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Abstract

A predicate is opaque for a given system, if an adversary will never be able to establish truth or false-
hood of the predicate for any observed computation. This notion has been essentially introduced and
studied in the context of transition systems whether describing the semantics of programs, security
protocols or other systems. In this paper, we are interested in studying opacity in the probabilistic
computational world. Indeed, in other settings, as in the Dolev-Yao model for instance, even if an
adversary is ����� sure of the truth of the predicate, it remains opaque as the adversary cannot con-
clude for sure. In this paper, we introduce a computational version of opacity in the case of passive
adversaries called cryptographic opacity. Our main result is a composition theorem: if a system is
secure in an abstract formalism and the cryptographic primitives used to implement it are secure,
then this system is secure in a computational formalism. Security of the abstract system is the usual
opacity and security of the cryptographic primitives is IND-CPA security. To illustrate our result,
we give two applications: a short and elegant proof of the classical Abadi-Rogaway result and the
first computational proof of Chaum’s visual electronic voting scheme.
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predicate is opaque for a given system, if an adversary will never be able to establish truth or falsehood of the
predicate for any observed computation. This notion has been essentially introduced and studied in the context
of transition systems whether describing the semantics of programs, security protocols or other systems. In this
paper, we are interested in studying opacity in the probabilistic computational world. Indeed, in other settings,
as in the Dolev-Yao model for instance, even if an adversary is � � � sure of the truth of the predicate, it remains
opaque as the adversary cannot conclude for sure. In this paper, we introduce a computational version of opacity
in the case of passive adversaries called cryptographic opacity. Our main result is a composition theorem: if
a system is secure in an abstract formalism and the cryptographic primitives used to implement it are secure,
then this system is secure in a computational formalism. Security of the abstract system is the usual opacity and
security of the cryptographic primitives is IND-CPA security. To illustrate our result, we give two applications:
a short and elegant proof of the classical Abadi-Rogaway result and the first computational proof of Chaum’s
visual electronic voting scheme.

Keywords: Opacity, Non-Interference, Chaum’s Voting Scheme, Computational Model, Probabilistic En-
cryption.

Verimag Research Report n
�

4 1/18



Yassine Lakhnech and Laurent Mazaré

Introduction

Roughly speaking, a predicate is opaque for a given system, if an adversary will never be able to establish truth or
falsehood of the predicate, for any observed execution of the system. It is clear that this notion only makes sense
when the adversary does not have access to the complete state of the system but rather accesses its execution
through an observation function. Typically, the predicate of interest concerns some non-determinism that is
resolved initially such as the votes in a voting scheme. This notion has been essentially introduced and studied
in the context of transition systems whether describing the semantics of programs, security protocols or other
systems. It generalizes well-known security properties such as anonymity and non-interference (See [7] for a
discussion).

Opacity has been essentially studied in the so-called formal 1 world of security, where cryptography is as-
sumed perfect. A typical formal model, for security protocols for instance, is the Dolev and Yao model [11]
where messages are described by algebraic terms and there is one single adversary that subsumes all possible
attacks. In this paper, we are interested in studying opacity in the probabilistic computational world. Indeed, in
the formal world, even if an adversary is � � � sure of the truth of the predicate, it remains opaque as the adversary
cannot conclude for sure. Such a definition is clearly not useful in the probabilistic computational setting. There-
for, we introduce a computational version of opacity. We restrict ourselves to the case of passive adversaries and
call our security notion cryptographic opacity. More generally, we introduce probabilistic opacity that includes :
strict opacity, plausible deniability and cryptographic opacity. All three notions are defined by experiments and
in terms of the advantage of the adversaries. Strict opacity requires that the advantage is null; plausible deniabil-
ity requires that the probability to win the experiment is different from 1 and cryptographic opacity requires that
the advantage is negligible.

Then, the question of how to prove probabilistic cryptographic opacity rises. For strict opacity, we show a
decidability result for finite systems. The main core of the paper, however, deals with cryptographic opacity.
Our answer to this question is inspired by a recent trend started by [2] and pushed further in [4, 18, 15, 10] in
bridging the gap that separates the Dolev-Yao model and its perfect cryptography assumption on one hand and the
computational model on the other hand. Indeed, we prove our main result that states the following: if a predicate
is opaque in the formal model for an abstraction of the considered system and if the cryptographic primitives are
IND-CPA, then cryptographic opacity of the predicate holds in the computation model. The previously mentioned
results on the relationship between the formal and the computational models do not immediately apply in our
case as we have to carefully deal with random coins used for encryption. Indeed, in the case of Chaum’s voting
scheme, for instance, some of these coins appear as plain-text. On the other hand, for some IND-CPA schemes,
e.g. [6], knowledge of the random coins induces knowledge about the encrypted message. To deal with this
problem, we introduce a new security criterion, called � -RPAT-CPA. We then show that any IND-CPA secure
cryptographic scheme is also � -RPAT-CPA secure.

An other important contribution of our paper is the proof of opacity for Chaum’s visual voting scheme [8].
This is done by applying our main result. We also give a sort proof of Abadi and Rogaway’s result as an
application of our main theorem.

Related work. The initial work of Abadi and Rogaway was pushed further in [1]. This last paper con-
siders systems with cryptographic primitives and studies indistinguishability, but this property lacks the gen-
erality of opacity. Another interesting work is [3] which links a computational version of probabilistic non-
interference [14] to the notion of simulatability. This work is very general as it considers active adversaries but
as a consequence, their main theorem is more difficult to apply. In [17], a computational definition of indistin-
guishability (or strong secrecy) is given. This security notion is less general than opacity. Laud also formulates an
analysis allowing verification of programs using cryptographic primitives but these primitives are still abstracted.

This paper is structured as follows. The first section recalls some necessary preliminaries. The second
section introduces strict opacity, plausible deniability and cryptographic opacity . The following section proves a
decidability result for strict opacity. Section 4 presents an approach to verification of cryptographic opacity. This
approach is applied to Chaum’s voting scheme in Section 5. The proof of main result and the security criterion

� -RPAT-CPA are discussed in Section 6.

1One might prefer the word symbolic here since formal is not used in the sense of rigorous.

2/18 Verimag Research Report n
�

4



Yassine Lakhnech and Laurent Mazaré

1 Preliminaries

In this section, we recall some basic definitions that are useful when considering probabilistic systems and intro-
duce a general definition of security criteria along with a decomposition theorem that is used later in the paper.
All these notions are detailed in [16].

1.1 Cryptographic Primitives

Let � be the security parameter of the system, it characterizes the strength of the cryptographic primitives as well
as the length of nonces.

An asymmetric encryption scheme �������	��
��
���
��� is defined by three algorithms. The key generation
algorithm ��
 is a randomized function which given a security parameter � outputs a pair of keys ������������� , where
��� is a public key and ��� the associated secret key. The encryption algorithm � is also a randomized function
which given a message and a public key outputs the encryption of the message by the public key. The random
part is explicitly represented as a nonce (bit-string of length � ) ��� which is given as argument to � . Finally the
decryption algorithm � takes as input a secret key and a cypher-text and outputs the corresponding plain-text,
i.e., ��� �!�	"#�$�����%�����&�������'�(" for any ��� and any pair ������������� produced by the key generation algorithm. The
execution time of the three algorithms is assumed polynomially bounded by � .

