Guess A ◦ F → A, lg ◦ F -

Back A, lg, A
′ ◦ F,C → A, l′ ◦ F,C

A, lg, A
′ |=T ¬C

There exists a clause C ′ ∨ l′ s.t.
A |=T ¬C ′

F,C |=T C ′ ∨ l′

Learn A ◦ F → A ◦ F,C F |=T C

Forget A ◦ F,C → A ◦ F F |=T C

Fail A ◦ F,C → fail
A |=T ¬C
There are no guessed
literals in A

Restart A ◦ F → ∅ ◦ F -

Figure 1: Transition relation → for DPLL(T) system DT , originating from [
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2.4 Overview of a New Methodology
In this paper we present a methodology for theory propagation as a refinement of the system DT , providing
a framework for reasoning about a broad class of propagation strategies. We describe an implementation
scheme for this methodology. The following concepts underly this work:

Decomposition. A theory T is decomposed into a chain of theories T1 ⊂ T2 ⊂ . . . ⊂ Tk with T = Tk.
Each step in the chain properly extends the set of valid formulas and each Ti is a deductively closed
theory. Decomposition provides a chain of refinements for a given formula in the language of T . As
an example, the theory of the real field may be decomposed into a chain consisting of pure equality,
difference logic, linear arithmetic, quadratic arithmetic, and arbitrary order arithmetic.

Prioritization. The decomposition above is prioritized: propagation for each theory Ti always takes
priority over propagation for any Tj with i < j. We present a transition system DT◦ , a variant
of DT , which provides for modelling prioritization more flexibly, including for the case of a trivial
decomposition. The system DT◦ can be mapped back to the original DT , thus preserving useful
properties of DT such as termination and correctness.

Identification of constraint roles. We refine the states of DT◦ by decorating constraints with labels that
reflect their role with respect to theory propagation in each Ti. We use the constraint roles to build a
constraint filter along the theory chain. This filter prevents theory-deduced constraints from under-
going a lot of redundant processing to which they are subject in the standard DPLL(T) framework,
even in the case of a trivial decomposition.

3 Abstract Methodology

3.1 Preliminaries
Definition 3.1 (T -Decomposition). A decomposition T ◦

k of a theory T is a set of theories {Ti | 1 ≤ i ≤ k}
such that each Ti ⊂ Ti+1 and T = Tk. In addition, for each theory Ti with i ∈ [1..k], we associate a
language Li, a satisfaction relation |=i and a decision procedure `i. We require that each `i be able to
answer queries of the form Γ |=i c for a finite set Γ ∪ {c} of constraints in Li.

The decomposition can be seen as a sequence of refinements. Just as DPLL(X) views constraints
propositionally while SolverT views them in refined form as theory constraints, a decomposition allows
one to view a constraint as a propositional literal, as a constraint in a simple theory, as well as a constraint in
a more complex theory. The following lemma and corollary are central to our handling of decompositions.

Lemma 3.2 (Refinement). Given two theories T, T ′, if T ⊂ T ′ then any T ′-model is a T -model

Proof. Any T ′-model M satisfies every formula in T ′, and T ⊂ T ′. Hence M satisfies every formula in T
and so by definition is a T -model.

Corollary 3.3 (Consequence lifting). Given two theories Ti, Tj ∈ T ◦
k with i < j and a set of formula

Γ ∪ {ϕ}, if Γ |=i ϕ, then Γ |=j ϕ.

Proof. Suppose that any Ti-model of Γ is a model of ϕ. We need to show that any Tj model M of Γ is
also a model of ϕ. By lemma 3.2, since M is a Tj-model, M is also Ti-model, and so M |=i Γ. By the
hypothesis, M is a model of ϕ.

Definition 3.4 (The set χ). Given a set of clauses F , we define the set χ as the smallest set containing
every constraint c and its negation ¬c such that c appears in some clause in F .

