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Abstract
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can be automatically verified using the Dolev-Yao abstraction. We extend these results by adding a
widely used component for cryptographic protocols: Diffie-Hellman exponentiation. Thus our main
result is: if the Decisional Diffie-Hellman assumption is verified and the cryptographic primitives
used to implement the protocol are secure, then safety in the symbolic world implies safety in the
computational world. Therefore, it is possible to prove automatically safety in the computational
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1 Introduction

Historically, verification of cryptographic protocols has been separated in two distinct branches.Symbolic ver-
ification of cryptographic protocols, originates from the work of Dolev and Yao [13]. The essential part of this
approach is the perfect cryptography assumption that can be roughly summarized as follows: messages are rep-
resented as algebraic terms, it is impossible to decode an encrypted message without the inverse key, fresh nonce
creation is perfect, that is, nonces range over an infinite domain and freshness is absolute, the same holds for key
creation. In thecomputational approach, cryptographic primitives operate on strings of bits and their security is
defined in terms of high complexity and weak probability of success [14, 5] of any attacker. Protocols as well
as attackers are randomized polynomial-time Turing machines. This computational approach is recognized as
more realistic than the symbolic approach, however, its complexity makes it very difficult to design automatic
verification tools.

There has been a recent trend in proving that the symbolic model is a sound abstraction of the computational
model. Soundness means that a computational attack that has non-negligible probability can be mapped to a
symbolic attack. In other words, the non-existence of a symbolic attack implies that any computational attack
has a negligible probability. Obviously such soundness result cannot be established without any assumption on
the cryptographic primitives. Therefore, the seeked results are of the form: if a protocol is secure in the symbolic
model and the cryptographic primitives used to implement it verify some given computational security proper-
ties, then this protocol is secure in the computational model. The quest for this kind of results has probably been
initiated by the work of Abadi and Rogaway [1]. This work essentially shows that, if the underlying symmetric
encryption scheme satisfies some computational conditions then symbolic indistinguishability implies computa-
tional indistinguishability. In this work passive adversaries, that do not interact with the security protocol, are
considered. Soundness of the symbolic model has soon been generalized to active adversaries by Backes et al.
in [2]. The same authors also extended the soundness result to a wide class of cryptographic primitives such as
digital signature or symmetric encryption [3]. Also [20, 19, 18] relate a symbolic model to the computational
although a different one.

Although these results encompass a large number of protocols, they do not apply to protocols that include
Diffie-Hellman key exchange schema as SSH and TLS [11]. On the other hand, recently, symbolic verification
of protocols within the symbolic model has been extended to protocols with Diffie-Hellman exponentiation
showing that the existence of attacks is an NP-complete problem [9, 21]. Moreover, in the computational world,
efforts have been made to extend the classical Diffie-Hellman scheme [12] in order to design more general
protocols [8, 4].

Therefore soundness of symbolic verification when considering Diffie-Hellman exponentiation is an interest-
ing and challenging problem. To our knowledge, there is hardly any work on the soundness of the symbolic model
in presence of Diffie-Hellman exponentiation. A notable exception is the work by Jonathan Herzog in [16, 15]
where he provides a symbolic model and shows that any attack in this model can be mapped to an attack in the
computational model.

In this paper, we provide a symbolic model close to the Dolev-Yao model, that deals with protocols using
Diffie-Hellman exponentiation as well as symmetric encryption. We prove that this symbolic model is a sound
abstraction of the computational one in the sense explained above. Our result applies to protocols that use
products in exponents and Diffie-Hellman values, that is exponentiations, as symmetric keys. In this paper,
we only consider symmetric keys but extension to other primitives (e.g. [18]) such as signature, asymmetric
encryption and hashing is straightforward. To prove our result, we introduce new security criteria inspired from
the Decisional Diffie-Hellman assumption, chosen-plaintext security and selective forgery. These criteria are of
interest on their own, especially the Dynamic Decisional Diffie-Hellman assumption.

Outline of this paper.The next section introduces variations of the classical Diffie-Hellman problem. Then
section 3 considers a security criterion that combines modular exponentiation as in Diffie-Hellman and classical
criteria for encryption scheme. Section 4 introduces cryptographic protocols with modular exponentiation. Com-
putational and symbolic semantics are given as well as adversary models. This allows us to prove soundness of
the symbolic adversary model in section 5. Finally, a conclusion of this paper is drawn.
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2 The Diffie-Hellman Problem

For the remainder of this document, letη be the security parameter. LetG be a cyclic group of prime orderq and
let g be a generator ofG. q is assumed large, i.e. its number of digits is linear inη. We suppose that everyone
knowsg,G andq.

An adversary is a random Turing machine which execution time is polynomially bounded inη. An adversary
tries to solve some challenge related to a security criterion. The security criterion isverifiedif for any adversary
A, its advantage is negligible. Negligible means that for any naturalc, there existsη0 such that for anyη > η0,
|Adv(A)| ≤ η−c.

To illustrate this notion of advantage, let us consider the simplest form of the Diffie-Hellman scheme. Two
agentsA andB want to create a shared secret value.A randomly chooses an elementx in [1, q] and sendsgx to
B. B also chooses an elementy in [1, q] and sendsgy to A. ThenA andB can both compute the shared value
gxy. However, it should be hard for any adversary to computegxy from gx andgy.

Formally, theComputational Diffie-Hellman(CDH) assumption is that for any adversaryA, the advantage
of A defined thereafter is negligible.

AdvCDH(A) = pr
(
A(gx, gy)→ gxy

∣∣∣x, y
R← [1, q]

)
However, this computational assumption does not immediately guarantee any secrecy property ongxy. It

may be feasible to compute the first bits ofgxy but infeasible to compute its whole representation. Thus, there
exists a stronger assumption: fromgx andgy, it is impossible to get any information on the shared secretgxy.

