
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Implementation of Timed Automata:
An Issue of Semantics or Modeling?

Karine Altisen and Stavros Tripakis

Report no TR-2005-12

June 2005

Reports are downloadable at the following address
http://www-verimag.imag.fr

Implementation of Timed Automata:
An Issue of Semantics or Modeling?

Karine Altisen and Stavros Tripakis?

Verimag
Centre Equation, 2, avenue de Vignate, 38610 Gières, France.

Abstract. In this paper we study to what extent implementation of
timed automata can be achieved using the standard semantics and ap-
propriate modeling, instead of introducing new semantics. We propose an
implementation methodology which allows to transform a timed automa-
ton into a program and to check whether the execution of this program
on a given platform satisfies a desired property. This is done by model-
ing the program and the execution platform, respectively, as an untimed
automaton and a collection of timed automata. We also study the prob-
lem of property preservation, in particular when moving to a “better”
execution platform. We show that some subtleties arise regarding the
definition of “better”, in particular for digital clocks. The fundamental
issue is that faster clocks result in better “sampling” and therefore can
introduce more behaviors.

1 Introduction

Model-based design is being established as an important paradigm for the devel-
opment of embedded systems today. This paradigm advocates using models all
the way from design to implementation. Using models, rather than, say, building
and testing prototypes, is important in order to cut development costs and time.
However, using models alone is not enough. Being abstractions of reality, models
often make “idealizing” assumptions, which break down during implementation.
Thus, it is necessary to bridge, somehow, the gap between high-level models and
low-level implementations.

In this context, this paper studies the problem of implementation of timed
automata. Timed automata [1] are a popular model for describing real-time
systems. Numerous model-checking techniques and tools exist for this model,
e.g. [7, 14], permitting to prove automatically, at least in principle, properties on
a given model. Also, (optimal) synthesis techniques and tools exist, permitting
to synthesize automatically timed-automata controllers that are correct by con-
struction for a given plant and property, meaning that the closed-loop system
(plant,controller) satisfies this property.

Independently on whether a timed-automaton controller is synthesized auto-
matically or “by hand”, an important problem remains, namely, how to pass from
? Email: altisen@imag.fr,tripakis@imag.fr. Work partially supported by CNRS

STIC project “CORTOS” and by IST Network of Excellence “ARTIST2”.

the timed-automaton model to an implementation. This is a typical bridging-
the-gap situation like the ones discussed above. Indeed, the semantics of timed
automata are “ideal” in a number of ways (“continuous sampling” of guards
using “perfect” clocks, zero execution and communication time, etc.).

A number of works exist on the timed automata implementation problem [4,
19, 13]. The main motivation for our work has been [19]. In summary, the results
of [19] are as follows. Given a TA A, the authors define a new semantics of A,
parameterized by a delay ∆, called almost ASAP semantics and denoted [A]∆.
They also define a program semantics for A, parameterized by two delays ∆P

(modeling the period of the digital clock of the execution platform where the
program runs) and ∆L (modeling the worst-case execution time of the loop-body
of the program), denoted [A]∆P ,∆L

.

The authors then prove three main results. First, an implementability result
stating that if ∆ > 4∆P + 3∆L then [A]∆P ,∆L

refines [A]∆. Second, a “faster is
better” result stating that if ∆′ < ∆ then [A]∆′ refines [A]∆. Third, a modeling
result which permits to transform A into a TA A∆ such that [A]∆ equals the stan-
dard semantics of A∆. The refinement relation used guarantees that if S correctly
controls a given environment then any S ′ that refines S also controls correctly
this environment. Thus, the three results above provide the cornerstones of a so-
lution to the implementability problem: first ∆P and ∆L can be fixed according
to the execution platform; then ∆ can be chosen so that it satisfies the inequal-
ity above; finally, A∆ can be verified against an appropriate environment model
and a specification. If the specification is met, then there exists a program (im-
plementing [A]∆P ,∆L

) which is guaranteed to meet the specification against the
same environment. Moreover, if the execution platform is changed for a “faster”
one, with ∆′

P ≤ ∆P and ∆′
L ≤ ∆L, then the “faster is better” result guarantees

that the program is still correct.

The question we would like to ask in this paper is the following: can simi-
lar results be obtained without introducing new semantics, but using modeling
instead? The question is not without interest, since, avoiding to introduce new
(and admittedly complicated) semantics has a number of advantages. First, the
approach becomes easier to understand. Second, the approach becomes more
general: new assumptions on the program type or execution platform can be in-
troduced simply by changing the corresponding models, in a modular way, with-
out having to modify the semantics. Third, new possibilities arise, for instance,
for automatic synthesis of controllers which are implementable by construction.

