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1 Introduction

1.1 Critical Systems

In the domain of critical systems, proving program correctness is important, and often mandatory. Gener-
ally, both the system and correctness properties are described in some formalism and then proved. In some
cases, when the system is a finite-state one, model-checking is the technique which allows proofs to be per-
formed in a fully automatic manner. (Examples of popular model-checkers are Spin[20] or SMV[27].) In
other cases, a theorem-prover (such as PVS[31] or Coq[21]) is used, which requires some user interaction.

However, attempting to prove a property on a final program may turn out to be complex due to the gap
between the actual program and its specification, not to mention the possible complexity of the program
itself. Moreover, discovering an error at this stage of the development may lead to important efforts for
correcting it.

To overcome these difficulties, correct-by-construction programming was proposed with two main
ideas : – the program correctness is maintained from the specification to the final product, – the prob-
lem of proving a property over a system is decomposed into some (hopefully easier) intermediate steps.

Refinement is one such technique: system specifications are expressed within some formal framework
and the required properties are proved on them. Then, by repeatedly rewriting the specifications in a more
precise formwithin the same formal framework, a machine-implementable form is finally reached. At each
step of this refinement process, soundness proofs (known as “refinement proof obligations”) are performed,
so that each stage (and therefore the ultimate program) is guaranteed to meet the initial specifications.
Some well-known refinement-based development methods are B[3], Z[9] and VDM[23]; a more theoretical
framework for refinement is given for instance by TLA[24, 2] or [5].

1.2 Critical Control Systems

Computerised control is one of the computer domains which contains the most safety-critical applica-
tions and where safe development methods are mostly needed. Just think of fly-by-wire, drive-by-wire,
signalling, nuclear plant control systems. Yet, most formal development methods have not been initially
designed for that purpose and thus, may not be fully adapted to it, though some truly impressive real-world
projects have been achieved in this setting [6].

On the contrary, the Lustre/Scade approach was tailored, from the very beginning [18] to this applica-
tion domain and has shown many successes in safety critical control, for instance Framatome nuclear plant
emergency stop [7], the Hong-Kong subway signalling system [25], the Airbus fly-by-wire systems [10],
Audi steer-by-wire systems [1]. The reasons why the approach has been successful seem to rely on two
features of the Lustre language, its synchronous dataflow style, which makes it very close to the culture of
control engineers, and its simple formal semantic, which has allowed it to be equipped with several useful
tools, among which we can cite:

• interfaces from popular control modelling tools such as Simulink/Stateflow [29] and to popular con-
trol architectures [12],

• a Do178B level A compiler, which makes it well adapted to meet the needs for certification in the
most demanding applications,

• several tools geared toward formal verification, a Prover plug-in [32] and other model-checkers [19],
tools for abstract interpretation [22] and an interface [15] to PVS [31], the well-known theorem-
proving assistant.

Yet, at present, these tools were not integrated into a complete development framework like the one cited
above. Unfortunately, using B or Z for Lustre turns out to be cumbersome1: some Lustre features, such
as the absence of recursive computations or memory boundedness are possibly lost by embedding Lustre
into those far more general systems. Moreover, most of them are rather imperative-language oriented and
a translation from Lustre into any of them, followed by a refinement, results in fact in a compilation of the

1A translation of Lustre in B is proposed in [17]; for the converse, see for instance [8].
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Lustre source. Yet, users of Lustre/Scade are not interested in an imperative semantics of their programs –
they use Lustre/Scade because of the dataflow approach and are not likely to switch to an other paradigm
during a refinement cycle.

1.3 Report Content

Hence, in order to preserve the specificity (and simplicity) of Lustre, we have decided to propose a refine-
ment framework more adapted to the language, a calculus which is inspired of (but not dependent on) the
cited ones. Our approach relies on the fact that Lustre can be used to express both programs and invariant
properties over them (thanks to the notion of “synchronous observer”[19]), so that Lustre provides its own
formal framework. The theoretical part of this report is based on a previous proposal[28], which is here
(largely) generalised.

The practical aspects of the proposed refinement calculus are handled by a series of tools. Our (still)
experimental Flush tool creates refinement proof obligations, which are then proved thanks to Lesar (a
model-checker), nbac[22] (abstract-interpretation tool) or Gloups[16], an interface to the PVS[31] theorem-
proving assistant.

In the sequel, we briefly introduce the Lustre language (section2), then in section3 we propose a
general purpose refinement framework. Section4 is dedicated to “customising” the previous calculus
to the needs of Lustre and to our particular practical needs. This allows us to define a computer-aided
refinement calculus, which is both functional and temporal. Section5 proposes an example of application
and section6 concludes and offers some perspectives.

2/28 Verimag Research Report no TR-2005-11
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2 Lustre

As a starting point, we present the programming language Lustre.

2.1 A Synchronous Dataflow Functional Language

Lustre is adataflow language: its inputs and outputs (and local variables as well) are finite or infinite
sequences of values of some scalar type. Formally, ifD is a domain of values, a flow overD is an element
of D∞ = D∗∪Dω whereD∗ is the set of finite sequences overD andDω is the set of infinite ones. In this
setting, flows arecomplete partial orderswith respect to the prefix order over sequences:x ≤ y if there
existsz such thaty = x⊕ z where “⊕” is the concatenation of sequences.