A function )+*�,.-/, is negligible, if it is ultimately bounded by 021�3 , for each positive 465#7 , i.e., for all
498;: there exists < 3 such that = )��	0��>=�?@0A1�3 , for all 0B8C< 3 .

1.2 Security Criteria

Security criteria define the correctness (or the expected properties) of an encryption scheme. They are defined
as an experiment involving an adversary. Given access to a set of oracles, the adversary has to guess a randomly
chosen data. 2 Roughly speaking, a scheme is safe w.r.t. a given criterion, if no adversary has a better probability
to win than an adversary who does not have access to the oracles. Therefor, the strength of a criterion depends on
the allowed adversaries and the offered oracles. In this paper, we consider adversaries that are terminating random
Turing machines (RTM) or polynomial-time random TM (PRTM) when considering computational encryption.
The time is bounded in the security parameter � . An RTM D is said to have a complexity similar to the complexity
of � if the execution of D is polynomially bounded in the (maximum) execution duration of � .

Let us now define formally security criteria. A criterion E is a triple �GF6HJIKH�L6� where

M F is a (P)RTM that randomly generates some challenge N (for example, a bit � and a pair of key �O�����%���P� ).
M I is a (P)RTM that takes as arguments a string of bits � and a challenge N and outputs a new string of bits.

I represents the oracles that an adversary can call to solve its challenge.

M L is a (P)RTM that takes as arguments a string of bits � and a challenge N and outputs either true or false.
It represents the verification made on the result computed by the adversary. The answer true (resp. false)
means that the adversary solved (resp. did not solve) the challenge.

Note that F can generate an arbitrary number of parameters and I can represent an arbitrary number of oracles.
Thus, it is possible to define criteria with multiples F and I . When no confusion may rise, we use the same
notation for the challenge generator F and the generated challenge N (both are denoted using N ).

A criterion �QF6H�IKH�LR� and adversary � produce the following experiment. First N is generated randomly. The
adversary can now make some computation using the oracle I , this is denoted by ��STI . The behavior of the
oracle depends on N . At the end of computation, the adversary has to return a string of bits which is verified by
an algorithm L . Also L uses N (e.g. N includes a bit � and the adversary has to output the value of � ). The aim of
the adversary � is produce a bit string that is verified by L . More formally, the experiment U9VXW�YZ[� ��� involving
� and E is defined by the following Turing machine:

2In some cases, as for symmetric encryption or signature, the adversary has other ways to win. This is not relevant for this paper.
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Experiment U9VXW2YZ9�	��� :
N�� F�� ���� � ��S���������� I �Q� �JN �
return L � � �JN �

Experiment U VXW�� Y Z �	��� :
N��CF��	���� �@�6S��
return L � � �
N �

We can now define the advantage of � against E as follows:

	�

� Y Z �	� � �������O��� �	U9VXW YZ �	� � ���������T�������! �" �
� Y$# �

where ���� �" �
� Y is the best probability to solve the challenge that an adversary can have without using oracle I .

Formally, ���! �" �
� Y is the maximum of ��� �	U9VXW�� Y Z � ���9�%�����&��� where � ranges over any possible adversaries

and U VXW�� is similar to U9VXW except that I cannot be used by ' .

1.3 Decomposition of Security Criteria

In this section, we recall the reduction theorem given in [16]. Let EB� � N)( �
N!* HJI+(��JI,* H�L-* � be a criterion. Let E�(
and E.* be two criteria such that:

M There exist two PRTM / and 0 such that:

/ �10 �Q� �JN * �JN �* �&�32 �
N ( � � I ( �Q� �JN ( �
N * �
/ �10 �Q� �JN * �JN �* �&��:��
N ( � � I ( �Q� �JN ( �
N �* �

Oracle / operates on a string of bits, thus it must receive two challenge informations, a bit � and N$( .
M E * � � N * H�I * H�L * � and E ( � �Q���
N ( H�/KH54.�6�6798;:�� where � generates a random bit and 4��6��798): is the PRTM

verifying that the output of the adversary is � : 4.�3��798�: �$� ���T�
N ( �����$�=< ��� .
M I,* �Q� �JN)(T�JN�*�� and L-* �$� �
N)(��JN!* � do not depend on N)( .

Then we say that � E ( �
E * � is a valid simplified partition of E .

Theorem 1.1 Let � E�(��
E.*�� be a valid simplified partition of E . For any RTM � , there exist two RTM � �

and D
of similar complexity such that

= 	>
?� Y Z9� ���>=�@���� = 	>
?� Y3AB � ���>=6C = 	>
?� YEDZ�F �	���>=

2 Probabilistic Opacity

2.1 Systems and Observations

First, we give a general definition for random systems then we explain how their behaviors can be observed by
an eavesdropper. As the results of this section do not depend on any particular model of systems, we simply
consider randomized functions.

Let G be a finite alphabet representing actions made by a system. A trace is a finite sequence of actions, i.e.,
a word over G . Let GIH be the set of words over G and J be the empty word.

A system is a random function K from a finite set L of initial states to sequences of actions. Random means
that the system can perform some non-deterministic operations. For example it can pick up a random bit � . If
� � : , it performs action " else action � . The set of possible traces of a system K is denoted by K���L�� . In a
similar way, K�� �T� ��� is the set of possible traces starting from � in L . This set can have more than one element
as function K is random.

An observation function allows the eavesdropper to see only limited information about traces produced by
the studied system. These functions are mappings from G to GNM ��J � . Hence, it is possible for an action to be
totally invisible from the outside if the observation function replaces it with J .
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2.2 Opacity

Let us consider a system K with possible initial states L and an observation function � ��� . A property � is a
predicate over L . A property � is opaque if given ��5 L and � 5 K�� �T� ��� , it is not possible, for an adversary that
has access uniquely access to � �>� �1�
� to know whether � verifies � . Here, not possible means that it should not
be possible to achieve this with ”reasonable” probability. This notion of opacity is introduced under the name of
initial opacity in [7].

More than in opacity itself, we are here interested in the advantage that an adversary can get by having access
to the observation of the trace. If a very vast majority of initial states in L verify � , the adversary can suppose
that � verifies � even without looking at the trace. However, by looking at the trace, it is possible to get some
new information and to deduce the result for sure. To define this advantage, we consider that the adversary �
tries to win the following game/experiment:

1. An initial state � is chosen randomly in L ;

2. The adversary � is given the observation of a trace in K � ��� ��� and has to output a bit � ;

3. � wins its challenge, when � is equivalent to the property ” � satisfies � ”.

This game is represented by an experiment which is a random Turing machine. The experiment related to
adversary � and to � ��� is the following RTM.

Experiment U9VXW � :��Z :
� � L
� � K��$���
� ��� � � ��� � �
�J�
return � < �$�R5�� �

The advantage is the difference between the probability that � solves its challenge and the best probability that
one can get without access to the observation. Hence, it is defined by the following formula.