In the rest of this paper, we give a positive, albeit partial, answer to the
above question. In particular, we propose an implementation methodology for
timed automata which allows to transform a timed automaton into a program
and to check whether the execution of this program on a given platform satisfies
a desired property. This is done by modeling the program and the execution plat-
form, respectively, as an untimed automaton and a collection of timed automata,
the latter capturing the three fundamental implementation components: digital
clock, program execution and IO interface. Section 3 describes the methodology.

2

This provides a solution to the implementation of timed automata, however,
we would also like to have a result guaranteeing that, when a platform P is
replaced by a “better” platform P ′, then a program proved correct for P is also
correct for P ′. We study this problem in Section 4 and obtain only partially
satisfactory results. The main problems arise from the following “paradox”. On
one hand it seems reasonable to consider P ′ better than P if the two are identical,
except that P ′ provides a periodic digital clock running twice as fast as the one
of P . On the other hand, a program using the faster clock has a higher “sampling
rate” and thus may generate more behaviors than a program using the slower
clock, which may result in violation of properties. Through a set of examples,
we expose such subtleties in Section 4. In Section 5 we indicate a few directions
on how to pursue this issue further.

Related work: As mentioned above, the work of Raskin et al has been the
main motivation for our work [19].

Closely related is also the work on the tool Times [4] which allows to generate
code from timed automata extended with preemptable tasks. The focus in this
work is schedulability rather than semantical preservation. The generated code
is multi-threaded whereas ours is mono-threaded.

Similar motivations with ours has the work reported in [13], where the model
of time-triggered automata is proposed to capture execution on time-triggered
architectures [12]. Issues like execution and IO communication times, as well
as robustness of digital clocks (which cannot assumed to be perfect in other
architectures than time-triggered) are not considered in this work.

Related is also the work on digitization and robustness of timed automata,
e.g., see [10, 16, 15], however, the focus of most of these works is preservation
of dense-time semantics by various discrete-time semantics and the use of such
results for verification.

Finally, a large amount of work exists on code-generation from high-level
models other than timed automata, for instance, hybrid automata [3], Giotto [11],
Simulink/Stateflow1 models [6, 5, 17], or synchronous languages [9], to mention
only a few.

2 Timed automata with inputs and outputs

A timed automaton with inputs and outputs (TA for short) is a tuple A =
(Q, qo,X, I,O,Tr, Inv). Q is a finite set of locations and qo ∈ Q is the initial loca-
tion. X is the finite set of clocks. I (resp. O) is a finite set of input (resp. output)
events. Tr is a finite set of transitions. A transition is a tuple t = (q, q′, a, g, r),
where q, q′ ∈ Q are the source and target locations, a ∈ I ∪ O ∪ {τ} is an input
or output event, or an internal event τ , g is the guard (that is, a conjunction
of constraints of the form x#c, where x ∈ X, # ∈ {<,≤,=,≥, >} and c is an
integer constant) and r ⊆ X is the set of clocks to be reset. Inv is a function

1 Trademark of The Mathworks, Inc.

3

that defines for each location q ∈ Q its invariant Inv(q), a constraint similar to a
guard which specifies the time progress condition. We require that every guard
of a transition t is contained in the invariant of the source location of t.

A TA defines an infinite transition system TS = (S, s0,T). S is the set of
states. A state is a tuple (q, v), where q ∈ Q and v : X → R is a valuation
associating a value to each clock. We require v to satisfy Inv(q). The valuation
assigning zero to all clocks is denoted vzero. The initial state of TS is s0 =
(qo, vzero). T ⊆ S×(I∪O∪{τ}∪R)×S is a set of discrete or timed transitions. A
discrete transition is a tuple (s, a, s′) where a ∈ I∪O∪{τ}, s = (q, v), s′ = (q′, v′)
and there exists a discrete transition t = (q, q′, a, g, r) ∈ Tr such that v satisfies g
and v′ = v[r := 0] is obtained from v by setting all clocks in r to zero and keeping
the values of the rest of the clocks the same. We also write s

t→ s′ for a discrete
transition. A timed transition is a tuple (s, δ, s′) ∈ T where δ ∈ R, s = (q, v),
s′ = (q, v′) and v′ = v + δ is obtained from v by increasing all clocks by δ. We
require that for all δ′ ≤ δ, v+δ′ satisfies Inv(q). We also write s

δ→ s′ for a timed
transition. A discrete transition sequence of A is a finite sequence of discrete
transitions t0, t1, ..., tk such that s0

δ0→ t0→ s1
δ1→ t1→ · · · sk, for some δ0, ... δk−1 ∈ R.

