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Abstract

We apply a formal, automated model-based design tool for synthesizing correct-by-construction
parallel implementations of an MPEG-4 video encoder. The tool allows for early prototyping,
verification and simulation of embedded applications. The generated software implementa-
tions are multi-threaded and customized for system on-chip multi-processor architectures. We
consider two HW platforms: a custom industrial video-encoding board currently under devel-
opment, and Intel’s IXP2800 network processor.
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1 Introduction

Computation-intensive embedded applications, such as video compression, result in a significant growth in
processor workload. To cope with this problem, a solution is to use heterogeneous multiprocessor archi-
tectures integrating multiple processor cores, and other specialized hardware components, on a single chip.
The software counterpart is that embedded programs become multithreaded to better exploit at software-
level the physical parallelism provided by multiprocessor hardware [12].

Design and implementation of multithreaded software for multiprocessor architectures is complex,
costly and error-prone. In particular, ensuring non-functional application requirements and platform con-
straints (e.g., timing properties, resource management, ...) is difficult with today’s industrial engineering
methods.

Indeed, embedded software engineers must handle several notions of concurrency (e.g., going from
multithreading and software pipelinening to dedicated IPs, multiprocessors, and processor-level multi-
threading), as well as a number of different communication and synchronization mechanisms (e.g., syn-
chronous communication, shared memory, single processor, bus contention, ...)

It has been recognized1 that there is a need for new analysis and synthesis tools to cope with con-
currency, at both software and hardware levels, supported by software development methods based on a
unified programmer’s model. Such a model should provide (1) appropriate mechanisms for expressing and
dealing with different notions and levels of concurrency, and (2) a semantic framework for formally relat-
ing them. The ultimate goal is to produce executable code which is correct with respect to application’s
logic and non-functional requirements.

JAHUEL [2] is a model-based, formal development framework which is being designed along this line
of work. It consists of a formal language, called FXML, and its associated tool-suite. FXML provides
simple and platform-independent constructs to specify the behavior of the application using an abstract
execution model. It has a formal semantics allowing for correctly refining abstract FXML specifications
into more concrete ones without semantic break-downs. FXML has been designed to express software
structure, functionality, and requirements, and execution-platform architecture and constraints. FXML
specifications can be directly manipulated to perform, both platform-independent and dependent, analyses
(e.g., schedulability) and transformations (e.g., data and task mappings) to generate code for execution or
for simulation. JAHUEL is connected to the FlexCC2 [4] industrial optimizing C-compiler for embedded
hardware, and a TLM-based simulation tool for validating the generated code on a simulated platform.

In this paper, we present the results obtained using JAHUEL for synthesizing and evaluating several
implementations of an MPEG-4 software for two different platforms. The first one is a custom industrial
video-encoding platform currently under development (Sec.4). The second one is based on Intel’s IXP2800
network processor [6] (Sec.5).

2 The JAHUEL framework

JAHUEL [2] is based on the formal language FXML. In FXML computation units are concurrent by default.
Precedence constraints can be used to limit concurrency and to express synchronization and communica-
tion. The granularity of computation units is not fixed, the smaller grain is the assignment or legacy code.
FXML provides parallel (par ) and sequential composition, and aforall primitive to declare several
concurrent iterations of the same block. Basic FXML does not provide any specific synchronization or
communication primitives. Instead, the basic language can be extended with non-functional information
about and mechanisms of the concrete execution model and target platform (e.g., execution times, synchro-
nization and communication, number of processors, ...)

Compiling an FXML specification consists in transforming it until actual platform-dependent code is
generated (either for execution or for simulation). More formally, letL0 be basic FXML. The compilation
chain is a sequenceL0 7→∗ L0 7→ L1 7→∗ . . .Ln, of correct transformations. Li is anextensionof Li−1

with primitives not expressible inLi−1. Li 7→∗ Li is a sequence ofrefinements(e.g., adding new sequential

1See for instance: Platform-based design: A choice, not a panacea, by Richard Goering, EE Times 09/11/2002,
http://www.eet.com/reshaping/platformdesign/OEG20020911S0061
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Figure 1: MPEG block diagram view

dependencies), andLi 7→ Li+1 is a transformation that adds information not expressible inLi (e.g., the
communication and synchronization mechanisms).

