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Abstract

In this paper, we follow the recent trend in bridging the gap that separates the symbolic and com-
putational views of cryptographic protocols. Recent papers have proven that computational security
can be automatically verified using the Dolev-Yao abstraction. We extend these results by adding a
widely used component for cryptographic protocols: Diffie-Hellman exponentiation. Thus our main
result is: if the Decisional Diffie-Hellman assumption is verified and the cryptographic primitives
used to implement the protocol are secure, then safety in the symbolic world implies safety in the
computational world. Therefore, it is possible to prove automatically safety in the computational
world.
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1 Introduction

Historically, verification of cryptographic protocols has been separated in two distinct braigyebolic ver-

ification of cryptographic protocols, originates from the work of Dolev and Y&d.[ The essential part of this
approach is the perfect cryptography assumption that can be roughly summarized as follows: messages are rep-
resented as algebraic terms, it is impossible to decode an encrypted message without the inverse key, fresh nonce
creation is perfect, that is, nonces range over an infinite domain and freshness is absolute, the same holds for key
creation. In theeomputational approaclcryptographic primitives operate on strings of bits and their security is
defined in terms of high complexity and weak probability of succegst] of any attacker. Protocols as well

as attackers are randomized polynomial-time Turing machines. This computational approach is recognized as
more realistic than the symbolic approach, however, its complexity makes it very difficult to design automatic
verification tools.

There has been a recent trend in proving that the symbolic model is a sound abstraction of the computational
model. Soundness means that a computational attack that has non-negligible probability can be mapped to a
symbolic attack. In other words, the non-existence of a symbolic attack implies that any computational attack
has a negligible probability. Obviously such soundness result cannot be established without any assumption on
the cryptographic primitives. Therefore, the seeked results are of the form: if a protocol is secure in the symbolic
model and the cryptographic primitives used to implement it verify some given computational security proper-
ties, then this protocol is secure in the computational model. The quest for this kind of results has probably been
initiated by the work of Abadi and Rogawa¥][ This work essentially shows that, if the underlying symmetric
encryption scheme satisfies some computational conditions then symbolic indistinguishability implies computa-
tional indistinguishability. In this work passive adversaries, that do not interact with the security protocol, are
considered. Soundness of the symbolic model has soon been generalized to active adversaries by Backes et al.
in [2]. The same authors also extended the soundness result to a wide class of cryptographic primitives such as
digital signature or symmetric encryptiofi]][ Also [20, 19, 18] relate a symbolic model to the computational
although a different one.

Although these results encompass a large number of protocols, they do not apply to protocols that include
Diffie-Hellman key exchange schema as SSH and T1.g.[On the other hand, recently, symbolic verification
of protocols within the symbolic model has been extended to protocols with Diffie-Hellman exponentiation
showing that the existence of attacks is an NP-complete proliieri]. Moreover, in the computational world,
efforts have been made to extend the classical Diffie-Hellman sch&fhén[ order to design more general
protocols B, 4].

Therefore soundness of symbolic verification when considering Diffie-Hellman exponentiation is an interest-
ing and challenging problem. To our knowledge, there is hardly any work on the soundness of the symbolic model
in presence of Diffie-Hellman exponentiation. A notable exception is the work by Jonathan Herzég ][
where he provides a symbolic model and shows that any attack in this model can be mapped to an attack in the
computational model.

In this paper, we provide a symbolic model close to the Dolev-Yao model, that deals with protocols using
Diffie-Hellman exponentiation as well as symmetric encryption. We prove that this symbolic model is a sound
abstraction of the computational one in the sense explained above. Our result applies to protocols that use
products in exponents and Diffie-Hellman values, that is exponentiations, as symmetric keys. In this paper,
we only consider symmetric keys but extension to other primitives (é&}) uch as signature, asymmetric
encryption and hashing is straightforward. To prove our result, we introduce new security criteria inspired from
the Decisional Diffie-Hellman assumption, chosen-plaintext security and selective forgery. These criteria are of
interest on their own, especially the Dynamic Decisional Diffie-Hellman assumption.

Outline of this paperThe next section introduces variations of the classical Diffie-Hellman problem. Then
section 3 considers a security criterion that combines modular exponentiation as in Diffie-Hellman and classical
criteria for encryption scheme. Section 4 introduces cryptographic protocols with modular exponentiation. Com-
putational and symbolic semantics are given as well as adversary models. This allows us to prove soundness of
the symbolic adversary model in section 5. Finally, a conclusion of this paper is drawn.
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2 The Diffie-Hellman Problem

For the remainder of this document, 1ghe the security parameter. L&tbe a cyclic group of prime orderand
let g be a generator afs. ¢ is assumed large, i.e. its number of digits is linean.inMe suppose that everyone
knowsg, G andg.

An adversary is a random Turing machine which execution time is polynomially boundedmadversary
tries to solve some challenge related to a security criterion. The security critetienfisdif for any adversary
A, its advantage is negligible. Negligible means that for any natuthkere exists), such that for any) > nq,
[Adv(A)| <n°.

To illustrate this notion of advantage, let us consider the simplest form of the Diffie-Hellman scheme. Two
agents4 and B want to create a shared secret valdeandomly chooses an elemenin [1, ¢q] and sendg”® to
B. B also chooses an elementn [1, ¢] and sendg? to A. ThenA and B can both compute the shared value
g®Y. However, it should be hard for any adversary to comptitefrom ¢g* andg¥.

Formally, theComputational Diffie-HellmafCDH) assumption is that for any adversady the advantage
of A defined thereafter is negligible.