TheDecisional Diffie-Hellman(DDH) assumption is that for any adversaryA, the advantage ofA defined
thereafter is negligible.

AdvDDH(A) = pr
(
A(gx, gy, gxy)→ 1

∣∣∣x, y
R← [1, q]

)
− pr

(
A(gx, gy, gr)→ 1

∣∣∣x, y, r
R← [1, q]

)
If this assumption holds, an adversary is not able to distinguish the shared secret from a random information with
non-negligible probability.

The Diffie-Hellman assumption has been generalized in different ways: by authorizing more than two
agents [8] or specifying different related challenges [4]. Here, we introduce a dynamic version that is more
general than the group version. The idea is that there are an unbounded number of challengesxi. The adversary
can ask for the exponentiation of any product ofxi and has to answer an exponentiation that it did not ask before.
For example, the adversary can ask first forgx1x2 then forgx2 then it may solve the challenge by outputting
gx1 . To ask for exponentiations, the adversary gives a finite list of integers (with no repetition) to an oracle and
receives the exponentiation of the product ofxi which index appears in the list.

Let n be an integer greater or equal to1, n is the bound on the request size. Like before, the computational
version is more simple than the decisional one. TheDynamic Computational Diffie-Hellman(DCDHn) assump-
tion is a generalization of CDH. There are an unbounded number of challengesxi which are random numbers.
The adversaryA has access to an oracleF . This oracle takes as argument a finite sub-setE of N (which size is
lower thann) and returnsg

Q
i∈E xi (as soon as there are no possible confusion on thexi, g

Q
i∈E xi is denoted by

gE). At the end,A returns an elementv of G and another finite sub-setE′ of N (which size is also lower than
n). andA wins its challenge iffE′ has not been submitted to oracleF andv = gE′

. The advantage ofA is the
probability that it wins its challenge.

Adv(A) = pr
(
A/F → (gE′

, E′)
∣∣∣xi

R← [1, q]
)

The DDH assumption is strong enough to imply this dynamic assumption. Note that it is not clear whether
CDH implies DCDHn.

Proposition 2.1 If the DDH assumption is verified, then the DCDHn assumption is also verified.

Proof: See appendixA.
A decisional version of DCDHn is useful to prove our main results. TheDynamic Decisional Diffie-Hellman

(DDDHn) assumption is the decisional version of DCDHn. A bit b is generated and the adversary tries to guess its
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value. The oracleF contains the previous oracle that computesgE from E (these are calledstandard requests).
The adversary can also ask forchallenge requests: it submits a finite sub-setE′ (size lower thann) of N and
receivesgE′

if b = 1 andgr for some randomr otherwise. This time, the restriction is that any sub-set can be
submitted only once toF . The advantage ofA is given by:

Adv(A) = pr
(
A/F → 1|b = 1

)
− pr

(
A/F → 1|b = 0

)
For both dynamic assumptions, an important point is that as the adversary has a bounded execution time, it

can only access a finite number ofxi. Hence probabilities are still defined on finite domains.

Proposition 2.2 If the DDH assumption is verified, then the DDDHn assumption is also verified. Reciprocally,
if the DDDHn assumption is verified then so is DDH forn ≥ 2.

Proof: See appendixA.
Let rs be an integer. For the rest of the document, DDDH is used instead of DDDHrs and any request related

to an exponentiation only accepts argument which size is lower thanrs.
A straightforward extension would be to allow lists with repetition as oracle’s argument. However, as noted

in [4], the equivalence between DDH and such extension is a difficult yet unsolved problem. Moreover, this
restriction is not really relevant when considering protocols.

3 Melting SYM-CPA and DDH

A symmetric encryption schemeSE = (KG, E ,D) is defined by three algorithms. The key generation algorithm
KG is a randomized function which given a security parameterη outputs a keyk. The encryption algorithmE is
also a randomized function which given a message and a key outputs the encryption of the message by this key.
Finally the decryption algorithmD takes as input a key and a cypher-text and outputs the corresponding plain-
text, i.e.,D(E(m, k), k) = m. The execution time of the three algorithms is assumed polynomially bounded by
η. Moreover, we ask that ifr is randomly sampled from[1, q], then the key generated byKG usinggr as random
coins has the same distribution as keys generated byKG using classical random coins.

Security criteria are introduced using the game formalism given in [18]. A security game is defined as an
experiment involving an adversary. The experiment proceeds as follows. First some parametersθ are generated
randomly. The adversary is executed and can use an oracleF which depends onθ. At the end, the adversary has
to answer a string of bits which is verified by an algorithmV which also usesθ (e.g. θ includes a bitb and the
adversary has to output the value ofb).

3.1 Security Game

A gameγ is a triple(Θ;F ;V ) where

• Θ is a PRTM (polynomial random Turing machine) that randomly generates some challengeθ (for exam-
ple, a bitb and a pair of key(pk, sk)).

• F is a PRTM that takes as arguments a string of bitss and a challengeθ and outputs a new string of bits.
F represents the oracles that an adversary can call to solve its challenge.A/F denotes the execution of
adversaryA that may call oracleF usingF in its code.

• V is a PRTM that takes as arguments a string of bitss and a challengeθ and outputs either true or false.
It represents the verification made on the result computed by the adversary. The answer true (resp. false)
means that the adversary solved (resp. did not solve) the challenge.

Note thatΘ can generate an arbitrary number of parameters andF can represent an arbitrary number of oracles.
Thus, it is possible to define games with multipleΘ andF . As soon as there is no risk for comprehension, we
use the same notation for the challenge generatorΘ and the generated challengeθ (both are denoted usingθ).

Verimag Research Report no 07 3/16
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The advantage of an adversaryA againstγ is

Advγ
A(η) = 2.