The semantics of a specificationp of an extensionL of FXML is a set of executionse ∈ EL. An
executionis a partial order between computation units (i.e., assignments or blocks of legacy code) which
is consistent with data and precedence dependencies. FXML allows expressing dependencies of the form
a →[l,u] b meaning that every occurrence ofb starts in a timestartb such thatstartb−enda ∈ [l, u], where
enda is the finishing time ofa. FXML also allows expressing relationships betweenindexed instancesof
computations. This is useful for specifying dependencies between iterations offor loops or parallel
executions offorall loops. For instance,a(i) → b(i+1) means that thei-th instance ofa preceedes the
(i + 1)-th instance ofb. Indexed dependencies can be annotated with timing constraints and may quantify
over vectors of indexes (for expressing dependencies in nested loops). We will illustrate the use of this
construct in Sec.3 to specify dependencies in an MPEG-4 encoding algorithm.

A transformation fromL to L′ is an injective mapφ : L → L′. Let EL be the set of executions “of
typeL”, and Fφ : EL′ → EL be the “forgetting” function that forgets all information that is specific to
executions “of typeL′”. A correct transformationφ is such that for all executionse′ of the transformed
specificationφ(p) ∈ L′ we have thatFφ(e′) is an execution ofp ∈ L.

A formal definition of FXML can be found in [2]. Our current prototype provides some general built-in
transformations which can be customized for different execution platforms. Indeed, JAHUEL can be easily
extended with other transformations and models. For instance, JAHUEL (a) provides code-generation for
POSIX-compliant runtime platforms, (b) generates stop-watch automata to enable scheduler synthesis [8,
3], (c) generates code for SystemC-based simulation. The latter allows for early prototyping, verification
and simulation. Moreover, automated generation of both executable and simulation code from the same
formal model ensures simulation results are trustworthy.

3 Software application: MPEG-4 encoder

In this section we briefly present the specification of MPEG-4 [1] using the FXML language. For lack
of space, we only give here a part of the formal FXML model. This model describes all the existing
concurrency in the compression algorithm at the macroblock level. Such concurrency does not appear in
the MPEG block diagram (Fig.1).

The specification is composed offorall nodes, legacy C-code blocks (MPEG-4 computations), and
dependencies of the MPEG phases. Nodes are labeled with numbers in brackets (Fig.2). We note (1,(x,y))
the computation corresponding to the execution of the ME (motion estimation) phase on the frame mac-
roblock at position (x,y). The arrows indicate dependencies between these computations. There are three
types of dependencies : (1) data dependencies resulting from the MPEG-4 standard specification (e.g., in
Fig.2(a), (1,(x,y))→ (3,(x,y)) is a data dependency expressing that the ME phase on macroblock (x,y) must
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Figure 2: Encode and VLC procedure graphs
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Figure 3: Video-capturing platform

finish before starting the Choice phase on the same macroblock), (2) functional dependencies necessary for
the correct functioning of the application (e.g., there is a functional dependency from macroblock (x,y) to
macroblock (x+1,y) in the specification of VLC (Fig.2(b)) because generated headers and blocks are se-
quentially written in the output bitstream), and (3) dependencies resulting from implementation decisions
(e.g., using input and output buffers with one-frame capacity) of encoding frames one after another.

4 Industrial video-capturing platform

4.1 Platform overview

The platform is composed of five components (Fig.3). Each picture grabbed by the camera (CAM ) is
sent to the (GAE) component which is in charge of performing user-requests such as zooming or rotating.
Two concurrent components operate on picture data: the display (DISP) device and the format-converter
software (FC). The result of the conversion is used by the MPEG-4 video-encoding software (component
VE). Software components run concurrently on several processors. All components are periodic processes
and communicate throw input and output unit-size buffers located in an external memory. The format-
converter software uses two alternating buffersFC buffer1 andFC buffer2. This allowsFC to handle the
next frame whileVE is still encoding the current one stored in the other buffer. Encoded pictures are stored
in theEncodedbuffer.