AdvePH(A) = pr (A(gx, g¥) — g™

zy & [Lq])

However, this computational assumption does not immediately guarantee any secrecy progétty bon
may be feasible to compute the first bitsgd? but infeasible to compute its whole representation. Thus, there
exists a stronger assumption: frgfhandg?, it is impossible to get any information on the shared segtét

The Decisional Diffie-Hellmar{DDH) assumption is that for any adversady the advantage ofl defined
thereafter is negligible.

AdvPPT(A4) = pT<A(gI,gy,gzy) — 1’1:,1/ & [LQ]) *pT(A(g“’,gy,g“) —1|z,y,r & [Lq})

If this assumption holds, an adversary is not able to distinguish the shared secret from a random information with
non-negligible probability.

The Diffie-Hellman assumption has been generalized in different ways: by authorizing more than two
agents §] or specifying different related challenged.[ Here, we introduce a dynamic version that is more
general than the group version. The idea is that there are an unbounded number of challeflgesdversary
can ask for the exponentiation of any productpfind has to answer an exponentiation that it did not ask before.
For example, the adversary can ask first §6r*2 then for g*2 then it may solve the challenge by outputting
g®*. To ask for exponentiations, the adversary gives a finite list of integers (with no repetition) to an oracle and
receives the exponentiation of the product:pivhich index appears in the list.

Letn be an integer greater or equaliton is the bound on the request size. Like before, the computational
version is more simple than the decisional one. Dgaamic Computational Diffie-HellmgidCDH,,) assump-
tion is a generalization of CDH. There are an unbounded number of challepgésch are random numbers.

The adversaryd has access to an oradie This oracle takes as argument a finite subfsef N (which size is
lower thann) and returngIlic= * (as soon as there are no possible confusion on:thgllic= *i is denoted by
g¥). At the end,A returns an element of G and another finite sub-sét’ of N (which size is also lower than
n). and.A wins its challenge iffE’ has not been submitted to oradleandv = ¢¥ . The advantage ofl is the
probability that it wins its challenge.

Adv(A) = pr (A/F — (g7 B

T; & [LQD

The DDH assumption is strong enough to imply this dynamic assumption. Note that it is not clear whether
CDH implies DCDH,.

Proposition 2.1 If the DDH assumption is verified, then the DCRPHEssumption is also verified.

Proof: See appendiA. ]
A decisional version of DCDHlis useful to prove our main results. TBgynamic Decisional Diffie-Hellman
(DDDH,,) assumption is the decisional version of DCRH bit b is generated and the adversary tries to guess its
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value. The oraclé” contains the previous oracle that compujésfrom E (these are callestandard requesjs

The adversary can also ask fdnallenge requestst submits a finite sub-set’ (size lower tham) of N and
receivesy”’ if b = 1 andg” for some random otherwise. This time, the restriction is that any sub-set can be
submitted only once té¢'. The advantage ofl is given by:

Adv(A) =pr(A/F = 1b=1) — pr(A/F — 1|b = 0)

For both dynamic assumptions, an important point is that as the adversary has a bounded execution time, it
can only access a finite numberxgf Hence probabilities are still defined on finite domains.

Proposition 2.2 If the DDH assumption is verified, then the DDRldssumption is also verified. Reciprocally,
if the DDDH,, assumption is verified then so is DDH fer> 2.

Proof: See appendiA. ]

Letrs be an integer. For the rest of the document, DDDH is used instead of DDand any request related
to an exponentiation only accepts argument which size is lowerithan

A straightforward extension would be to allow lists with repetition as oracle’'s argument. However, as noted
in [4], the equivalence between DDH and such extension is a difficult yet unsolved problem. Moreover, this
restriction is not really relevant when considering protocols.

3 Melting SYM-CPA and DDH

A symmetric encryption scherS€ = (KG, £, D) is defined by three algorithms. The key generation algorithm

KG is a randomized function which given a security parametentputs a key:. The encryption algorithré is

also a randomized function which given a message and a key outputs the encryption of the message by this key.
Finally the decryption algorithrd takes as input a key and a cypher-text and outputs the corresponding plain-
text, i.e.,D(E(m, k), k) = m. The execution time of the three algorithms is assumed polynomially bounded by

7. Moreover, we ask that if is randomly sampled frorfi, ¢], then the key generated #§G usingg” as random

coins has the same distribution as keys generatdddusing classical random coins.

Security criteria are introduced using the game formalism giveriéh [A security game is defined as an
experiment involving an adversary. The experiment proceeds as follows. First some pardrastagenerated
randomly. The adversary is executed and can use an draelsich depends of. At the end, the adversary has
to answer a string of bits which is verified by an algorithfrwhich also use$ (e.g. 6 includes a bib and the
adversary has to output the valuebdf

3.1 Security Game
A gamey is a triple(©; F'; V') where

e Ois a PRTM (polynomial random Turing machine) that randomly generates some chaléogexam-
ple, a bitb and a pair of key(pk, sk)).

e F'is a PRTM that takes as arguments a string of basid a challengé and outputs a new string of bits.
F represents the oracles that an adversary can call to solve its challéfigedenotes the execution of
adversaryA that may call oracld’ using £ in its code.

e VV is a PRTM that takes as arguments a string of biémd a challengé and outputs either true or false.
It represents the verification made on the result computed by the adversary. The answer true (resp. false)
means that the adversary solved (resp. did not solve) the challenge.