	>
?� � :��Z ���$� �O�-� �	U9VXW � :��Z - �������T�,������ �" �
��� #

Where ���! �" �
� �

is the greatest possible value for �-� �	U9VXW��B - ���6�&�T� for any D and J represents the observation
function that associates J to any action in G .

Note that the above definitions for the experiment and the advantage can easily be defined in an equivalent
way by using the general notion of security criterion.

M F randomly generates an initial parameter � and a trace � ;
M I gives access to the trace observation � ��� � �
� ;
M L verifies that the output bit � correctly answers the question: does � verify � ?

Criterion �GF6HJIKH%L�� has exactly the same related experiment and advantage as those given above.
Using the definition of advantage, it is possible to tell if an observation function has any use in trying to solve

the challenge.

Definition 2.1 Let K be a system, L be the set of its initial states and � a property over L . An observation
function � ��� is called

M safe for strict opacity of � , if for any RTM � ,
	>
?� � :��Z � :

M safe for cryptographic opacity of � , if for any PRTM � ,
	>
?� � :��Z is negligible

M safe for plausible deniability of � , if for any RTM � ,
	�

� � :��Z 	� ��� �$� ���! " �

� �
i.e. �-� �	U9VXW � :��Z - �������T�

is different from 2 .
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Plausible deniability coincides with the opacity notion introduced in [7], which is itself closely related to
anonymity [19] and non-interference [12, 20]. This link and some useful basic properties are detailed in ap-
pendix A.1.

For strict opacity, if an observation function is safe then an adversary gets no advantage at all by looking
at the observation. This is for example the informations exchanged by cryptographers during the cryptographs
diner (if we consider that one of them paid the diner for any element of L ).

For cryptographic opacity, an observation function may return some relevant information that cannot be
exploited in a reasonable (i.e. polynomial) time. For example, if we consider that all the actions made by
a system are encrypted using a safe encryption scheme, then the observation is safe. In this context, a safe
encryption scheme is an IND-CPA encryption scheme, this is detailed further in this document.

The idea is that with plausible deniability, if the adversary observes some trace � , then it cannot conclude for
sure whether property � is verified or not. There exists at least one initial state satisfying � and one not satisfying
� that both produce the observation � �>� �1�
� .

There is no clear hierarchy among strict opacity and plausible deniability as the first notion does not imply
the second one (this implication is only true when ���! �" �

�
is different from one).

3 Decidability of Strict Opacity for Finite Systems

Let us consider the case where only a finite number of traces can occur. Thus, we suppose that both L and K�� L��
are finite. With this assumption, the greatest advantage for any adversary can be computed. Moreover, there
exists an adversary that reaches this advantage.

Let � be the set of all possible observations, i.e. � � � ��� � K���L��
� . We first define the interest of an obser-
vation function � �>� . This definition is rather intuitive as an observation function can bring some advantage if the
probability for � to be true knowing the observation is different from the general probability of � . This explains
why this definition uses the term = �-� � � � � �-� � �[= � �>= .
Definition 3.1 The interest � � :�� of an observation function � ��� is given by:

� � :���� ��� �
�����

��� � � �E���� ��� � � �+����� � �[= � �	��

Then, the main result of this section is that the interest is the greatest possible advantage. For that reason, as
it is possible to effectively compute the interest of a given observation, safety for strictly opacity of an obser-
vation function is a decidable problem. The following proposition states the main result. Its proof is given in
Appendix A.

Proposition 3.1 For any adversary � and observation function � �>� , = 	>
?� � :��Z =.@
� � :�� . Moreover, there exists an
RTM � � :�� whose advantage is exactly � � :�� .
It is important to notice that the second statement of the previous proposition asserts existence of an RTM � � :��
with

	�

� � :��Z ��� � :�� . This RTM is not necessarily a legal adversary. Indeed, � � :�� has an execution time
which is linear in the number of possible observations. This is not a problem when considering strict opacity
or plausible denying as adversaries are RTM. However, for cryptographic opacity, we only admit adversaries in
PRTM. Worse, even if we assume the quite fair hypothesis (for an eavesdropper) that there is only a bounded
number of messages which all have some bounded size, the number of possible observations may be exponential
in the security parameter � , and hence, � � :�� may not a PRTM.

Nevertheless, this result is interesting at least for strict opacity as shown now. Indeed, a consequence of
this proposition is that no adversary has an advantage if and only if for any � in � , �-� � � ���.�-� � �[= � � . When
one wants to verify strict opacity, it is possible to test that for any observation, the probability for � to be true
assuming that observation is exactly the general probability for � to be true. Hence, we have

Proposition 3.2 Let � ��� be an observation function and � a property. Then, � ��� is safe for strict opacity of � if
and only if for any � 5 � ��� � K�� L!�
� , ��� �$�R5 � �!� ��� �$�R5 �[= � ��� �$����� � �
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4 An Approach to the Verification of Cryptographic Opacity

As we noted in the previous section, we make the finite behavior hypothesis for cryptographic systems (with
passive adversaries). That is, we assume that L and K�� L�� are finite. The approach proposed for proving strict
opacity using the interest of the observation function and the existence of an adversary matching this interest
is not applicable for cryptographic opacity. Indeed, when considering cryptographic opacity, adversaries are
restricted PRTM. Therefor, we present here a different approach. The main clue in this approach is to decompose
the verification of cryptographic opacity into the verification of strict opacity for an abstracted system on one
hand and the safety of the underlying encryption scheme on the other hand.

It is useful to notice that this approach is similar to the approach followed for proving secrecy properties
of cryptographic protocols, where one proves an abstraction of the secrecy property while making the perfect
cryptography hypothesis and relies on the fact that this verification is valid in the computational model, if the
cryptographic primitives satisfy some well-defined properties. The formal justification of this approach is the
result of recent research aiming at relating the formal and the computational models for security protocols [2, 4,
10]. These papers show that the Dolev-Yao [11] model is a safe abstraction of the computational model (where
adversaries are poly-time Turing machines) as soon as the cryptographic primitives (e.g. the encryption scheme)
verify some computational properties.

4.1 Specifications and Patterns

In the cryptographic setting, the alphabet G consists of the symbols, : and 2 . Thus, an action of the alphabet is
a bit-string. We consider systems that produce some finite size bit-string (usually, their size is polynomial in the
security parameter � ).

To define the abstract systems, we introduce patterns which are simply elements of the free algebra of terms
almost as in the Dolev-Yao model. It is almost because in our setting and as we are interested in opacity, we
have to be careful in handling the random coins3 used in encryption. Let us explain. In the simplest Dolev-Yao
model (also called the formal or symbolic model) an encryption of a message " with key ��� is represented by
the term � " ����� . Thus, two message ��" ( ����� A and ��" * ����� D are equal iff " ( �." * and ��� ( �;��� * . Moreover,
an adversary who does not know the inverse key of ��� cannot get any information from ��" ����� . This means
that the random nonce is completely abstracted away. In some refinements of this model, however, labels are
introduced to distinguished encryptions made at different instants during a protocol execution [10]. Such labels
are only an approximation of random coins as the latter may be equal even when two encryptions are performed
at different instants. As we want to verify the Chaum voting scheme, we have to include explicitly random coins
in our patterns. Therefor, we write � " HJ< ����� to represent the result of encrypting " with key ��� using nonce <
as random coins for the encryption algorithm.