The set of all discrete transition sequences of A is denoted DTS(A). We assume
that A is non-zeno, that is, it has no reachable state s such that in all executions
starting from s time converges.

3 A methodology for the implementation of timed
automata

In order to obtain an implementation of a timed automaton A in a systematic
way, we propose a methodology based on modeling. The main idea is to build a
global execution model, as illustrated in Figure 1. This model captures the (real-
time) execution of the program implementing A on a given execution platform
and along with a given environment. In particular, the steps of our methodology
are the following:

– A is transformed into an untimed (i.e., discrete) automaton Prog(A). The
latter is interpreted by a generic program, and this is how A is implemented.
At the same time, Prog(A) is part of the global execution model.

– The user provides models of the execution platform, in the form of timed
automata communicating with Prog(A). We identify three main components
permitting to model the essential features of the execution platform:
• A timed automaton ADC modeling the digital clock of the platform, that

the program implementing A consults when reading the current time.
• A timed automaton AEX modeling program execution.
• A timed automaton AIO modeling the interface of the program and exe-

cution platform with the external environment.
The three models can be designed by the user, or chosen from a set of
“sample” models we provide in the rest of this section. A platform model is
the composition P = ADC||AEX||AIO.

4

– The user provides a model of the environment in the form of a TA Env. Env
can be composed with the “ideal” controller A to yield an “ideal” model of
the closed-loop system, A||Env, on which various properties can be model-
checked.

– Env can also be composed with the above set of models to yield the global
execution model:

M = Prog(A)||ADC||AEX||AIO||Env .

M models the execution of the program implementing A on an execution
platform behaving as specified by the triple (ADC,AIO,AEX) and interacting
with an environment behaving as specified by Env. In other words, M cap-
tures the execution semantics in the sense of [19]. As with the ideal model
A||Env, any property that the implementation must satisfy can be checked
on M .

Figure 1 shows the different components of the global execution model and their
interfaces. We explain these in more detail in the rest of this section.

?

6

plant model: Env

a1?, ..., an? b1!, ..., bm!

?

6

6

6trig!

output interface

now

execution
model: AEX

digital controller model: Prog(A)

digital clock
model: ADC

interface model: AIO

input and output

input interface

Fig. 1. The global execution model.

Let A = (Q, qo,X, I,O,Tr, Inv) be a timed automaton with inputs and outputs.
This notation will be used in the whole section.

3.1 The program implementing a timed automaton

The program implementing A works by interpreting the untimed automaton
Prog(A) discussed above. Thus, we begin by explaining how to transform A into
Prog(A).

5

Transforming A into Prog(A) Prog(A) is a finite automaton extended with
a set of static variables, meaning that they do not evolve with time (as opposed
to the clocks of A which are dynamic variables). Prog(A) has the same set of
discrete states Q as A. For each clock x of A, Prog(A) has a static variable xp of
type “real” (initialized to zero). Prog(A) also has an externally updated variable
now of type “real”: now is an interface variable between Prog(A) and ADC. now
stores the value of the current time as given by the platform clock. The program
may read this value at any time.

Prog(A) also has an input/output interface, in order to communicate with the
environment. For the moment, we will not be specific regarding this interface,
as there as many options, depending on the program implementation, execution
platform, and so on. Examples of possible interfaces are given below, along with
the examples of AIO models (Section 3.2).

For each transition t = (q, q′, a, g, r) of A, Prog(A) has a transition tp =
(q, q′, trig?, ain, aout, gp, rp), where q, q′ are the source and destination discrete
states and:

– trig is an input event that serves to model the triggering of the external
loop of the program: the use of trig will become clear in the paragraphs that
follow (Section 3.2).

– If a ∈ I then ain is an element of the input interface associated with a. As
mentioned above, there are different such interfaces, so ain can be of different
types: if the interface is based on input variables, then ain is a condition on
these variables; if the interface is based on event-synchronization, then ain

can be an event. If a 6∈ I then cin is empty and has no effect on the semantics
of tp.

– If a ∈ O then aout is an element of the output interface associated with
a. Again, different possibilities exist, some of which are presented in the
paragraph discussing how to model AIO (Section 3.2). If a 6∈ O then rout is
empty and has no effect on the semantics of tp.

– gp is a condition obtained by replacing every occurrence of a clock x in the
guard g by now − xp.

– rp is a set of assignments obtained by replacing every reset of a clock x in r
by xp := now.