The consequence finders ρi
χ defined below provide a means to model actual deduction procedures

associated with a given theory Ti. A sound and complete consequence finder may be implemented using the
decision procedure `i, simply by querying for every c ∈ χ whether Γ |=i c, but we allow also incomplete
finders to reflect more faithfully the working of real solvers.
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Definition 3.5 (Consequence finders). Given a theory decomposition T ◦
k and the set χ, a consequence

finder ρi
χ for Ti ∈ T ◦

k is an arbitrary function ρi
χ : 2χ → 2χ satisfying the following three conditions.

1. Soundness. For every i ∈ [1..k], ρi
χ(Γ) ⊆ {c ∈ Li | Γ ∩ Li |=i c}.

2. Monotonicity. For every i ∈ [1..k], and Γ ⊆ Γ′ ⊆ χ, ρi
χ(Γ) ⊆ ρi

χ(Γ′).

3. Chain closure. For every i, j ∈ [1..k] with j ≤ i, ρi
χ(ρj

χ(Γ)) ⊆ ρi
χ(Γ).

Monotonicity simply states that as more constraints are handed to a consequence finder, more conse-
quences are found. Chain closure which, by Corollary 3.3, holds for any sound and complete consequence
finder, is not strictly necessary in our methodology but helps simplifying the results and their presentation.

3.2 Modelling Decompositions with Priorities
Given a T -decomposition T ◦

k , consider replacing the T-prop rule in DT with one rule T-propi for each
Ti ∈ T ◦

k :
A ◦ F → A, l ◦ F if A |=i l

All the runs of the resulting transition system can easily be mapped back to runs in DT simply by renaming
applications of each T-propi to the original T-prop rule. This follows directly from Corollary 3.3 as any
Ti-propagation is a valid T -propagation. We refer to the modified trsansition system as DT◦ and view
it as a model of DPLL(T) executions in which we can differentiate between the effects of different Ti

consequences in a given T -decomposition.
However, we would also like to reason about priorities given to rules and hence need to take a few

more things into consideration. In particular, for one propagation rule to take precedence over another, it is
necessary to know when propagation by one rule is “finished” so that a lower priority rule may be applied.
It is also necessary to know what constitutes the smallest possible unit of propagation for a given rule, so
that propagation by a lower priority rule may defer to a higher priority rule, but only after having completed
a conveniently small chunk of work.

It is reasonable to define a propagation by a rule as finished when that rule is no longer enabled. This in
turn may be expressed by a closure condition associated with each propagation rule. In particular, we call
a rule T-propi closed in a state A ◦ F whenever ρi

χ(A) ⊆ A, i.e. whenever it is not enabled. Similary, we
consider the U-prop rule closed in a state A ◦ F if there are no unit clauses in F under the assignment A.

While closure is easily defined in the system DT◦ , a flexible notion of a “conveniently small chunk of
work” is not. Often, propagation procedures will find a set of consequences in reaction to an extension of
a set of antecedents. For example, if S = {w < x, x < y} is a set of antecedents and S′ = S ∪ {y < z},
then a consequence finder may find that w < y is a consequence of S and then that {w < z, x < z} are
consequences of S′. In the latter case, the procedure has found more than one consequence in response to
antecedent extension. But a transition A ◦ F → A, l ◦ F in the system DT◦ would require that only one
consequence l ∈ {w < z, x < z} become part of the assignment at a time. If some other propagation
rule has higher priority, then the consequence finder should remember unnassigned consequences while
other higher priority rules are brought to closure. This may be inconvenient since it is natural to implement
consequence finders simply as a function of a set of antecedents. To allow for prioritized theory propagation
based on antecedent extension rather than based on consequence extension, we define alternate T-propi

rules in below.

A ◦ F → A,B ◦ F if
{
∃A′ ⊆ A . B = ρi

χ(A′) \A
B 6= ∅ (1)

With closure and antecedent based propagation rules, we can easily express realistic rule preferences for
DT◦ . If one rule R has a higher priority than R′, then we add the closure condition of R to the set of
preconditions of R′. We always consider that the Guess rule has lowest priority, and hence that it is
conditioned on the closure of both theory and unit propagation.