Let � be an infinite set of keys (as explained above rather key names); � 1 ( represents the private key corre-
sponding to a public key � . Moreover, let

�
be a set of nonces. Patterns are defined by the following grammar

where � is a key, �>� a bit-string and < is a nonce:

�-"�� * *�� ��� = <@=����-"��&�$�-"��
	>= �J��"��&H�< � � = � � may be a public or private key

Without loss of generality, we consider abstract systems that only produce one pattern and not a list of patterns
as it is possible to concatenate patterns using pairing. Thus, a specification K � is a function from L to �-"�� .

Obviously, given a pattern ��"�� the information that can be extracted from ��"�� depends on the set of private
keys that can be computed from ��"�� . The set of patterns that can be learned/computed from a pattern is defined
as follows:

Definition 4.1 Let � be a pattern, the set
� ��4 �O��� is inductively defined by the following inferences.

M � is in
� ��4 �O��� .

M If �O�&(T�	�-*�	 is in
� ��4 �O��� , then � ( and ��* are in

� ��4 ����� .
3Random coins are also nonces but some times we use rather random coins to insist on the fact they are used to randomize encryptions
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M If ��� ( HJ< ��� and ��1 ( are in
� ��4 ����� , then � ( and < are in

� ��4 ����� .
M If ���&(THJ< � � and < are in

� ��4 ����� , then � ( is in
� ��4 �O��� .

Notice that since, we only consider atomic keys, we only have to consider decompositions. It is also useful to
notice that the last clause is usually not considered in the Dolev-Yao model. This clause is motivated by the
existence of IND-CPA algorithms such that the knowledge of the random used for encryption allows to decrypt
the message. An example of such algorithm is presented in [6].

A pattern has also a denotation in the cryptographic setting. This depends on a context N that associates keys
and nonces to their corresponding bit-string values. Thus, the cryptographic (or computational) value of a term
�J�-"��&H�< � � is � � " ����� ���>�3� � , where " is the value of �-"�� , ��� the value of ��� and ���!� the value < . Let N be a
mapping associating bit-strings to nonces and keys. The value of a pattern in the context N is defined recursively:

4��Q��� �
N � � ��� 4�� ��� (T�$�-*�	��
N � ��4����&( �
N � � 4��O�-* �
N �
4��$< �
N �!� N �	<B� 4�� �J� HJ< � � �
N ��� �!� 4���� �
N ���
NP�Q���&�JNP�	<#�
� 4��Q���
N � �;NP�Q���

Let us briefly summarize what we have introduced. We defined the systems we want to consider whose behavior
in each initial state � is a set of patterns and we have associated to each pattern its value, a bit-string, in a given
context.

We now turn our attention to the observations we can make about a pattern. We define two observations. The
concrete observation of a pattern �-"�� in a context N is defined as follows: � ��� 3 �O�-"��&�
N � � 4��O�-"��&�
N � , that is, � �>� 3
corresponds to the observations that can be made in the cryptographic setting. The abstract observation � �>� �
applied to a pattern replaces every sub-terms of the form �J��"��&H�< � � with

���
, that is, it simply replaces it by a

black box. Formally, patterns are transformed in obfuscated patterns which are given by the following grammar:

� �-"�� * *�� �>� = <@=�� � ��"��&� � �-"��
	>= � � ��"��&HJ< ��� = � � = �
And observation � ��� � of a pattern �-"�� is recursively defined by the following rules.

� ��� � �$�>��� � ��� � ��� � �
�O�&( �	��*�	
��� � � �>� � �O�&(>�&� � �>� � ���-*��
	
� ��� � �	<#�!� < � ��� � � ���AH�< � � ��� � � ��� � �����&H�< � � if � 1 ( 5 � ��4 ���-"��
��� < 5 � ��4 �O�-"��
�
� ��� � �$�P�!� � � ��� � � ���AH�< � � ��� ���

else

As encryption cycles may lead to some vulnerabilities, we restrict ourselves to well-formed patterns. For that
purpose, we define an ordering on pairs consisting of a key and a nonce. Let ��"�� be a pattern and let �	� be the
set of pairs �Q���J<#� such that there is a pattern of the form ���-"�� �$HJ< ��� in

� ��4 ���-"��
� with � and < not in
� ��4 ���-"��
� .

Then, for �Q���J<#�&� �Q���	��< � �'5
��� , �$����<B� ?(�Q�$�	��< � � iff there exist two patterns �J��"�� ( HJ< ��� and ���-"�� * H�< � ���
� in� ��4 �O�-"��
� verifying one of the following conditions:

1. < , � or ��1 ( is a sub-term of ��"��9*TH�< � ;
2. < � < � and ���-"�� ( H�< � � 	� �J�-"�� * H�< � ��� .

A pattern �-"�� is well-formed, if the projection of ? on keys is acyclic. Finally, we only consider well-formed
specifications, i.e. specifications that output well-formed patterns.

The conditions above imply that if ��"�� is well-formed, then for �$����<B�K5�� � , there is only one encoding
using each < (and a non-deducible key) in

� ��4 ���-"��
� . Hence when � ��� � transforms an encoding into
���

, this
always denotes the exact same encoding (in particular, there is no randomness-reuse as described in [5]). Thus
the < label can be seen as a constraint over encodings (specifying possible bit-to-bit equalities). This is why,
equality between two � �-"�� is defined modulo renaming of the nonces. To illustrate this, let us consider two
patterns �-"���� � � � " HJ< � � � ��"#H�< � ��	 and ��"�� ( � � ��"#H�< � � ��� � ��"#H�< � ����	 . Then � ��� � ����"������ � � ��� � ��� 	
and � �>� � ���-"�� ( � � � � � � � � � � � 	 . As � ��� � �O�-"�� ( � and � ��� � ����"�� * � are different, and hence, �-"���� and �-"�� ( are
distinguishable. If we consider �-"���� � ��"#H�< � � and �-"�� ( � ��"#H�< � � � � . Then � ��� � �O�-"������@� ���

and
� ��� � ���-"�� ( � � ��� �

. In this case, � ��� � �O�-"�� ( � and � ��� � �O�-"�� * � are equal (modulo renaming), and hence, �-"����
and ��"�� ( are indistinguishable. And in fact, if the encryption scheme is IND-CPA, ��"�� � and ��"���( are indistin-
guishable even in the computational setting.
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Main result The main result of this paper, that we prove in Section 6, is that for each adversary � , there exist
two adversaries � �

and D such that

= 	>
?� � :������ � :����Z =�@ = 	>
?� � :����Z F =3C �$� = 	>
?��� 1 �	��
	� 1 � �

B =

Where � is the number of keys, � -RPAT-CPA is a security criterion verified by any IND-CPA algorithm, ob-
servable � ��� 3

� � ��� � gives access to both � �>� 3 and � ��� � (see appendix A.1 for details). This means that if the
encryption scheme used is IND-CPA, opacity in the formal world implies opacity in the computational world.