(
pr(Expγ

A(η) = true)− PrRandγ
)

WhereExp is the Turing machine defined by:

Experiment Expγ
A(η):

θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

And PrRandγ is the best probability to solve the challenge that an adversary can have without using oracleF .
Formally,PrRandγ is the maximum ofpr(Expγ′

A (η) = true) whereA ranges over any possible PRTM andγ′

is (Θ; 0;V ) (0 is an oracle that always answer the same result,0).
A gameγ is saidsafeif for any PRTMA, Advγ

A(η) is a negligible function inη. Properties and a reduction
theorem for games appear in [18].

3.2 Patterns

Patternsare first order terms which extend bit-strings with pattern variables. These variables represent the dif-
ferent challenge secret information and are denoted by[ki] for keys (this asks the oracle to replace the pattern
variable by the value of symmetric keyki) and[Ni] for nonces used. Variables can be used as atomic messages
(data pattern) or at a key position (key pattern). When a left-right oracle is given a pattern term, it replaces
pattern variables using the corresponding values and encodes the so-obtained message. More formally, patterns
are given by the following grammar wherebs is a bit-string andi is an integer.

pat ::= 〈pat, pat〉 | bs | [Ni] | [ki] | {pat}key | exp(prod)
key ::= bs | exp(prod) | [ki]

prod ::= bs | [Ni] | prod · prod

This grammar defines general patterns. Patterns that only use symmetric encryption as cryptographic primitive
are calledsymmetric patterns.

The computation (valuation) of a pattern is easily defined recursively in a contextθ associating bit-string val-
ues to the different variables.θ associates to each integeri a symmetric keyθk(i) and a bit-stringθN (i). The val-
uation produces a bit-string and it uses the symmetric encryption algorithmE , the concatenation denoted by the
operator·, the exponentiation algorithmExp (fromG×N toG) and the product algorithmProd (fromN×N to

N).

v(bs, θ) = bs

v([ki], θ) = θk(i)
v([Ni], θ) = θN (i)

v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)

v({p}k, θ) = E(v(p, θ), v(k, θ))
v(exp(p), θ) = Exp(g, v(p, θ))
v(p1 · p2, θ) = Prod(v(p1, θ), v(p2, θ))

3.3 N -SYM-CPA

TheN -SYM-CPA criterion has been introduced formally in [18]. It includes both aspects indistinguishability
and authentication that are present in asymmetric encryption and digital signature respectively. Therefore, our
criterion for symmetric encryption is in a combination of IND-CPA and selective forgery. The caseN = 1 is
similar to the IND-CPA∧ INT-CTXT criterion described in [6]. However, we reformulate this in our formalism
in order to add the Diffie-Hellman part.

TheN -SYM-CPA criterion isγN = (Θ; F ;V ) whereΘ generatesN symmetric keys and a bitb; F gives
access to one oracle for each key: a left-right encryption oracle that takes as argument a pair of symmetric
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patterns〈pat0, pat1〉 and outputspatb completed with the secret keys (v(patb, θ)) and encoded withki. There is
an acyclicity hypothesis regarding keys: the encryption oracle related to keyi works only on pair of symmetric
patterns〈pat0, pat1〉 such that for anyj in var(〈pat0, pat1〉), i < j.

Finally, V is composed of two parts:VIND returns true when the adversary returns bitb; VUNF returns
true when the adversary outputs a message encoded by one of the symmetric key and this message has not been
produced by an encryption oracle. ThenV is satisfied ifVIND or VUNF is satisfied. We require that there is no
string that satisfies bothVIND andVUNF (this can be done by asking the name of the challenge together with its
solution to the adversary). The criterion related to IND(Θ;F ;VIND) (resp. to UNF(Θ;F ;VUNF )) is denoted
by N -SYM-CPA/IND (resp.N -SYM-CPA/UNF).

A symmetric encryption schemeSE is saidN -SYM-CPA iff for any adversaryA in PRTM , AdvγN

SE,A(η)
is negligible. There exist some algorithms strongly believed to beN -SYM-CPA.

Note that left-right oracle can be used with〈m1,m2〉 wherem1 andm2 have different sizes. This aspect is
discussed in [1].

3.4 N -DH-SYM-CPA

TheN -DH-SYM-CPA security criterion is an extension ofN -SYM-CPA to general patterns.
The N -DH-SYM-CPA criterion isγN = (Θ;F ;V ) whereΘ randomly generatesN symmetric keys,N

noncesN1 to NN and a bitb; F gives access to one oracle for each key: a left-right encryption oracle that takes
as argument a pair of patterns〈pat0, pat1〉 and outputspatb completed with the secret keys (v(patb, θ)) and
encoded withki. Moreover ifpat0 or pat1 contains a[Ni] and this is replaced by the value defined inθ.

An other oracle is related to the Diffie-Hellman part. The adversary can submit a finite subsetE of N and
receivesgE (i.e. g

Q
i∈E θk(i)).

Finally, the last oracle takes as argument a finite subset ofE and a pair of patterns〈pat0, pat1〉. It outputs
patternpatb encoded using keykE . kE is produced byKG usinggE as random coins, thus it is specific to a
givenE.

There are a few restrictions on how the oracles may be called:gE can be asked iff no left-right encryption
usingkE has been asked. There is also an acyclicity hypothesis: there exists a total order among nonces and keys
denoted by· > ·. If x > k thenx cannot be asked in a pattern submitted to the oracle related to keyk. If x > Ni

thenx cannot be asked in a pattern given to an oracle related to keykE wherei ∈ E.
Finally, V is composed of two parts:VIND returns true when the adversary returns bitb; VUNF returns

true when the adversary outputs a message encoded by one of the symmetric key and this message has not been
produced by an encryption oracle. ThenV is satisfied ifVIND or VUNF is satisfied. We require that there
is no string that satisfies bothVIND andVUNF . The criterion related to IND(Θ;F ;VIND) (resp. to UNF
(Θ;F ;VUNF )) is denoted byN -DH-SYM-CPA/IND (resp.N -DH-SYM-CPA/UNF).

