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Abstract. This paper presents ...

1 Introduction

Model-driven engineering is making its way through the
habits of software and system designers and developers,
pushed forward by the increasing maturity of modeling
languages and tools. This paradigm promotes a com-
plete re-foundation of software engineering activities on
the basis of models, as well as the use of automatic tools
for most if not all post-design activities like getting a
platform-specific implementation, generating and exe-
cuting tests, deployment, etc.

In this context, the model of a software system (or
of a system in general) gathers different views ranging
from the system requirements (in the form of use cases,
of static or dynamic properties that the system has to
satisfy, etc.), to architecture, to behavior of individual
components and/or subsystems, to platform-related in-
formation (resources and their utilization), etc. Since the
model is central to the whole development process, it is
essential for its designers and its users to be able to check
its correctness and coherence.

Recently we have been developing a validation toolset
for UML models, IFx [OGO05], which allows simulating
an operational system specification and verifying com-
plex behavioral properties expressed formally within the
model. This toolset, which is particularly well adapted
to real-time and concurrent systems, is described briefly
in section 1.2.

The focus of this paper is on one of the largest case
studies on which our toolset has been applied: a model
obtained by reverse-engineering of a representative part

of the flight software of the Ariane-51 launcher. Along
the lines we discuss the modeling and specification fea-
tures used in connection with IFx, the normal tool work-
flow and the validation results for Ariane-5, and also
some methodological issues: how results were obtained,
what problems can be encountered and how they can be
solved.

1.1 State-of-the-art and current practice in model
based validation

[DL]: it is not a global state of the art (i.e. the descripion
of all existing methods and tools), but only the IF state
of the art

1.2 The IFx toolset

IFx [OGO05] is a toolset providing simulation and verifi-
cation functionality for operational UML models. Imple-
menting specific UML semantics and extensions for ex-
pressing timing-related information [OGO05,GOO05],
IFx is targeted to designers of safety critical embedded
real-time systems.

1.2.1 Toolset architecture and functionality

The architecture of IFx is shown in Figure 1. The toolset
reuses state-of-the art validation techniques from the IF
environment [BGM02,BGO+04]. It enables the use of
UML models through a compiler that transforms them
to IF specifications. Models may be edited with any
XMI-compatible editor such as Rational Rose or I-Logix

1 Ariane 5 is the european heavylift launcher, with payload ca-
pacity of 10,000 kilogrammes on dual launches into GTO (geosta-
tionary transfer orbit). EADS SPACE Transportation, the Euro-
pean space transportation and orbital systems specialist, is now
single Prime Contractor for the Ariane 5 system.
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Rhapsody. The simulation and verification functionality
of IF is wrapped by a UML-specific interface which hides
the details of the IF format and tools from the designer.

The functionality of IF, wrapped and provided at
UML level by IFx, is the following:

– Simulation allows the user to execute a model and
to debug it interactively. The user can execute the
model step by step, inspect the system state, put con-
ditional breakpoints, and also perform more complex
operational not offered by common implementation-
level debuggers: rewind/replay an execution, resolve
non-determinism manually, control the scheduling
policy and time related parameters, etc.

– Verification of simple consistency conditions allows
checking the absence of deadlocks and time-locks in
a model or the satisfaction of some state invariants.

– Verification of behavioral properties by model check-
ing. The properties may be expressed as simple tim-
ing constraints using the Omega time extensions or
as more elaborated observer objects (see next para-
graph). Verification is performed by (and during) the
exhaustive construction of the model’s state space.
Diagnostic traces are generated upon errors, and may
be used in simulation.
Verification may also be done off-line by inspecting
and manipulating the model state space (e.g. mini-
mizing it modulo a bisimulation relation), as it will
be shown on the Ariane-5 case study.
[DL]: je pense que le paragraph suivant peut-tre sup-
prim car il est redondant de ce qu’il y a ci-dessous

– Static analysis may be used to optimize an IF speci-
fication for subsequently verifying it. Static analysis
computes exact or approximating abstractions of a
model, [DL]: I do not understand how an abstrac-
tion can be exact (it is no more an abstraction in
this case). I assume it means that all the proper-
ties without exception (?) are preserved. chosen to
preserve certain types of properties (e.g. safety prop-
erties). Their use is exemplified in the sequel (SEC-
TION XXX??).

Additionally to these, IF offers other functions that
may in the future be interesting for the UML modeler:
automatic test case generation, connections with other
validation tools like Spin or Agatha, etc.

In order to scale up to complex models, IF supports
abstraction in several ways. For example, data abstrac-
tion can be done either by static analysis (computing a
slice and throw away a part of the system state which
is irrelevant with respect to an observation criterion) or
by abstract interpretation of some variables (e.g., sym-
bolic handling of timers and clocks). An exact [DL]: idem
as before. It is not an abstraction in this case? it is
only a translation abstraction which is often very effi-
cient is partial-order reduction during exhaustive state
space exploration: this reduction renders deterministic
the interleaving of parallel components whenever the

non-deterministic interleaving cannot influence the ver-
ification of a given property. Other techniques, such as
input queue abstraction (a very efficient method for par-
ticular object topologies such as Kahn networks) are im-
plemented in IF.

1.2.2 Supported UML features and semantics

The IFx toolset supports the constructs and the par-
ticular semantics of the Omega UML profile [OGO05,
GOO05,DJPV03]. In this section we make a small di-
gest of the features of this profile, necessary to under-
stand the model of the Ariane-5 case study.

The architecture and the behavior of a system are
described using class diagrams, state diagrams and op-
eration specifications. Class diagrams may use most of
the concepts available in UML, such as: attributes, dif-
ferent types of associations, generalization relationships.

