
Checking Timed Büchi Automata Emptiness on

Simulation Graphs?

Stavros Tripakis

CNRS, Verimag Laboratory.
Address: Centre Equation, 2, avenue de Vignate, 38610 Gières, France.

Email: tripakis@imag.fr.
Web: http://www-verimag.imag.fr/∼tripakis/.

Abstract. This paper completes the work of [5,13] on checking language emptiness of timed Büchi
automata efficiently. In [5,13] we showed how to check emptiness on the region-closed simulation graph.
However, the latter is not used in practice, since its nodes are non-convex, thus, not easily representable.
Using recent results of Bouyer [6] on simulation-graph over-approximations that preserve convexity, we
show that the main result of [5,13] carries over to the zone-closed simulation graph. The nodes of the
latter are convex and can be efficiently represented. The zone-closed simulation graph is used in the
tools Kronos and Uppaal for checking reachability. Our result shows that these tools can be also used
to check emptiness of timed Büchi automata with small modifications.

Keywords: formal methods, specification languages, model checking, timed Büchi automata,
property-preserving abstractions.

1 Introduction

It is well-known that model-checking problems involving timed automata (TA) and timed
Büchi automata (TBA), such as language emptiness, can be solved using the region graph [1].
In practice, model-checking tools such as Kronos [7] or Uppaal [10] use a simulation graph, a
graph that can be constructed on-the-fly, in a forward manner, and is usually much smaller
than the region graph.

Different versions of the simulation graph exist. The exact simulation graph is based on
the successor operator Post which gives the precise set of successor states for a given set of
states, with respect to time-elapse followed by a discrete transition. Apart from being exact,
Post has the advantage to preserve convexity: if S = (q, Z) is a node in the graph such that
the set of clock states Z is convex (in this case Z is called a zone) then the successor of
S using Post is also convex. This is important since it allows efficient data-structures to be
used, in particular, DBMs [9,4].

Unfortunately, the exact simulation graph may be infinite [8]. For this reason, finite
versions of the exact graph have been developed, using an abstraction operator. One choice
of an abstraction operator is the region-closure operator which returns, given a zone Z, the
union of all regions intersecting Z. This operator can be used to define the region-closed
simulation graph. The latter is finite, since the number of possible regions is finite.

? Work partially supported by CNRS STIC project “CORTOS” and by IST Network of Excellence “ARTIST2”.

http://www-verimag.imag.fr/~tripakis/


The region-closed simulation graph can be used to check language emptiness of TBA: a
strongly non-zeno TBA1 is non-empty iff its region-closed simulation graph has an accepting
cycle [5,13]. Moreover, every TBA A can be effectively transformed into a strongly non-zeno
TBA A′ containing one extra clock, such that the language of A is empty iff the language of
A′ is empty [13]. Unfortunately, the region-closure of a zone is not generally a zone (i.e., it
is not convex). Thus, the region-closed simulation graph is not used in practice.

Another choice of an abstraction operator is a zone-closure operator (called maximization
in [11], extrapolation in [8] and k-approximation in [6]), which abstracts Z by another zone
Z ′ such that all constraints defined in Z ′ are bounded by the maximal constant appearing
in the guards and invariants of the automaton. This operator can be used to define the
zone-closed simulation graph. This graph is finite since the number of zones with bounded
constraints are bounded. This is the graph typically used in Kronos and Uppaal for checking
reachability.

In [6], Bouyer showed that the zone-closed simulation graph is correct for reachability,
provided the automaton does not have diagonal constraints. These are constraints of the
form x− y ≤ c, where x and y are clocks and c is a constant. Correct means that a location
q is reachable in a diagonal-free TA A iff the zone-closed simulation graph of A contains
a reachable node (q, Z). If A has diagonal constraints, its zone-closed simulation graph is
generally an over-approximation, that is, it may contain unreachable locations [3,6].

The above work settled the question of language emptiness of “plain” TA. What about
emptiness of timed Büchi automata? Can the zone-closed simulation graph be used for
checking emptiness of TBA? We answer this question positively, thus completing the work
of [5,13] on checking timed Büchi automata emptiness efficiently.