A symmetric encryption schemeSE is saidN -DH-SYM-CPA iff for any adversaryA, AdvγN

SE,A(η) is
negligible.

The main result concerning this new criterion is that it is equivalent to1-SYM-CPA if the Decisional Diffie-
Hellman assumption holds.

Proposition 3.1 If the symmetric encryption schemeSE is 1-SYM-CPA and DDH is verified, thenSE is also
N -DH-SYM-CPA for any integerN .

Proof: See appendixB
This last proposition linksN -DH-SYM-CPA to standard notions in the computational world. Moreover, the

proof of our main theorem is greatly simplified by assuming that the encryption scheme used in the implementa-
tion isN -DH-SYM-CPA.

For simplicity’s sake, we only considered a bounded number of challenges. However, using the technique
presented in [18], one can easily extend this result to a number of challenges that is polynomial inη. As our
protocols only use a fixed number of challenges, this is not necessary in this document.
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4 Protocol Models

4.1 Messages and Deduction

The symbolic model is an idealized representation of cryptographic protocols. The main abstractions are that
nonces values cannot be predicted and that it is impossible to decrypt an encoded message without knowing
the inverse key. In this model, messages are represented by first-order terms. Let AG, NO, NE and KEYS be
disjoint countable sets of, respectively, identities, nonces, exp-nonces and key names. LetA, N , Ne andkey be
meta-variables over these sets.

msg ::= Ne | N | A | {msg}key | 〈msg, msg〉 | exp(prod)
key ::= K | exp(prod)

prod ::= Ne | prod · prod

The function symbolsexp and[·] represents modular exponentiation and product. In particular,[·] is considered
associative and commutative.

We consider the classical Dolev-Yao [13] adversary and letE ` m denote that messagem is deducible from
the set of messagesE. This entailment relation is extended to theexp operator by adding the two following
rules:

E ` Ne

E ` exp(Ne)
E ` Ne E ` exp(p)

E ` exp(p ·Ne)

These new rules seem quite natural in the computational world: it is possible from a valuex to computegx and
from x andgy to computegxy.

The main result of this paper is that the Dolev-Yao model extended with these rules yields a sound symbolic
model meaning that any computational attack with non-negligible probability corresponds to a symbolic attack.

4.2 Description of Cryptographic Protocols and Semantics

For the sake of presentation, we consider protocols that only involve a single role. Moreover, this role is only
instantiated in one session. This is done without loss of generality when a bounded number of sessions is
considered. Indeed, each interleaving of the actions of the different participants can be seen as a role and the
different interleavings correspond to different protocols.

Thus, a protocol is described by a list of actions which are either emission!m or reception?m of a message
m. To make protocols readable, we use the usual BAN syntax. For example, a version of Diffie-Hellman protocol
between two rolesA andB is:

A→ B : exp(NA)
B → A : exp(NB)
A→ B : {A,B}exp(NA·NB)

The session that involves agentsA andB is represented by the simplified protocol:

!exp(NA) ?exp(x) !exp(NB) ?exp(y) !{A,B}exp(NA·y) ?{A,B}exp(x·NB)

We consider the classical adversary model where the adversary controls the network, receives all the outputs (!m)
and submits some forged message to the inputs (?m).

Henceforth, let us consider an arbitrary fixed protocol‡1t1...‡ktk, where‡i is either ”!” or ”?” and ti is a
term. There are two different execution models, one for the symbolic setting and one for the computational
setting producing a symbolic and a computational trace, respectively. Asymbolic action sequenceis a list of
actionss m wheres is either? or ! andm is a ground (closed) message. Asymbolic traceis a symbolic action
sequence‡1m1...‡′km′

k with k′ ≤ k that satisfies the following conditions:

1. There exists a ground substitutionσ such that for anyi, tiσ = mi;
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2. For any i, if ‡i is ”?”, thenmi is deducible from the previous messagesm1 to mi−1 and the initial
knowledge of the adversaryE0,i.e.,

E0,m1, ...,mi−1 ` mi.

The setE0 contains the atomic messages of themi’s that do not appear in anyti, i.e.E0 =
⋃

i atoms(mi)\⋃
i atoms(ti).

The settrace(Π) contains the possible traces for protocolΠ. Our symbolic semantics is essentially the one used
in [9], where it is shown that secrecy is an co-NP-complete problem.

A computational action sequenceis a list of actions‡ bs wherebs is a bit-string and‡ is either”?” or ”!”.
A computational traceis the result of the interaction of an adversaryA, which is a polynomial random Turing
machine, and the protocol. This interaction is defined using the Turing machineExec(A,Π). Since we are
interested in relating the symbolic and computational semantics we defineExec in such way that along the
computational trace it outputs a corresponding symbolic action sequence. We then show that the symbolic action
sequence is a trace except for negligible probability. The reader should be convinced that producing the symbolic
action sequence by no means interferes with the computational semantics.

To simplify the presentation of theExec algorithm, we only give pseudo-code using the following functions:

• init(Π) generates the keys, nonces and exp-nonces that are chosen by the protocolΠ, i.e., those in
atoms(Π), and not by the adversary. It returns a substitutionθ associating bit-string values to these
elements.

• parse(bs, t, θ, σ) parses the bit-stringbs using prototypet and knowledge fromθ, it returns the updated
version ofθ as well as an updated symbolic substitutionσ.

• concr(m, θ) concretizes messagem using knowledge fromθ and returns the corresponding bit-string.

• compl(σ) completes the symbolic substitutionσ by associating remaining free variables to a distinct fresh
nonces.