Note that® can generate an arbitrary number of parametersfaodn represent an arbitrary number of oracles.
Thus, it is possible to define games with multi®eand F'. As soon as there is no risk for comprehension, we
use the same notation for the challenge geneftand the generated challen@éboth are denoted usir).
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The advantage of an adversafyagainsty is
Adv’y(n) = 2.(pr(Exp)(n) = true) — PrRand")
WhereExp is the Turing machine defined by:

Experiment Exp(n):
0—0(n)
d—A/n,As.F(s,0)
return V(d, 6)

And PrRand” is the best probability to solve the challenge that an adversary can have without usingroracle

Formally, Pr Rand” is the maximum opr(Expl( (n) = true) where A ranges over any possible PRTM apd
is (©;0;V) (0 is an oracle that always answer the same reg)lt,

A gamey is saidsafeif for any PRTM.A, Adv’,(n) is a negligible function in). Properties and a reduction
theorem for games appear ind.

3.2 Patterns

Patternsare first order terms which extend bit-strings with pattern variables. These variables represent the dif-
ferent challenge secret information and are denotefkfyfor keys (this asks the oracle to replace the pattern
variable by the value of symmetric kéy) and[V;] for nonces used. Variables can be used as atomic messages
(data pattern) or at a key position (key pattern). When a left-right oracle is given a pattern term, it replaces
pattern variables using the corresponding values and encodes the so-obtained message. More formally, patterns
are given by the following grammar wheleis a bit-string and is an integer.

pat = (pat,pat) | bs | [Ni] | [ki] | {pat}rey | exp(prod)
key == bs|exp(prod) | [ki]
prod = bs|[N;]|prod- prod

This grammar defines general patterns. Patterns that only use symmetric encryption as cryptographic primitive
are calledsymmetric patterns

The computation (valuation) of a pattern is easily defined recursively in a caghéssbciating bit-string val-
ues to the different variableg.associates to each integex symmetric keyy (¢) and a bit-string v (). The val-
uation produces a bit-string and it uses the symmetric encryption algafithihe concatenation denoted by the
operator, the exponentiation algorithzp (from G x N to (3) and the product algorithiRrod (from N x N to

v?[f?Z; i Zj(i) v({p}r,0) = E(v(p,0),v(k,0))
s 18 — o v(exp(p),0) = Ezxp(g,v(p,0))
U([Nz]ae) = GN(Z) U(pl - Do 9) — P?“od(v(pl 9) U(pg 9))
v({p1,p2),0) = v(p1,0).v(p2,0) ’ ,0),v(p2,

3.3 N-SYM-CPA

The N-SYM-CPA criterion has been introduced formally ind]. It includes both aspects indistinguishability
and authentication that are present in asymmetric encryption and digital signature respectively. Therefore, our
criterion for symmetric encryption is in a combination of IND-CPA and selective forgery. Thel¢asel is
similar to the IND-CPAA INT-CTXT criterion described ind]. However, we reformulate this in our formalism
in order to add the Diffie-Hellman part.
The N-SYM-CPA criterion isyy = (©; F; V) where® generatesV symmetric keys and a bt F' gives
access to one oracle for each key: a left-right encryption oracle that takes as argument a pair of symmetric
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patternspato, pat1) and outputpat, completed with the secret keys(pats,, 0)) and encoded withk;. There is
an acyclicity hypothesis regarding keys: the encryption oracle related tbwesks only on pair of symmetric
patterns(patg, pat1) such that for any in var({(pato, pat1)), ¢ < j.

Finally, V' is composed of two partst;yp returns true when the adversary returnsthil’y yr returns
true when the adversary outputs a message encoded by one of the symmetric key and this message has not been
produced by an encryption oracle. Thens satisfied if;yp or Vy yr is satisfied. We require that there is no
string that satisfies botti; y p andVy 7 (this can be done by asking the name of the challenge together with its
solution to the adversary). The criterion related to INB, F'; V;np) (resp. to UNKO; F'; Vi nr)) is denoted
by N-SYM-CPA/IND (resp.N-SYM-CPA/UNF).

A symmetric encryption schen®e is said N-SYM-CPA iff for any adversaryd in PRT M, Adv}gA(n)
is negligible. There exist some algorithms strongly believed td/b8YM-CPA.

Note that left-right oracle can be used witt, m2) wherem, andms have different sizes. This aspect is
discussed in1].

3.4 N-DH-SYM-CPA

The N-DH-SYM-CPA security criterion is an extension &-SYM-CPA to general patterns.

The N-DH-SYM-CPA criterion isyy = (©; F; V) where© randomly generated’ symmetric keys N
noncesN; to Ny and a bith; F' gives access to one oracle for each key: a left-right encryption oracle that takes
as argument a pair of patterfigaty, pat;) and outputgat, completed with the secret keys(paty, 6)) and
encoded withk;. Moreover ifpaty or pat; contains §N;] and this is replaced by the value definedin

An other oracle is related to the Diffie-Hellman part. The adversary can submit a finite sub$éf and
receivesy” (i.e. gllicr 0x(9)),

Finally, the last oracle takes as argument a finite subsét ahd a pair of pattern§atg, pat). It outputs
patternpat, encoded using ke¥r. kg is produced byCG using¢? as random coins, thus it is specific to a
givenFE.

There are a few restrictions on how the oracles may be cajtéctan be asked iff no left-right encryption
usingkg has been asked. There is also an acyclicity hypothesis: there exists a total order among nonces and keys
denoted by > -. If z > k thena cannot be asked in a pattern submitted to the oracle related to kky > N;
thenz cannot be asked in a pattern given to an oracle related té keayherei € E.