Prog(A) will also have a set of escape transitions. These transitions are self-
loops of the form (q, q, trig?, gelse), where gelse is the negation of the disjunction
of all guards of all other transitions exiting q. Thus, this escape transition models
the case where none of the previous transitions is enabled, thus, no transition
is taken and the program does not change state. Escape transitions are simply
added for modeling purposes and are not interpreted by the program interpreting
Prog(A).

In summary, Prog(A) is a discrete version of A where dynamic clocks are
replaced by static variables, input and output events are replaced by conditions
on input variables and assignments on output variables, respectively, and an
externally updated variable now capturing global time as given by the digital
clock of the platform.

6

x := now
trig?, now − xp = 1

trig?

A

x := 0

a?, x := 0
x ≤ 1

b!, x ≤ 1
x = 1

x ≤ 1

x = 1, x := 0

Prog(A)
trig?, a=true
xp := now

trig?, b:=true
now − xp ≤ 1

a=false
trig?

now − xp > 1
trig?

now − xp = 1

now − xp 6= 1
trig?

xp := now

Fig. 2. Transforming A to Prog(A): the IO interface uses shared variables.

Interpreting Prog(A) Perhaps the simplest control programs are the mono-
thread, single-loop programs of the form “while (some external condition) do:
read inputs; compute; update state; write outputs; end while”. For instance,
these are the types of programs typically generated by the compilers of syn-
chronous languages [9]. This is also the type of programs we consider in this
paper.

The “external condition” mentioned above can be some type of trigger, for
instance, the tick of a periodic clock, or the rising of an alarm. It can also be
simply “true”, as in the type of programs considered in [19]. We will consider
both types in this paper. We call the former type of programs triggered and the
latter trigger-free.

initialize;

loop forever

await trigger;

now := read_platform_clock();

in_1 := read_input_1();

in_2 := read_input_2();

...

for each outgoing transition t of current_location do

if (input_condition(t) and guard(t)) then

perform_assignements(t);

current_location := destination_location(t);

break for loop;

end if;

end for;

end loop;

Fig. 3. The program interpreting Prog(A).

In our case, the body of the above loop will be as shown in Figure 3. The
current time is read and stored in variable now at the beginning of the loop
body. Then all inputs are read. Then each outgoing transition is evaluated and
the first one which is enabled is taken, meaning the assignments are performed

7

(including clock assignments rp and output variable assignments rout) and the
current location is updated. Finally, the search for transitions is aborted and the
program returns to the beginning of the outer loop.

Notice that the guard(t) may contain not only the clock guard gp of a tran-
sition, but other conditions as well, for instance, a condition corresponding to an
input interface element. Also note that the event trig? of a transition of Prog(A)
is not interpreted: indeed it only serves the purpose of modeling the triggering
of the program loop. On the other hand, if there are events corresponding to
function calls (for instance, events fa

1 ! of Figure 6 or fb! of Figure 7 below),
these are indeed interpreted as function calls read input or write output (the
latter called inside perform assignments(t)). Finally, note that escape transi-
tions of Prog(A) are not evaluated in the “for each outgoing transition” loop.
This is because these transitions correspond precisely to the case where none of
the transitions of A is enabled.

3.2 Modeling the execution platform

Modeling the digital clock of the platform The platform clock is mod-
eled by a timed automaton ADC which updates variable now and “exports” this
variable to Prog(A) (see Figure 1). Different ADC models can be built: some are
shown in Figure 4.

e ee ee-? -�
?

-?- �

x ≤ ∆

x = ∆
x := 0
now:=now+∆now:=0

now:=0

x ≤ ∆
x ≤ εx ≤ ∆

x = ∆
x := 0

x ∈ (0, ε]
now:=now+∆

now:=now+∆
x ∈ [∆− ε, ∆]

tick! tick!

tick!

tick!

x ≤ ∆

now:=0 now:=now+∆
x := 0
x ∈ [∆− ε, ∆ + ε]

x = ∆
x := 0

Cl3(∆, ε)Cl2(∆, ε)Cl1(∆)

Fig. 4. Digital-clock models.

Cl1(∆) models a perfectly periodic digital clock with period ∆. Cl2(∆, ε) mod-
els a clock with non-perfect period ∆± ε. In this model errors may accumulate,
so that the i-th tick of the clock (i.e., update of now) may occur anywhere in the
interval [(∆ − ε)i, (∆ + ε)i]. Cl3(∆, ε) models a more restricted behavior where
errors do not accumulate: the i-th tick occurs in the interval [i∆− ε, i∆ + ε], for
all i.

Modeling the execution of the program Computation is essentially change
of state, and execution time is the time it takes to change state. Prog(A) is an
untimed automaton, thus, does not contain this information: changes of state
can happen at any time. AEX is used to place restrictions on the times state

8

changes occur. These restrictions model worst-case and best-case execution times
(WCET, BCET) of the program interpreting Prog(A) on the execution platform.