More precisely, we show that the language of a strongly non-zeno TBA A is empty iff
the exact simulation graph of A (provided it is finite) contains no accepting cycle. We also
show that the language of A is empty iff the zone-closed simulation graph of A contains
no accepting cycle. These results are obtained by “lifting” cycles from the exact and zone-
closed simulation graphs to the region-closed simulation graph, and then using the proof
of [5,13] for the latter graph. The “lifting” is possible because of commutation properties of
the approximation operators involved, which are proved using the results of Bouyer [6].

The rest of this paper is organized as follows. In Section 2 we recall timed Büchi automata.
In Section 3 we present the three versions of the simulation graphs. In Section 4 we provide
the results. Section 5 concludes this paper.

2 Timed Büchi Automata

Let R be the set of non-negative real numbers. Let X be a finite set of variables, called
clocks, taking values in R. A valuation on X is a function v : X → R that assigns to each
variable in X a value in R. 0 denotes the valuation assigning 0 to all variables in X . Given
a valuation v and δ ∈ R, v + δ is defined to be the valuation v′ such that v′(x) = v(x) + δ

1 A TBA is strongly non-zeno if it has no accepting zeno run, i.e., every accepting run is guaranteed to be non-zeno.

2



for all x ∈ X . Given a valuation v and X ⊆ X , v[X := 0] is defined to be the valuation v′

such that v′(x) = 0 if x ∈ X and v′(x) = v(x) otherwise.
An atomic constraint on X is a constraint of one of the forms x#c or x − y#c, where

x, y ∈ X , c is an integer constant and # ∈ {<,≤, =,≥, >}. A boolean expression on
atomic constraints defines a set of valuations, the ones satisfying the expression, called an
X -polyhedron. A conjunction of atomic constraints defines a convex polyhedron, or zone.
X -polyhedra using atomic constraints of the form x − y#c are called diagonal, otherwise,
they are called diagonal-free [6].

Definition 1 (Timed Büchi Automata [1]). A timed Büchi automaton is a tuple A =
(X , Q, q0, E, I, F ), where:

– X is a finite set of clocks.
– Q is a finite set of locations and q0 ∈ Q is the initial location.
– F ⊆ Q is a finite set of accepting locations.
– E is a finite set of edges of the form e = (q, Z, X, q′), where q, q′ ∈ Q are the source and

target locations, Z is a convex X -polyhedron, called the guard of e, and X ⊆ X is a set
of clocks to be reset upon crossing the edge.

– I is a function associating with each location q a convex X -polyhedron, called the invari-
ant of q.

A is said to be diagonal-free if all its guards and invariants are diagonal-free.

A state of A is a pair s = (q,v), where q ∈ Q and v ∈ I(q). The initial state of A is
s0 = (q0,0). Given two states s = (q,v) and s = (q′,v′), and an edge e = (q, Z, X, q′), there
is a discrete transition s

e→ s′ iff v ∈ Z and v′ = v[X := 0] ∈ I(q′). Given δ ∈ R, there is a

time transition s
δ→ s′ iff q = q′ and v′ = v + δ ∈ I(q). We write s

δ→ e→ s′ if there exists s′′

such that s
δ→ s′′ and s′′

e→ s′.
An infinite run of A starting at state s is an infinite sequence

(s0, δ0, e0), (s1, δ1, e1), ...,

where s0 = s and for all i = 0, 1, ..., si = (qi,vi) is a state, δi ∈ R, ei ∈ E, and si
δi→ ei→ si+1.

The run is called accepting if there exists an infinite set of indices i such that qi ∈ F . The
run is called non-zeno if ∀t ∈ R,∃k,

∑
i=0,...,k δi > t, otherwise, it is called zeno.

Definition 2 (Language and emptiness problem). The language of A, denoted Lang(A),
is defined to be the set of all non-zeno accepting runs of A starting at the initial state s0.
The emptiness problem for A is to check whether Lang(A) = ∅.

The emptiness problem for timed Büchi automata is known to be PSPACE-complete [1].

Definition 3 (Strong non-zenoness). A timed Büchi automaton A is called strongly non-
zeno if all accepting runs starting at the initial state of A are non-zeno.

Theorem 4 ([13]). Any timed Büchi automaton A can be transformed into a strongly non-
zeno timed Büchi automaton snz(A), such that Lang(A) = ∅ iff Lang(snz(A)) = ∅.