Rule prioritization is effective in the DPLL(T) framework for two reasons. Consider the case that one
rule R is much more expensive than a rule R′. If a literal is impliable under both R and R′, then it need
not be implied under R when R′ has priority. In this case, one may “save” an application of the rule R
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by applying the rule R′ first. Secondly, and more profoundly, the DPLL(T) framework is a backtracking
search framework. Consequently, there are many contexts in which applications of the cheaper R′ may
lead to a backtrack. In all these contexts, if R′ has higher priority than R, then no applications of the more
expensive rule occur.

3.3 Extended Constraint States

In every state of DT◦ , there is an annotated partial truth assignment A which indicates whether or not
constraints are assigned and whether or not assigned constraints are guessed. Below, we define extended
states which refine the original states by indicating, in addition, the role of constraints with respect to
each subtheory in a T -decomposition. This additional information is used by SolverT and is invisible to
DPLL(X), hence all the good properties of DT◦ are retained.

To motivate this refinement we illustrate an inherent inefficieny in standard implementations of the
DPLL(T) algorithm, manifested already in the case of a monolithic theory T . Suppose SolverT is invoked
by DPLL(X) to find consequences of some newly-assigned constraint c, and it finds a consequence c′.
It then hands c′ to DPLL(X) which puts it in its implication queue. When the time comes for c′ to be
processed, DPLL(X) will hand c′ back to SolverT , where it will undergo a redundant consistency check,
and moreover it will participate, together with its antecedents, in each and every further theory propagation
although, being a consequent, it will not contribute any new consequences. This can needlessly increase
the amount of work done by the consistency checker and the consequence finder. By identifying the role
of constraints with respect to theory propagation, i.e. which constraints are consequences and which are
antecedents with respect to each subtheory, we can avoid this processing, even in the case of a trivial
decomposition.

To this end, for every constraint c we keep track of the role it plays in Ti propagation, namely, con-
sequence, antecedent or no role at all. Whenever a constraint c is identified as a consequence in theory
Ti, we consider it to be a consequence in Tj for all j ≥ i. Likwise, whenever a constraint c is known to
be an antecedent in a subtheory Ti, it is considered an antecedent in subtheories Tj with j ≤ i. All this
information is compactly represented by associating with each constraint c a pair of labels 〈lc, uc〉 with
lc, uc ∈ [0..k + 1], such that c has participated as antecedent in all {Ti | i < lc}, and as a consequence in
all {Ti | i > uc}. The role of c in {Ti | i ∈ [lc, uc]} is not yet determined. We will maintain that whenever
uc < lc, uc = lc − 1. This way, for every subtheory, a constraint may participate either as an antecedent or
as a consequence but not both.

An extended state is then simply a state A ◦ F together with a labelling 〈lc, uc〉 of every constraint
c ∈ χ, satisfying certain properties detailed below. To express these properties, we make use of the
following definition.

Definition 3.6 (Ti-basis and Ti-cobasis). In any given state in the system DT◦ , we refer to the Ti-basis bi

as the set {c ∈ χ | lc > i}. Similarly, we write the Ti-cobasis b̄i, denoting the set {c ∈ χ | uc < i}.

Below we give several extended state properties which we require to hold throughout the transition
system DT◦ with extended states. Taken together, these properties facilitate safe optimization of DPLL(T)
for richer theories by identifying redundant constraints for each Ti, safely allowing a great deal of flexi-
bility in when consequence finding and consistency checking occurs, for which constraints they occur, and
guaranteeing that all possible consequence finding eventually occurs.

1. Basis-cobasis assignment. In any state A ◦ F ,
⋃

i∈[1..k] bi ⊆ A, and A ∩ χ ⊆
⋃

i∈[0..k] bi ∪ b̄i.
This property states the relationship between assignments and constraint roles. It simply requires
that we know the role of all assigned constraints with respect to some subtheories, while allowing
the latitude that the role of some unassigned constraints may also be known.

2. Basis consistency. In any state, for every i ∈ [1..k], bi ∩ Li is Ti-consistent. This is a weak
consistency condition, allowing the system to be T -inconsistent at times while requiring piecewise
Ti-consistency. If some consistency checks are expensive, they can be temporarily avoided, allowing
the possibility of arriving at an inconsistency by less expensive means.
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3. Full consistency. In any state A ◦ F which precedes a Guess or is a final state, for every i ∈ [1..k],
A∩Li is Ti-consistent. This is a periodic strong consistency condition which ensures that the system
is consistent, but only in the states in which full T -consistency is required.