In Figure 5 we present sample AEX models, corresponding to the two types
of programs discussed above, namely, triggered and trigger-free programs. The
model on the left is very simple: it models a periodic invocation of the loop of
the program, every ∆ time units. In this case, the assumption is that the WCET
of the body of the loop is at most ∆. This means that the body of the loop can
be completed before the next time it is invoked.

6
trig!

6
trig!

k?-

x := 0

trig!

x := 0

x ≤ ∆

k k k
k

?
-

6

- -

-
x := 0

trig!
x = ∆
x := 0

x ≤ ∆

trigq1,q2
!, trigq1,q3

!, ...

x := 0

x := 0

x ≤ ∆q1,qn

x := 0

x ≤ ∆q1,q2

trigq1,q2
!

trigq1,qn
!

...

x ≤ ∆

Fig. 5. Execution models.

By simply replacing the guard x = ∆ by x ≤ ∆, we obtain the automaton
in the middle of Figure 5: this models a trigger-free program with WCET equal
to ∆. A more detailed model is the automaton on the right of the figure (for
simplicity, the automaton is incomplete: it has the same locations and discrete
structure as A). This automaton models different WCETs for different changes
of state: if Prog(A) moves from q1 to q2 then the WCET is equal to ∆q1,q2 , when
it moves from q1 to q3 then the WCET is ∆q1,q3 , and so on. This automaton
exports a set of triggering events instead of a single one. In this case Prog(A)
needs to be modified accordingly, so that in a transition (q, q′, trig?, ...), trig is
replaced by trigq,q′ .

Modeling the interfaces with the environment The ideal controller A
communicates with Env exchanging input and output messages in an instanta-
neous manner. Most computer programs communicate with their environment
by reading and writing shared variables, or via function calls (initiated by the
program).2

We now give some examples on how common situations of IO interfaces can
be modeled. Note that these are not the only possibilities. For simplicity, let
us also suppose that inputs and outputs are handled separately, so that AIO is
“split” in two components, one for inputs and one for outputs.

2 Interrupts are also an option. We do not consider this option in this paper, since it
does not match well with the program structure of Figure 3.

9

We first discuss inputs. One possible interface policy is the following. For
each input event a of A, there is a boolean interface variable a which is set to
“true” every time a occurs and remains “true” for a certain time bounded by
[la, ua]. This is modeled by the automaton on the left of Figure 6. Regarding the
definition of Prog(A) given above, the input interface element ain, in this case,
will simply be the condition a = true.

Another possible input interface is the one modeled by the automaton on the
right of Figure 6. This models the situation where the program calls a function
that checks whether event a has occurred since the last time the function was
called. The function call is modeled by events fa

0 and fa
1 , on which Prog(A) and

the interface automaton synchronize. fa
0 corresponds to the function returning

“false” (event a has not occurred) and fa
1 corresponds to the function returning

“true” (a has occurred). Notice that this model is untimed. Regarding the def-
inition of Prog(A) given above, the input interface element ain, in this case, is
either fa

1 ! or fa
0 !.

k k k k

?

? ?

6

?

�
- ?

�
- ??- -

a?

a

a?

fa
0 ?, fa

1 ?

x := 0
a := true

a?

a := false
x ∈ [la, ua]
a := false

x ≤ ua

a? a?

a?

fa
0 ?

fa
1 ?

Fig. 6. Input interface models.

We now discuss outputs. One simple output interface is modeled by the
automaton on the left of Figure 7. It receives a function call from the program
(event fb) and begins the process of emitting event b. This process takes some
time in [lb, ub]. Regarding the definition of Prog(A) given above, the output
interface element aout, in this case, will simply be fb!.

Another possibility is modeled by the automaton on the right of Figure 7.
Here, the program sets variable b to true whenever output b is to be emitted
(i.e., aout is the assignment b := true). The interface automaton “samples”
this variable periodically every ∆ time units. Whenever the variable is “true”
output b is emitted to the environment. Also, the variable b is reset to “false”,
to prevent future emissions unless they are commanded by the program (which
must again set b to “true”).

10

6
b!

6
b!

k k k�
- ?

6 6

?

-
�-

x := 0

x ∈ [lb, ub]

x ≤ ub

fb?

fb?

b!

fb?
b

x = ∆
x := 0

x ≤ ∆

if (b = true) then

b! ;

b := false ;

end if ;

x := 0

Fig. 7. Output interface models.