State diagrams may be used to define reactive class
behavior; they react either to asynchronous signals ex-
changed between objects, to conditions (change events)
or to operation calls (operation calls which are handled
by the state machine are known as triggered operations
in Omega UML). The behavior of an operation that is
not triggered (called primitive operation) is described
by an action. Actions are written in a syntax compliant
to UML1.4 action semantics, containing imperative con-
structs like assignments, operation calls, object creation,
signal exchange, etc.

The profile supports the description of concurrent
systems, by using active classes. Instances of active
classes define a partition of the system objects; an ac-
tive object together with its dependent passive objects
are called an activity group. Each activity group has ex-
actly one thread of control and handles requests (oper-
ation calls and signals) coming from the other groups
in a FIFO run-to-completion manner. Thus concurrency
is created by non-blocking requests between activity
groups (i.e. signals or operations which do not send a
return value).

This execution model is presented in more detail to-
gether with its motivations in [OGO05,DJPV03]. It cor-
responds to a particular choice of semantics in the spec-
trum allowed by the UML standard [?], and is an exten-
sion of the execution model implemented by the Rhap-
sody tool.

On top of the concepts mentioned above, the Omega
profile defines a set of time-related constructs [GOO05].
There are basic concepts like timers and clocks for de-
scribing time-driven behavior in an imperative style, as
well as a mechanism for defining duration constraints
which are declarative assumptions or requirements about
how system execution relates to time passing.
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Fig. 1. Architecture of the IFx validation toolbox.

2 The Ariane-5 model

Ariane 5 is the european heavylift launcher. It has a
payload capacity of 10,000 kilogrammes on dual launches
into GTO (geostationary transfer orbit). The objective
of the Ariane 5 Flight Software is to control the launcher
mission from lift-off to payload release. This software
operates in a completely automatic mode and has to
handle both the external disturbances and the hardware
different failures that may occur during the flight.

This case study takes into account the most relevant
points required for such an embedded application and
focuses on the real time critical behaviour. This descrip-
tion abstracts away both complex functionalities such as
navigation and control algorithms and also implementa-
tion details, such as specific hardware and operating sys-
tem dependencies. Nevertheless, it is fully representative
of an operational system.

2.1 Ariane 5 Launcher presentation

The launcher is composed of 3 stages: EAP stage, EPC
stage and ECS stage

– EAP stage
The two EAP boosters are ignited a few seconds after
the main stage. They deliver about 90of the global
thrust at lift-off and the duration of their powder
combustion is about two minutes. Thus, they are
separated from the main stage, and fall down in the
ocean.

– EPC stage
It is the main stage and is mainly composed of a
LOX/ LH2 tank and an engine, which provides the
main thrust during 8 minutes to reach the target or-
bit. At switch off, the stage is disconnected from the
upper stage and fall down in the ocean.
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Fig. 2. Ariane 5 mission.

– ECS stage
It is the upper stage and the objective is to bring a
supplementary benefit in energy to perform the pay-
load release. The duration of the permanent func-
tioning of this stage is about 15 minutes.

The mission is composed of several phases (see figure
2), each one corresponding more or less to the perma-
nent working point of a launcher stage. At the end of a
permanent working of the launcher, a transition is per-
formed to reach a new permanent working.

2.2 Case study description

An embedded space software such as the one of the Ari-
ane 5 launcher is composed by several modules which can
have different types of behaviours strongly interacting.
Roughly speaking, it exist two main types of functional
behaviours:

– cyclical synchronous execution (i.e. all the processes
have a specific period and phase; they received their
inputs at the start of their periods and shall produce
their outputs before a given delay, which shall not be
greater than their execution period).

– non cyclical execution (synchronised or not with the
cyclical synchronous process depending of their re-
quired precision; their execution can depend from a
date or from a process external event).

The cyclical synchronous behaviour corresponds
mainly to the navigation, guidance and control algo-
rithms (GNC, i.e. the control command of the space-
craft). The asynchronous behaviour corresponds mainly
to the spacecraft mission management (motors ingnition
and stop, stage release...).

The software model contains mainly 6 classes corre-
sponding to 6 main objects (each class has a single in-
stance). To simplify the description, no distinction will
be performed between classes and instances in the fol-
lowing description.

– Acyclic: It is the main class of the software. This
class manages the start of the software and the flight
sequence and the associated automaton.
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– EAP: This class describes the behaviour of the EAP
stage: ignition and release. The sequences described
in this class are driven by event received by other
classes and by internal time constraints.

– EPC: This class describes the behaviour of the EPC:
ignition, monitoring of correct working, alarm rais-
ing and stop. The sequences described in this class
are driven by event received by other classes and by
internal time constraints.

– Cyclics: This class manages the activation of the
cyclical control command algorithms. These algo-
rithms can be navigation, guidance, control, thermal
control... This class executes these algorithms in a
predefined order (depending of the current state of
the launcher, given by the Acyclic class). See an ex-
ample figure??

– Thrust Monitor: This class is one of the algorithmic
classes. It is responsible for the monitoring of the
EPA thrust. It is activated by the Cyclics class.

– Guidance Task: The guidance activation is a particu-
lar case as its frequency is very low. Thus, it is imple-
mented in a specific ADA task. This is modelled by
the Guidance Task, which is activated by the Cyclics
class.

The Acyclic object creates (via aggregation links) all
the over main objects. The constructor of the Ground
class (see below) creates the links between sub-object.

In order to validate (by simulation or by proof) the
software behaviour, a part of the environment is de-
scribed. The environment can contain part of the space-
craft as defined in the spacecraft design, the physical
environment (ground control centre, wind for an at-
mospheric phase, star and moon for some sensors, other
spacecraft?), and part of the software (or more generally
of the computer based system) which is not described
in the model (as a numerical algorithm, a bus protocol,
etc).

– Ground: It is the main class of the model. This class,
representing the control centre send the start signal
toward the launcher (and its software).

– Bus: This class describes the behaviour of 1553 bus
allowing the communication between the main soft-
ware and the equipment.

– Valve: This class describes a specific type of equip-
ment.