Lustre is afunctional language: a Lustre programp is a mapping over flows

p : (D∞
1 , . . . , D∞

n ) −→ (D
′∞
1 , . . . , D

′∞
m )

Lustre is asynchronouslanguage: the flows are consumed or created at “the same speed”. To illustrate
this, let us take the example of the sum of two integer flowsx andy:

x x0 x1 x2 . . .
y y0 y1 y2 . . .

x+y x0 + y0 x1 + y1 x2 + y2 . . .

The sum operator+ is applied point-wisely on the two flows: the synchrony amounts to the fact that an
element of thex+y flow exists if and only if the corresponding elements of thex andy flows exist. In a
sequence-like manner, we would define the operator as

(x.x) + (y.y) = (x + y).(x + y) and ε + ε = ε

whereε is the empty sequence and. stands for the sequence constructor (value.sequence). One can notice
that in the expression(x + y).(x + y), the first+ sums two integers, while the second one sums two
sequences.

2.2 Lustre Operators

The same point-wise definition applies to other arithmetical and logical operators such as multiplication,
conjunction, negation, if-then-else etc.

(a.a) and(b.b) = (a ∧ b).(a andb) with ε andε = ε
if (t.c) then(x.x) else(y.y) = x.(if c thenx elsey)
if (f.c) then(x.x) else(y.y) = y.(if c thenx elsey)

if ε thenε elseε = ε

Lustre contains also operators for memorising the previous value (pre ), initialising a flow (→) and their
combination (fby ):

prex = @.x (x.x)→ (y.y) = x.y (x.x) fby y = x.y

Here@ denotes an “undefined” value: it can be any value of the expected type. The@ value exists only in
the semantics of the language, for definition purposes; it has no syntactic counter-part and the compiler is
able to ensure that no actual computation will involve this value[14].

Finally, there are operators for sampling (when) and holding (current ) flows. Sampling applies to
any flowx and a boolean flowc which is called the clock. When the clock is true, a value is taken from
the sampled flow, otherwise there is no output. Holding re-builds a flow from a “slower” one by filling the
missing values with the last known one. Example:

Verimag Research Report no TR-2005-11 5/28
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x x0 x1 x2 x3 x4 x5 . . .
c f f t f t t . . .

x when c x2 x4 x5 . . .
current (x when c) @ @ x2 x2 x4 x5 . . .

The gaps between the values of the “x when c” flow are depicted only for easier reading. Actually, the
sequence of values of this flow is(x2, x4, x5, . . .) with no “missing” or “undefined” values in between: the
flow “x when c” is present only at positions wherec evaluates to true: we will say that “x when c” is on
clockc.

The clock of a flowf is an important information forcurrent : given that atrue value of the clock
corresponds to an actual value inf , and that afalse value corresponds to a “gap”, it is possible to rebuild
a “faster” flow, as in the example above.

The clock of every flow is a statically known information, which is gathered during a checking phase
of a Lustre program, known asclock calculus. The flow clock is therefore an implicit information attached
to any flow and this is why Lustre syntax defines the one-parametercurrent operator (as above). Yet
for the semantic definition ofcurrent , it is more convenient to make visible the clockc and the default
valuev:

ε when ε = ε current(v, ε, ε) = ε
x.x when f.c = x when c current(v, f.c,x) = v.current(v, c,x)
x.x when t.c = x.(x when c) current(v, t.c, x.x) = x.current(x, c,x)

Then, we simply definecurrent(x) = current(@, clock of(x),x).

In practice, any boolean flow can act as a clock. This implies the existence of a distinguished clock, the
true constant, which is calledbasic clock. Unless stated otherwise, flows are considered to be on basic
clock, meaning that they are always present. The basic clock is indeed the basis of the clock hierarchy:
in our above example, “x when c” is on clock c, the flowc is on true , but true has no clock. As a
consequence, thecurrent operator cannot be applied on flows that are on basic clock2: no flow can “run
faster” than the basic clock.

Other existing Lustre constructs (such as arrays) are only “syntactic sugar” defined on the top of the
presented features. In particular, Lustre contains no (dynamic) memory allocation mechanism, nor allows
recursive function calls.

2.3 Lustre Nodes

Actual Lustre programs are defined by a system of equations such as in the following example
node Sum(i:int)
returns (s:int)
var mem:int ;
let

s = i → (mem + i);
mem = pre s ;

tel

The Sumnode has one integer input flowi , one integer
output flows and one local variable flowmem. The sys-
tem of equations indicates thatmemmemories the previous
value ofs and thuss accumulates the sum of all previous
values ofi .

Remark: In Lustre syntax, any type is lifted to the equivalent type of flows. Thusint means hereint∞.
In the sequel, we adopt this convention.

An example of execution of theSumnode could be

i 2 3 -1 0 4 . . .
mem @ 2 5 4 4 . . .

s 2 5 4 4 8 . . .