3.3 Using the global execution model for verification and synthesis

The global execution model M is a network of timed and untimed automata
extended with discrete variables. Can M be automatically model-checked? It
can, provided its discrete state-space is finite. Here, we face a potential problem,
since variable now of ADC can grow arbitrarily large. Similarly, variables xp of
Prog(A) are reset to now and can thus be arbitrarily large as well.

This problem can be solved in the same way it is solved in the TA case,
where clocks can also grow arbitrarily. First, variable now can be removed, as
follows. Resets xp := now are replaced by xp := 0 and now − xp is replaced
by xp in all guards. Then, ADC is modified so that, instead of updating now, it
updates all variables xp of Prog(A) simultaneously. For instance, in the examples
of ADC shown in Figure 4, now := now + ∆ is replaced by a set of assignments
xp := xp + ∆, one for each xp. It can be seen that this model is semantically
equivalent to the previous one that uses now.3

We now have a model where xp variables are incremented simultaneously.
A reasoning similar to the one used to show finiteness of the region graph can
be used: once a variable xp has grown larger than the largest constant cmax

appearing in a guard gp of Prog(A), the exact value of xp is irrelevant, thus can
be replaced by +∞ without affecting the semantics of the model. The result is
a finite domain for xp, namely, {0,∆, 2∆, ..., cmax,+∞}. Using such abstraction
techniques 4 and model-checking tools as Kronos or Uppaal, M can be model-
checked against a given specification ϕ.

3 In fact we could have presented Prog(A) and its interface with ADC in this way in the
first place, however, we find the model with now “cleaner” because every variable
has a unique writer. Instead, in the modified model xp variables are updated by ADC

and reset to zero by Prog(A).
4 In the case other ADC models than those of Figure 4 are used, some “sanity” hy-

potheses need to be made. It is natural to expect now to increase monotonically by
a finite number of quanta ∆i, to diverge, and so on.

11

What if M fails to satisfy ϕ? Could we find another program Prog′ such that
M ′ = Prog′||ADC||AEX||AIO||Env satisfies ϕ? The answer is yes, and Prog′ can in
fact by synthesized automatically (at least in principle). Prog′ can be viewed as
a controller that functions in closed-loop with a “plant” ADC||AEX||AIO||Env. The
problem is to synthesize Prog′ so that the closed-loop system, i.e., M ′, satisfies
ϕ. Notice that the controller is untimed, in the sense that it communicates with
the “plant” via a discrete interface (discrete events and variables). The controller
does observe time, but only discrete time: the tick events of ADC.

Synthesis of an untimed controller for a timed plant against a (timed or un-
timed) specification is possible. In fact, the problem can be reduced to a problem
of untimed synthesis with partial observability. This is done by generating an ap-
propriate finite-state abstraction of the timed plant, such as the region graph [1]
or the time-abstracting bisimulation graph [18]. The controller to be synthesized
for this plant is not a state-feedback controller, since it cannot observe the clocks
of the plant (thus, neither the regions or zones of the abstract graph). The con-
troller only observes a discrete event and variable interface, as mentioned above.

4 On property preservation under platform refinement

There is one piece missing from our framework, namely, a result of the form:

“given platforms P and P ′, such that P ′ is “better” than P , if Prog(A)||P ||Env
satisfies ϕ then Prog(A)||P ′||Env also satisfies ϕ”,

for a reasonable definition of “better”.
Such a result is important for many reasons. First, it guarantees that a pro-

gram that functions correctly on P will continue to function correctly when P
is replaced by a “better” platform, which is a reasonable expectation. Second,
it allows for abstractions to be made when modeling a platform and trying to
model-check the global execution model. Such abstractions are often crucial in
order to limit modeling complexity as well as state explosion. A result as above
allows for such abstractions, as long as it can be ensured that the real execution
platform is “better” than its model.

But what should the definition of “better” be? It seems appropriate to
adopt an element-wise definition, where P ′ = (A′

DC,A′
EX,A′

IO) is better than
P = (ADC,AEX,AIO) iff A′

DC is better than ADC, A′
EX is better than AEX and A′

IO

is better than AIO. But while a more or less standard refinement relation could
be used to define “better” in the cases of AEX and AIO,5 we run into problems
when trying to define “better” in the case of ADC. We illustrate these problems
in what follows. To make the discussion easier to follow, we will ignore AEX and
AIO models (i.e., assume they are “ideal”) and focus only on ADC. Thus, we
will assume that Prog(A) has no trig events and that it communicates with Env
directly via input/output synchronization events, like A does.

5 We say “more or less” because AIO contain inputs and outputs, and refinement
relations for such models are not that standard (e.g., see [2, 8]).