3



3 Simulation Graphs

Consider a TBA A = (X , Q, q0, E, I, F ). A symbolic state S is a pair (q, Z) where q ∈ Q and
Z is an X -polyhedron. S is called convex iff Z is convex (i.e., Z is a zone). S represents a
set of states of A, namely, (q, Z) = {(q,v) | v ∈ Z}.

We first provide a generic definition of a simulation graph, using a generic successor
operator for symbolic states, Succ(·, ·). We will then specialize this definition using different
instances of Succ.

Given a symbolic state S and an edge e, Succ(S, e) returns a symbolic state S ′. Given
an initial symbolic state S0, a simulation graph of A with respect to Succ and S0, denoted
SGSucc(A, S0), is a labeled graph (S, S0,→), where S is the set of nodes, S0 the initial node,
and → the set of edges. S is defined to be the least set of non-empty symbolic states, such
that:

1. S0 ∈ S and
2. if e ∈ E, S ∈ S and S ′ = Succ(S, e) is non-empty, then S ′ ∈ S.

SGSucc(A, S0) has an edge S
e→ S ′ iff S, S ′ ∈ S and S ′ = Succ(S, e). S ′ is called the e-successor

of S. Notice that, given S and e, the e-successor of S is unique.

3.1 Exact simulation graph

A natural definition of the simulation graph is obtained using the following symbolic successor
operator:

Post(S, e) = {s′|∃s ∈ S.∃δ ∈ R.s
δ→ e→ s′}

Then, the exact simulation graph of A is the graph

SG(A) = SGPost(A, {(q0,0)}).

The nodes of SG(A) contain all reachable states of A and nothing but the reachable states.
Also, for every node (q, Z) of SG(A), Z is a zone, that is, Z is convex. This is an important
feature, since it allows efficient data structures for representation of zones, such as DBMs [9],
to be used. On the other hand, SG(A) can be infinite [8]. Thus, it is not appropriate for fully-
automatic reachability checking. Different remedies to this problem exist, two of which are
discussed in the sequel.

3.2 Region-closed simulation graph

A first possibility is to define the simulation graph as an abstraction of the region graph [1].
In particular, a symbolic state S can be replaced by the union of regions that S intersects.
Since the number of regions is finite, there is a finite number of such unions, thus, finiteness
of the simulation graph is guaranteed. This approach is taken in [5,13]. We briefly recall it
here. We use the presentation of [6] in order to be uniform with the section that follows.

Let α = ((maxx)x∈X , (maxx,y)x,y∈X ) be a tuple of maximal constants (or infinity) for each
single clock x and each pair of clocks x, y, as defined in [6]. α defines a finite set of regions,

4



Rα [6]. A region is a special case of a convex X -polyhedron. A union of regions is also an
X -polyhedron, however, it is generally not convex (see [6] for examples). The set of convex
unions of regions in Rα is denoted Zα [6]. Note that Zα is a finite set.

Given an X -polyhedron Z, define Closureα(Z) to be the union of all regions that intersect
Z [6]:

Closureα(Z) = ∪{R ∈ Rα | R ∩ Z 6= ∅}.
We lift the definition to symbolic states as follows:

Closureα((q, Z)) = (q, Closureα(Z))

and define the composite successor operator:

Clo Post(S, e) = Closureα(Post(S, e)).

Then, the region-closed simulation graph of A is the graph

SGRα(A) = SGClo Post(A, Closureα({(q0,0)})).

SGRα(A) is guaranteed to be finite and is also exact with respect to reachability of locations,2

meaning that there is a node (q, Z) in SGRα(A) iff there is a reachable state (q,v) in A. On
the other hand, since Closureα(Z) is not always convex, efficient data structures such as
DBMs cannot be used.

3.3 Zone-closed simulation graph

In practice, tools such as Kronos or Uppaal use an over-approximation operator for X -
polyhedra, which ensures both convexity and finiteness. Such an operator was proposed
in [8] and claimed to be exact with respect to reachability of locations. Later, Bouyer proved
that this over-approximation is indeed exact for diagonal-free timed automata, but is not
always exact for timed automata with diagonal constraints [6]. For the rest of this section,
we assume that A is a diagonal-free TBA.

In the case of diagonal-free timed automata, Rα can be defined as a “diagonal-free” set
of regions, where α is such that maxx,y = −∞ for all x, y ∈ X [6]. From this tuple α,
we obtain a new tuple β = ((maxx)x∈X , (max′x,y)x,y∈X ), by setting max′x,y = maxx, for all
x, y ∈ X . Now, given a convex X -polyhedron Z, define Approxβ(Z) to be the smallest zone
in Zβ containing Z [6].