The Exec algorithm uses two substitutions: the symbolic substitutionσ that links protocol variables to
messages and the computational substitution that links variables to strings of bits. Notice that the adversary can
decide to stop interacting with the protocol by providing an answer other than an updated memorymem and a
bit stringbs when an action?t is to be executed.

Algorithm Exec(A, ‡1n1...‡knk):
θ ← init(‡1n1...‡knk)
mem← []
for i in [1, k] do

if ‡i =! then
bs← concr(ni, θ)
mem← A(bs,mem)
tc ← append(‡ibs, tc)

else
X ← A(mem)
if X = bs,mem then

σ, θ ← parse(bs,mi, θ, σ)
tc ← append(‡ibs, tc)

else
goto done

done
σ ← compl(σ)
return (‡1m1...‡imi−1)σ, tc

The next proposition relates precisely the computational trace and symbolic action sequence thatExec out-
puts. A computational tracetc is a possible concretizationof a symbolic action sequencetf if there exists a
computational substitutionθ such that one of the possible valuation oftf usingθ is tc.
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Proposition 4.1 LetA be an adversary andΠ a protocol. IfExec(A,Π) outputstf , tc, thentc is a possible
concretization oftf .

5 Soundness of the Symbolic Model

In this section, we show that the symbolic sequence action produced byExec(A,Π) is a symbolic trace except for
negligible probability. Together with Proposition4.1, this implies that only computational traces with negligible
probability might not correspond to symbolic traces.

To do so, it is important to characterize when a symbolic action sequence isnot a symbolic trace. LetE
be a set of messages. Then, letkeys(E) denote the set of keys (including exponentiations) that are deducible
from E. Moreover, letdec(E,K) denote the set of messages deducible from messages inE using unpairing and
decompositions with keys inK. Then, we have the following:

Proposition 5.1 LetE be a set of messages andm be a message. IfE 0 m then, one of the following holds:

• There exists a message{n}key in dec(m, keys(E)) such thatkey is not inkeys(E) and{n}key is not in
dec(E, keys(E)). This corresponds to the case where the adversary forges{n}key.

• There exists a keyk or a nonceN or an exp-nonceNe or an exponentiationexp(p) in dec(m, keys(E))
that is not indec(E, keys(E)). This corresponds to the case where the adversary guesses a secret value
or breaks an encryption.

There are a few restrictions over protocolsΠ considered. These restrictions are defined in the symbolic world
(as they are easier to check with automated tools).

1. Keys and exp-nonces that are not chosen by the adversary remain secret throughout the protocol execution.
Moreover, exponentiations that are used as keys also remain secret. LetS be the set of such exponentia-
tions, keys and exp-nonces.

2. There exists an order among exp-nonces and keys fromS such that ifu < v then for any symbolic trace,
v cannot appear encoded by a key usingu (the key is exactlyu if u is a key, if it is an exp-nonce, the key
is an exponentiation usingu). This is the usual acyclicity condition on keys.

3. No execution can lead to sendexp(Ne ·Ne · ...) whereNe is an exp-nonce ofS.

4. Whenever a reception ofexp(x) occurs, eitherx is known by the honest parties orexp(x) is signed by a
key fromS.

Among these conditions the last one seems the most restrictive. Let us discuss it. In general, the Dolev-Yao
abstraction is not a sound abstraction of the computational model. To illustrate this, let us consider the protocol
?exp(x) !exp(x · N) and the groupG of quadratic residues overZ/m2 (as introduced in [7]). It is clear that a
symbolic adversary cannot deduceN . A computational adversary, however, can submit1 + m for exp(x). Then
it receives(1 + m)N mod m2 which is equal to(1 + N.m) mod m2. Therefore, the adversary can deduce
information on the value ofN (i.e. the value ofN mod m). That should not be possible as the DDH assumption
is classically assumed true onG.

There are at least two other ways to solve this problem:

• A solution is to strengthen the DDH assumption. Parameterg can also be chosen by the adversary. This
assumption is less classical. It does not hold for quadratic residue.

• Else, we could put restrictions on protocols and adversaries. For example, there are no problems for a
passive adversary.

Our restriction given as hypothesis4 is a more subtle restriction on protocols than the passive case. It is quite fair
as Diffie-Hellman does not provide any authentification. In particular, this restriction is true for the simplified
version of TLS that appears in the introduction of [16].
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The next theorem is our main result : traces produced by a computational adversary can be abstracted to
symbolic traces with overwhelming probability. LetΠ be a protocol andSE be the encryption scheme used to
implementExec.

Theorem 5.1 If the DDH assumption holds andSE is SYM-CPA then for any concrete adversaryA:

pr
(
tf , tc ← Exec(A,Π) and tf /∈ traces(Π)

)
is negligible

Proof: Let us consider an adversaryA such that the probability to create a symbolic trace that is not intraces(Π)
is not negligible. Then it is possible to useA and a modified version of theExec algorithm in order to gain a
non negligible advantage againstN -DH-SYM-CPA. This is detailed in appendixC.

Using this main theorem, it is possible to relate properties in the symbolic world to properties in the com-
putational world. These properties can be verified in the symbolic world and then hold in the computational
world. This has been done for some trace properties in [17, 20] such as authentication and a weak version of
secrecy. But also a stronger version of secrecy, called SecNonce, can be verified [10] except for exp-nonces. The
SecNonce property can be defined as a game that goes as follows: two noncesN0 andN1 are choosen randomly.
The secrecy of a nonce nameN means that an adversary cannot distinguish between the protocol executed with
N0 andN1 taken as values forN . The SecNonce property for exp-nonces is not correctly abstracted by non-
deductibility in the symbolic model. Indeed, if we consider the protocol!exp(N), then if an adversary is given
two exp-nonce valuesN0 andN1, it can easily guess which value was used in the protocol (as exponentiation
is deterministic). Hence the SecNonce property can only be used to abstract secrecy of nonces (as they do not
appear in exponentiations).