The hardware test-bed architecture is depicted in Fig.4. The system has one shared 800 MB/s bus
composed of two independent request and a response channels. The bus master’s clock frequency is 1.6
Ghz. A simple priority-based bus arbiter is used to grant access to different processors. Transaction size
is one word. The bus does not support locking. The system has a 32 MB SDRAM composed of several
independent banks of different sizes which can be accessed in parallel. The latency of the memory is 2
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Figure 5: FXML model of the video encoding platform

cycles for a request when no bank conflict occurs. The size of a memory data transaction is one word. In
addition to IP components (for capturing and displaying), the board can be populated by up to 18 processing
elements for executing the embedded software. Each processor has a 16 Kb data cache with 4 Kb pages
size. Caches have a 32 bytes block-size, and are configured for direct-mapped associativity, and use the
least-recently-used replacement and on-demand fetch policies with write-allocate strategy. Each processor
has a separate OS. The OS supports static memory allocation for making user-defined data mappings,
ensures cache coherence, and provides inter-processor synchronization via a POSIX-compliant wait/notify
API.

The behavioral properties of the platform are modeled in FXML (Fig.5). IP components are identified
by labelling the corresponding nodes HW1 (CAM), HW2 (GAE) and HW3 (DISP). Software nodes are
labelled SW1 (FC) and SW2 (VE).IN MEM andOUT MEM indicate input/output data buffers. (CAM,k)
→ (GAE,k) indicates that the k-th computation ofGAE uses data produced by the k-th computation of
CAM . The FXML model of the MPEG-4 video-encoding softwareVE is the one given in section3. The
composition of both models specifies the behavior, structure, requirements and constraints of the whole
application.

4.2 Architecture-specific implementation

4.2.1 Scheduler synthesis

In order to meet the timing requirements of the application, we have to synthesize a feasible scheduler. The
scheduler must ensure that software tasks complete within the specified period of 1/15 seconds (i.e., an
encoding rate of 15 frames per second). HW execution times are assumed to be known. On the other hand,
SW execution times may vary and are therefore treated as parameters.

Our approach consists in synthesizing a scheduler from the FXML model of the application applying
the compositional technique developed in [3]. The model only takes into account HW execution times and
periodic activations, and interactions among software and hardware components due to dependencies. That
is, the model abstracts away from platform-dependent issues (such as cache misses, bus accesses, ...) that
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considerably affect SW performance. From this model, the synthesis procedure derives a scheduling and
a constraint on the execution-times ofFC (δFC) andVE (δV E) which must be satisfied at runtime for the
scheduling to be feasible. The constraint is:δFC +δV E ≤ 1

15 (Eq.1). Figure6 shows a feasible scheduling.

4.2.2 Implementation synthesis

Synthesizing an implementation consists in finding a deployment of processors and SW components that
yields SW execution times that ensure the already synthesized constraint (Eq.1). In what follows, we
assume that the WCET ofFC is 1/38 seconds. Replacing in Eq.1 we get that the execution timeδV E

has to be:δV E ≤ 1
25 (Eq.2) to ensure schedulability. A correct parallel implementation must satisfy

Eq.2. We use JAHUEL to generate different implementations whose performances are analyzed on several
simulated hardware platforms. These implementations take into account platform-dependent issues that
have been abstracted away when synthesizing the scheduler. Of particular interest are the behavior of the
bus and the memory to study the impact of memory accesses on software execution times. In particular,
simulations give information about bandwidth utilization and cache misses, and allow relating them to
software performance.

Data-to-memory mapping is done in order to reduce memory latency by avoiding memory-bank con-
flicts between requests. The critical tasks are the motion estimation (ME), the forward discrete cosine
transformation (DCT), the inverse discrete cosine transformation (IDCT) and the entropy encoding (VLC),
in this order2. Independent banks are assigned to ME, ADD and VLC data. The grabbed picture is split
into several chunks byFC and also mapped into separate banks.