– Pyro: This class describes a specific type of equip-
ment.

3 Capturing functional and non-functional
requirements

In the initial phases of a project, functional and non-
functional requirements are captured through use cases,
through high-level activity diagrams, using domain-
specific notations or just informally. As the system model

ok

ko
<<error>>

match invoke ::EADS::Environment::Valve::Open()
on v

[ v @ Open ]

[ not(v @ Open) ]

valve_not_open_in_open

v : Valve

<<Observer>>

Fig. 3. Property 1.

becomes more precise requirements can be refined, for-
malized and used for validating the design model.

Formalization of properties in the Omega UML
framework is based on the concept of observer. Require-
ments which are purely concerned with timing can also
be specified using a form of declarative constraints. In
this section we discuss (briefly) these concepts, and we
insist on how they can be put to work – with examples
from the Ariane-5 model and some methodological hints.

3.1 Expressing complex behavioral requirements

Observers are special objects which monitor the execu-
tion of the model and give verdicts when a requirement is
satisfied or violated. Observers may have their own local
memory (attributes), and their behavior, which has the
purpose to give verdicts, is described by a special kind
of state machine, in which some states may be labeled
with the stereotypes � success� or � error �.

Monitoring model execution is done either by observ-
ing events like signal outputs, operation calls or returns,
state changes, etc., or by observing the state of the sys-
tem, like object state and attribute values, contents of
queues, etc.

In the following we discuss some of the properties
verified on the Ariane-5 example and alongside we give
some methodological guidelines for writing observers.

Property 1. The software shall not send an Open com-
mand to an already open valve.

Valves are used in the main engine of the launcher
to command the required thrust. Opening an already
opened valve is usually an error in the software logic.
This is one of the simplest safety properties that may
be expressed with an observer. It requires that a cer-
tain condition never occurs during the system execution:
software sends Open command to valve v and v is open.
The only problem raised by this property, which comes
back in every other formalized requirement, is to relate
the informal condition expressed above with some formal
event or condition occurring in the system.

In our case, the sending of an Open command means
the call of the triggered operation Open defined in the
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class Valve (from package Environment). The “match”
clause visible in Figure 32 matches the invocations of
this operation, and every time the operation is invoked
the reference to the callee object is stored in attribute v.

Then the Valve v is tested if open by simply test-
ing whether its state machine is in state open (guard
v@open). The state ko labeled with � error � is en-
tered if the above event occurs while the above condition
is true.

Property 2. The software shall not send two commands
to the same valve at less than 50ms of interval.

This property, required by electrical constraints on
the hardware, needs a more complex formalization, since
it talks about the distance between pairs of events corre-
sponding to each of the instances of class Valve. A first
idea is to use a different observer for each instance of
class Valve, with which we measure the distance between
every two consecutive Valve commands. This solution is
very impractical, especially if we imagine that instances
of class Valve could be created dynamically (although
this is not the case in our model), or if the number of
such instance becomes too important.

However, the following remark helps us designing a
very simple observer for property 2: if several transitions
are enabled in an observer at the same time, all the
possibilities will be explored by the IFx model checker.
This obvious remark helps in writing properties over a
finite sequence of events which occurs several times in
the execution of the system: non-determinism will be
used to pick each particular occurrence at a time and
verify it.

The observer in Figure 4 works as follows: in state
initial it waits for a command to be sent to a Valve,
stores the reference of the concerned Valve in v1 and
proceeds to state nondet.

In state nondet the observer chooses non-
deterministically whether to proceed by verifying
the timing of the next command sent to v1, or to return
to initial and wait for another command to any Valve.
Thus, when the observer is model-checked against the
system specification, both options will be explored and
all pairs of commands sent to any Valve will be covered.

The rest of the observer tests a simple safety con-
dition: the second command sent to the Valve v1 will
not come before 50ms. The clock t is used to measure
the 50ms. In state wait, other commands may come, but
they cause an error only if they concern the same valve
v1. If more than 50ms elapse without error, the observer
may go to a success state and consider the property ver-
ified for this particular occurrence of the first command
in the pair.

2 Because the properties presented in this section are taken di-
rectly from the UML model developed with Rational Rose (v.7.0),
they are not completely conforming to the UML standard. In par-
ticular, we note the use of a branch symbol instead of a choice
pseudo-state, which is not supported by Rational Rose.??

valve_not_abused

t : Timer

v1 : Valve

v2 : Valve

<<Observer>>

initial

wait

KO
<<error>>

nondet

match invoke ::EADS::Environment::Valve::Close() on v1

match invoke ::EADS::Environment::Valve::Open() on v1

[ true ]

[ true ] / t.set(0)

[ v1 <> v2 ]

[ v1 = v2 ]

OK
<<success>>

[ t >= 50 ] / t.reset()

match invoke ::EADS::Environment::Valve::Close() on v2

match invoke ::EADS::Environment::Valve::Open() on v2

Fig. 4. Property 2.

state machine that checks
property Q: a B is never

preceded by  a C

<<success>>
irrelevant

A

Fig. 5. Example of using a� success� state to cut off irrelevant
parts of the state space

Stereotyping the OK state with � success � also
allows to make the model checking more efficient: the
execution of the system after the observer has reached
OK cannot lead to an error anymore and may safely be
ignored by the model checker.

This suggests a more general methodological issue:
very often a safety property has the form P ⇒ Q where
P is an invariant or a simpler safety pre-condition on the
prefixes of execution traces. For example, the property
can be ”if event A never happens, then an event B is
never preceded by a C”. P is in this case the predicate
”if event A never happens”. In this case, ignoring irrel-
evant scenarios in which P is not satisfied may strongly
improve the performance of model checking. One can
do that by introducing a sink state stereotyped with
� success � in which the observer goes every time
P is broken (e.g., when an event A occurs), as shown in
Figure 5.