Finally, V' is composed of two partst;yp returns true when the adversary returnsthil/; y returns
true when the adversary outputs a message encoded by one of the symmetric key and this message has not been
produced by an encryption oracle. Thenis satisfied ifV;yp or Vyyr is satisfied. We require that there
is no string that satisfies boti; yp and Vi yr. The criterion related to INOO; F; Viyp) (resp. to UNF
(©; F; Viynyr)) is denoted byV-DH-SYM-CPA/IND (resp.N-DH-SYM-CPA/UNF).

A symmetric encryption schem&¢ is said N-DH-SYM-CPA iff for any adversary4d, Advly ,(n) is
negligible.

The main result concerning this new criterion is that it is equivalemt®Y M-CPA if the Decisional Diffie-
Hellman assumption holds.

Proposition 3.1 If the symmetric encryption scher§€ is 1-SYM-CPA and DDH is verified, the$¢ is also
N-DH-SYM-CPA for any integel .

Proof: See appendiB ]

This last proposition linksV-DH-SYM-CPA to standard notions in the computational world. Moreover, the
proof of our main theorem is greatly simplified by assuming that the encryption scheme used in the implementa-
tion is N-DH-SYM-CPA.

For simplicity’s sake, we only considered a bounded number of challenges. However, using the technique
presented in18], one can easily extend this result to a number of challenges that is polynomjalAs our
protocols only use a fixed number of challenges, this is not necessary in this document.
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4 Protocol Models

4.1 Messages and Deduction

The symbolic model is an idealized representation of cryptographic protocols. The main abstractions are that
nonces values cannot be predicted and that it is impossible to decrypt an encoded message without knowing
the inverse key. In this model, messages are represented by first-order termss, léd ANE and KEYs be

disjoint countable sets of, respectively, identities, nonces, exp-nonces and key nam&sNL &Y, andkey be
meta-variables over these sets.

msg = Ne|N|[A[{msg}tiey | (msg, msg) | exp(prod)
key == K |exp(prod)
prod = N, |prod-prod

The function symbolgzp and|-] represents modular exponentiation and product. In partidilés,considered
associative and commutative.

We consider the classical Dolev-Yabd adversary and ek’ - m denote that message is deducible from
the set of messagds. This entailment relation is extended to thep operator by adding the two following

rules:
EF N, EF N, EF exp(p)

E+ exp(N,) Etexp(p- Ne)
These new rules seem quite natural in the computational world: it is possible from avawemputey” and
from z andg¥ to computey™V.

The main result of this paper is that the Dolev-Yao model extended with these rules yields a sound symbolic
model meaning that any computational attack with non-negligible probability corresponds to a symbolic attack.

4.2 Description of Cryptographic Protocols and Semantics

For the sake of presentation, we consider protocols that only involve a single role. Moreover, this role is only
instantiated in one session. This is done without loss of generality when a bounded number of sessions is
considered. Indeed, each interleaving of the actions of the different participants can be seen as a role and the
different interleavings correspond to different protocols.

Thus, a protocol is described by a list of actions which are either emissiam receptior?m of a message
m. To make protocols readable, we use the usual BAN syntax. For example, a version of Diffie-Hellman protocol
between two rolegl and B is:

A— B : exp(Na)
B—A : exp(Np)
A— B : {A7 B}emp(NA-NB)

The session that involves agentsand B is represented by the simplified protocol:

lexp(Na) Texp(x) lexp(Np) Texp(y) YA, Bleap(Nay) 1A Bleap(z-Ng)

We consider the classical adversary model where the adversary controls the network, receives all thémaytputs (
and submits some forged message to the inguitg .(

Henceforth, let us consider an arbitrary fixed protaggah...1,tx, whereg, is either ”!” or "?” andt; is a
term. There are two different execution models, one for the symbolic setting and one for the computational
setting producing a symbolic and a computational trace, respectivegyn#olic action sequends a list of
actionss m wheres is either? or ! andm is a ground (closed) message.spmbolic tracds a symbolic action
sequenc¢1ml...3§§€m§i with k&’ < k that satisfies the following conditions:

1. There exists a ground substitutiersuch that for any, ¢;oc = my;
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2. For anysi, if 1, is 7?7, thenm; is deducible from the previous messages to m,;_; and the initial
knowledge of the adversary),i.e.,
Eo,ml, ceey My 1 - my;.

The setE, contains the atomic messages ofthgs that do not appear in arty, i.e. £y = |J, atoms(m;)\
U, atoms(t;).

The setrace(IT) contains the possible traces for protoBblOur symbolic semantics is essentially the one used
in [9], where it is shown that secrecy is an co-NP-complete problem.

A computational action sequencea list of actions: bs wherebs is a bit-string and: is either”?” or ”!”.
A computational traceés the result of the interaction of an adversatywhich is a polynomial random Turing
machine, and the protocol. This interaction is defined using the Turing maéhine A, IT). Since we are
interested in relating the symbolic and computational semantics we defiae in such way that along the
computational trace it outputs a corresponding symbolic action sequence. We then show that the symbolic action
sequence is a trace except for negligible probability. The reader should be convinced that producing the symbolic
action sequence by no means interferes with the computational semantics.

To simplify the presentation of thBxec algorithm, we only give pseudo-code using the following functions:

e init(IT) generates the keys, nonces and exp-nonces that are chosen by the digtoeal those in
atoms(I1), and not by the adversary. It returns a substitufioassociating bit-string values to these
elements.

e parse(bs,t,d,0) parses the bit-strings using prototype and knowledge frond, it returns the updated
version off as well as an updated symbolic substitution

e concr(m,f) concretizes message using knowledge frond and returns the corresponding bit-string.

e compl (o) completes the symbolic substitutierby associating remaining free variables to a distinct fresh
nonces.