12

Example 1. Consider, then, automaton A1 on Figure 8 and let Env generate a
single timed trace where a! is produced at time T1 = 0.9 and b! is produced at
time T2 = 1.1. We claim that

Prog(A1)||Cl1(2)||Env |= �¬bad

but
Prog(A1)||Cl1(1)||Env 6|= �¬bad

(recall that Cl1(∆) is the parameterized digital-clock model shown in Figure 4).
Indeed, in the first case, at both times T1 and T2, now equals 0, which means
that the guard now−xp ≥ 1 is evaluated to “false”. In the second case, however,
at T1, now = 0 while at T2, now = 1, so that now − xp = 1 − 0 = 1 and the
guard is “true”. On the other hand, it seems reasonable to expect a platform
P1 to be “better” than P2 if the only difference between the two is that P1 has
ADC = Cl1(1) whereas P2 has ADC = Cl1(2). Indeed, Cl1(1) runs twice as fast as
Cl1(2), in other words, it is strictly more precise. ut

j j j- � - -x := 0
a?

b?
x < 1

b?

x ≥ 1

bad

A1

j j
j
� -

?

-

�

x ≤ 3
x ≤ 3

x = 2

x := 0

x ≥ 3

x := 0
x ≥ 1

A4

j- �

A3

x := 0
x ≤ 4

x ∈ [1, 3]
x := 0

a!

Fig. 8. Counter-examples.

What the above example shows is that the platform-refinement property we
hoped for above does not hold in general. Notice that adding the assumption
A||Env |= ϕ does not help, since this assumption already holds in the counter-
example above. In the rest of the section, we will attempt to modify our goal
and study different possibilities of property preservation.

We first study whether the goal holds for a “chaotic” environment Chaos,
that is, an environment which accepts any input and may generate any output
at any time:

(Prog(A)||P ||Chaos |= ϕ) ∧ (P ′ better than P) ⇒ (Prog(A)||P ′||Chaos |= ϕ) ?

Example 2. The above implication does not hold either. To see this, consider a
modified version of automaton A1 of Figure 8, call it A2, where the guard x ≥ 1
is replaced by x = 1 and the guard x < 1 by x 6= 1. Then the property �¬bad
is satisfied with digital clock model Cl1(2) but not with Cl1(1). The reason is
that with Cl1(2), now only takes the values 0, 2, ..., thus, the guard now−xp = 1
is never satisfied. With Cl1(2), now takes the values 0, 1, 2, ..., so the guard is
satisfied. ut

13

The above example suggests that, for properties of the form �¬bad, a “slower”
clock may be “better” than a “faster” one. This may seem like a paradox, how-
ever, it is explained by the fact that a program using the faster clock has a
higher “sampling rate” and thus may generate more behaviors. We formalize
this observation in the lemma that follows.

Lemma 1. Let A be a TA, ∆ ∈ R and k ∈ {1, 2, ...}. Then

DTS(Prog(A)||Cl1(k∆)) ⊆ DTS(Prog(A)||Cl1(∆)) ⊆ DTS(A) .

Sketch of proof: Let ρ = t1, t2, ..., tk be a sequence of discrete transitions of A.
This sequence defines a set of constraints C on the times T1, T2, ..., Tk where
these transitions can be taken. Indeed, if a clock x is reset to zero by ti and
tested to x ≤ 5 by tj with j > i (and x is not reset between i and j) then this
creates the constraint Tj−Ti ≤ 5. Then, ρ ∈ DTS(A) iff C is satisfiable, i.e., has a
solution T1 ≤ T2 ≤ · · · ≤ Tk with Ti ∈ R. When interpreted in Prog(A)||Cl1(∆),
ρ generates a set of constraints C ′ which is stronger than C. Indeed, C ′ contains
the additional constraint that every Ti must be a multiple of ∆. Thus, if C is
unsatisfiable, so is C ′. Similarly, when interpreted in Prog(A)||Cl1(k∆), ρ gener-
ates a set of constraints C ′′ which is stronger than C ′, since Ti must now be a
multiple of k∆. ut

Notice that this lemma does not hold for timed traces, as Example 1 shows.
Based on this lemma we can prove the following.

Proposition 1. Let A be a TA, AEX a program execution model, AIO an IO
interface model, ∆ ∈ R and k ∈ {1, 2, ...}. Let ϕ ≡ �¬bad for some location
“bad” of A. Then

A||Chaos |= ϕ ⇒ Prog(A)||Cl1(∆)||Chaos |= ϕ ⇒ Prog(A)||Cl1(k∆)||Chaos |= ϕ .