2This condition is checked during the clock calculus.
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Formally, the semantics of a Lustre program (node) is the least fixpoint associated with the system of
equations. The existence and uniqueness of the least fixpoint are ensured by the Kleene theorem applied
to the complete partial order of flows. In order to apply this theorem, we need to restrict the Lustre
primitive constructs to becontinuousmappings over flows,i.e., such thatsupi f(xi) = f(supi xi) for
any increasing sequencexi of flows. It is noticeable that continuity implies monotony: a mapping over
flowsf is monotonic if, for anyx, y,

x ≤ y ⇒ f(x) ≤ f(y)

which, in the context of the prefix order over sequences can be interpreted as causality: the future of inputs
cannot influence the past of outputs. This is why we can sequentially construct the outputs as a function of
the inputs.

Thus, in theSumexample, the node describes the function (we have eliminated thememvariable):

λi : int∞. µs : int∞. s = hd(i).(s + tl(i))

wherehd andtl stand for the destructors of sequences.

2.4 Lustre and the Oversampling Question

In section2.2, we have introduced clocks and mentioned the possibility of dealing with flows on different
clocks. This is done by the means of the (over-loaded) keywordwhen. Thus in theSumexample, we could
have declaredi as explicitly being on the basic clock: “i:int when true ”.

Lustre imposes that a boolean flow be declaredbefore it is actually used as a clock. Thus, the following
node header is correct

node foo(...c: bool; ... x: int when c; ...)

while it would be rejected ifx were declared beforec .
This simple rule, together with the clock calculus, which checks whether operators other thanwhen

andcurrent combine only flows on the same clock, ensures that Lustre programs are synchronous. In
particular, no Lustre node may have an output which would run faster than any of the inputs.

This amounts to saying that Lustre does not allow “oversampling”, which contrasts with Signal [26]
and Lucid Synchrone [13]. However, section4 will propose a means to overcome this limitation.

2.5 Lustre Mappings

We can now see which mappings over flows can beLustre mappings: they are

• built with Lustre operators

• which fulfil the type checking and the clock checking conditions

It can be shown[11] that these mappings are:

• continuous, hence causal,

• finite memory (because of the clock calculus and because a program can use only a finite number of
memory operators),

• and without oversampling.

Verimag Research Report no TR-2005-11 7/28
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3 Refinement

After introducing Lustre, let us formalise the refinement problem and give some general results about it.

3.1 Systems

We generalise the notion of program in that we consider it to be a relation (rather than a function) between
inputs and outputs: thus we shall be able to express even non-deterministic systems, which is impossible
in standard Lustre3. For the sake of simplicity, we do not distinguish local variables and outputs: in fact
both of them behave in the same way, except for the sake of scoping.

We consider that the inputs have some typeT , the outputs some typeT ′. A programS is thus atotal
relation4 S ⊆ T × T ′. Graphically, we will note it as

T
S

T ′

Moreover, we consider a propertyP over the inputs (P ⊆ T ) – called pre-condition – and a property
Q ⊆ T × T ′ – called post-condition. By considering the couple(P, S), we obtain apartial relation which
is S with domain restricted toP . This is comparable to operations in B[3]: an operation specification in B
consists of a precondition (which defines when it is legal to use it) and a body which describes the actual
behaviour.

P andQ form the interface of the systemS: Q is intended to provide an abstraction of the actual
computations carried out inS. We can compare it to the invariant in B.

P : T
S

T ′ : Q

We define two meta-properties overS:

• S is correct with respect to its interface (P ,Q) iff

[CORS] ∀(x, y) ∈ T × T ′. P (x) ∧ S(x, y) ⇒ Q(x, y)

i.e., the pre-condition and the relation ensure the post-condition.

• S is reactivewith respect toP iff

[REAS] ∀x ∈ T. P (x) ⇒ ∃y ∈ T ′. S(x, y)

i.e.,any input which fulfils the pre-condition yields at least one output.

3.2 Refinement

Informally, we want the refinement to behave as follows: if a systemS is refined byS′, we should be able
to useS′ instead ofS, while preserving its correctness and reactivity.

For the sake of generality, we suppose that the two systemsS andS′ are not necessarily typed in the
same way:S ⊆ T × T ′ andS′ ⊆ U × U ′. Therefore, we suppose the existence of two (Lustre) mappings
σ : T −→ U andτ : U ′ −→ T ′ which ensure the corresponding changes of variables.

P : T S T ′ : Q

σ

↓

τ

↑

P ′ : U S′ U ′ : Q′

3There is an other way to introduce non-determinism, which is using an additional input flow featuring the “random choice”.
However, as we address program development, we consider thatrelations are natural generalisations of functions, so that it is easy to
understand that a relational specification can be refined to a functional program, whereas programs withn + 1 inputs are not natural
generalisations of programs withn inputs.