The Exec algorithm uses two substitutions: the symbolic substitutiothat links protocol variables to
messages and the computational substitution that links variables to strings of bits. Notice that the adversary can
decide to stop interacting with the protocol by providing an answer other than an updated meemorgnd a
bit stringbs when an actior?t is to be executed.

Algorithm  Ezec(A, {1n1...5,nk):
0 — mit(ilnl...iknk)

mem «— ||
for iin [1, k] do
if 1, =!then

bs — coner(n;, 0)
mem «— A(bs, mem)
te < append(;bs, t.)
else
X — A(mem)
if X = bs, mem then
0,0 — parse(bs,m;,0,0)
t. <— append(i;bs,t.)
else
goto done
done
o — compl (o)
return (f;mq..5;mi—1)o, te
The next proposition relates precisely the computational trace and symbolic action sequefbe:thait-

puts. A computational track is apossible concretizationf a symbolic action sequencg if there exists a
computational substitutiofi such that one of the possible valuatiortgfusingé is t..
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Proposition 4.1 Let A be an adversary andll a protocol. If Exec(A,II) outputsty, ., thent. is a possible
concretization of ;.

5 Soundness of the Symbolic Model

In this section, we show that the symbolic sequence action producBady( A, IT) is a symbolic trace except for
negligible probability. Together with Propositidni, this implies that only computational traces with negligible
probability might not correspond to symbolic traces.

To do so, it is important to characterize when a symbolic action sequemg &symbolic trace. Lefy
be a set of messages. Then, &eys(E) denote the set of keys (including exponentiations) that are deducible
from E. Moreover, ledec(E, K) denote the set of messages deducible from messadeasing unpairing and
decompositions with keys iK. Then, we have the following:

Proposition 5.1 Let F be a set of messages andbe a message. K ¥ m then, one of the following holds:

e There exists a messa@e } ., in dec(m, keys(E)) such thatkey is not inkeys(E) and {n} e, is notin
dec(E, keys(E)). This corresponds to the case where the adversary fdrgés.,, -

e There exists a kel or a nonceN or an exp-nonceV, or an exponentiatiorzp(p) in dec(m, keys(E))
that is not indec(E, keys(E)). This corresponds to the case where the adversary guesses a secret value
or breaks an encryption.

There are a few restrictions over protochlgonsidered. These restrictions are defined in the symbolic world
(as they are easier to check with automated tools).

1. Keys and exp-nonces that are not chosen by the adversary remain secret throughout the protocol execution.
Moreover, exponentiations that are used as keys also remain secrét.bedghe set of such exponentia-
tions, keys and exp-nonces.

2. There exists an order among exp-nonces and keys fi@uch that ifu < v then for any symbolic trace,
v cannot appear encoded by a key usin@he key is exactly: if u is a key, if it is an exp-nonce, the key
is an exponentiation using). This is the usual acyclicity condition on keys.

3. No execution can lead to sendp(N, - N, - ...) whereN. is an exp-nonce of.

4. Whenever a reception efcp(x) occurs, either: is known by the honest parties arp(z) is signed by a
key from S.

Among these conditions the last one seems the most restrictive. Let us discuss it. In general, the Dolev-Yao
abstraction is not a sound abstraction of the computational model. To illustrate this, let us consider the protocol
?exp(x) lexp(x - N) and the groufs of quadratic residues ové/m? (as introduced inq]). Itis clear that a
symbolic adversary cannot dedufe A computational adversary, however, can subimitm for exp(z). Then
it receives(1 + m)"Y mod m? which is equal to(1 + N.m) mod m?. Therefore, the adversary can deduce
information on the value aW (i.e. the value ofV mod m). That should not be possible as the DDH assumption
is classically assumed true @i

There are at least two other ways to solve this problem:

e A solution is to strengthen the DDH assumption. Paramgtsn also be chosen by the adversary. This
assumption is less classical. It does not hold for quadratic residue.

e Else, we could put restrictions on protocols and adversaries. For example, there are no problems for a
passive adversary.

Our restriction given as hypothegigs a more subtle restriction on protocols than the passive case. Itis quite fair
as Diffie-Hellman does not provide any authentification. In particular, this restriction is true for the simplified
version of TLS that appears in the introduction df].
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The next theorem is our main result : traces produced by a computational adversary can be abstracted to
symbolic traces with overwhelming probability. LHtbe a protocol an& € be the encryption scheme used to
implementExec.

Theorem 5.1 If the DDH assumption holds ang is SYM-CPA then for any concrete adversaty
pr(ty,te — Exec(A,II) and t; ¢ traces(Il)) is negligible

Proof: Let us consider an adversadysuch that the probability to create a symbolic trace that is notices(I1)
is not negligible. Then it is possible to ugeand a modified version of thExec algorithm in order to gain a
non negligible advantage agaim$tDH-SYM-CPA. This is detailed in append& ]

Using this main theorem, it is possible to relate properties in the symbolic world to properties in the com-
putational world. These properties can be verified in the symbolic world and then hold in the computational
world. This has been done for some trace properties in40] such as authentication and a weak version of
secrecy. But also a stronger version of secrecy, called SecNonce, can be vetifexdgpt for exp-nonces. The
SecNonce property can be defined as a game that goes as follows: two AgranesN; are choosen randomly.