4. Cobasis irrelevancy. In any state A ◦F , for every i ∈ [1..k] and j ≥ i, A \ b̄i |=j A. This is a safety
condition which allows the system to correctly filter out any constraint in b̄i from all Ti specific
processing.

5. Basis-cobasis closure. In any state, for every i ∈ [1..k], ρi
χ(bi) ⊆ bi ∪ b̄i. This property requires

that all consequence finding of each basis has occurred. As a Ti-local property, it ensures that all Ti

consequences of bi have been identified.

6. Full closure. In any state A ◦ F which precedes a Guess or is a final state, for every i ∈ [1..k],
ρi

χ(A) ⊆ A. This property states that all possible theory propagation must have occurred before the
system solves a problem or Guesses.

4 Concrete Methodology
We present a relatively simple skeleton implementation of DPLL(X) and SolverT which realizes the system
DT◦ with extended states, satisfying all extended state properties and using the theory propagation rules
based on antecedent extension as presented in equation 1. In addition, this implementation enforces priori-
tization of propagation rules which respect the decomposition T ◦

k . We assume that consequence finding in
theory Ti is less expensive than consequence finding in Ti+1. We also assume that consequence finding in
Ti is comensurate with consistency checks in Ti+1, coupling consistency checks in Ti+1 with propagation
in Ti. We present these implementations in terms of of changes to the original DPLL(T) system described
in section 2.1.

4.1 DPLL(X)
Recall that the DPLL(X) engine presented in section 2.1 interacts with SolverT via the three methods
SetTrue, Backtrack, and Explain. In this framework, SolverT is unable to distinguish between
states of the DPLL(X) engine. In particular, SolverT has no way of knowing whether or not the DPLL(X)
engine will guess if SolverT does not apply the T-prop rule.

We remedy this situation by adding a method TheoryProp to SolverT . This method is called by
DPLL(X) as a last-resort form of constraint propagation. In particular, as in a standard DPLL engine,
applicable instances of the propagation rules are kept in an implication queue, and processed in a first-
in-first-out manner. Processing consists of checking for new instances of the U-prop rule and calling
SetTrue for each assigned constraint. If the queue becomes empty and no inconsistencies are found, our
DPLL(X) engine calls TheoryProp, which in turn may re-fill the implication queue with some instances
of the T-prop rule. If TheoryProp does not re-fill the implication queue, DPLL(X) will guess because
there are no more instances of propagation rules. Also, as in SetTrue, the method TheoryProp may
indicate that an inconsistency has occurred. In this case, it also identifies an inconsistent subset of the
assigment. Unlike SetTrue, the method TheoryProp is not associated with any particular constraint.
The presence of TheoryProp simply enables SolverT to know in which states the U-prop rule is not
enabled, so that theory propagation can occur at a lower priority than unit propagation.

Secondly, we modify a standard DPLL procedure to communicate the event that a constraint is removed
from the implication queue as a result of a backtrack. A standard DPLL empties the implication queue when
a conflict is found, just prior to backtracking. We assume this behavior and add a call to a new method
Dequeue(c) for each constraint c that is removed from the implication queue upon backtracking. The
DPLL(X) procedure makes no further accomodations for our methodology and in fact, may be readily
used for lazy theory propagation [
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each i ∈ [1..k]. and constraints c are labelled as follows. All lc are assigned 0. If c is a member of some
ρi

χ(∅), then uc is assigned j− 1 where j is the least j such that c ∈ ρj
χ(∅). Otherwise, uc is assigned k. All

constraints with uc < k are added to the DPLL(X) implication queue.
After initialization all constraint relabelling occurs via the methods SetTrue, Backtrack, Dequeue,

and TheoryProp1. The method SetTrue occurs as a constraint c becomes assigned. The procedure
first checks whether or not uc < 1. If uc < 1 or c 6∈ L1, no consistency check is performed. Otherwise the
T1-constistency of b0 ∩ Li ∪ {c} is tested. If uc < 1 or the consistency check succeeds, lc is assigned the
value 1. The methods Backtrack and Dequeue relabel every constraint c which become unassigned
or leave the implication queue as a result of backtracking. Each such constraint c is labelled 〈0, k〉. The
method TheoryProp performs all relabelling which establishes the basis and cobasis of each Ti, and is
detailed in figure 2.