Property 3. The launcher shall not lift-off if an anom-
aly is detected during the Vulcain engine ignition. In case
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ok

[ v @ Open ]

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[ t >= 2000 ]

[ v @ Failed_Open ]

ko
<<error>>

[ v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done ]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[ (v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open) ]

match accept ::EADS::Environment::Valves::Open() by v

liftoff_aborted_right

v : Valve
t : Timer

<<Observer>>

Fig. 6. Property 3.

of lift-off abort, the valves shall all be closed and the py-
rotechnic command shall not be ignited.

An anomaly on the Vulcain ignition corresponds, in
our modeling of the environment, to a Valve object en-
tering the Failed Open state. This failure shall be de-
tected by the software, which shall then abort the lift-off
and secure the launcher. Thus, this property is expressed
more precisely as follows:
If any instance of the valve class entries one of the states
Failed Open or Failed Close, then:

– All the instances of the Pyro class shall stay forever
in the state Wait ignition.

– 2 seconds after the valve failure, all instances of the
Valve class shall be in state Close or Failed Close,
and then remain in this state forever.

This property is expressed in a purely black-
box way. However, since several components are in-
volved in aborting the lift-off, the observation of
the internal signals Request EAP Preparation and Re-
quest EAP Release, which is supported in our frame-
work, allows performing on the model level the equiva-
lent of a mixed white-box and black-box testing activity.
We complete thus the previous property in the following
way:

– The events Request EAP Preparation and Re-
quest EAP Release are never emitted.

The formal description of this property is shown
in Figure 6. The observer functions as follows: every

time an Open command is handled by a valve v, we
test whether v reaches the state Open or Failed Open.
In the latter case, the observer enters state aborted,
in which Pyro ignition (i.e. Pyro objects enter-
ing state Ignition done) as well as the signals Re-
quest EAP Preparation and Request EAP Release are
prohibited. After 2 seconds from entering state aborting,
the observer goes to the inner state aborted in which,
additionally, Valves are required to remain closed (i.e.
never reach the states Open or Failed Open).

Property 4. If the lift-off is performed, all the valves
shall be opened, and the EAP stage shall be released on
time.

The lift-off is characterised by the ignition of the py-
rotechnic command Pyro1 (implying the booster igni-
tion), i.e. object entering state Ignition done. The sepa-
ration on the EAP stage involves the ignition of Pyro2
and Pyro3 in a very precise timing.

This property can be broken into four separate ob-
servers which check that, if the Pyro1 object enters state
Ignition done, then respectively:

– All the instance of the Valve class shall be in the
Open state 2 seconds after then remain in this state
forever.

– The instance Pyro2 of the class Pyro shall enter Ig-
nition done in a predefined time window (relative to
the start date H0).

– The instance Pyro3 shall enter Ignition done in a
predefined time window (relative to the start date
H0).

– The duration between the entry of Pyro2 in the state
Ignition done and the entry of Pyro3 in the state Ig-
nition done shall also be in a predefined time win-
dow.

We present in Figure 7 only the observer which
checks the last of the four properties.

Although this feature is not used in the Ariane-5
model, let us note that it is possible for very complex
properties to be described using a set of communicat-
ing observers. Communication is then done by shared
(public) observer attributes.

3.2 Timing requirements

For a real-time system like the Ariane-5 software, cer-
tain system requirements are concerned purely with the
timing of some events during the execution. This is the
case for example in the Property 2 introduced in section
3.1: The software shall not send two commands to the
same valve at less than 50ms of interval. Such simple
duration conditions may be more easily specified using
the declarative constructs of the Omega UML profile.
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liftoff_performed_right4

g : Ground
t23 : Timer

<<Observer>>

wait_start

wait_ign_p1

match send ::EADS::Signals::Start(void) by g

wait_ign_p
2

[ g.Acyclic.EAP.Pyro1 @ Ignition_done ]

wait_ign_p
3

[ g.Acyclic.EAP.Pyro2 @ Ignition_done ] / t23.set(0)

ok

ko
<<error>>

[ g.Acyclic.EAP.Pyro3 @ Ignition_done ]

[ t23 >= 10000 ]

[ g.Acyclic.EAP.Pyro3 @ Ignition_done ]
[ t23 < 5000 ]

[ t23 >= 5000 ] / t23.reset()

Fig. 7. Property 4.

3.2.1 Some background on timing constraints

The basic concept behind specifying constraints is the
event type. An event type defines a pattern for match-
ing significant events in the system execution, like an
operation invocation, an object creation, etc. (the event
kinds are actually the same ones that can be observed
by observers, see section 3.1).

Based on an event type, one can define an event in-
stance, which will capture all events matching the type
or just a subset, depending on the scope in which the
event instance is defined. Finally, at execution time, an
event instance will represent the list of event occurrences
that are captured.

Event instances are used to write duration con-
straints of the form durationtype(ei1, ei2). There are sev-
eral ways of pairing event occurrences to be constrained,
each one represented by a specific type of operator. The
simplest one (simply denoted duration(ei1, ei2)) con-
strains the time passed between the last occurrence of
ei1 and the last occurrence of ei2.

For further detail on Omega timing constraints and
their semantics, the reader is referred to [GOO05].

3.2.2 Property 2 as a local constraint

Property 2 can be formalized as a local constraint at-
tached to the Valve class, as shown in Figure 8.

The event types are EInvOpen and EInvClose, de-
fined by a matching clause identical to the one used in

Valve

<<Triggered>> Open()
<<Triggered>> Close()

(from Environment)

<<Active>>

timeevents {
  eo : EInvOpen;
  ec : EInvClose;
}
timeconstraints {
  duration(eo,ec) >= 50;
  duration(ec,eo) >= 50;
}

EInvOpen
<<TimedEvent>> match invoke

EADS::Environment::Valve::Open()

EInvClose
<<TimedEvent>> match invoke

EADS::Environment::Valve::Close()

Fig. 8. Property 2 as a timing constraint.

observer transitions. Event instances eo and ec are de-
clared within the scope of the class Valve. In this case,
the runtime semantics is that there will be one instance
of EInvOpen and one instance of EInvClose for every
object of class Valve, and these two event instances will
capture only event occurrences concerning their “par-
ent” Valve object. This solves automatically the prob-
lem of matching events concerning the same valve that
we had in the specification of property 2 by an observer
(Figure 4).