4A relationS ⊆ T × T ′ is total if its domain isT , i.e. if ∀t ∈ T.∃t′ ∈ T ′.S(t, t′). We choose thatS be total because it will be
described in Lustre, which would make it total anyway.
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Then, inspired by sufficient conditions given in [3] and by our previous work[28], we define the fol-
lowing three proof obligations:

[CORS→S′ ] ∀(x, y′) ∈ T × U ′.P (x) ∧ S′(σ(x), y′) ⇒ S(x, τ(y′))
[REAS→S′ ] ∀x ∈ T. P (x) ⇒ P ′(σ(x))
[CORS′ ] ∀(x, y) ∈ U × U ′. P ′(x) ∧ S′(x, y) ⇒ Q′(x, y)

and we say thatS′ refinesS (notedS v S′) if the preceding conditions hold.
It is possible to prove that under these conditions,S′ preserves the correctness ofS and that the reac-

tivity of S′ gives the one ofS. More precisely, the following sequents are true:

[CORS] ∧ [CORS→S′ ]
[CORτ◦S′◦σ]

[REAS′ ] ∧ [CORS→S′ ] ∧ [REAS→S′ ]
[REAS]

The correctness preservation property is clearly what we expected: if a systemS′ verifies[CORS→S′ ]
then any propertyQ that holds forS under the preconditionP , holds also5 for S′ underP and thusτ ◦S′◦σ
may be used instead ofS.

The reactivity property may seem more surprising: one could expect it to go as “ifS is reactive, then
S′ is reactive”, but it turns out to be exactly the opposite. This is a well-known problem6 which in our case
amounts to saying that a non-reactive specification cannot be refined to a reactive program; on the other
hand, a reactive specification can possibly be refined to a reactive implementation.

In fact, Lustre programs are always reactive, so that exhibiting a Lustre program that refines a given
specification proves the reactivity of the latter.

3.3 Transitivity of the Refinement

At the end on the previous section, we have somehow anticipated the following result: the refinement is
transitive

S v S′ ∧ S′ v S′′ ⇒ S v S′′

Thus, for instance, the correctness ofS is preserved through iterated refinements untilS′′. In the case of a
systemS′′ ⊆ V × V ′ with its change-of-variables mappingsρ : U −→ V andφ : V ′ −→ U ′,

P : T S T ′ : Q

σ

↓

τ

↑

P ′ : U S′ U ′ : Q′

ρ

↓

φ

↑

P ′′ : V S′′ V ′ : Q′′

the precise transitivity lemmas are

[CORS] ∧ [CORS→S′ ] ∧ [REAS→S′ ] ∧ [CORS′→S′′ ]
[CORτ◦φ◦S′′◦ρ◦σ]

[REAS′′ ] ∧ [CORS→S′ ] ∧ [REAS→S′ ]∧[CORS′→S′′ ] ∧ [REAS′→S′′ ]
[REAS]

5As a consequence, under the pre-conditionP , the systemS′ verifiesQ (thanks to[CORS→S′ ]) andQ′ (thanks to[CORS′ ]).
Thus, underP , the full post-condition ofS′ is Q ∧Q′.

6Think of feasibility in B[3]: in B, we prove the implementability of an abstract machine by refining it to an actual implementation
– here, we propose to prove the reactivity of a specification by refining it to a reactive program.
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Hence the refinement process can be applied in a step-wise manner:

if S1 v S2 andS2 v S3 and . . . andSn−1 v Sn

thenS1 v S2 v S3 v . . . v Sn and thusS1 v Sn

In this section, we stated the formal framework of our research and defined a first refinement calculus. This
refinement is very general: the purpose of the next section is to “customise” it to our precise needs.
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Jan Miḱač, Paul Caspi Flush

12/28 Verimag Research Report no TR-2005-11



Flush Jan Miḱač, Paul Caspi

4 Temporal Refinement

The two previous sections presented the Lustre language and some general refinement mechanism. Here,
we adapt the refinement to our needs (Lustre) and our effective proving possibilities. This adaptation will
result in a functional and temporal refinement calculus for Lustre.

4.1 Temporal refinement in TLA and in Signal

Temporal refinement is proposed in TLA[24, 2]: if the state of the abstract system does not change (“the
system is stuttering”), then any behaviour of the concrete system during that time is refining the abstract
one. In this setting, passing from an abstract system to the concrete one adds stuttering (analogous to
current); the reverse operation erases stuttering (analogous towhen).

Another comparable approach is the one adopted in the programming language Signal[26, 30]. Where
TLA makes the abstract system stutter (keeps the current state), Signal uses special “absent” values to
denote the fact that “nothing new happens”.

When we try to adapt these approaches to our language, we find the apparent difficulty that in Lustre,
we do not have implicit stuttering nor implicit clocks. The only way of getting an equivalent effect is to
introduce an explicit clock which runs faster than any inputs of the system we want to refine. However,
as we already explained in section2.4, Lustre does not allow such an “oversampling”. This is why it has
always been thought that such a temporal refinement was impossible in Lustre.

4.2 Oversampling in Lustre

In this section, we present a way of overcoming the difficulty and allowing oversampling in Lustre. The
key point is the use of pre-conditions which allow us to move from total to partial relations.