The secrecy of a honce namémeans that an adversary cannot distinguish between the protocol executed with
Ny and NV, taken as values faN. The SecNonce property for exp-nonces is not correctly abstracted by non-
deductibility in the symbolic model. Indeed, if we consider the protdeop(N), then if an adversary is given

two exp-nonce valued/, and NV, it can easily guess which value was used in the protocol (as exponentiation

is deterministic). Hence the SecNonce property can only be used to abstract secrecy of nonces (as they do not
appear in exponentiations).

6 Conclusion and Future Works

We prove soundness of a symbolic model that deals with Diffie-Hellman exponentiation. Although we only
considered Diffie-Hellman exponentiation and symmetric encryption, adding other primitives such as asymmetric
encryption, hashing or digital signature should not be complicated. In particihuges a specific technique
to combine some security primitives and their related criteria.

As future work, we plan to investigate automatic verification of the protocol restrictions in the symbolic
world. With such verification, it would be possible to entirely verify a protocol with an automatic prover.
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A Proofs for Propositions2.1and 2.2

Proposition 2.1: If the DDH assumption is verified, then the DCRlssumption is also verified.
Proposition 2.2 If the DDH assumption is verified, then the DDRtAssumption is also verified. Reciprocally,
if the DDDH,, assumption is verified then so is DDH for> 2.

We first prove propositio2.2. Proposition2.1is a direct consequence. The ordeused between pairs of
naturals is the lexical order.

DDH = DDDH : let A be an adversary against DDRQQFand P its polynomial bound. Let andj be two
integers in[1, P(n)] such that < j. We build some adversarids; ; against DDH using4 and a modified
version of theF” oracle denoted by ;.

Adversary B, ;(X,Y, Z)
b & (0,1}
b/ — A/Fi’j
return b=1"¥

OracleF; ; usesX, Y, Z and the random bii to simulate oraclé’. The application of; ; to E is computed as
follows.

e For anyk in IN different from: andj, ;. is randomly sampled ifi, ¢] when necessary.
e Fork andk’ in N, a valuez,, ;- is also randomly sampled ji, ] when necessary.

The application off; ; to E returnsg” for some randomly sampledif b = 0. Else ifb = 1, it returnsf(g, F)
which is recursively defined by:

e For the lowest paifk, k') in E such that(k, k') < (i,7), f(g, E) returnsf (g, E \ {k, k'})%*+".

If  andj appear inE, thenf(g, E) returnsf(Z, E\ {i,7}).

If only ¢ appears irF, thenf (g, F) returnsf(X, E \ {i}).

If only j appears inE, thenf(g, E) returnsf (Y, E \ {j}).

For any remaining in E, f(a, E) returnsf(a, E \ {k})®*.
e f(a,0) returnsa.

Then the advantage @&; ; is defined by:
AClV(Bi’j) = p?“(.A/F” WinS‘Z = gmy) — pT(A/FM WinS|Z = gr)

Wheni = 1 andj = 2 andZ = ¢*¥, the situation is the same as whdnis confronted toF’. Moreover, let
(¢',j") be the successor @i, j) for the lexical order{ andj are bounded byP(n)), then the casé; ; when
Z = ¢" is similar to the casé€’, j') whenZ = ¢®¥. By summing these advantages, we get:

> Adv(Bi;) = pr(A/F wins) — pr(A/Fp)_1,p() Wins)
1<i<j<P(n)

2( 3 Adv(Bi,j)) = Adv(A) — Adv(A°)
1<i<j<P(n)
The first advantage is related.tbagainst DDDH, and the last probability is the advantage of a modified version

of A against DDDH,, /5|11 Namely.A° simulatesA confronted to oraclé'p(,_1,p(,,). HenceA? only makes
requests of size lower tham /2| + 1 (|| denotes the integral value oj.

Verimag Research Report 67 1116



Yassine Lakhnech and Laurent Mazar

Now, we proceed by induction anto prove our result. Forn = 1, the requests can only have size one and
ask forg® for somei. The adversary has to distinguish betwgé&nandg” without any other information omn,.
Therefore, the advantage of any adversary against DDBH.

Let us suppose that DDDHolds for any: lower thann. Then let A be an adversary against DDQH
which execution is bounded by polynomigl There exists an adversadf against DDDH,, /21 and P(n)
adversaries against DDH such that:

2( 3 Adv(zsi,j)):Adv(A)—Adv(AO)

1<i<j<P(n)

As DDH and DDDH,, /3|11 hold (|,,/2j+1 < n), the advantage ofl is negligible. The assumption DDOH
hold.

DDDH = DDH : Let A be an adversary against DDI. is an equivalent adversary against DDPKfor
n > 2):

Adversary B
X « F(standargd{1})
Y « F(standard{2})
7 «— F(challenge{1,2})
b— AX,)Y,Z)
return b

The advantage off and B are equals. As we assume DDDH, the advantagB & negligible. Hence the
advantage ofd is also negligible.

DDH = DCDH : Let A be an adversary against DCQHThenB is the adversary against DDDHlefined
by:

Adversary B
(v, E') — AJF
v’ «— F(challengeE")
return v =1’

The advantage df is:
Adv(B) = pr(Awinslb = 1) — pr(Awingb = 0)

The first probability corresponds to the advantagelafgainst DCDH. The second one is the probability that
outputsg” wherer is randomly sampled frorfl, ¢] and.A has no other information related to As q is large,
this probability is negligible. Thus the advantagesbégainst DCDH is negligible.

B Proof for Proposition 3.1

Proposition 3.1 If the symmetric encryption schend€ is 1-SYM-CPA and DDH is verified, the§¢ is also
n-DH-SYM-CPA for any integen.
This proof uses the following proposition frome:

Proposition B.1 If the symmetric encryption scher§€ is 1-SYM-CPA, thet&€ is alson-DH-SYM-CPA for
any integem.