Table1 summarizes part of the data-to-memory mapping. For simplicity neither buffer addresses nor
address ranges covered by memory-banks are shown. The grabbed picture (GRB) is loaded byCAM into a
memory bank GRBbank (W CAM), which is the memory location ofGAE buffer2 (Fig. 3, to be read by
FC (R FC). The picture is then split byFC and written into different banks GRB[j], wherej = 1, 2 is one
of the two alternating buffersFC buffer1 andFC buffer2. Each of these buffers is indeed distributed over
several banks according to the number of encoder threads: data for thei-th thread is loaded into memory
bank GRBbank j i. And so on. This scheme increases system throughput.

Software-to-processor mapping is done in several steps. The first one consists in transforming the initial
FXML model of the encoder in such a way that all functions except VLC are grouped under aforall

2Execution times of these tasks constitute an average of more than 60% of the overall encoder’s execution time.
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DATA SIZE(KB) MEMORY ACCESS TYPE

GRB 460 GRBbank R FC - W CAM
GRB[j] 230 GRBbank j i R ME(i) - W FC
ADD[j] 230 ADD bank j i W ADD(i) - R VLC

Table 1: Data to memory mapping
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Figure 7: Two-thread implementation

node. For simplicity, we call this group MPEG. This transformation (which is indeed a refinement and
therefore allowed by the formal framework) is intended to end-up reducing synchronization overhead at
the cost of eliminating some parallelism because of the introduction of new dependencies. The second step
consists in partitioning and distributing the tasks according to the target architecture. We have evaluated
three strategies. The first one consists in sequentializing the MPEGforall by transforming it into a
for , and then spawning several copies of it, one into a processor. An instance of this implementation is
illustrated in Fig.7. The second strategy consists in splitting the MPEGforall into ann-stage pipeline.
Fig. 8 shows a 4-stage pipeline. The last class of implementations, called hybrid, is obtained by combining
the previous two.

We have generated with JAHUEL simulation code for several different instances of these implemen-
tations. For this, we have developed a transaction-level model (TLM) of the board on SystemC. Fig.9
summarizes the simulation results. For lack of space, we show only the results for 4-stage pipelines:
(a), (b), (c) and (d) are instances of the first class of implementations; (e), (f) and (g) are hybrid imple-
mentations, 2x4, 3x4 and 4x4, respectively.3 We have used communication buffers with a capacity of 1
macroblock data. The experimental results show that implementations (d), (f) and (g) satisfy Eq.2. Hybrid
implementations produce an increase of bandwidth usage due to conflicting parallel requests and the negli-
gable decrease of the rate of cache misses (which stabilizes around 1.3%). The best compromise seems to
be implementation (d), consisting of 4 MPEG-threads, which meets the execution time requirement, with
an acceptable amount of used bandwidth, using less processors than (f) and (g).

5 IXP2800 NP

The IXP2800 NP [6] is a general purpose 32-bit RISC processor for higher layer network processing tasks.
It has 16 RISC micro-engines, connected to all shared resources (SRAM, DRAM, MSF, etc.). IXP2800 NP
is composed of three RDRAM channels. Either one, two, or three channels can be enabled. When more

3A single 4-stage pipeline did not produce significant results
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Figure 8: Pipeline implementation
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Figure 9: Simulation results

than one channel is enabled, the channels are interleaved on 128-byte boundaries to provide balanced ac-
cesses to all populated channels. An address space of 2 GB is supported by the DRAM interface regardless
of the number of enabled channels. With interleaving, each channel must have the same number, size, and
speed of RDRAMs. Each channel can be populated with up to 32 RDRAMs with the same size and speed.
Table2 gives the used DX Unit (DRAM Unit) characteristics.