Finally, the requirement that consecutive commands
do not come at less than 50ms of interval is described by
two declarative constraints: duration(eo, ec) >= 50 and
duration(ec, eo) >= 50 (this is based on the hypothesis
that there are no two consecutive Open commands or
two consecutive Close commands, as required by prop-
erty 1 from section 3.1).

3.3 Scheduling constraints and objectives

During the design of the Ariane-5 software, an architec-
ture of tasks (or threads) is constructed. Each function
is assigned to a specific task. Let us note that in this
system there are both cyclic control functions and spo-
radic regulation and configuration functions which are
triggered by some event.

The tasks are all executed on the same processor,
using a pre-defined fixed-priority preemptive scheduling
policy. One of the goals of the model-based validation
was to verify that the scheduling policy meets some con-
sistency constraints, for example that the cyclic control
functions finish in time at each cycle.

The main difficulty in using classical scheduling
analysis methods such as RMA[?] to analyze this sys-
tem comes from the intervention of sporadic tasks. One
cannot simply consider at each cycle the worst case ex-
ecution time of sporadic tasks, as this would lead to a
big over-approximation of resource occupation. What we
propose instead is to take into account in the analysis
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the functional behavior of the system and its impact on
resource consumption.

3.3.1 The problem

The scheduling policy that is used is a 3-level fixed pri-
ority preemptive scheduling:

– Functions of the Regulation components have the
highest priority. They are sporadic and take about
2 to 5 ms each time a command is executed (open a
valve, ignite a pyro, etc.)

– Functions of the Navigation-Control components
have middle priority. They are periodic, with a period
of 72ms and take 37 to 64ms to execute depending on
the current phase of the flight and other parameters.

– Functions of the Guidance components have the low-
est priority. They execute every 576ms. One of the
goals of scheduling analysis was to determine how
much processor time they can take in each cycle in
order for the system to remain schedulable.

There are several objectives that have to be attained
by the scheduling:

– The Navigation-Control functions have to finish
within the 72ms cycle and the Guidance functions
have to finish within the 576ms cycle.

– The application uses a 1553 MIL bus. In this proto-
col, all the data transfers are performed under the
supervision of a bus controller (the main onboard
computer in the case of the Ariane 5 case study).
The software components read and write data in an
exchange memory which is transferred via the bus
to the equipment (also called remote terminal) at
specific time frames (this process is called low-level
transfer). A consistency condition is that the software
components do not read or write the bus during the
low-level transfer time frames.

The difficulty in analyzing the scheduling of Ariane-
5 lies in that the execution time of the different tasks
varies depending on the current flight phase. Figure 9
shows the statechart of the control cycle. One can see
that there are optional paths which take a lot more time
than others. The worst case execution time of this cycle
is 64ms, while the best case is 37ms and the average
measured by simulation is around 42ms.

3.3.2 Modeling the scheduling policy in Omega UML

It has been possible to model the scheduling policy and
resource consumption using the low level constructs of
the Omega profile (clocks). The IFx tool provides mod-
els for different types of schedulers as elements of a pre-
defined library Scheduling. This solution is reusable and
open, the modeler can use the predefined scheduler mod-
els and ignore the internals of the Scheduling library, or
alternatively extend the library with new schedulers.

The Scheduling library (see Figure 10) contains two
types of classes organized in two hierarchies:

– Task classes used to annotate the System with re-
quests for execution time, parameterized depending
on the scheduling policy. Each object of the sys-
tem that executes actions which take up a significant
processing time, will use an instance of the class Task
on which it will call the operation exec with a du-
ration parameter. Depending on the scheduling pol-
icy, other parameters may have to be passed to exec,
e.g., priority for fixed priority scheduling (FPPS), or
deadline for earliest deadline first scheduling (EDF).
Note that instances of class Task can be shared by
several objects and can be used multiple times to
consume processor time with exec. The only restric-
tion is that there are no re-entrant calls to exec on
the same Task.

– Scheduler classes are used to model the different
scheduling policies. The behavior of these classes is
transparent to the designer, who has to create an
instance of a Scheduler class for each processing re-
source used by its system. Furthermore, each created
Task has to be mapped to a Scheduler (when the
Task is created). Subsequently, every time a Task is
requested to consume processing time using exec, it
will communicate with its Scheduler in order to de-
termine the time when exec will finish based on the
task duration and on the state of the Scheduler – i.e.
the scheduling policy and the charge at that moment.

As an example, we describe in the following the be-
havior of the fixed priority preemptive scheduler. We use
the scheme proposed in [?] (see also Figure 11). The
scheduler works for a predefined range of priority from
0 (highest priority) to a constant N (lowest priority). At
any time, there is at most one task executing on each
level of priority; if a request comes on a level which is
already occupied, this leads to an error. The scheduler
keeps track of the following information:

– An array ti of clocks measuring the time since the
task on level i started its execution, including time
when it was preempted.

– An array di with the foreseen end time for task i.

The data is updated as follows:

– when a new task i arrives:
– di stores its duration
– let j be the currently executed task

• if i < j or j is inexistent then ti is set to 0.
• ∀k > i, then dk is incremented with d.

– when the highest priority task i finishes, i.e. when
ti = di:
– ti is deleted (startedi is set to false);
– if another task j is waiting (with the highest pri-

ority after i), and if tj is not yet started, then tj
is set to 0.
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Fig. 9. Statechart of the Control cycle with unitary execution times.