For this proof, we introduced two new criteria: the first anen-DH-SYM-CPA is similar ton-DH-SYM-CPA

where the bound on challenge keysniand the bound on challenge noncesris Criterion n, m-DH-SYM-

CPA is the same criterion where the left-right encryption oracles can only be used with strings of bits instead of
patterns.
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We proceed in three steps. First we prove that an encryption schemBlsSYM-CPA if and only if it
is 0, 2n-DH-SYM-CPA. After that we prove that if the DDDH assumption holds and an encryption scheme is
n-SYM-CPA, then it is alsd), n-DH-SYM-CPA. Finally, using our reduction technique, we prove that if an
encryption scheme i§ n-DH-SYM-CPA, it is also0, n-DH-SYM-CPA. From there it is easy to conclude.

Lemma B.1 An encryption scheme isDH-SYM-CPA if and only if it is als0, 2n-DH-SYM-CPA for any:.

Proof: It is possible to build an adversary’ against0, 2n-DH-SYM-CPA from any adversaryl againstn-
DH-SYM-CPA such that the advantages.4fand.A’ are the same. Adversary executesd as a sub-routine.
Oracle calls fromA4 are submitted to the oracle gf' except that wheneved issues a request related to a key
k, A’ replaces the reference koby a reference té(k) wherei(k) is the index of a nonce that does not use.
Moreover, the acyclicity hypothesis is preserved. ]

Lemma B.2 If DDDH,, hold, an encryption is-SYM-CPA implies that it is als@ n-DH-SYM-CPA'’ for anyn.

Proof: Here, we consider the case where patterns can only be strings of bits4 hetan adversary against
0-DH-SYM-CPA. Then we build an adversaiy against DDDH, using.A. A is executed as a subroutine, its
oracle is implemented b¥ that works as follows:

e When asked for exponentiation 6f, 5 issues atandard requedb its DDDH oracle with argument.

e When asked for encryption related £ B issues a&hallenge requedb its DDDH oracle with argument
E. Using the result3 computes the symmetric keys.

As eachE may only be submitted once to the DDDH oradbhas to store the answers of its oracldshas two
ways to win and3 returnsl iff A succeeds.

Adversary B
v & 0,1}
res — A/F
return res = b’ or resis a "fresh” encoding by g

The advantage aB is defined by:
Adv(B) = pr(Awingb = 1) — pr(Awinslb = 0)

The second probability is related to the eveut Wins” whenb = 0. Whenb equals0, keys are generated
randomly. Hence this behavior can be simulated by an adver$aggainstn-SYM-CPA. A° executesA, it
also generates the necessary values for the diffeseriVhen asked for a left-right encryption relateddp.A°
uses the left-right encryption oracle related to a given/kelf also stores the association Bfandk in order to
use the right key for the next oracle calls. Hence, we get:

2.Adv(B) = Adv(A) — Adv(A°)

The advantage df is related to DDDH . The advantage od is againsd-DH-SYM-CPA whereas the advantage
of A° is against-SYM-CPA. Hence the advantage dfis negligible.
]

Lemma B.3 If DDDH,, hold. Then for any: an encryption scheme i§ n-DH-SYM-CPA'’ if and only if it is
0, n-DH-SYM-CPA.

Proof: This proof uses the reduction theorem froid][ This theorem is stated in appendix Let us consider
the 0, n-DH-SYM-CPA criterion and the order between noncés: < Ny < N,,. We first treat the case of the
indistinguishability part of the criterion. A valid partition of this criterion is:

e 0, generates nonck¥,; andd, generates nonces, to IV,, and the challenge bit
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e OracleF; can be cut in two layer& and H using forG the classical left-right oracle relateddp and:

H(bs, 0, 0/2) = <F2(b53 02)7 FQ(bSv 0;»

e The verification oracle only uses biand sof,.

Hence, applying the reduction theoré&i gives us that for any adversad/there exists two adversarig® and
B such that:
[Adv(n)| < 2.]Advy ()] + [Adv . (1)l

Criterion+y is 0, n-DH-SYM-CPA, ~; is 0, 1-DH-SYM-CPA andy, is 0, (n — 1)-DH-SYM-CPA. The acyclicity
hypothesis implies that criteridn 1-DH-SYM-CPA is equivalent td), 1-DH-SYM-CPA.. Hence, using an easy
recursion, we get that there exists some advers#rigsrifying:

[AdvY(n)] <2.) [Advy (n)]
=1

Hence, ify; is safe theny is also safe.

For the UNF part of the criterion, the proof is more straightforward. Mdbe an adversary againgtn-
DH-SYM-CPA/UNF. The adversarg against DDDH, usesA as a sub-routine. At first3 randomly chooses a
subsetE, of [1,n]. With non-negligible probabilityF,. is related to the key thatl finally attacks. After that,
B executes4 and simulates the necessary oracles using challenge requegét fand standard requests for the
other exponentiations. Finalli returns one ifA correctly solved its challenge. As usual, the advantad® ief

Adv(B) = pr(Awinslb = 1) — pr(Awingb = 0)

The casé = 1 corresponds to a standard executiotdofvhereas in the case= 0, A is confronted to a random
key if it tries to attackE.,..
Adv(A) < Adv(B) 4+ 2".Adv(A°%)

The advantage df and.A are respectively related to DDDHand1-SYM-CCA. Therefore the advantage 4f
is negligible. [

We have that DDH implies DDD§L Moreoverl-SYM-CPA impliesn-SYM-CPA. Hence DDH and-SYM-
CPA imply 0, 2n-DH-SYM-CPA and sa:-DH-SYM-CPA.