6 Conclusion and Future Works

We prove soundness of a symbolic model that deals with Diffie-Hellman exponentiation. Although we only
considered Diffie-Hellman exponentiation and symmetric encryption, adding other primitives such as asymmetric
encryption, hashing or digital signature should not be complicated. In particular, [18] uses a specific technique
to combine some security primitives and their related criteria.

As future work, we plan to investigate automatic verification of the protocol restrictions in the symbolic
world. With such verification, it would be possible to entirely verify a protocol with an automatic prover.
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A Proofs for Propositions2.1and 2.2

Proposition 2.1: If the DDH assumption is verified, then the DCDHn assumption is also verified.
Proposition 2.2: If the DDH assumption is verified, then the DDDHn assumption is also verified. Reciprocally,
if the DDDHn assumption is verified then so is DDH forn ≥ 2.

We first prove proposition2.2. Proposition2.1 is a direct consequence. The order< used between pairs of
naturals is the lexical order.

DDH ⇒ DDDH : let A be an adversary against DDDHn andP its polynomial bound. Leti andj be two
integers in[1, P (η)] such thati < j. We build some adversariesBi,j against DDH usingA and a modified
version of theF oracle denoted byFi,j .

Adversary Bi,j(X, Y, Z)
b

R← {0, 1}
b′ ← A/Fi,j

return b = b′

OracleFi,j usesX, Y , Z and the random bitb to simulate oracleF . The application ofFi,j to E is computed as
follows.

• For anyk inN different fromi andj, xk is randomly sampled in[1, q] when necessary.

• Fork andk′ inN, a valuexk,k′ is also randomly sampled in[1, q] when necessary.

The application ofFi,j to E returnsgr for some randomly sampledr if b = 0. Else if b = 1, it returnsf(g,E)
which is recursively defined by:

• For the lowest pair(k, k′) in E such that(k, k′) < (i, j), f(g,E) returnsf(g,E \ {k, k′})xk,k′ .

• If i andj appear inE, thenf(g,E) returnsf(Z,E \ {i, j}).

• If only i appears inE, thenf(g,E) returnsf(X, E \ {i}).

• If only j appears inE, thenf(g,E) returnsf(Y,E \ {j}).

• For any remainingk in E, f(a,E) returnsf(a,E \ {k})xk .

• f(a, ∅) returnsa.

Then the advantage ofBi,j is defined by:

Adv(Bi,j) = pr(A/Fi,j wins|Z = gxy)− pr(A/Fi,j wins|Z = gr)

Wheni = 1 andj = 2 andZ = gxy, the situation is the same as whenA is confronted toF . Moreover, let
(i′, j′) be the successor of(i, j) for the lexical order (i andj are bounded byP (η)), then the caseFi,j when
Z = gr is similar to the case(i′, j′) whenZ = gxy. By summing these advantages, we get:∑

1≤i<j≤P (η)

Adv(Bi,j) = pr(A/F wins)− pr(A/FP (η)−1,P (η) wins)

2
( ∑

1≤i<j≤P (η)

Adv(Bi,j)
)

= Adv(A)−Adv(Ao)

The first advantage is related toA against DDDHn and the last probability is the advantage of a modified version
of A against DDDHbn/2c+1. NamelyAo simulatesA confronted to oracleFP (η)−1,P (η). HenceAo only makes
requests of size lower thanbn/2c+ 1 (bxc denotes the integral value ofx).
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Now, we proceed by induction onn to prove our result. Forn = 1, the requests can only have size one and
ask forgxi for somei. The adversary has to distinguish betweengxi andgr without any other information onxi.
Therefore, the advantage of any adversary against DDDH1 is 0.

Let us suppose that DDDHi holds for anyi lower thann. Then letA be an adversary against DDDHn

which execution is bounded by polynomialP . There exists an adversaryAo against DDDHbn/2c+1 andP (η)
adversaries against DDH such that:

2
( ∑

1≤i<j≤P (η)

Adv(Bi,j)
)

= Adv(A)−Adv(Ao)

As DDH and DDDHbn/2c+1 hold (bn/2c+1 < n), the advantage ofA is negligible. The assumption DDDHn
hold.

DDDH ⇒ DDH : Let A be an adversary against DDH.B is an equivalent adversary against DDDHn (for
n ≥ 2):

Adversary B
X ← F (standard, {1})
Y ← F (standard, {2})
Z ← F (challenge, {1, 2})
b← A(X, Y, Z)
return b

The advantage ofA andB are equals. As we assume DDDH, the advantage ofB is negligible. Hence the
advantage ofA is also negligible.

DDH ⇒ DCDH : Let A be an adversary against DCDHn. ThenB is the adversary against DDDHn defined
by:

Adversary B
(v,E′)← A/F
v′ ← F (challenge, E′)
return v = v′

The advantage ofB is:
Adv(B) = pr(A wins|b = 1)− pr(A wins|b = 0)

The first probability corresponds to the advantage ofA against DCDH. The second one is the probability thatA
outputsgr wherer is randomly sampled from[1, q] andA has no other information related tor. As q is large,
this probability is negligible. Thus the advantage ofA against DCDH is negligible.

B Proof for Proposition 3.1

Proposition 3.1: If the symmetric encryption schemeSE is 1-SYM-CPA and DDH is verified, thenSE is also
n-DH-SYM-CPA for any integern.

This proof uses the following proposition from [18]:

Proposition B.1 If the symmetric encryption schemeSE is 1-SYM-CPA, thenSE is alson-DH-SYM-CPA for
any integern.

For this proof, we introduced two new criteria: the first onen, m-DH-SYM-CPA is similar ton-DH-SYM-CPA
where the bound on challenge keys isn and the bound on challenge nonces ism. Criterionn, m-DH-SYM-
CPA’ is the same criterion where the left-right encryption oracles can only be used with strings of bits instead of
patterns.