Consider any Lustre mappingf : Bool × T → Bool, which is clock-preserving,i.e., such that the
clock of the output is the same as the clock of its first input. For easier reading, we will indicate the clock
of an expression by using a:: separator. Thus,

f : Bool × T → Bool :: α× α → α

Givenf , we can design the following mappingclk

clk : T −→ Bool
clk(x) = ck

whereck = true → pre(f(ck, current(@, ck, x)))

The clocks in the above expression are

x :: ck
ck :: α

}
⇒ current(@, ck, x) :: α ⇒ ck :: α

and thusclk :: ck → α. As we can see, theclk mapping is built on a Lustre expression. The use of onepre
makes it causal and finite memory, and the only thing that forbids it to be a Lustre mapping is the global
oversampling: the input ofclk is on clockck and its output is onα; yet, asck is onα (ck :: α), so that the
output ofclk runs faster than its input.

Havingclk, we can design the (non Lustre) change of variables:

σ : T −→ Bool × T
σ(x) = clk(x), x

This change of variables leaves the inputx unchanged, it provides only a boolean flowck which runs faster
thanx, which amounts to makingx stutter.
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Example node Plus2(i:int)
returns (s:int)
let

s = i + 2 ;
tel

ThePlus2 node works as follows: at every instant, it reads the
input value and outputs it after adding2.

For efficiency reasons, we might want to implement the “+2” operation as two consecutive “+1”s. To
allow this, we need to “make time run faster” for a node that would refinePlus2 . Here, we could use the
mappingf1 defined byf1 = true → not pre f1 which yields a sufficient speed-up:f1 is true once every
two “ticks”. The following diagram presents the idea:

i

at at at at at

Here we depict an example of evolution of the
value of i (the thick line), as seen from within
Plus2 : every change of value ofi corresponds
to a “tick” of the basic clock ofPlus2 . These
ticks are marked asat for abstract tick.

ct ct ct ct ct ct ct ct ct ct

The same evolution ofi , as seen from a node which
benefits from the change of variables given byf1.
The input is unchanged, but there are twice as many
base clock ticksct (concrete tick). Thus the refined
node has enough time to apply two+1 increments
before the output is due.

2

Now we can see that refining some systemS(x, y) to S′((ck′, x′), y′) = S′(σ(x), y) can be described,
from within the system S′, by:

• the (trivially Lustre) identity change of variable onx

• and an extra pre-condition

Clk P ′(ck′, x′) = (ck′ = true → pre(f(ck′, current(@, ck′, x′))))

which makes it apartial relation.

4.3 Summary of the Proposal

To conclude the theoretical part, we give here a summary of the proposed refinement, obtained by combin-
ing the general refinement with the temporal one. The following formulas use the notations established in
section3.1. We suppose that the systemS has been proved correct: the aim of the following is to prove
thatS′ is correct and refinesS.
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Syntactic and Static Check Obligations

1. σ : T −→ T ′ is a Lustre mapping

2. τ : U ′ −→ U is a Lustre mapping

3. f : Bool × T ′ −→ Bool is a clock-preserving Lustre mapping

4. Ck P ′(ck′, x′) = (ck′ = true → pre(f(ck′, current(@, ck′, x′))))

5. P ′(ck′, x′) = Ck P ′(ck′, x′) ∧D P ′(x′)

Proof Obligations

6. [CORS→S′ ]
∀(x, y′) ∈ T × U ′.
P (x) ∧ Ck P ′(ck′, σ(x)) ∧ S′((ck′, σ(x)), y′) ⇒ S(x, τ(y′))

7. [REAS→S′ ]
∀x ∈ T. P (x) ⇒ D P ′(σ(x))

8. [CORS′ ]
∀(x′, y′) ∈ U × U ′. P ′(x′) ∧ S′(x′, y′) ⇒ Q′(x′, y′)

We can notice that:

• In the proof obligation (7) we do not need to establish the clock pre-conditionCk P ′, which is here
only for coding the oversampling aspect of the change of variable.

• On the contrary, once the refinement has been performed, this clock pre-condition becomes an inte-
gral part of the refined system and is treated as a component of the overall precondition of the new
system for implementation as well as further refinements. This is stated at condition (5). We see
here that pre-conditions are split into two parts, a clock pre-conditionCk P and a data pre-condition
D P ′.

4.4 Fairness and Real-Time

The meaning of theck′ clock (defined at point4 of the summary) is: “whenck′ is true, both the abstract
systemS and the concrete systemS′ evolve; when false, only the concrete one runs”. As we have imposed
no particular condition on the values returned by the functionf which definesck′, one can wonder what
happensif ck′ becomes false at some point in time and remains false forever?

Such a setting corresponds to a situation where the abstract system advances up to a certain point (if
ck′ hasn true values, the abstract system runs through its firstn reactions), then then+1th abstract instant
is infinitely refined in the concrete system (ck′ is false forever after). Several interesting points can be
discussed here:

Theoretical Correctness The correctness proof obligation (6) states that any outputy′ of the concrete
systemS′ has an admissible counter-part inS, which isτ(y′). Given thatτ is a Lustre mapping, it is either
clock-preserving or sampling. Thus, they′ flow is at least as long asτ(y′).

This means that even ifck′ becomes false forever, the proof obligation (6) ensures that the output of the
concrete system will be correct and in particular will be of the length required by the abstract specification.