4.2 Application: the Classical Abadi-Rogaway Result

Using our main theorem, it is possible to prove a slightly extended version of the seminal result of Abadi and
Rogaway [2]. This result states that provided the used encryption scheme is IND-CPA indistinguishability in the
formal (Dolev-Yao) model implies indistinguishability in the computational model. In fact, obfuscated patterns
are close to patterns as introduced in [2]. The main difference is that our patterns explicitly represent random
coins. However, it is still possible to get exactly Abadi and Rogaway’s result by assuming fresh distinct nonces
for every encryption. If we consider messages with no encryption cycles, then the corresponding patterns (using
fresh nonces) are well-formed. Moreover as nonces used for encryption are fresh, each

� �
has a different label,

thus to test equality these labels are not considered. The Abadi-Rogaway theorem can be stated as an opacity
problem. Let " � and " ( be two well-formed patterns. There are two initial states in L : : and 2 . Specification
K�� �$��� outputs " � . Then " � and " ( are indistinguishable if for any adversary � , = 	>
?� � :����Z = is negligible.

Proposition 4.1 Let " � and " ( be two well-formed patterns such that � ��� � � " ����� � ��� � � " ( � . If the encryption
scheme ��� used in 4 is IND-CPA then " � and " ( are indistinguishable.

This result is immediate if we apply the above theorem: as � ��� � returns the same result for the two patterns,
= 	�

� � :����Z F = is equal to zero. Hence as = 	�

� � 1 �	��
	� 1 � �

B = is negligible, the advantage of � is also negligible
and we get the desired result.

5 Application: Chaum’s Visual Electronic Voting

To illustrate our results, we consider a slightly modified version of the electronic voting scheme proposed by
Chaum [9]. The main advantage of this scheme is that it is verifiable using an audit procedure that preserves
opacity of the votes [13], i.e., what did voter L vote?. However, this paper still makes the perfect cryptography
hypothesis, encryptions are considered as black-box and are not taken into account. We give here a proof of
security for Chaum’s voting scheme in a computational setting. For that purpose, we assume that the encryption
scheme is IND-CPA and prove that then, security results still hold (but we may have to add some negligible terms
representing brute force attack against the encryption scheme).

5.1 System Description

Let us briefly recall how the Chaum’s voting scheme works. We omit some important pieces (mostly the visual
aspect) that are not relevant for this paper. The interested reader may consider reading [9] or [8] for details.
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4 ((
4 (*
4 (�
4 (�
4 (�
4 (�
4 (�
4 (�

4 *(
4 **
4 *�
4 *�
4 *�
4 *�
4 *�
4 *�

4 �(
4 �*
4 ��
4 ��
4 ��
4 ��
4 ��
4 ��

4 �(
4 �*
4 ��
4 ��
4 ��
4 ��
4 ��
4 ��

4 �(
4 �*
4 ��
4 ��
4 ��
4 ��
4 ��
4 ��

A vote session uses � trustees to guarantee the security
of the procedure. Each trustee

���
has a public key ��� �

and an associated secret key ��� � . The vote procedure
works as follows: voters choose a vote value 4 , then
the following bit-string is given to

� ( where each nonce
<
�

(unique for any voter) represents the random infor-
mation used to compute the encryption layer using key
��� � : 	�� � � �64 H�< � � ����
 HJ< (
� ��� A . Each trustee decodes its
layer then makes a random permutation of all the votes
and submits the resulting list to the next trustee. All the
intermediate lists are made public and the last list allows
anyone to compute the results of the vote.

After the decoding phase, an audit process allows to verify that trustees behave correctly with great probabil-
ity. Hence each trustee

� �
has to reveal the permutation it used for half the ballots. Thus it shows for these ballots

the link between the input ballot encoded by ��� � and the output ballot encoded by ��� ��� ( , the trustee also shows
nonce <

�
to allow anyone to check that the link is valid (it is supposed that the encryption algorithm allows the

trustee to get this nonce). Verified ballots are not chosen randomly but as described in figure above. The first set
of verified ballot (for step 1) is chosen randomly. For step 2, verified ballots correspond to unconnected ballots
w.r.t. step 1. For step 3, verified ballots are half unconnected ballots and half connected ones, the halves are
chosen randomly. Finally, for step 4, verified ballots are unconnected ballots w.r.t. step 3. In the figure, 4

�� is the
7���� ballots in the input of the ����� trustee and � � is the permutation chosen by this trustee. The set � � consists of
integers � such that the transition that reaches 4 �� is revealed.

5.2 Verification of the system

The property we are interested in is opacity of the vote. However, it should be possible to generalize our results
to more complex properties like the bound over variation distance given in [13].

To simplify, let us suppose that there are two possible values for the vote: � and � . Then the set L of initial
states contains all the vote distributions that give a fixed final result, i.e. for any element of L the number of
voters that choose � is fixed, all the other variables are chosen at random (permutations, audit sets).

We study the opacity of property �C�.� 4 (( ����� : are we able to deduce that the vote chosen by voter 2 is � ?
We want to prove that the audit information cannot bring any advantage to an attacker. This requires that for any
observation � , �-� � �[= � ��� ��� � � � . Then, as ���! �" �

�
is given by the vote result, it is clear that it is impossible to

guess the value of 4 ( with better efficiency than when answering the most probable vote with respect to the result.
The specification of the system is pretty straightforward: K � outputs the revealed permutations, the ballots lists
and the nonces used to check the link for any � 5 � � . The output pattern is well-formed (there are no cycles for
? , the form of the ballots gives ��� � ?B��� � 1 ( ?�� � ��?#��� ( ).

After applying � ��� � , the abstract system gives information on the permutations and the final ballot line,
indeed there are two cases for remaining encrypted ballots: they can be abstracted to

� �
or they can be linked

by a permutation to a vote in the final (unencrypted) line and so these ballots are useless to the description
because it would be possible from the rest of the description to rebuild them using the final vote and the revealed
nonce. Let � be an observation in the formal world. Let ��� be the percentage of voter that choose � . Then a
quick calculus detailed in appendix A.3 gives us that �-� � 4 (( ��� = � ��� ��� . This proves opacity of � in the abstract
world.

Security in the computational world is easy to obtain by applying our composition theorem: let � be a PRTM,
then there exist � �

and D two PRTMs such that:

= 	>
?� � :������ � :����Z =�@ = 	>
?� � :����Z�F =3C �$� = 	>
?� � 1 �	��
	� 1 � �

B =

The advantage related to � ��� � is zero. Moreover, if we consider that the encryption scheme used is IND-CPA,
then

	>
?� � 1 �	�

	� 1 � �

B is negligible. Thus the advantage of � is negligible and we can conclude that the
observable � ��� 3 is safe for the cryptographic opacity of � .
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6 Formal Description of the Main Result

The aim of this section is to prove our main result. We proceed in two steps. We first define � -RPAT-CPA and
relate it to IND-CPA. Then, we prove that the advantage of any adversary who accesses the observation functions

� ��� � and � �>� 3 is bounded by a linear combination of the advantage of an adversary that has access to � ��� � and the
advantage of an adversary that has access to � �>� 3 . In both steps, we apply Theorem 1.1. Although, the criterion
we introduce is implied to IND-CPA, it is technically more appealing to use it to prove the main result. Besides
this, our new criterion is of interest on its own as it clarifies and discloses some subtleties related to the treatment
of random coins.