R← ∅
while {c ∈ R | lc = 0} = ∅ and ∃lc ∈ [1..k] . uc ≥ lc do

select some c with the minimal lc ∈ [1..k] such that uc ≥ lc
i← lc
if c ∈ Li+1 ∧ bi ∩ Li+1 |=i+1 ¬c then

return 〈⊥, Explain(¬c) ∪ {c}〉
lc ← i + 1
R← ρi

χ(bi) ∩ {c ∈ χ | lc ∈ {0, i} ∧ uc ≥ lc}
for c ∈ R do

uc ← i− 1
return 〈>, {c ∈ R | lc = 0}〉

Figure 2: TheoryProp returns a pair 〈ok,Γ〉. If ok is true, then Γ is a set of T -consequences of the
current assignment, otherwise Γ is a small inconsistent subset of the current assignment. TheoryProp
relabels constraints c one at a time. Each such constraint satisfies lc ≤ uc and minimizes lc, prior to the
relabelling. Let i = lc before c is relabelled. If c ∈ Li+1 then Ti+1-consistency of bi ∩ Li+1 ∪ {c} is
tested. If the test succeeds, then lc is assigned i + 1 and then the consequence finder ρi

χ is invoked. For
every consequence c, uc is assigned i−1. If new consequences c with lc = 0 are found, they are unassigned
and the procedure returns them to the DPLL(X) engine to add to its implication queue.

The implementation above exhibits some “instant” optimizations which are not part of a standard
DPLL(T) system. First, no constraints c with uc < k are subject to processing in any Ti with i > uc.
These constraints do not trigger Ti-consistency checks, do not trigger Ti consequence finding, and do not
form part of the Ti-basis bi. Thus in comparison to a standard DPLL(T) system, fewer consistency checks
occur, fewer calls to theory propagation occur, and theory propagation is itself a function of a smaller
set. This optimization holds for single theories as well and its correctness follows from the correctness
of extended state properties, which we address in the next section. In practice, the dramatic effect of
these optimizations for the case of the (undecomposed) theory of difference constraints was demonstrated
empirically by the Jat solver [
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Proof. 1) Initially, each bi is empty, since each lc = 0. Whenever a constraint c becomes a member of b0

(lc is relabelled from 0 to some greater value), it is done in SetTrue where it is guaranteed to be assigned
by the DPLL(X) engine. Only constraints in bi are subsequently members of bi+1. Hence it will suffice
to show that after any constraint becomes unassigned, it is not in any bi, i.e that each such constraint c has
lc = 0. All constraints which becomes unassigned are passed to the procedure Backtrack, where they
are relabelled 〈0, k〉.
2) It suffices to show that in any state, every member of

{c ∈ χ | lc = 0 ∧ uc ≥ k}

is an unassigned constraint, since all constraints c labelled otherwise are in some basis or co-basis and
there are no other possible labellings. Initially, all constraints are unassigned, and this is trivially true. The
Backtrack and Dequeue procedures are the only procedure which labels constraints c so that lc = 0 or
uc ≥ k, and they do so only for constraints which are unassigned.

Lemma 5.2. In every state A ◦ F which precedes a Guess or is final, for every c ∈ χ either lc = uc + 1
and c is assigned, or lc = 0, uc = k and c is unassigned.

Proof. The DPLL(X) procedure ensures that before a guess and in every final state, TheoryProp returns
no consequences and no inconsistency. TheoryProp, in turn only produces such a result when there is
no c such that lc ≤ uc and lc ∈ [1..k]. (see line 2, figure 2). The only other possible labellings have lc = 0,
lc = k + 1 or lc > uc. When lc = k + 1, it must be that lc > uc, since nothing ever assigns uc > k. Hence
the only labellings have lc = 0 or lc > uc. In the latter case, we are guaranteed that lc = uc + 1 since
every time some lc is relabelled to a non-zero value, it is incremented by one and lc ≤ uc; and whenever
the label uc takes a value and lc > 0, it is assigned by theorem 5.1 since lc > 0.