Task

<<Triggered>> exec(who : Object, d : Integer) : Boolean
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n
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1
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<<Triggered>> exec()
<<Constructor>> FPPSTask()

<<Active>>

Fig. 10. Scheduling library.

3.3.3 Modeling the scheduling objectives

Scheduling objectives are modeled using observers. As
mentioned in section 3.3.1, there are three scheduling
objectives:

– The control functions have to finish within the 72ms
cycle. This property is formalized in the observer in
Figure 12, by the fact that the Cyclics component
receives the signal Synchro, which signifies the begin-
ning of a cycle, only in the states Start Minor Cycle,
Wait Start or Abort.
If a cycle does not finish in time, the Cyclics compo-
nent is in an intermediate computation state when
the next Synchro is received and this property is vi-
olated.

– The Guidance tasks have to finish within the 576ms
cycle. This property is expressed with a similar ob-
server.

– The bus transfer windows have to be observed. This
is formalized in a similar manner by the fact that
calls to Bus read and write operations do not occur
while the Bus is in a Transfer state.

4 Validation methodology and results

Validation of UML models with the IFx toolset involves
several activities supported by different tools. At a very
abstract level, the workflow for using IFx is shown in Fig-
ure ??. The validation activities, depicted in the lower
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exec

error

idle

FPPSExec(theTask,newD, newPrio)

[ t->getAt(currentPrio) = d->getAt(currentPrio) ] / begin
tasks->getAt(currentPrio)!FPPSRelease(); tasks->getAt(currentPrio) := null;

d->getAt(currentPrio) := -1; t->getAt(currentPrio).reset();
started->getAt(currentPrio) := false; currentPrio := self.getCurrentPrio() end

FPPSExec(theTask,newD, newPrio)

[ d->getAt(newPrio) = -1 ] / begin self.insertNewTask(theTask,
newD, newPrio); currentPrio := self.getCurrentPrio() end

[ d->getAt(newPrio) <> -1 ] / informal
"-- VIOLATED ASSERTION--"

[ currentPrio <> -1 ] / if(not started->getAt(currentPrio)) then
begin t->getAt(currentPrio).set(0); started->getAt(currentPrio)

:= true end endif

[ currentPrio = -1 ]

Fig. 11. Behavior of the fixed priority preemptive scheduler.

wait

match send ::EADS::Signals::Synchro() to c

KO_NC_cycle_is_
schedulable

<<error>>

[ c @ Start_Minor_Cycle or c @
Wait_Start or c @ Abort ]

[ not( c @ Start_Minor_Cycle or c @ Wait_Start  or c @ Abort ) ]

Fig. 12. Scheduling objective: the control cycle finishes in time.

part, range from simple syntactic and static semantic
checking to dynamic property verification. These activ-
ities help improving the system model and its require-
ments. In the following we discuss each phase in this
workflow with its specific difficulties and their possible
solutions.

4.1 Translation from UML to IF

In this phase, the uml2if tool is used to transform a
UML model into an IF specification with an equivalent
semantics (see [OGO05] for the details of the transla-
tion). This phase also allows performing a simple static
(syntactic and semantic) checking of the UML model.
One can discover errors such as:

– syntax errors in actions

– use of undefined or uninterpreted UML constructs
(e.g., unknown stereotypes or data types, some UML
constructs or features not interpreted in the Omega
profile, etc.)

– name errors (e.g., use of undefined attributes, signals,
classes, etc.)

– type errors (e.g. operation signature mismatch, etc.)
– violations of other well formedness constraints (e.g.,

root class is not active, a class has several state ma-
chines, etc.)

4.2 Static analysis

In this phase, the dfa tool is applied in order to analyze
the IF specification, simplify it and optimize it for veri-
fication. Several types of transformations are possible:
– State factorization is the most useful transforma-

tion in order to optimize the IF specification for
model checking, while fully preserving its behav-
ior. This transformation introduces systematic re-
sets for variables which are dead in a certain control
state of the specification. In this way, it prevents the
model checking tools to distinguish between execu-
tion states which differ only by values of dead vari-
ables. This technique is very effective, given that it
can be applied locally at control-state level, and may
collapse large (bisimulation equivalent) parts of the
state graph.
This transformation is especially useful for example
to reset clocks or other types of counters which are
not useful any more from a certain execution point
forward, but which have been forgot running in the
specification. In this case, the transformation may
render finite a system with an infinite state space.
State factorization is recommended to be used in all
cases before going on to model checking, since it pre-
serves all model properties.

– Elimination of dead elements such as unused signals
and variables, unreachable states in process state ma-
chines, or process types which are never instantiated.
This optimization simplify the source of the IF sys-
tem and can diminish the size of the individual sys-
tem states (by eliminating variables) but has no im-
pact on the size of the state space.

– Slicing is used to eliminate a part of the model vari-
ables which is considered irrelevant for the verifica-
tion of a certain property, together with all the vari-
ables depending on them.
This is an abstraction technique which allows to com-
pute an over-approximation of the behavior of a sys-
tem (component). Over-approximations preserve the
satisfaction of safety properties, but does not pre-
serve their non-satisfaction (i.e. may generate false
negatives).
There is however no automatic support in IFx to
guarantee that the property which has to be veri-
fied is preserved. [DL]: cette phrase est extrmement
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ambige!!!!! Elle laisse sous-entendre qu’on applique
des abstractions sans tre sr que les proprits spcifies
sont prserves. J’espre que toutes les proprits qu’on a
crites sont prserves. Il faut absolument revoir cette
explication.

In the Ariane-5 case study, however, the factorization
is limited due to the relatively small number of loops in
the system state graph. Nevertheless factorization has
been used to automatically reset forgotten clocks, espe-
cially in properties. For example, clock t in property 3 is
reset upon entry in state aborted).