6.1 The RPAT Extension to IND-CPA

In IND-CPA, the experiment consists of generating a random bit � and a random public key ��� . The adversary
tries to guess the value of � . For that purpose, it accesses a left-right oracle submitting two bit-strings ��� � and
���!( and receives the encryption of �>� : using ��� . The adversary also has access to the public key. An encryption
scheme ��� is said secure against IND-CPA if any PRTM has a negligible advantage in trying to find � (the
advantage is two times the probability to answer correctly minus one). The criterion we introduce below allows
the adversary to ask for encryption of patterns where challenged keys may be included and insisting on using
the same random coins in different encryptions. Moreover, patterns may include encryption with the adversaries
keys. As we show later these extensions do not give more power to an adversary, if he is deemed to produce
well-formed patterns.

Let us now introduce � -RPAT-CPA. To do so, let � be a non-negative integer. We first define R-patterns:

�%�-"�� * *�� ��� = <@=�� �%�-"��&�5�%��"��
	 = �6�%�-"��&HJ< � � = �3�%�-"��&HJ< � :�� = �6�%�-"��&H���� � � = �6����"��&H���� � :���� = �
The only difference with respect to patterns introduced in Section 4 is the encryption with a non-challenge key
or a non-challenge nonce. The evaluation function 4 is extended to R-patterns.

The experiment defining the criterion � -RPAT-CPA is as follows:

��"�� � �	��"�� (T� � ��� ( H
� � ��:�� 2 � H
�Q��� � �%���6�� � � ��
 � ����H for 72� 2 � ����� � �

��� � �� � ��:��32 � � H for 72� 2 � ����� � �
N ��� ��������� ( �%��� ( ���- �$�>� ( �����6�( ��� �	��� ������� � ����� � �
�- �Q��� � �����6����&�

< ( �- ���6� �( � ���	� �J<��
�- �>�3� ���� H� � 4��O�-"��5: �
N ��H� ��� * ����� � �
L � � �
N � � � � �

The adversary is split up in two parts � ( and � * , � ( outputs two patterns �-"���� and ��"�� ( . Pattern �-"�� : is
computed (

�
is the number of nonces used by the pattern and � is the maximal number of keys that a pattern can

use), it is given to � * which has to answer the value of � . It is also possible to consider a single adversary � that
access a left-right oracle I , giving it the two patterns. In this case, oracle I only answer its first call.

In the experiment of � -RPAT-CPA, it is mandated that �O�-"���� �	�-"�� ( 	 is well-formed.
We show that algorithms secure w.r.t. IND-CPA are secure w.r.t. � -RPAT-CPA and as, there are algorithms

strongly believed to verify IND-CPA, these algorithms also verify � -RPAT-CPA.

Proposition 6.1 If an asymmetric encryption scheme is secure against IND-CPA, then it is secure against � -
RPAT-CPA for any number of keys � .

The proof is detailed in appendix A.4.This proposition can be generalized to a polynomial number of keys and
nonces using the technique introduced in [16].
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6.2 Composition Result

Our main result states that given a specification, the advantage of an adversary against the concrete system is
lower than the advantage of the abstract system and the advantage of another adversary against � -RPAT-CPA.

Theorem 6.1 For each adversary � , there exist two adversaries � �

and D such that

= 	>
?� � :�� � � � :�� �Z =�@ = 	>
?� � :�� �Z F =3C �$� = 	>
?� � 1 �	��
	� 1 � �

B =

The proof of the main theorem is given in appendix A.5
Using proposition 6.1, it is clear that if an encryption scheme is secure against IND-CPA, then it is secure

against � -RPAT-CPA for any integer � . Therefor, we have

Corollary 6.1 If the encryption scheme ��� used in 4 is IND-CPA and � �>� � brings negligible advantage to any
adversary then � ��� 3 brings negligible advantage to any adversary.

Conclusion

Probabilistic opacity is far more realistic than classical opacity. However, our main result makes it simple to
prove cryptographic opacity for systems involving cryptographic primitives by first proving opacity for the related
abstract system and then using an IND-CPA cryptographic scheme. This composition result seems very general
as it can be applied to get the classical Abadi-Rogaway result. Another interesting result is the implication from
IND-CPA to the new criterion � -RPAT-CPA. This criterion allows us to consider systems where the random
information used for public-key encryption is exchanged (usually, to allow checking of this encryption). This is
necessary to deal with complex systems such as Chaum’s vote protocol. Hence, our last result is the first (to our
knowledge) proof of this voting scheme in a computational setting.

A natural extension of this work is to consider the case of active adversaries as in [3]. To do this, we need to
consider simulation but modular proofs seems quite harder to obtain when using this relation. We also intend to
extend our result to other cryptographic primitives such as digital signature, symmetric encryption or hashing as
in [16]. Finally, it would be of interest to extend the computational security results for Chaum’s voting scheme
to properties given in [13].
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A Appendix

A.1 Basic Properties

Using the definition of advantage given above, some rather obvious properties can be stated. They prove relations
between different kind of advantages except the first one that details the value of ���! �" �

�
. This proposition

relates the value of ���! �" �
�

to the probability for an element of � to be in L .
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Proposition A.1 Let ��� � � � be the probability for a random element of L to verify � . Then the greatest possible
advantage is obtained by answering 1 if ��� � � � 8 (* and : otherwise. Hence, the best probability is: ���! " �

� � �(* C = ��� � � �+� (* =
Proof: Let � be an adversary that can only use the J observation function. As � does not have access to any
oracle. Its behavior can be represented by its probability � to answer 2 . Of course, � also has probability 2=���
to answer : . The probability that � answers correctly is:

��� �	U9VXW �Z - �����&��� � ��� � � � � � C �92 ����� � � �
�E� �52=�����
� 2 � �-� � � �,C �?� ���$� ��� � � ��� 2��

Then, if ��� � � ��� (* ,
��� �	U9VXW �Z - �������T� @#��� � � �

In the other case,
�-� �	U9VXW �Z - �������T� @ 2 � �-� � � �

These two inequalities allow us to deduce the following.

��� �	U9VXW �Z - �������T� @ " " 0 �O��� � � �&�32=����� � � �
�
@ �� �-� � � ��� 2

� �� C
2
�

By looking at the ���! �" �
�

definition, an adversary cannot get a better probability to succeed with no
observations. Thus it is clear that an adversary cannot get a positive advantage.

Proposition A.2 For any adversary � ,
	>
?� �Z @;: .

If an adversary gets a negative advantage, it is possible to inverse its behavior (by inversing its output) and this
may create a greater advantage.

Proposition A.3 For any adversary � , there exists an adversary D of similar complexity such that
	>
?� � :��B C� � ���� �" �

� � � � � 	�

� � :��Z .

The following properties state that some observation functions can bring no advantage compared to other obser-
vation functions. Basically, if an observation � ��� * has a ”finer resolution” than � ��� ( , then the advantage related
to � ��� * is greater than the one related to � ��� ( .
Proposition A.4 Let � ��� ( and � ��� * be two observation functions such that for any pair of trace �&�5� � in K ��L�� ,

� ���6* � �
� � � ���6* �1�9� � implies � ���!( � �
�!� � ���!(T�1�9� � . Then, for any adversary � , there exists an adversary D of similar
complexity such that

	>
?� � :�� DB � 	�

� � :�� AZ .