Within this point of view, the “ck′ becomes false forever” case corresponds to a setting in which the
output flow depends only on a finite number of the input flow values, so that stopping to read the input after
the last relevant valueis a correct refinement of the system.
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Correctness Proof Our translation of the proof obligation (6) in Lustre cannot however encompass the
whole meaning of (6). In particular, we cannot compare the whole outputs of the abstract and the concrete
systems, because the outputs arenot synchronous: at the point whenck′ becomes false forever, the concrete
system outputs an infinite number of values before the abstract system outputs a single value.

Thus, the proof obligation created by Flush contains only the safety part of (6), which is the comparison
of the outputs up to the point whenck′ freezes.

Fairness Condition To avoid the before mentioned drawbacks, we can add a simple sufficient condition
that preventsck′ from creating an infinite refinement:

Any falsevalue in theck′ flow may be immediately7 followed by only a finite number offalse
values.

This condition, together with the length preservation discussed in the Theoretical Correctness paragraph,
ensures that each abstract instant is refined by a finite number of concrete instants. However, we cannot
verify in practice whether this condition holds, since Lustre observers cannot handle liveness properties.
Therefore, we define a more restrictive condition below.

Real-Time Temporal Refinement We can derive a safety property from the above condition:

Given a positive integerN , anyfalsevalue in theck′ flow is immediately followed by at most
N − 1 falsevalues.

Knowing N , a Lustre observer of the above property can be written, so that we can verify whether the
condition holds. We say that this condition establishes aReal-Time Temporal Refinement, because in such
a setting, each abstract instant is refined by at mostN concrete ones, so that the worst-case execution time
can be calculated. The case of periodical refinement, such as in thePlus2 example, is a special case of
the real-time temporal refinement.

7“immediately followed” means “without anytruevalue in between”
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5 Example

To illustrate our refinement calculus, we will follow the “island example”[4] proposed by J.R. Abrial for
presenting the development of systems in B.

5.1 The Island

#

"

 

!
island

mainland

tunnel�� �� �� ���� ��
�� �� nin� nout-

n
The setting is: there is an island which can be reached from the
mainland by a tunnel. Cars can be parked on the island, but the
capacity of the parking lot is limited. Formally, the island contains
initially ninit cars. At each time unit,nin cars enter andnout
cars exit the island. The required property is that the total number
of carsn in the island never exceeds a given valuenmax.

A first specification The formal translation in Lustre of this informal specification is shown at table1.
Besides constant declarations, the specification is made of two components, theisland model and the

const ninit : int;

node island(nin, nout : int)
returns(n : int);
let

n = (ninit -> pre n) + nin - nout;
tel

const nmax : int;

node island_post(nin, nout, n : int)
returns(prop : bool);
let

prop = (n <= nmax);
tel

Table 1: The island initial specification

required property which is considered as a post-condition of the former, which means that we want the
boolean flowprop to always yield the valuetrue . This amounts to the synchronous observer technique
promoted in [19].

Improving the specification When we try to check or prove the property, we obviously fail. At this point,
we may think that this is because we have not captured all the necessary properties of the specification.
Therefore we add anotherpre-conditionnode (table2) stating some useful assumptions, such as the fact
that the initial valueninit is smaller than the required maximum valuenmax.

Trying to prove it We said that we had tried to prove the property but we did not say how. In fact,
in terms of section4.3, we attempted a proof of correctness of theisland system ([CORisland]). We
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node island_pre(nin, nout : int)
returns(prop : bool);
let

prop = (0 <= ninit) and (ninit <= nmax) and
(0 <= nin) and (0 <= nout);

tel

Table 2: Useful pre-conditions

used the Flush tool to automatically build a proof Lustre node, whose only output is the truth value of the
property we want to prove (see table3). Then this node can be dispatched to any convenient proof tool,
like the ones cited in introduction.

node island_proof(nin, nout, n : int)
returns(prop : bool);
let

assert island_pre(nin, nout);
prop = island_post(nin, nout,

island(nin, nout));
tel

Table 3: The proof node

Yet, clearly enough, the proof attempt fails.

5.2 A Non Deterministic Controller

This failure, yet, is interesting in that it shows us that our system model can not operate properly without
a controller. In this sense, we can hope that our modelling is unbiased and we can now concentrate on
designing a good controller. In doing this, we shall take the greatest care of not modifying our model of the
system to be controlled. This will be obtained thanks to the good properties of Lustre: a Lustre node is a
function and, as such, is free from side effects. If, in the course of the project, we neither modifyisland
nor island_pre , we are guaranteed not to modify our model.

Remark: This methodology, inspired by control principles, is quite different from the one followed by
Abrial, which is more of computer science inspiration. In Abrial’s approach, the island and the controller
are jointly modelled and the property is ensured from the very beginning. It is only at the end of the
refinement process that the island and the controller get separated. Then, the absence of modelling bias is
harder to assert.

The first controller we design is a non deterministic one, which “magically” ensures the desired prop-
erty. Its design is shown at table4. It just computes the truth value of the desired properties. Then, we can
encapsulate bothisland andcontroller within a global model, calledcontrolled_island (ta-
ble5) where we ensure, thanks to the assertion mechanism, that the truth value computed by the controller
remains always true.