4.3 Model exploration through simulation

Simulation allows the user to explore the model in a
guided or random manner, without being exhaustive.
Simulation states do not need to be stored as the com-
plete state space is not explicitly constructed at this mo-
ment. The user can also test simple safety properties,
which must hold on all execution paths. Properties range
from generic ones, such as absence of deadlocks or signal
loss, to more specific and application dependent ones,
e.g., invariants tested using conditional breakpoints.

The simulation tool allows performing usual debug-
ging tasks: saving and re-loading a played scenario, step-
ping back and forward through it, inspecting the system
state (possibly by defining custom views of the system
state through XSLT stylesheets), inserting conditional
breakpoints (defined through XPath conditions on the
XML trees which represents the IF system state or the
fireable transitions).

The simulation tool can also be used later on for an-
alyzing the error traces generated by the model checker
when a property is violated (replay of counter-example).
XXXX??

4.4 State space generation and observer model checking

In this phase the IF model is compiled into an executable
component which can be used to exhaustively generate
the state space of the system, in the form of a labeled
graph. The vertices of the graph are the system states
reachable during execution (including the states of ob-
servers executed in parallel with the system), and edges
represent transitions and are labeled with the occurring
events.

Observer model checking is performed by signaling
the system states in which an observer resides in an �
error � or a � success� state.

[DL]: la phrase suivante n’est pas claire. Il faut la
clarifier ou la supprimer. Doit on ou pas construire
l’espace d’tat complet ou pas? Les deux phrases se con-
tredisent! Generating the whole state space is a pre-
requisite for positively verifying properties. However, if
a goal is to quickly find errors, it is possible to obtain

results without fully generating the state space since ob-
servers (and other forms of properties like µ-calculus for-
mulas) are verified on the fly.

4.4.1 Exploration strategy

Two exploration strategies are possible:

– Depth first exploration. With this strategy, when a
property violation is detected, it is possible to gener-
ate a diagnostics trace which can be debugged with
the simulator.
During depth first exploration, it is also possible to
apply partial order reduction on the fly; this elim-
inates spurious interleaving between internal steps
occurring in different processes at the same time. In-
ternal steps are those which do not perform visible
communication actions, neither signal emission nor
access to shared variables. Partial order reduction
imposes a fixed exploration order on internal steps
and preserves all properties expressed in terms of
visible action

Example: In the Ariane-5 model, the use of partial
order reduction has allowed constructing tractable
models. Without this reduction, even for flight pa-
rameters that yield the simplest behaviors, the gen-
eration of the state space did not terminate (its size
was greater than106 states, with a state size of about
10KB). By using partial order reduction of internal
steps, we reduced the size of the model by more than
3 orders of magnitude, i.e. to about 1000 states for
certain flight configurations.

Depth first exploration is the recommended strategy
as it also allows detecting some types of anomalous
behaviors of the system very early (i.e. after generat-
ing only a fraction of the state space). During explo-
ration, the number of already generated states and
transitions as well as the current depth are displayed.
[DL] le suivant est mon avis en trop. Il faut le laisser
que si il y a suffisement de place, mais ne pas hsiter
le supprimer sinon

– Breadth first exploration. This strategy allows to find
the shortest path to a property violation. However,
there are some technical limitations of this strategy:
partial order reductions cannot be applied, the diag-
nostics trace cannot be generated in a form amenable
to debugging, state space explosion cannot be de-
tected and diagnosed early.

4.4.2 Representations for time

Orthogonally to the exploration order, a time represen-
tation scheme has to be chosen. In IFx (and consequently
in Omega UML), time in a particular system state is rep-
resented by the values of active clock variables in that
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state. The values of these clocks may be represented ei-
ther explicitly as integer values (we talk then about dis-
crete time), or implicitly using linear constraints on the
values (from R) [DL]: la note de R n’existe pas en in-
formatique. Mme si je comprend l’approche thorique de
temps dense, je prfrerai quand mme parler de dcimaux
plutt que de rels. of each pair of clocks (we talk then
about dense or symbolic time). Details on the two rep-
resentations and how they compare may be found in the
literature on timed automata [?].

There are no simple methodological guidelines on
when to use either one of these representations, and the
choice has to be done based on trial. However, for the
Ariane-5 model as well as other UML models verified
with IFx, the symbolic time representation performed
better both in terms of state space size and generation
time.

4.4.3 Improving partial order reductions

In some cases, automatic partial order reductions are not
sufficiently strong and may be improved by manually
adding hypotheses on the order of execution of some
actions.

For example, consider that a component A sends
messages to a component B, which consumes them but
also performs some visible action for each consumed mes-
sage. Because of the presence of visible actions in both
A and B, there will be no automatic partial order reduc-
tion. However, based on some system-specific knowledge,
the designer may want to consider that B always con-
sumes the message before A sends a new one.

4.5 Other verification techniques

Several other techniques for property verification are
available in IFx. We discuss here two of them:

– Verification by graph minimization is an intuitive
method for a non expert end-user. It consists of com-
puting an abstract model (with respect to given set
of observations) of the overall behavior of the speci-
fication. Such a model can be visualised and possible
incorrect behaviors detected by the user.
In order to obtain an abstract model, the state space
must be generated first by exhaustive simulation.
After that, it can be minimized modulo a bisimu-
lation using Aldebaran (a tool connected to IFx
[BFKM97]), and depending on the relation that is
used the minimized graph preserves different classes
of properties (e.g., safety, absence of deadlocks, etc.).
The minimization takes into account the observations
which are relevant for the property being verified (i.e.
the actions that have to remain visible).

Example: The graph in figure 13 is the quotient
model of Ariane-5 with respect to branching bisimu-
lation [vGW96], in which the only observable events
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Fig. 13. A minimal model generated with Aldebaran.

are opening/closing the epc valves, igniting the epc
stage and detecting anomalies.
The branching structure and all safety properties in-
volving these actions are preserved on the graph from
figure 13. It is easy to check by inspection on this ab-
stract model that if an eap anomaly occurs, then all
the valves are closed and afterwards an epc anom-
aly is signaled. Also, it is easy to check that the epc
sends the Ignition signal only after all valves have
been (correctly) opened (i.e., the “i” transition).