If � ��� ( and � ��� * are two observation functions, � ��� ( � � ��� * gives access to both simultaneously. Formally,
let � �>� ( and � ��� * be two observation functions from G to G M �6J � . Then � ��� ( � � ��� * is an observation function
from G to G M ��J � � G M ��J � such that the result on action " is � � ��� ( � " ��� � ��� * �1" �
� . It is clear that the sum of two
observation functions gives a better advantage than the advantages related to one of the two functions.

Proposition A.5 Let � ���;( and � ���6* be two observation functions. For any adversary � , there exists an adversary
D of similar complexity such that

	�

� � :�� A � � :�� DB � 	>
?� � :�� AZ .

Relation with Classical Opacity

Probabilistic opacity is closely linked to the opacity notion introduced in [7]. We consider plausible deniability
for probabilistic opacity and initial opacity with a static observation function.

Let K be a deterministic system and L be the set of initial states. Let � be a labeled transition system whose
set of initial states is L and that has the same behavior as K . Let � ��� be an observation function.
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Proposition A.6 A predicate � over L is opaque with respect to � ��� iff for any adversary � ,	�

� � :��Z ?���� � 2 � ���! �" �
� � #

Classical opacity can be linked to anonymity [19] and non-interference [12, 20] and the same thing can be
done with probabilistic opacity.

A.2 Proof of proposition 3.1

Proposition For any adversary � and observation function � �>� ,

= 	>
?� � :��Z =.@ � � :��
Moreover, there exists an adversary � � :�� which advantage is exactly � � :�� .
Proof: This proof is achieved in three steps:

Step 1 First, consider the case where there is only one possible observation, = � = � 2 . Then, the calculus
defining ���! " �

�
can be applied. Adversary � has a probability � (resp. 2 � � ) to answer 2 (resp. : ).

��� �$U VXW � :��Z - �����&�T� � �-� �$U VXW � :��Z - �����&� = ��5 � � � ��� � � �?C+��� �	U9VXW � :��Z - ������� = � S5 � �E� �-� ��� � �
� �?� �-� � � �
C �92 � ��� � �92 ����� � � �
�
� �52 � �-� � � �J�?C+�
� � �$� ��� � � ��� 2��

Then, if ��� � � ��� (* ,
��� �	U9VXW � :��Z - �������T� @#��� � � �

In the other case,
�-� �	U9VXW � :��Z - �������T� @ 2 � �-� � � �

These two inequalities allow us to deduce the following.

��� �	U9VXW � :��Z - �������T� @ " " 0 �O��� � � �&�32=����� � � �
�
��� �	U9VXW � :��Z - �������T� @ �� �-� � � ��� 2

� �� C
2
�

��� �	U9VXW � :��Z - �������T� @ ���� �" �
� �

Hence, the advantage is negative.
Step 2 Now, it is possible to generalize the above result for any set � .

��� �$U VXW � :��Z - �����&��� �
�

�����
��� � � �E� �-� �	U9VXW � :��Z - ������� = � �

@ �
�����

��� � � �E��� �� ��� � � = � � � 2
� �� �

2
� #

@ 2
� C

�
� ���

�-� � � � � �� ��� � � = � � � 2
� ��

We introduce ���! " �
� �

in the former equation using its form = �-� � � ��� (* =6C (* . Hence,

	>
?� � :��Z @ �
�����

��� � � �E��� �� ��� � � = � � � 2
� �� � �� ��� � � �+� 2

� �� #

= 	�

� � :��Z = @ �
�����

��� � � �E� �� �� ��� � � = � �+� 2
� �� � �� ��� � � ��� 2

� �� ��
@ �

�����
��� � � �E� �� �-� � �[= � �+����� � � � ��

@ � � :��
Step 3 The machine � � :�� which advantage is exactly � � :�� is very simple:
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Adversary � � :��T� � � :
�>� �-� � �[= � �
if � �C:�� � , return �������
else return 8&" � �3�

Probability for the different � ��� equivalence classes are hardwired in the machine. As there are only a finite
number of classes, � � :�� works in polynomial time (w.r.t. the size of � ). The advantage of this adversary can be
computed in a similar way as step 1 and 2.

A.3 Opacity of Chaum Voting Scheme

There are two cases to consider. First case, the link starting from 4 (( is revealed.

��� �14 (( ��� = � � � ��� �14 *(�� A � � = � �
� �

�

�
�������� �-� � 4 �� ��� = � �

� 2
�

��
�	� ( �-� � 4 �� ��� = � �

� � �

In the second case, a similar calculus can be done.

��� �14 (( ��� = � � � �
�

�
������ D

�-� � 4 *� ��� = � �

� �
�

�
� ����� �-� � 4 �� ��� = � �

� 2
�

��
�	� ( �-� � 4 �� ��� = � �

� ���

A.4 Proof of proposition 6.1

In this section, we prove that IND-CPA implies � -RPAT-CPA. Henceforth, let ��� be an encryption scheme. We
proceed in three steps.

Let � -RPAT 3 -CPA be the same criterion as � -RPAT-CPA except that adversaries can only output clean pat-
terns, i.e. ���-"���� �$�-"�� ( 	 such that

� ��4 ���-"���� �	��"�� ( � does not contain any nonce nor private key. Our first step
consists in proving that IND-CPA implies 2 -RPAT 3 -CPA.

Lemma A.1 If ��� is secure w.r.t. IND-CPA then it is secure w.r.t. 2 -RPAT 3 -CPA.

Proof: Let us consider an adversary ��� �$� ( �J� * � against 2 -RPAT 3 -CPA. We construct an adversary D against
IND-CPA whose advantage the same as the advantage of � .

Let � be the unique challenge key. As there are no cycles among keys, there does not exist any pair of nonces
< �J< � such that �$�X�J<B�K? �$�X�J< � � . Hence relation ? is empty. For any nonce < such that �$����<B�K5 � � , <
appears in exactly one encoding (but this encoding can be used several times as in � � " HJ< � � � ��"#H�< � � 	 ) and in
this case it appears as a random coin.
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The adversary D uses � ( and � * as sub-machines. However, as � ( outputs patterns while D has to output
messages, D has to simulate the evaluation function 4 using the IND-CPA left-right oracle. This is done using
the function 4 � 7G" in the description of D :

�-"�� � �	�-"�� (�� � ��� (�H� � 4 �37G" �O�-"�� � �$�-"�� (���H� ��� * ����� � �&H
return

�
We now have to describe the function 4 �37G" . First notice that nonces < that do not appear in � � appear encrypted
in the patterns. Therefor, 4 �37G" generates some random values for these nonces and creates the corresponding
environment N � ��� . The context N � ��� is extended with public key � . Next, as ��"�� � and �-"�� ( have the same � ��� �
(modulo renaming), the following recursive function 4��!��4������
	 is applied to �-"�� � �	��"�� ( :

4��!��4 � ���
	 �Q��� ������� � ���
4�����4����
��	�� " (�� " * �
" � ( � " �* � � 4��!��4������
	 �	" (T�
" � ( �E� 4��!��4������
	 � " * �J" �* �

4�����4����
��	 � � " HJ< � � � ��" � HJ< � � � � I �14�� " �
N � ��� �&�54�� " � �
N � ��� � #
Note that for the last line, if 4��!��4 � ���
	 is called twice on the exact same patterns, then the same value has to
be returned (so it is necessary to store the value although this is not done here to preserve simplicity). Finally,
4 �37G" �O�-"���� �$�-"�� ( � returns 4��!��4 � ���
	 ����"���� �	��"�� ( � .