C Proof of the Main Theorem

Theorem: Let II be a protocol. LetS€ be the encryption scheme. If the DDH assumption holds&ds
SYM-CPA then for any concrete adversaty

pr(te,ty — Exec(A,II) and ts ¢ traces(II)) is negligible

In this section, we suppose that all the nonces randomly generated have different values. This is justified in
appendixD. Let.A be an adversary such that its probability to create a symbolic trace that isimatis (1) is
not negligible. LetV be a bound on the number of different keys and noncedImay use. Usingd, we build
an adversaryB againstV-DH-SYM-CPA. B randomly executes one of the two machilfgsand53; .
Adversaryl3, handles the case where the trace is not possible becauseuwtput a fresh symmetric encryp-
tion, an element of or a fresh exponentiation. It is defined Byrec(.A, IT) with modified versions of thénit,
parse andconcr primitives.

e Exp-nonces and keys froMare the challenges of our criteriov DH-SYM-CPA. Hence only the remain-
ing nonces and keys have to be generateéhlyy.
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e concr uses oracles to concretizes messages encoded by a challenge key or challenge exp-nonces. These
symbolic messages and their concretization are stored spdhat can use them. The first three hypothe-
sis over protocols make it possible to use these oracles in every possible cases if the beginning of the trace
is possible.

e parse parses the messages as usual. As it cannot decrypt messagended by challenges there are
two possibilities: eithefn has been generateddnncr and its symbolic version is used by parserois
a "fresh” encryption. In this last casBy wins its challenge against the UNF part/gtDH-SYM-CPA. If
By receives a challenge exp-nonce or a key, it can deduce the value of the challengadi, wins its
challenge. The same thing occursjf receives an exponentiation thatcr did not build using its oracle
(the way to recoveb is detailed further in this section).

When B receives an exponentiatigff and has to outpuy®, then our hypothesis over protocols allow two
possible casest is known byB (either a bit-string or a challenge exp-nonce), hence the exponentiation oracle
can be used to generaj&’; or ¢” is signed by a key iy, hencel3 generated” and also knows.

Finally, if Fxzec terminates thei§, plays against IND and returns randondlypr 1.

AdversaryBB; works exactly like3y. It handles the case whew output the value of a nonce that it should
not know. For that purposé&; randomly chooses a nonéé among theP(7) possible nonces. For this nonce,
two values are generatéd, and N;. B, uses its left-right encryption oracle to simulate the protocol usigg
whenb = 0 and N; whenb = 1 (this technique was initiated ir2{]). If A reveals the value aolV, thenB;
deduce the value d@f ElseB; returns randomly) or 1 for the value ob.

According to propositior.1, if Ezec outputst, that is not intraces(II) then either3, or one of theP(n)
possibleB; wins its challenge. The advantagel®tan be approximated by:

(1+ P(n)).|Adv(B)| > pr(t,ty — Ezec(A,1I) and t; ¢ traces(II))

However, asS¢€ verifies N-DH-SYM-CPA the advantage @& is negligible. Therefore, the probability to output
a trace that is not itraces(II) is also negligible.

There is one last thing to detail: how c#hy deduce the value df from a challenge nonce, key or an
"interesting” exponentiation. I3, knows a secret symmetric key, it uses the associated left-right oracle with
(0, 1) to get the value of. If By knows nonceV, then it asks fop” whereF is a set such thas, did not ask for
g? N before. Then it uses the left-right oracle with 1) andg”® as key. Finally, if3, knowsg¥, then it uses
directly the left-right oracle related tg” (this is possible ag” is not the output of the exponentiation oracle).

D Nonces are Probably Different

We consider that anytime a computational adversary picks up some nonces, they are different one from another.
The adversary can only get a numberof nonces that is polynomial in and we suppose that the numbeof
possible nonces is exponentialijnsom < n). Let p be the probability that the adversary gets two times the

sSame nonces.

nn—1 n—(m-—1
1—p=— ( )
n n n

Thus, we have the following inequalities:

n

Proposition D.1 For anyz € [0,1[ anda > 1,

(l—x)a21—x.a
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Proof: Consider the functiorf (z) = (1 — x)a — 1+ z.a. Derive it twice to get the result. ]
Applying the proposition, we get:
m.(m —1)
0<ps ——
n

As m is polynomial andn is exponential iny, p is negligible inn. When considering an adversary that has
a non-negligible advantage against something, it still has its advantage if we consider only executions where
nonces are distinct.

E Reduction Theorem

In order for the paper to be self-contained, the main theorem ffGiig given in this appendix:
Lety = (01, 09; F1, Fy; V3) be a criterion. Lety; and~, be two criteria such that:

e There exist two PRTM~ and H such that:

G(H(S, 92,95), 1,01) = F1 (8,91, 92)
G(H(S,QQ,H’Q),O,(%) = F1(8,01,9/2)

OracleG operates on a string of bits, thus it must receive two challenge information) arito; .

o vy = (02; Fy; Vo) and~y; = (b, 01; G;verify,) whereb generates a random bit andri f;, is the PRTM
verifying that the output of the adversarybisveri f;(s,b,01) = (s < b).

o F5(s,01,05) andVs(s, 61, 62) do not depend ot .
Then we say thalty , v2) is avalid simplified partitionof ~.

Theorem E.1 (Simplified Reduction Theorem)Let (1, ~2) be a valid simplified partition of. For any PRTM
A, there exist two PRTML° and B such that

[Adv(n)| < 2.|Advig ()] + [Adv i (1)]
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