– Verification of µ-calculus formulas. Alternating-free
µ-calculus is a temporal logic which allows express-
ing properties about the branching structure of the
system state graph. Its expressive power is thus in-
comparable to that of observers. It allows for example
to express properties such as “there is no deadlock”,
or liveness properties such as “every action A is even-
tually followed by an action B”.
Using µ-calculus is very difficult for non-specialists.
The formalism also presents some technical draw-
backs, like the impossibility to reason quantitatively
about time. Since in timed systems most liveness
properties may be expressed as time-bounded safety
properties (e.g., for the above property, a time-
bounded version is “every action A is eventually fol-
lowed by an action B within t time”), it is more con-
venient to use observers for most properties.
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4.6 Introducing abstractions

Often the state space of a very detailed system design
cannot be generated because of its big size. The designer
has to use some form of abstraction in order to reduce
the size while still preserving the properties that need to
be validated. Some exact abstractions which preserve all
properties have already been described: state factoriza-
tion, partial order reduction. When these are not suffi-
cient, the user will have to make the model itself more
abstract, usually by describing an over-approximation
(i.e. a model which presents all executions of the initial
model and some additional ones). Such an abstraction
preserves the satisfaction of safety properties, but does
not preserve their non-satisfaction, i.e. it may lead to
false negatives.

An example of using abstractions of this form is given
in section 4.7.1. In the context of IF, where we are veri-
fying mostly timed systems, a common abstraction con-
sists in loosening the timing constraints of a component
of the system. For example, a transition which is taken in
a strictly defined time condition may be rendered time-
nondeterministic by defining its urgency as lazy. This
means that it can be delayed indefinitely instead of be-
ing executed as soon as it is enabled. While this intro-
duces new behaviors in the model, the state space may
shrink by an important factor because of the symbolic
representation of time that is used and of the fact that
there are fewer combinations of clock constraints that
are reachable.

4.7 Ariane-5 verification results

4.7.1 Abstractions in Ariane-5

The duration of a basic cycle of the cyclic behavior of
the Ariane 5 flight software is about 100 ms. Each basic
cycle contains about 100 steps. This implies that the
generated model will have about 3 600 000 steps for 1
hour mission, and 15 000 000 000 steps for a 6 months
mission, etc...

The state-of-the-art does not allow today proving
models with a such big size. To solve this problem of ex-
plosion of the number of states, we apply different types
of abstraction on this model.

– Abstraction of the cyclic behavior
The cyclic synchronous behaviour of the software has
first been abstracted. The events generated by the
GNC to command the booster released are gener-
ated at a non deterministic time. Using this abstract
cyclical part, all the properties of the asynchonous
part have been formally proved correct.

– Abstraction of the asynchronous behavior
In this second step, the asynchronous part has been
abstracted. The cyclic behavior received asynchro-
nous events generated at a non deterministic time.

No hardware failure can occur. Even if this abstrac-
tion is not completely realistic (especially for a CPU
consumption point of view), it has allowed the detec-
tion of several errors.

– Abstraction of long duration
Finally, the model has been analyzed without ab-
straction. The problem for this last step is the dif-
ference of the timing scale between the asynchronous
behaviour and the synchronous one. The asynchro-
nous behaviour deals with durations of some millisec-
onds, whereas the asynchronous one deals with du-
rations of several hours (for Ariane 5 launcher) up to
some months (for ATV project) or some years (for
some deep space missions).
In practice, the system is working without occurrence
of any asynchronous events during a great number of
basic cycles, and the most of the output of the cyclic
part is irrelevant for our verification. Thus, it is suf-
ficient to perform the proof with a mission duration
much greater than the basic cycle, but not necessarily
with the real mission duration.
Using such a reduction of the real duration of the
mission, all the properties (synchronous and asyn-
chronous) have been proved correct. In order to test
the tool, proofs have been performed with several
mission durations (see next section).

4.7.2 Results and figures

With a reduced mission time, the following table gives
the duration of the proof of each property. It also gives
the number of states and the number of transitions of
the produced automaton.

Property Number of states Number of transitions Proof duration
liftoff aborted right 36037 38149 00:00:36
pyro not ignited twice 35988 38092 00:00:42
valve not abused 36082 38210 00:00:37
valve not close in close 36010 38114 00:00:44
valve not open in open 35998 38102 00:00:38
liftoff performed right1 46075 48713 00:00:49
liftoff performed right2 37897 40550 00:00:55
liftoff performed right3 37961 40632 00:01:12
liftoff performed right4 35986 38090 00:00:38
CPU not in error 35980 38084 00:00:53
G cycle is schedulable 36012 38116 00:00:48
NC cycle is schedulable 36380 38484 00:00:39
read write coherence 36618 38722 00:00:47

We have also tried to verify all the properties at the
same time by running all observers in parallel with the
model. The following array gives the same information
as above for different mission durations.

Mission duration Number of states Number of transitions Proof duration
7 000 ms 51 324 54 697 00:03:30
15 000 ms 161 956 171 734 00:12:06
22 000 ms 303 496 321 206 00:11:33
30 000 ms 463 932 490 901 00:22:58
37 000 ms 658 981 696 031 00:34:53
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5 Lessons learned and future work
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[GS04] Gregor Gössler and Joseph Sifakis. Priority sys-
tems. In Formal Methods for Components and Ob-
jects 2003, number 3188 in LNCS. Springer Ver-
lag, 2004.

[OGO05] Iulian Ober, Susanne Graf, and Ileana Ober. Vali-
dating timed UML models by simulation and ver-
ification. Accepted for publication in STTT, Int.
Journal on Software Tools for Technology Trans-
fer, 2005.

[vGW96] Rob J. van Glabbeek and W. Peter Weijland.
Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555–600,
May 1996.