12/16 Verimag Research Report no 07



Yassine Lakhnech and Laurent Mazaré

We proceed in three steps. First we prove that an encryption scheme isn-DH-SYM-CPA if and only if it
is 0, 2n-DH-SYM-CPA. After that we prove that if the DDDH assumption holds and an encryption scheme is
n-SYM-CPA, then it is also0, n-DH-SYM-CPA’. Finally, using our reduction technique, we prove that if an
encryption scheme is0, n-DH-SYM-CPA’, it is also0, n-DH-SYM-CPA. From there it is easy to conclude.

Lemma B.1 An encryption scheme isn-DH-SYM-CPA if and only if it is also0, 2n-DH-SYM-CPA for anyn.

Proof: It is possible to build an adversaryA′ against0, 2n-DH-SYM-CPA from any adversaryA againstn-
DH-SYM-CPA such that the advantages ofA andA′ are the same. AdversaryA′ executesA as a sub-routine.
Oracle calls fromA are submitted to the oracle ofA′ except that wheneverA issues a request related to a key
k, A′ replaces the reference tok by a reference toi(k) wherei(k) is the index of a nonce thatA does not use.
Moreover, the acyclicity hypothesis is preserved.

Lemma B.2 If DDDHn hold, an encryption isn-SYM-CPA implies that it is also0, n-DH-SYM-CPA’ for anyn.

Proof: Here, we consider the case where patterns can only be strings of bits. LetA be an adversary against
0-DH-SYM-CPA’. Then we build an adversaryB against DDDHn usingA. A is executed as a subroutine, its
oracle is implemented byF that works as follows:

• When asked for exponentiation ofE, B issues astandard requestto its DDDH oracle with argumentE.

• When asked for encryption related toE, B issues achallenge requestto its DDDH oracle with argument
E. Using the result,B computes the symmetric keykE .

As eachE may only be submitted once to the DDDH oracle,B has to store the answers of its oracles.A has two
ways to win andB returns1 iff A succeeds.

Adversary B
b′

R← {0, 1}
res← A/F
return res = b′ or res is a ”fresh” encoding bykE

The advantage ofB is defined by:

Adv(B) = pr(A wins|b = 1)− pr(A wins|b = 0)

The second probability is related to the event ”A wins” when b = 0. Whenb equals0, keys are generated
randomly. Hence this behavior can be simulated by an adversaryAo againstn-SYM-CPA.Ao executesA, it
also generates the necessary values for the differentxk. When asked for a left-right encryption related toE,Ao

uses the left-right encryption oracle related to a given keyk. It also stores the association ofE andk in order to
use the right key for the next oracle calls. Hence, we get:

2.Adv(B) = Adv(A)−Adv(Ao)

The advantage ofB is related to DDDHn. The advantage ofA is against0-DH-SYM-CPA’ whereas the advantage
of Ao is againstn-SYM-CPA. Hence the advantage ofA is negligible.

Lemma B.3 If DDDHn hold. Then for anyn an encryption scheme is0, n-DH-SYM-CPA’ if and only if it is
0, n-DH-SYM-CPA.

Proof: This proof uses the reduction theorem from [18]. This theorem is stated in appendixE. Let us consider
the0, n-DH-SYM-CPA criterion and the order between nonces:N1 < N2 < Nn. We first treat the case of the
indistinguishability part of the criterion. A valid partition of this criterion is:

• θ1 generates nonceN1 andθ2 generates noncesN2 to Nn and the challenge bitb.
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• OracleF1 can be cut in two layersG andH using forG the classical left-right oracle related toθ1 and:

H(bs, θ2, θ
′
2) = 〈F2(bs, θ2), F2(bs, θ′2)〉

• The verification oracle only uses bitb and soθ2.

Hence, applying the reduction theoremE.1gives us that for any adversaryA there exists two adversariesAo and
B such that:

|Advγ
A(η)| ≤ 2.|Advγ1

B (η)|+ |Advγ2
Ao(η)|

Criterionγ is 0, n-DH-SYM-CPA,γ1 is 0, 1-DH-SYM-CPA andγ2 is 0, (n− 1)-DH-SYM-CPA. The acyclicity
hypothesis implies that criterion0, 1-DH-SYM-CPA is equivalent to0, 1-DH-SYM-CPA’. Hence, using an easy
recursion, we get that there exists some adversariesBi verifying:

|Advγ
A(η)| ≤ 2.

n∑
i=1

|Advγ1
Bi

(η)|

Hence, ifγ1 is safe thenγ is also safe.
For the UNF part of the criterion, the proof is more straightforward. LetA be an adversary against0, n-

DH-SYM-CPA/UNF. The adversaryB against DDDHn usesA as a sub-routine. At first,B randomly chooses a
subsetEr of [1, n]. With non-negligible probability,Er is related to the key thatA finally attacks. After that,
B executesA and simulates the necessary oracles using challenge request forgEr and standard requests for the
other exponentiations. Finally,B returns one ifA correctly solved its challenge. As usual, the advantage ofB is

Adv(B) = pr(A wins|b = 1)− pr(A wins|b = 0)

The caseb = 1 corresponds to a standard execution ofA whereas in the caseb = 0,A is confronted to a random
key if it tries to attackEr.

Adv(A) ≤ Adv(B) + 2n.Adv(Ao)

The advantage ofB andA are respectively related to DDDHn and1-SYM-CCA. Therefore the advantage ofA
is negligible.

We have that DDH implies DDDHn. Moreover1-SYM-CPA impliesn-SYM-CPA. Hence DDH and1-SYM-
CPA imply0, 2n-DH-SYM-CPA and son-DH-SYM-CPA.