We then consider the case that lc = 0. Every time lc is assigned the value 0, uc is assigned k and c is
unassigned. Hence we need only consider what happens when uc is assigned some value other than k. In
this context, c is placed in the DPLL(X) implication queue, since lc = 0. However, the implication queue
is empty prior to any guess and in any final state. So c must have left the implication queue in such a state.
This may occur by a call to SetTrue, which assigns lc > 0, and hence is not relevant to this case. The
only other way a constraint leaves the implication queue is via Dequeue, which assigns uc = k and leaves
c unassigned.

Theorem 5.3 (Basis-cobasis closure). In any state, every ρi
χ(bi) ⊆ bi ∪ b̄i

Proof. After SolverT◦ initialization, each bi = ∅ and ρi
χ(∅) ⊆ b̄i. We now prove this by induction

on the relabellings that occur in the methods SetTrue, TheoryProp, Explain, Backtrack, and
Dequeue. Since TheoryProp, Backtrack, and Dequeue are the only methods which change the set
of constraints labelled bi or b̄i for i ∈ [1..k], we can restrict our attention to them.

• TheoryProp
In this procedure, every update b′i = bi ∪ {c} with c ∈ bi−1 is followed by the update b̄′i =
b̄i ∪ ρi

χ(b′i) ∩ {c ∈ χ | lc ∈ {i, 0} ∧ lc ≤ uc}. We then must show that ρi
χ(b′i) ⊆ b′i ∪ b̄′i after any

such pair of updates.

Suppose for a contradiction this is not the case. Then there is some d ∈ ρi
χ(b′i) such that d 6∈ b′i∪ b̄′i.

Since bi ⊆ b′i and b̄i ⊆ b̄′i, and d 6∈ b′i ∪ b̄′i, it follows that d 6∈ bi ∪ b̄i. Hence before the updates,
d ∈ {c ∈ χ | i ∈ [lc..uc]}, because there are no other possible labellings. We now consider two
cases.

Case 1. Suppose ld ∈ {0, i} before the first update. Then l′d ∈ {0, i} after the first update, since
otherwise l′d = i + 1 and d 6∈ b′i. Since by assumption c ∈ ρi

χ(b′i), and the second update
assigns b̄′i = b̄i ∪ ρi

χ(b′i) ∩ {c ∈ χ | lc ∈ {0, i}}, it must be the case that d ∈ b̄′i after the
second update, a contradiction.

Case 2. Suppose ld ∈ [1..i) before the update. The procedure TheoryProp disallows this possi-
bility whenever ld ≤ ud, since it chooses a constraint c which minimizes lc, and i = lc before
the update. Hence ld > ud and c ∈ b̄i. Since b̄′i ⊇ b̄i, it must be that c ∈ b̄′i, contracting the
assumption.
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• Backtrack, Dequeue
Both methods are called during every DPLL(X) backtrack. A backtrack is guaranteed to reach a state
b = A, l ◦ F such that the state g = A ◦ F ′ was previously visited, g was followed by a Guess, and
every l ∈ A remained assigned in the path from g to b. By lemma 5.2, in every state prior to a guess,
every c has lc = 0 and is unassigned or uc < lc and is assigned. No constraints c with uc < lc
are relabelled as long as they are assigned. Therefore, by the induction hypothesis, it will suffice to
show that all constraints relabelled in the path from g to b are not in any bi or b̄i with i ∈ [1..k] in
state b. The Backtrack procedure relabels all constraints which were assigned in the path from g
to b with 〈0, k〉. The only remaining constraints which are relabelled are those which were passed
to DPLL(X) via TheoryProp but were not yet assigned in the state preceding the backtrack. The
Dequeue procedure relabels all such constraints 〈0, k〉.

Theorem 5.4 (Cobasis irrelevancy). In any state A◦F and for every i, j ∈ [1..k] with j ≥ i, A\ b̄i |=j A.