Characteristics Note

Number of channels 1,2 or 3 1, 2 or 3-Way interleaving
Channel frequency 800 MHZ Round-Robin among DRAM units
Address rearrangement Based on BANKREMAP value (=01)
Capacity per channel 32 MB Delivery rate of 64 B/Cycle
Devices per channel 4 8 MB per device
Banks per device 16 Round-Robin among banks
Bank size 512 K Closed bank policy
Page size 512 B 1024 page per bank
PULL/PUSH buses 2800 MB/s 4*64-entry command FIFO per channel

Table 2: RDRAM channel characteristics

Channels are interleaved on 128-byte boundaries in hardware to improve concurrency and bandwidth
utilization. Within a channel, contiguous 128-byte blocks are directed to non-contiguous RDRAM re-
sources by rearranging physical address bits in a programmable manner.

Within the 3-way interleave mode the channel is selected using modulo-3 reduction (address bits [31:7]
are summed as modulo-3, and the remainder is the selected channel number). When two channels are
active, address bit 7 is used as the channel select. Addresses that have bit 7 equal to 0 are mapped to
channel 0 while those with bit 7 equal to 1 are mapped to channel 1. The address within the channel is
[31:8], [6:0]. When only one channel is active, all accesses go to that channel.

In addition to interleaving across different RDRAM channels, addresses are also interleaved across
RDRAM chips and internal banks. This improves utilization since certain operations on different banks
can be performed concurrently. The interleaving is done based on rearranging the channel address as a
function of memory size. The rearranged address is partitioned to choose RDRAM chip, bank within
RDRAM, and page within bank.

We have synthesized several implementations of the MPEG-4 encoder for the IXP2800. For lack of
space, we only show the simulation results (Tab.3) obtained for the sixteen MPEG-thread implementation
(see Sec.4), using all three addressing modes. This implementation uses all IXP micro-engines and satisfies
Eq.2.

We notice that even if the bandwidth load is fairly distributed among used channels, all modes result in
almost the same frame rate and bandwidth usage. This is due to full use of the PUSH bus, which shows that
the PUSH bus is the bottleneck that prevents from taking full advantage of the IXP channel and memory

Verimag Research Report no TR-2005-14 7/8
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parallelism for the MPEG-4 application.

Interleaving mode 1-Way 2-Way 3-Way

Execution timeδV E (s) 0.0394 0.0395 0.0395
PUSH Bus used bandwidth (MB/s) 2782.3 2781.9 2782.1
PULL Bus used bandwidth (MB/s) 129 129 129
Channel 1 used bandwidth (%) 57.8 26.2 23.3
Channel 2 used bandwidth (%) 0 31.6 15.8
Channel 3 used bandwidth (%) 0 0 18.8

Table 3: Results for 16 MPEG-thread on IXP

6 Conclusions and related work

Other approaches which have also been designed to integrate software and hardware models, and non-
functional properties are the following. In architecture description languages (e.g., [5]), the application
execution model is tied up to a built-in platform-dependent execution model. Model-integrated devel-
opment [7] handles horizontally-composed requirements at the same level of abstraction, but it does not
seem to be well adapted to reason about cross-cutting requirements that need vertical propagation and
composition through different abstraction layers. Platform-based design (PBD) [11] supports vertical inte-
gration, but focuses on composing functionality while abstracting away non-functional issues. Metropolis
[9] implements PBD and provides simulation, verification and synthesis tools, but currently only supports
scheduling policies specified using sequential programs. PTOLEMY II [10] supports composition of het-
erogeneous models of concurrent computation, but it is oriented towards modeling and simulation rather
than to code synthesis.

JAHUEL integrates in the same tool-suite (1) formal model-based, software synthesis, (2) a TLM-based
simulation tool for validating synthesized code on simulated platforms, and (3) an advanced optimizing C-
compiler for embedded hardware. This enables code generation for specific platforms (including software-
to-processor mapping and scheduling), and platform-independent functional analysis, to be linked together
in the same tool-chain without semantic gap. We believe the results presented in this paper show that
our approach is able to automatically synthesize implementations, satisfying non-functional application
requirements and platform constraints, for state-of-the-art hardware platforms and software applications.
Future work concerns validating the approach with more industrial applications and extending the tool to
handle other constraints such as energy consumption.
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