We can notice here that thecontroller uses theisland model. Yet, this does not mean that it
knows by magics the number of cars in the island. The key issue here is that, since functions over flows are
dynamical systems, two instances of the same function behave in the same manner if and only if they have
exactly the same inputs. In this sense, theisland node instantiated incontroller may have behaved
differently than the actual island.
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node controller(nin, nout: int)
returns(prop: bool);
let

prop = island_pre(nin, nout) and
island_post(nin, nout,

island(nin, nout));
tel

Table 4: A non deterministic controller

node controlled_island()
returns(n : int);
var nin, nout: int;
let

assert controller(nin, nout);
n = island(nin, nout);

tel

node controlled_island_post(n: int)
returns(prop : bool));
let

prop = (n <= nmax);
tel

Table 5: The controlled island

Finally, we generate as before the proof nodecontrolled_island_proof and then, by expand-
ing it, the property holds by the sake of simple rewriting.

5.3 Temporal Refinement

We thus have at this step a correct controller. Yet, it is not effective for at least two reasons: the fact that
it is non deterministic and it needs sensors for measuring the flows of input and output cars. Let us first
address the second issue. The problem here is that we only have boolean sensors, which send a boolean
true , each time a car passes in front of them and this raises a question of temporal refinement.

The sensor handlers Given thecurrent andwhen primitives, writing sensor handlers is fairly easy.
The result is displayed at table6.

At section5.1, we said that there was some number of cars per time unit without saying what the time
unit was. We can now make this statement more precise by relating the speed of cars and the time unit
thanks to the constantnmwhich gives the maximum number of cars that can pass in front of a sensor per
time unit.

We can note moreover here that the clock generated by thecountmod node is trivially periodic of
periodnm. Thus, the fairness issues raised at section4.4are fulfilled.

Then, thecountmod node provides the “time-unit” clock, by counting modulonm. Finally, the
carcount node provides, at each time unit, the number of cars that passed the sensor at that time, as
a function of the sensor boolean output and of the “time-unit” clock. Note the use of thewhen sampler.
As a consequence, the output flow of the node is “slower” than its inputs.
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const nm: int;

node countmod() returns (clock: bool);
var n: int;
let

n = ((0 -> pre n) mod nm) + 1;
clock = (n = nm);

tel

node carcount(car, cl: bool)
returns (ncar: int)
var nc: int;
let

nc = (if true -> pre cl then 0
else (0 -> pre nc))
+ if car then 1 else 0;

ncar = nc when cl;
tel

Table 6: Car counting handler

Refining state variables This allows us to design a change of variables that moves from the concrete
sensor measurements to the previous abstract variables. It is shown at table7 and merely consists of
encapsulating the sensor handlers with the clock generation.

node refvar(cin, cout: bool)
returns(cl: bool; nin, nout: int)
let

cl = countmod();
nin = carcount(cin, cl);
nout = carcount(cout, cl);

tel

Table 7: The variable refinement function

Refining the model Applying this change of variable to the model of section5.2 yields the model of
table8.

Several interesting remarks can be proposed here:

• We applied the same change of variable independently to both the controller and the whole model.
The reason is that we want to carefully distinguish between what serves to model the real world and
the computations that take place in the controller.

• As a consequence, in the model, we come along with two versions of the clock, the one which is
computed in the model, and which features the physical time, and the one which is computed in the
controller and which features the computer clock. In our formal model, both are computed exactly
the same, and thus are equal. In this sense, theassert clause on their being equal is useless.
However, it is here to recall us that models and real-world are not the same and that the correctness
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node controller1(cin, cout: bool)
returns(cl, prop: bool);
var nin, nout: int;
let

cl, nin, nout = refvar(cin, cout);
prop = controller(nin, nout);

tel

node controlled_island1()
returns(n : int);
refines controlled_island;
var cin, cout: bool;

nin, nout: int;
cl, clc : bool;
prop : bool;

let
cl, nin, nout = refvar(cin, cout);
clc, prop = controller1(cin, cout);
assert (cl = clc);
assert prop;
n = island(nin, nout);

tel

Table 8: The refined model

of our solution heavily relies on the ability of the computer clock to measure physical time. Though
this is another subject, it shows that some provisions are to be taken for checking that this property
holds in operational situations, for instance by providing the computer with a fault-tolerant clock.

Finally the question of this refinement correctness is obvious because a change of variable trivially
preserves the system behaviour.

5.4 A Deterministic Controller

Yet, the controller at table8 is not deterministic and we need to refine it. This is done by:

• Introducing a traffic light at the island entrance and forbidding by law cars to cross the red light. The
light node is used to model this law.

• Introducing a light controller which is in charge of ensuring the island property. This is the creative
part of the control design and it is based on the principles of Model Predictive Control:

The point here is that the light controller cannot know the number of cars that will enter the island if
it sets the green light, nor can it know the number of cars that will exit the island meanwhile. Thus, it
takes a conservative policy which amounts to saying: if, based on my current knowledge and on the
worst traffic prediction consisting of maximising the entrance traffic and minimising the exit traffic,
the total predicted number of cars exceeds the limit, I must set the red light.