One may wonder whether Proposition 1 holds for other properties except
reachability of “bad” locations. A crucial property in any system is deadlock-
freedom, or, in the case of timed automata, non-zenoness. Observe that, as long
as the platform models ADC,AEX,AIO are non-zeno, Prog(A)||ADC||AEX||AIO is
also non-zeno, since Prog(A) is receptive to input events such as trig. We will
then study another property, namely, that it is always possible for Prog(A) to
take a discrete transition (possibly after letting time pass). We call such an
execution model non-blocking and write NB(Prog(A)||P ||Env). First note that
non-blockingness does not always hold.

Example 3. Consider TA A3 of Figure 8. If Prog(A3) is executed on a platform
with ADC = Cl1(4) then it is blocking, since the guard now − xp ∈ [1, 3] will be
evaluated when now = 0, 4, ..., and found false at all times. ut

We next study the following property of non-blockingness preservation:

NB(Prog(A)||P ||Chaos) ∧ (P ′ better than P) ⇒ NB(Prog(A)||P ′||Chaos) ?

14

Example 4. The above implication does not hold either. Consider automaton A4

of Figure 8. Prog(A4) is non-blocking on a platform with ADC = Cl1(4), simply
because the guard now−xp = 2 is never evaluated to true. On the other hand, this
guard is evaluated to true with ADC = Cl1(2). In this case, Prog(A4) is blocking,
because it “gets stuck” in the right-most location with now − xp = 4 > 3, thus,
unable to take any transition. ut

5 Conclusions and perspectives

In this paper we have asked a question, namely, whether implementability of
timed automata can be achieved using the standard semantics and appropriate
modeling, instead of introducing new semantics. In principle the answer should
be yes: after all, timed automata were designed to model real-time behaviors in
the first place, thus their standard semantics should be suitable for modeling
the execution of a (mono-threaded and non-preemptable) program in real-time.
However, some subtleties arise regarding property preservation when changing
execution platform. Thus, a definite answer is not available yet and a lot of work
remains to be done. We believe that the question is worth pursuing, since a
complete, positive answer would offer clear advantages over existing approaches:
clarity, modularity, generality and possibilities for synthesis of programs correct
by construction. We intend to pursue this direction of research as part of future
work. In particular, we would like to generalize Proposition 1 to more digital
clock models, by introducing an appropriate notion of refinement for such mod-
els. Next would be to generalize this to entire platforms. Finally, to study the
preservation of more properties, such as the non-blocking property we touched
upon.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement rela-
tions. In CONCUR’98, volume 1466 of LNCS. Springer, 1998.

3. R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Generating embedded software
from hierarchical hybrid models. In Languages, Compilers, and Tools for Embedded
Systems (LCTES’03). ACM, 2003.

4. T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun. Code synthesis for
timed automata. Nordic J. of Computing, 9(4):269–300, 2002.

5. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-
time Simulink to Lustre. In Embedded Software (EMSOFT’03), volume 2855 of
LNCS. Springer, 2003.

6. P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
Simulink to SCADE/Lustre to TTA: a layered approach for distributed embed-
ded applications. In Languages, Compilers, and Tools for Embedded Systems
(LCTES’03). ACM, 2003.

15

7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Sys-
tems III, Verification and Control, volume 1066 of LNCS, pages 208–219. Springer-
Verlag, 1996.

8. L. de Alfaro and T.A. Henzinger. Interface automata. In Foundations of Software
Engineering (FSE). ACM Press, 2001.

9. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1992.
10. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

ICALP’92, LNCS 623, 1992.
11. T.A. Henzinger, B. Horowitz, and C. Meyer Kirsch. Giotto: A time-triggered

language for embedded programming. In EMSOFT’01, volume 2211 of LNCS.
Springer, 2001.

12. H. Kopetz. Real-Time Systems Design Principles for Distributed Embedded Appli-
cations. Kluwer, 1997.

13. P. Krčál, L. Mokrushin, P.S. Thiagarajan, and W. Yi. Timed vs time triggered
automata. In CONCUR’04, volume 3170 of LNCS. Springer, 2004.

14. K. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for
Technology Transfer, 1(1/2), October 1997.

15. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability
for timed automata. In LICS 2003. IEEE CS Press, 2003.

16. A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems, 10(1-2):87–113, 2000.

17. N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and trans-
lating a “safe” subset of Simulink/Stateflow into Lustre. In 4th ACM International
Conference on Embedded Software (EMSOFT’04), 2004.

18. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisim-
ulations. Formal Methods in System Design, 18(1):25–68, January 2001.

19. M. De Wulf, L. Doyen, and J-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. In HSCC’04, volume 2993 of LNCS. Springer,
2004.

16