As previously, we lift the definition to symbolic states as follows:

Approxβ((q, Z)) = (q, Approxβ(Z))

and define the composite successor operator:

Apx Post(S, e) = Approxβ(Post(S, e)).

2 Reachability of general states can be reduced to reachability of locations by adding an extra location (the one to
be reached) and annotating the edges to this location with a guard that encodes the states to be reached.

5



Then, the zone-closed simulation graph of A is the graph

SGZβ
(A) = SGApx Post(A, Approxβ({(q0,0)})).

SGZβ
(A) is finite since Zβ is finite. Bouyer shows that SGZβ

(A) is also exact with respect to
reachability of locations [6].

3.4 Lassos

Any simulation graph is a discrete graph, thus, notions such as paths or cycles in this graph
are easy to define. For our purpose, we will define a lasso as a path starting at the initial
node followed by a cycle. More precisely, given a graph (S, S0,→), a lasso is a sequence

S0
e0→ S1

e1→ · · · en−1→ Sn
en→ · · · en+l−1→ Sn+l

en+l→ Sn

such that n ≥ 0 and l ≥ 0. That is, S0
e0→ S1

e1→ · · · en−1→ Sn is a path from the initial node S0

to a node Sn, and Sn
en→ · · · en+l−1→ Sn+l

en+l→ Sn is a cycle from Sn to itself. We say that the
lasso is accepting if its cycle visits some accepting node, that is, there is some i ∈ {0, ..., l}
such that Sn+i = (q, Z) and q ∈ F .

4 Checking Timed Büchi Automata Emptiness

In this section we show how checking emptiness for strongly non-zeno timed Büchi automata
(TBA for short) can be reduced to finding accepting cycles in the different types of simulation
graphs, that is, to the problem of checking language emptiness for Büchi automata.

In all three theorems that follow, the direction “Lang(A) 6= ∅ implies simulation graph
has an accepting lasso” (when finite) is easy to show and is based on the following “post-
stability” property.

Lemma 5. Let A be a TBA and let s0
δ0→ e0→ s1

δ1→ e1→ · · · be an infinite run of A. Then, in
each of SG(A), SGRα(A), SGZβ

(A), there exists an infinite path S0
e0→ S1

e1→ · · ·, such that
for all i = 0, 1, ..., si ∈ Si.

The following two lemmata relate the edges of SG(A) and SGRα(A) to those of the

region graph. Given regions R,R′ ∈ Rα, we use the notation (q, R)
ε∗→rg(q, R

′) to denote
that (q, R′) can be reached from (q, R) in the region graph by taking time-elapsing tran-
sitions. Given an edge e of A, we use the notation (q, R)

e→rg(q
′, R′) to denote that (q, R′)

can be reached from (q, R) in the region graph by taking the discrete transition e. We

also write (q, R)
ε∗→rg

e→rg(q
′, R′) if there exists Rt ∈ Rα such that (q, R)

ε∗→rg(q, Rt) and

(q, Rt)
e→rg(q

′, R′).

Lemma 6. Let S = (q1, Z1) and S2 = (q2, Z2) = Post(S1, e). Then:

1. For all regions R1, R2 ∈ Rα, if R1∩Z1 6= ∅ and (q1, R1)
ε∗→rg

e→rg(q2, R2), then R2∩Z2 6= ∅.

6



2. For any region R2 ∈ Rα such that R2 ∩ Z2 6= ∅, there exists a region R1 ∈ Rα such that

R1 ∩ Z1 6= ∅ and (q1, R1)
ε∗→rg

e→rg(q2, R2).

Proof. Part 1: Let v1 ∈ R1 ∩ Z1. By definition of the region graph and the fact that

(q1, R1)
ε∗→rg

e→rg(q2, R2), there exist δ ∈ R and v2 ∈ R2 such that (q1,v1)
δ→ e→ (q2,v2).

By definition of Post, v2 ∈ Z2. Thus, R2 ∩ Z2 6= ∅.
Part 2: Let v2 ∈ R2 ∩Z2. By definition of Post, there exists δ ∈ R and v1 ∈ Z1 such that

(q1,v1)
δ→ e→ (q2,v2). Let R1 ∈ Rα be the region where v1 belongs. Clearly, R1 ∩ Z1 6= ∅.