The resulting refined controller is displayed at table9. This table also illustrates some subtleties of Lustre
clock calculus [18]: the lightcontrol node which computes the light works on thecl clock while the
light node which uses the light is not sampled. We thus need to adapt the rates between them, which is
done by acurrent operator (used in its three-parameter version for better readability). Note that, in the
controller,red has to be conservatively initialised totrue .
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node light(cin, red: bool)
returns(prop: bool);
let

prop = (red => not cin);
tel

node lightcontrol(nin, nout: int)
returns(red: bool);
let

red = (ninit -> pre island(nin, nout))
+ nm > nmax;

tel

node controller2(cin, cout: bool)
returns(cl, prop: bool);
refines controller1;
var nin, nout: int;

red: bool;
let

cl, nin, nout = refvar(cin, cout);
red = current(true, cl,

lightcontrol(nin, nout));
assert light(cin, red);
prop = true when cl;

tel

Table 9: The deterministic controller

In the same way, the outputprop of controller1 being on thecl clock, we need to provide
controller2 with a (fake) output on the same clock.

It remains now to show that this is a correct refinement. Flush constructs the proof node displayed at
table11. It can be remarked that the proof of this node is the only difficult part in the system development as
it involves some linear arithmetic. In order to make it easier, we define useful properties of thenmconstant
we have introduced. This is done by a pre-condition node. Also, we can show here useful properties of our
change of variable, namely that countingnmbooleans cannot yield a sum larger thannm. This can be done
by adding a post-condition node. Then Flush will automatically generate a proof node for this property
(which is omitted here). Table10shows these added nodes.

Remark: We have chosen to use this particular example for several reasons: it allowed us to show all
interesting points of our calculus on a reasonably small system and yet, the system remained realistic. On
the other hand, we did not aim at showing that “we could do what B does”: as we explained in the intro-
duction, the purpose of our Lustre-oriented calculus is to provide a refinementadapted to andexpressed in
Lustre/Scade. We do not claim being as powerful as B (which would be untrue), we claim that our calculus
is expressive enough for problems usually treated in Lustre, so that Lustre/Scade users can use the calculus
without (extensive) training.
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node controller1_pre(cin, cout: bool)
returns(prop: bool)
let

prop = (0 < nm) and (nm <= nmax);
tel

node controller2_post(cin, cout: bool)
returns(prop: bool)
var cl: bool;

nin, nout: int;
let

cl, nin, nout = refvar(cin, cout);
prop = current(true, cl,

(0 <= nin) and (nin <= nm) and
(0 <= nout) and (nout <= nm));

tel

Table 10: Local pre and post conditions

node controller1_2_proof(cin, cout: bool)
returns(prop: bool);
var nin, nout: int;

red : bool;
cl, pr : bool;
nin2, nout2: int;
cl2, pr2 : bool;

let
assert controller1_pre(cin, cout);
cl, nin, nout = refvar(cin, cout);
red = current(true, cl,

lightcontrol(nin, nout));
assert light(cin, red);
pr = true when cl;
cl2, nin2, nout2 = refvar(cin, cout);
pr2 = controller(nin2, nout2);
prop = (cl2 = cl) and

current(true, cl,
(nin2 = nin) and
(nout2 = nout) and
(pr2 = pr));

tel

Table 11: The refinement proof obligation
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6 Conclusion

In this report, we presented a temporal refinement calculus for the programming language Lustre. The
calculus was derived from a general-purpose refinement calculus by taking into account the specificities
of Lustre, which resulted into a series of restrictions and simplifications. A summary is available in sec-
tion 4.3. After that theoretical part, we illustrated the calculus on an extensive example, which shows how
to develop a system by successive refinements on top of Lustre/Scade.

To sum up the approach we propose, let us characterise it by the following points:

• The equational declarative nature of the Lustre language makes it simple to use and alleviates the
burden of managing names and scopes. In our framework, the only communication mechanism
between components is the function call and it contrasts heavily with, for instance, what happens in
B where several communication mechanisms are needed (e.g., uses, imports, sees,..) whose necessity
seem to derive from the imperative, side-effect prone nature of the B language.

• The refinement calculus is sound – in the sense that it preserves the correctness and the non-reactivity
of programs – and transitive. Thus, we can use it in a step-wise manner. The restrictions we imposed
on the calculus ensure that we can effectively carry out the refinement proofs and that the refined
system is still a Lustre one: in particular, we preserve the synchrony of the system.

• The control theory point of view we have adopted here contrasts with the more computer science
orientation usually taken in this matter. In our opinion, this point of view provides a clearer and
more convincing modelling in what concerns possible model bias. It should be noted, however, that
this point is less tool- and language-dependent: the same point of view could have been also adopted
in B.

However, it is also worth noticing that our approach is, at present, less powerful than usual ones with
respect to logic capabilities. In particular, Lustre data-types are very restricted and there is no notion of
recursive functions, though there has been attempts to overcome these limitations [13]. On the one hand,
it can be thought that owing to the particular nature of control systems, these limitations may not be too
restrictive. On the other hand, it still could be interesting to enhance the capabilities and scope of our
approach. This can be a topic for future work.
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