C Proof of the Main Theorem

Theorem: Let Π be a protocol. LetSE be the encryption scheme. If the DDH assumption holds andSE is
SYM-CPA then for any concrete adversaryA:

pr
(
tc, tf ← Exec(A,Π) and tf /∈ traces(Π)

)
is negligible

In this section, we suppose that all the nonces randomly generated have different values. This is justified in
appendixD. LetA be an adversary such that its probability to create a symbolic trace that is not intraces(Π) is
not negligible. LetN be a bound on the number of different keys and nonces thatΠ may use. UsingA, we build
an adversaryB againstN -DH-SYM-CPA.B randomly executes one of the two machinesB0 andB1.

AdversaryB0 handles the case where the trace is not possible because ofA output a fresh symmetric encryp-
tion, an element ofS or a fresh exponentiation. It is defined byExec(A,Π) with modified versions of theinit,
parse andconcr primitives.

• Exp-nonces and keys fromS are the challenges of our criterionN -DH-SYM-CPA. Hence only the remain-
ing nonces and keys have to be generated byinit.
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• concr uses oracles to concretizes messages encoded by a challenge key or challenge exp-nonces. These
symbolic messages and their concretization are stored so thatparse can use them. The first three hypothe-
sis over protocols make it possible to use these oracles in every possible cases if the beginning of the trace
is possible.

• parse parses the messages as usual. As it cannot decrypt messagesm encoded by challenges there are
two possibilities: eitherm has been generated inconcr and its symbolic version is used by parse orm is
a ”fresh” encryption. In this last case,B0 wins its challenge against the UNF part ofN -DH-SYM-CPA. If
B0 receives a challenge exp-nonce or a key, it can deduce the value of the challenge bitb andB0 wins its
challenge. The same thing occurs ifB0 receives an exponentiation thatconcr did not build using its oracle
(the way to recoverb is detailed further in this section).

WhenB receives an exponentiationgx and has to outputgxy, then our hypothesis over protocols allow two
possible cases:x is known byB (either a bit-string or a challenge exp-nonce), hence the exponentiation oracle
can be used to generategxy; or gx is signed by a key inS, henceB generatedgx and also knowsx.

Finally, if Exec terminates thenB0 plays against IND and returns randomly0 or 1.
AdversaryB1 works exactly likeB0. It handles the case whereA output the value of a nonce that it should

not know. For that purpose,B1 randomly chooses a nonceN among theP (η) possible nonces. For this nonce,
two values are generatedN0 andN1. B1 uses its left-right encryption oracle to simulate the protocol usingN0

whenb = 0 andN1 whenb = 1 (this technique was initiated in [20]). If A reveals the value ofN , thenB1

deduce the value ofb. ElseB1 returns randomly0 or 1 for the value ofb.
According to proposition5.1, if Exec outputstf that is not intraces(Π) then eitherB0 or one of theP (η)

possibleB1 wins its challenge. The advantage ofB can be approximated by:

(1 + P (η)).|Adv(B)| ≥ pr
(
tc, tf ← Exec(A,Π) and tf /∈ traces(Π)

)
However, asSE verifiesN -DH-SYM-CPA the advantage ofB is negligible. Therefore, the probability to output
a trace that is not intraces(Π) is also negligible.

There is one last thing to detail: how canB0 deduce the value ofb from a challenge nonce, key or an
”interesting” exponentiation. IfB0 knows a secret symmetric key, it uses the associated left-right oracle with
〈0, 1〉 to get the value ofb. If B0 knows nonceN , then it asks forgE whereE is a set such thatB0 did not ask for
gE·N before. Then it uses the left-right oracle with〈0, 1〉 andgE·N as key. Finally, ifB0 knowsgE , then it uses
directly the left-right oracle related togE (this is possible asgE is not the output of the exponentiation oracle).

D Nonces are Probably Different

We consider that anytime a computational adversary picks up some nonces, they are different one from another.
The adversary can only get a numberm of nonces that is polynomial inη and we suppose that the numbern of
possible nonces is exponential inη (som < n). Let p be the probability that the adversary gets two times the
same nonces.

1− p =
n

n

n− 1
n

...
n− (m− 1)

n

Thus, we have the following inequalities:

0 ≤ p ≤ 1−
(
1− m− 1

n

)m

Proposition D.1 For anyx ∈ [0, 1[ anda ≥ 1,(
1− x

)a ≥ 1− x.a
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Proof: Consider the functionf(x) =
(
1− x

)a − 1 + x.a. Derive it twice to get the result.
Applying the proposition, we get:

0 ≤ p ≤ m.(m− 1)
n

As m is polynomial andn is exponential inη, p is negligible inη. When considering an adversary that has
a non-negligible advantage against something, it still has its advantage if we consider only executions where
nonces are distinct.

E Reduction Theorem

In order for the paper to be self-contained, the main theorem from [18] is given in this appendix:
Let γ = (θ1, θ2;F1, F2;V2) be a criterion. Letγ1 andγ2 be two criteria such that:

• There exist two PRTMG andH such that:

G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2)

G(H(s, θ2, θ
′
2), 0, θ1) = F1(s, θ1, θ

′
2)

OracleG operates on a string of bits, thus it must receive two challenge information, a bitb andθ1.

• γ2 = (θ2;F2;V2) andγ1 = (b, θ1;G; verifb) whereb generates a random bit andverifb is the PRTM
verifying that the output of the adversary isb: verifb(s, b, θ1) = (s⇔ b).

• F2(s, θ1, θ2) andV2(s, θ1, θ2) do not depend onθ1.

Then we say that(γ1, γ2) is avalid simplified partitionof γ.

Theorem E.1 (Simplified Reduction Theorem)Let(γ1, γ2) be a valid simplified partition ofγ. For any PRTM
A, there exist two PRTMAo andB such that

|Advγ
A(η)| ≤ 2.|Advγ1

B (η)|+ |Advγ2
Ao(η)|
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