The experiments involving D and � are the same and as ���! �" �
�

is equal to 2TS;� for both criteria, the
advantages of D and � are equal.

�
The second step is to show that 1-RPAT 3 -CPA implies � -RPAT 3 -CPA for

any � .

Lemma A.2 If ��� is secure w.r.t. 2 -RPAT 3 -CPA then it is secure w.r.t. � -RPAT 3 -CPA.

Proof: Let us consider an adversary �(�.�	� ( �J� * � against � -RPAT 3 -CPA.
Using the reduction Theorem 1.1, we split up the advantage between an advantage against � � � 2�� -RPAT 3 -

CPA and an advantage against 2 -RPAT 3 -CPA. We assume that adversary � accesses the left-right oracle I
exactly once. Let � be a maximal key for ? . The partition of N is defined as follows: N ( contains key pairs
������1 ( , any nonce < such that �$����<B��5 ��� . On the other hand, N * contains the other informations from N
including the challenge bit. Oracle I * generates the encodings related to keys in N * and I ( those related to � .

As � is maximal, there are no keys ��� different from � such that for a nonce < in N ( and any nonce < � ,
�$����<B� ? �Q�$�$�J< � � . This is why nonce < is only used as the random coins of an encryption using � .

I ( can be separated into two layers / and 0 defined by:

0 � ����"���� �	��"�� ( 	&�JN * �
N �* � � � 4��O�-"��5: D �JN * �&� 4��O�-"�� : �D �JN �* ���
/ � ���-"���� �	��"�� ( 	&�%���
N ( ��� 4����-"��5:>�
N ( �

Where � * and � �* are the challenge bits contained respectively in N * and N��* .
Let ��"���� and ��"�� ( be two R-patterns such that � ��� � �O�-"�������� � ��� � ����"�� ( � . Then both patterns are the concate-

nation of encodings and similar bit-strings. The call to I has to be simulated using I ( and I,* . For that purpose,
the valuation of their encodings is performed in a similar way as in 4�����4 except that I ( and I,* should only be
called once. To achieve this, requests to I ( and I?* are stored in a single pattern as described for I ( by function
4��!��4 � which outputs a list of pair of patterns:

4��!��4 ���Q��� ������� � � �
4��!��4 �P� " (!� " * �
" � ( � " �* � � 4��!��4 ���	" ( �
" � ( �E� 4��!��43��� " * �
" �* �

4��!��4 �P� � " HJ< � � � ��" � HJ< � � � � � � " HJ< � � � ��" � HJ< � � 	
Then this list of pair �
�O� ( �	�-�( 	&H3� � � H���� � �	�-�� 	J� is transformed into the pair of list �O� ( H � � � H$� � �	���( H3� � � H$�-�� 	 which is
the argument given to I ( . Another function should perform the same operation for keys different from � . After
submitting the results to oracle I ( and I,* , it it easy to rebuild the output of I .
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Note that patterns submitted to I ( and I * are pairs of encodings. I * receives two well-formed patterns that
have the same � �>� � and this is the same thing for / (both receives a concatenation of some

� �
).

As I * only depends on N * , our partition is valid, criterion � N * HJI * H%L * � is � � ��2�� -RPAT-CPA and �	N ( �%��H /KH%L-:%�
is 2 -RPAT-CPA. The reduction theorem applies and gives that there exist two PRTM � �

and D such that

= 	>
?� � 1 �	�

	�Z � ���>=�@���� = 	>
?� ( 1 �	�

	�B � ��� =3C = 	�

��� � 1 (�� 1 �	�

	�Z,F �	���>=
A simple induction proves that as ��� is secure against 2 -RPAT 3 -CPA, it is secure against � -RPAT 3 -CPA for any
integer � .

�
Finally, we show that � -RPAT 3 -CPA implies � -RPAT-CPA.

Lemma A.3 If ��� is secure w.r.t. � -RPAT 3 -CPA then it is secure w.r.t. � -RPAT-CPA.

Proof: Let us consider an adversary � � �	� ( �J� * � against � -RPAT-CPA. As in step 2 , an adversary D �
� D ( �JD * � is built such that D ( returns clean patterns. For that purpose, D * is similar to � * . D ( executes � ( and
computes

� ��4 �O�-"���� �	��"�� ( � . Then it generates some keys and nonces and uses them for elements of
� ��4 on the

answer of ��"���� and ��"�� ( . The patterns remain well-formed and still have the same � �>� � . D and � have the same
advantage but D is an adversary against � -RPAT 3 -CPA. As ��� is secure against � -RPAT 3 -CPA, it is also secure
against � -RPAT-CPA.

�
Proposition 6.1 is a simple consequence of the three above lemma.

Proposition If an asymmetric encryption scheme is secure against IND-CPA, then it is secure against � -RPAT-
CPA for any number of keys � .

A.5 Proof of the Main Theorem

This theorem is an application of the reduction theorem 1.1. Let K � be a specification. Let � be the maximal
number of keys used by K � . Then the experiment related to � ��� 3

� � ��� � can be reformulated as the following
experiment:

M F is split up on two parts: F ( generates the � pairs of keys ����� � �%��� � � and
�

nonces �

�
; F * generates the

initial state � in L and the pattern � � K � �Q��� .
M We have two oracles: I,* gives access to � ��� � ����� , I�( gives access to 4���� �
N�(>� which is � ��� 3 �O��� .
M L * verifies that the output � made by the adversary is equivalent to ��5�� .

I ( can be be cut in two layers. / corresponds to the left-right encryption algorithm for � -RPAT-CPA, 0 �	0A�
N * �
N �* �
takes any argument as input 0 and outputs the pair �O�&�Q�$� 	 where � and ��� are the patterns respectively contained
in N * and N)�* .

It is now possible to apply the reduction theorem 1.1 to obtain that for each adversary � , there exist two
adversaries � �

and D such that
= 	>
?� Y Z =.@ = 	>
?� Y DZ F =6C ��� = 	>
?� Y AB =

Moreover, E is equivalent to the criterion related to � ��� 3
� � ��� � , E$* is equivalent to the one related to � ��� � . Finally,

E�(����$���JN)(�H /KH ��0?� 0 � ��� , / is only the left-right oracle, hence this criterion is the � -RPAT-CPA criterion except
that there is no oracle to view the public keys. As this criterion is weaker than � -RPAT-CPA, it is possible to
conclude that with a different machine D (but still of comparable complexity),

= 	>
?� � :�� � � � :�� �Z =�@ = 	>
?� � :�� �Z F =3C �$� = 	>
?��� 1 �	��
	� 1 � �

B =
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