Also, by definition of the region graph, (q1, R1)
ε∗→rg

e→rg(q2, R2). ut

Lemma 7. Let S1
e→ S2 be an edge of SGRα(A), with Si = (qi, Zi), for i = 1, 2. For any

region R2 ⊆ Z2, there exists a region R1 ⊆ Z1 such that (q1, R1)
ε∗→rg

e→rg(q2, R2).

Proof. By definition of SGRα(A), S2 = Closureα(Post(S1, e)). Let S = (q2, Z) = Post(S1, e).
By definition of Closureα, R2 ∩ Z 6= ∅. Thus, by part 2 of Lemma 6, there exists a region R1

such that (q1, R1)
ε∗→rg

e→rg(q2, R2) and R1 ∩ Z1 6= ∅. By definition of SGRα(A), S1 is region-
closed, that is, Closureα(S1) = S1. Thus, R1 ⊆ Z1. ut

We now recall an important result from [6].

Lemma 8 ([6]). For any zone Z, the following holds:

Z ⊆ Approxβ(Z) ⊆ Closureα(Z).

Based on the above, we can show the following:

Lemma 9. For any zone Z, Closureα(Approxβ(Z)) = Closureα(Z).

Proof. Indeed, by Lemma 8 and the monotonicity of Closureα, we have

Closureα(Z) ⊆ Closureα(Approxβ(Z)) ⊆ Closureα(Closureα(Z)).

The result follows from the fact that Closureα is idempotent:

Closureα(Closureα(Z)) = Closureα(Z).

ut

Lemma 10. For any convex symbolic state S and any edge e

Closureα(Post(S, e)) = Closureα(Post(Closureα(S), e)).

7



?

S

Sα

Closureα

?

S ′
α

S ′

Closureα

-

-

Post(·, e)

Closureα(Post(·, e))

Fig. 1. Commutation diagram proved in Lemma 10.

Proof. Let S = (q, Z). By Lemma 8 and the fact that Closureα(S) = (q, Closureα(Z)), we
have

S ⊆ Closureα(S).

By monotonicity of Post and Closureα operators, we have:

Closureα(Post(S, e)) ⊆ Closureα(Post(Closureα(S), e)).

For the other direction, we will use the notation of Figure 1, namely,

S ′ = (q′, Z ′) = Post(S, e),

Sα = (q, Zα) = Closureα(S)

and
S ′

α = (q′, Z ′
α) = Closureα(Post(Sα, e)).

Using this notation, the proof objective becomes

Z ′
α ⊆ Closureα(Z ′).

Let R′ be a region contained in Z ′
α. By definition of Closureα,

(q′, R′) ∩ Post(Sα, e) 6= ∅.

By part 2 of Lemma 6, there exists a region R such that R∩Zα 6= ∅ and (q, R)
ε∗→rg

e→rg(q
′, R′).

Since Zα = Closureα(Z), it must be that R ∩ Z 6= ∅. By part 1 of Lemma 6, R′ ∩ Z ′ 6= ∅.
Thus, R′ ⊆ Closureα(Z ′). ut

Lemma 11. For any convex symbolic state S and any edge e

Closureα(Approxβ(Post(S, e))) = Closureα(Post(Closureα(S), e)).

Proof. By Lemma 9, we have

Closureα(Approxβ(Post(S, e))) = Closureα(Post(S, e)).

The result follows from Lemma 10. ut

8



?

S

Sα

Closureα

?

S ′
α

S ′

Closureα

-

-
Closureα(Post(·, e))

Approxβ(Post(·, e))

Fig. 2. Commutation diagram proved in Lemma 11.

4.1 Checking emptiness on the region-closed simulation graph

In order for the paper to be self-contained, we recall one of the main results of [5,13].

Theorem 12 ([5,13]). Let A be a strongly non-zeno timed Büchi automaton. Lang(A) = ∅
iff SGRα(A) contains no accepting lasso.