Proof. Every time a constraint c becomes a member of some b̄i, c ∈ ρh
χ(bh) for some h ≤ i. Since each

ρh
χ is sound, we have that bh |=h b̄i. By theorem 5.1, bh ⊆ A and hence A |=h b̄i. By consequence

lifting (corollary 3.3), then A |=j b̄i for any j ≥ h. Since h ≤ i, we have A |=j b̄i for any j ≥ i as
well.

Theorem 5.5 (Basis consistency). In any state every set bi ∩ Li is Ti-consistent.

Proof. We assume each Ti is consistent, and prove a stronger proposition: each bi ∩ Li+1 is Ti+1-
consistent. We proceed by induction on constraint relabelling. Initially, every bi is empty and the result is
trivial. We observe that before any bi is extended with a constraint c, c ∈ bj for every j < i, since lc is
always incremented by one. By the induction hypothesis, each such bj ∩ Lj is Tj+1-consistent and so we
need only show that bi ∪ {c} ∩ Lj is Ti+1-consistent. However, every time a constraint c ∈ Lj becomes a
member of bi, a Ti+1-consistency check succeeds on the set bi ∪{c}∩Li. Hence there is a Ti+1 model of
bi∪{c}∩Lj . By lemma 3.2, any such model is a Ti-model and so bi∪{c}∩Lj is Ti-consistent.

Theorem 5.6 (Full consistency). In any state A ◦ F which precedes a guess or is final, every A ∩ Li is
Ti-consistent.

Proof. In any state which precedes a guess or is final, every assigned constraint c satisfies c ∈ bi ∪ b̄i for
every i ∈ [1..k], since every assigned constraint has lc = uc+1 (lemma 5.2). It follows that A∩χ ⊂ bi∪b̄i

for every i ∈ [1..k]. This together with theorem 5.1 and lemma 5.2 gives us A∩χ = bi∪ b̄i, and it follows
that A ∩ Li = (bi ∪ b̄i) ∩ Li. By the soundness of each consequence finder, bi ∩ Li |=i (bi ∪ b̄i) ∩ Li

and so bi ∩ Li |=i A ∩ Li. Then we have that A ∩ Li |=i ⊥ =⇒ bi ∩ Li |=i ⊥ by transitivity of |=i.
Contraposing this statement gives bi ∩ Li 6|=i ⊥ =⇒ A ∩ Li 6|=i ⊥. By theorem 5.5, each bi ∩ Li is
Ti-consistent, hence A ∩ Li is Ti-consistent.

Corollary 5.7. Full consistency occurs even if consistency checks only occur with respect to Tk.

Theorem 5.8 (Full closure). In any state which precedes a Guess or is final every ρi
χ(A) ⊆ A.

Proof. By theorem 5.3, the implementation ensures that at every state and for every i ∈ [1..k], ρi
χ(bi) ⊆

bi ∪ b̄i. By lemma 5.2, every constraint c with uc < k is assigned, hence every b̄i ⊆ A. It follows
immediately that ρi

χ(bi) ⊆ bi ∪ A. By theorem 5.1, in addition each bi ⊆ A, and it follows immediately
that each ρi

χ(bi) ⊆ A.
By chain-closure and monotonicity of each ρi

χ , it follows that ρi
χ(bi) = ρi

χ(bi ∪ b̄i). Consequently,
ρi

χ(bi ∪ b̄i) ⊆ A. By lemma 5.2, every assigned constraint c has lc = uc + 1. Consequently, for every
i, j ∈ [1..k], bi ∪ b̄i = bj ∪ b̄j = A ∩ χ. Hence it follows that ρi

χ(A ∩ χ) ⊆ A. Since each l ∈ A \ χ has
no interpretation in any Ti, ρi

χ(bi ∪ (A \ χ)) = ρi
χ(bi). We conclude each ρi

χ(A) ⊆ A.

Corollary 5.9. If ρk
χ is complete then the procedure never guesses an inconsistent constraint.
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6 Conclusions
We presented a method for extending the DPLL(T) procedure to richer theories by means of a prioritized
constraint filter. Classical approaches to theory combination such as Nelson-Oppen’s method [
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