Proof. The direction “Lang(A) 6= ∅ implies ...” is proven using Lemma 5 as mentioned above.
We now illustrate the main idea of the proof of the converse, which is more involved. This
is because simulation graphs are not generally pre-stable [12], which means that, given an
edge S

e→ S ′, it is not guaranteed that every state in S has a successor in S ′. Thus, when
we have a cycle, we cannot guarantee that, starting from an arbitrary state s1 at some node
in the cycle, we can find a successor s2 of s1, then s3 of s2, and so on, ad infinitum, in order
to form an infinite run. That is, we cannot extract an infinite run from a cycle in a forward
manner.

e1

e2

e0 R
1

2

R
1

1

R
2

2

R
2

3

R
2

1

S1 S2S0

Fig. 3. Every lasso of SGRα(A) contains a lasso of the region graph of A.

Instead, we proceed backwards, as illustrated in Figure 3. Let Si = (qi, Zi). We pick an
arbitrary node in the cycle, say, S2. Z2 is a union of regions (the small circles drawn inside
the ellipsis). We pick one such region, say R2

1, arbitrarily. By Lemma 7, there exists some
region R1

1 ⊆ Z1 such that

(q1, R
1
1)

ε∗→rg
e1→rg(q2, R

2
1).

9



Similarly, there exists R2
3 ⊆ Z2 such that

(q2, R
2
3)

ε∗→rg
e2→rg(q1, R

1
1),

and so on. Since the number of regions contained in any Zi is finite, sooner or later the
same region will be encountered, that is, a cycle will be found. In the case of the drawing of
Figure 3 this cycle is

(q1, R
1
1)

ε∗→rg
e1→rg(q2, R

2
2)

ε∗→ e2→rg(q1, R
1
2)

ε∗→rg
e1→rg(q2, R

2
3)

ε∗→ e2→rg(q1, R
1
1).

3

The above cycle can be extended backwards until the initial node S0, so that a lasso is found.
This lasso corresponds to a lasso in the region graph of A. Moreover, the lasso is accepting,
since all regions in a node are associated with the same location, and the simulation-graph
cycle is accepting. Then, using the pre-stability of the region graph we can extract an infinite
accepting run from the lasso. Since A is strongly non-zeno, the run is also non-zeno, thus
Lang(A) 6= ∅. ut

4.2 Checking emptiness on the exact simulation graph

Theorem 13. Let A be a strongly non-zeno timed Büchi automaton. If Lang(A) = ∅ then
SG(A) contains no accepting lasso. If Lang(A) 6= ∅ and SG(A) is finite then SG(A) contains
an accepting lasso.

Proof. The direction “Lang(A) 6= ∅ implies ...” is proven using Lemma 5 as mentioned above.
For the converse, consider an accepting lasso of SG(A):

S0
e0→ S1

e1→ · · · en−1→ Sn
en→ · · · en+l−1→ Sn+l

en+l→ Sn+l+1, with Sn+l+1 = Sn.

Define S ′
i = Closureα(Si), for all i = 0, ..., n + l. We claim that

S ′
0

e0→ S ′
1

e1→ · · · en−1→ S ′
n

en→ · · · en+l−1→ S ′
n+l

en+l→ S ′
n+l+1

is an accepting lasso of SGRα(A). The result follows from Theorem 12.
We now prove the claim. First, note that

S ′
0 = Closureα(S0) = Closureα({(q0,0)}),

which is indeed the initial node of SGRα(A). Second, by Lemma 10, we have

S ′
1 = Closureα(S1) = Closureα(Post(S0, e0)) = Closureα(Post(S ′

0, e0)).

Thus, S ′
1 is indeed the e0-successor of S ′

0 in SGRα(A). We can continue the same way, showing
that S ′

2 is the e1-successor of S ′
1 in SGRα(A), etc. Since S ′

n+l+1 = Closureα(Sn+l+1) and
Sn+l+1 = Sn, we have S ′

n+l+1 = S ′
n, that is, we have a lasso. ut

3 Notice that R2
1 is left out because it has no successors in S1. This does not mean R2

1 is a deadlock since there
might be other successor nodes to S2.

10



4.3 Checking emptiness on the zone-closed simulation graph

Theorem 14. Let A be a strongly non-zeno timed Büchi automaton. Lang(A) = ∅ iff
SGZβ

(A) contains no accepting lasso.

Proof. The direction “Lang(A) 6= ∅ implies ...” is proven using Lemma 5 as mentioned above.
For the converse, consider an accepting lasso of SGZβ

(A):

S0
e0→ S1

e1→ · · · en−1→ Sn
en→ · · · en+l−1→ Sn+l

en+l→ Sn+l+1, with Sn+l+1 = Sn.

Define S ′
i = Closureα(Si), for all i = 0, ..., n + l. We claim that

S ′
0

e0→ S ′
1

e1→ · · · en−1→ S ′
n

en→ · · · en+l−1→ S ′
n+l

en+l→ S ′
n+l+1

is an accepting lasso of SGRα(A). The result follows from Theorem 12.
We now prove the claim. First, note that

S ′
0 = Closureα(S0) = Closureα(Approxβ({(q0,0)})),

which, by Lemma 9, is equal to Closureα({(q0,0)}), which is indeed the initial node of
SGRα(A). Second, by Lemma 11, we have

S ′
1 = Closureα(S1) = Closureα(Approxβ(Post(S0, e0))) = Closureα(Post(S ′

0, e0)).

Thus, S ′
1 is indeed the e0-successor of S ′

0 in SGRα(A). We can continue the same way, showing
that S ′

2 is the e1-successor of S ′
1 in SGRα(A), etc. Since S ′

n+l+1 = Closureα(Sn+l+1) and
Sn+l+1 = Sn, we have S ′

n+l+1 = S ′
n, that is, we have a lasso. ut

5 Conclusions and Perspectives

This paper completes the work of [5,13] on checking language emptiness of timed Büchi
automata efficiently. In [5,13] we showed how to check emptiness on the region-closed sim-
ulation graph. However, the latter is not used in practice, since its nodes are non-convex,
thus, not easily representable. Using recent results of Bouyer [6] on simulation-graph over-
approximations that preserve convexity, we show that the main result of [5,13] carries over
to the zone-closed simulation graph, which is the graph used in the tools Kronos and Uppaal
for checking reachability. Our result implies that these tools can be used not only for reach-
ability, but also to check emptiness of timed Büchi automata. This can be done with small
modifications to the tools, namely, implementing an algorithm to find cycles or strongly
connected components in a graph. Our result also proves the correctness of timed Büchi
automata emptiness algorithms implemented in the tool Open-Kronos.4

Perspectives of this work include studying other classes of properties, apart from reacha-
bility and Büchi emptiness, that are preserved in the zone-closed simulation graph. It would
also be interesting to study whether other, coarser, zone-based abstractions, such as those
proposed in [2], can be used to check timed Büchi automata emptiness.

4 See http://www-verimag.imag.fr/ tripakis/openkronos.html.

11



References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994. 1, 3, 4
2. G. Behrmann, P. Bouyer, K. Larsen, and R. Pelánek. Lower and upper bounds in zone based abstractions of

timed automata. In TACAS’04, volume 2988 of LNCS. Springer, 2004. 11
3. J. Bengtsson and W. Yi. On clock difference constraints and termination in reachability analysis of timed

automata. In ICFEM’03, volume 2885 of LNCS. Springer, 2003. 2
4. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time Petri nets. IFIP Congress Series,

9:41–46, 1983. 1
5. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for real-time systems. In 18th

IEEE Real-Time Systems Symposium (RTSS’97), pages 25–34. IEEE, December 1997. 1, 2, 4, 9, 11
6. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in System Design, 24(3):281–320,

2004. 1, 2, 3, 4, 5, 6, 7, 11
7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Systems III, Verification and

Control, volume 1066 of LNCS, pages 208–219. Springer-Verlag, 1996. 1
8. C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstractions. In Tools and

Algorithms for the Construction and Analysis of Systems ’98, Lisbon, Portugal, volume 1384 of LNCS. Springer-
Verlag, 1998. 1, 2, 4, 5

9. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of LNCS, pages 197–212. Springer–Verlag, 1989. 1, 4

10. K. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for Technology Transfer, 1(1/2),
October 1997. 1

11. S. Tripakis and C. Courcoubetis. Extending Promela and Spin for real time. In TACAS’96, Passau, Germany,
volume 1055 of LNCS. Springer-Verlag, 1996. 2

12. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations. Formal Methods in
System Design, 18(1):25–68, January 2001. 9

13. S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness efficiently. Formal Methods
in System Design, 26(3):267–292, May 2005. 1, 2, 3, 4, 9, 11

12


	Checking Timed Büchi Automata Emptiness on Simulation Graphs 

