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Abstract

We introduce problems of decentralized control with
delayed communication, where delays are either un-
bounded or bounded by a given constant k. In the
k-bounded-delay model, between the transmission of a
message and its reception, the plant can execute at
most k events. In the unbounded-delay model, the
plant can execute any number of events between trans-
mission and reception. We show that our framework
yields an infinite hierarchy of control problems,

CC = DCC0 ⊃ DCC1 ⊃ DCC2 ⊃ · · · ⊃ DCUC ⊃ DC,

where the containments are strict, CC is the set of con-
trol problems solvable with a single controller (cen-
tralized case) and DCCk (resp. DCUC, DC) is the
set of problems solvable with two controllers in a k-
bounded-delay network (resp. in an unbounded-delay
network, without communication). The hierarchy is
a result of the following property: controllers which
“work” in a given network will also work in a less non-
deterministic network. This property does not hold
when non-blockingness is introduced. Checking the
existence of controllers in the unbounded-delay case
or in the case without communication are undecidable
problems. However, a related decentralized observation
problem with bounded-delay communication is decid-
able.

1 Introduction

Decentralized supervisory control for discrete-event
systems has been studied in both (1) the case where
the controllers do not communicate at run time, and

1A preliminary version of this work appeared in [20] and
a journal version appeared in [21]. This work has been par-
tially supported by the European IST project “Next TTA” un-
der project No IST-2001-32111 and by CNRS STIC projects AS
RTP 23 “Automates, modèles distribués et temporisés” and ACI
SI “Control and Observation of Real-Time Open Systems”.

2Verimag, Centre Equation, 2, avenue de Vignate, 38610
Gières, France. E-mail: Stavros.Tripakis@imag.fr. Tel: +33 4
56 52 03 69. Fax: +33 4 56 52 03 44.

(2) the case where the controllers can exchange infor-
mation at run time. We call the first class of prob-
lems decentralized control without communication (e.g.,
see [9, 4, 22, 18, 17, 6, 5, 24, 8]) and the second
class decentralized control with communication (e.g.,
see [23, 2, 16, 15, 14]). Both classes are worth study-
ing: decentralized control without communication is
sometimes imposed, in the case where no network is
available; on the other hand, communication is often
necessary, in the case where the controllers do not have
enough local information to achieve their objective.

So far, most of the work on decentralized control with
communication [23, 2, 16, 15] has been based on the
assumption that controllers can exchange information
with zero delay, in other words, that the plant cannot
perform any action between the transmission and re-
ception of a message among controllers. This assump-
tion, while simplifying the study of what the commu-
nication policy should be (for example, how can trans-
missions be reduced so that only absolutely necessary
information is communicated), is often unrealistic in
practice, where controllers must function in a network
with delays.

In this paper, we study problems of decentralized con-
trol with communication, where the communication de-
lays are explicitly modeled and taken into account. In
particular, we distinguish two communication models,
namely, where delays are either bounded by a given
constant k, or unbounded. In the k-bounded-delay
model, between the transmission of a message and its
reception, the plant can execute at most k events. In
the unbounded-delay model, the plant can execute any
number of events between transmission and reception.

We make a number of assumptions. First, we assume
that communication is lossless, that is, all messages
are eventually delivered within a finite (possibly un-
bounded) delay. Second, we assume that communica-
tion is FIFO, that is, if message a is sent before message
b, then a will be delivered before b. Third, we fix the
communication policy to the following simple policy:
each controller transmits the events it observes in the
exact order it observes them, and nothing else. Fourth,
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we consider a simple model of specifications, in terms
of responsiveness properties, of the form “event a is
always followed by event b”. Finally, we consider for
simplicity the case of only two controllers (this is not
an essential assumption). Our framework is described
in Section 3. The hierarchy is presented in Section 4.

The results we obtain are as follows.

First, we show that our modeling framework results in
the (infinite) hierarchy of control problems expressed
by Formula (1) below (containments are strict).

CC = DCC0 ⊃ DCC1 ⊃ · · · ⊃ DCUC ⊃ DC (1)

CC denotes the class of control problems that can be
solved with a central controller. DCCk denotes the class
of control problems that can be solved with two con-
trollers with k-bounded-delay communication. DCUC
denotes the class of control problems that can be solved
with two controllers with unbounded-delay communi-
cation. DC denotes the class of control problems that
can be solved with two controllers without communi-
cation. CC = DCC0 means that every problem that can
be solved with a single controller can also be solved
with two controllers communicating with zero-delay,
and vice-versa (recall that we assume the “transmit ev-
erything you observe” policy). DCCk+1 ⊆ DCCk means
that every problem that can be solved with (k + 1)-
bounded-delay communication can also be solved with
k-bounded-delay communication, in fact, using the
same controllers. The other inclusions are similar. The
fact that the inclusions are strict means that there are
problems which can be solved in a k-bounded-delay
network, but cannot be solved in a (k + 1)-bounded-
delay network, for k = 0, 1, 2, · · ·, and that there are
problems which can be solved with unbounded-delay
communication, but cannot be solved without any com-
munication.

We follow the framework of supervisory control for
discrete-event systems (e.g., see [4, 18]) except that we
use responsiveness properties to express requirements.
Usually, in DES, a legal regular language is given, and
the objective is to find controllers such that the lan-
guage generated by the closed-loop system is contained
in the legal language. To avoid trivial solutions (e.g.,
the language of the closed-loop system being empty) an
extra requirement is added, namely, non-blockingness,
which informally states that it is always possible in the
closed-loop system to reach an accepting (or marked)
state. In Section 5, we argue that non-blockingness is
meaningless in a setting with communication, since it
fails to satisfy a natural property. Indeed, controllers
may be non-blocking in a (k + 1)-bounded delay net-
work, but blocking in a k-bounded delay network. The
reason is that non-blockingness cannot distinguish be-
tween “cooperative” non-determinism (of the plant)
and “adversarial” non-determinism (induced by the

network). This is explained in Section 5.

We also provide a set of undecidability and decidabil-
ity results. Some versions of the decentralized control
problem are known to be decidable [18, 17], while oth-
ers have recently been shown to be undecidable [8, 19].
In particular, checking the existence of (and construct-
ing, if they exist) non-blocking controllers [13, 3], such
that A ⊆ L(G/C1 ∧ C2) ⊆ E (resp., Lm(G/C1 ∧ C2) =
E), is shown to be decidable in [18], where A and E are
given regular languages, G is a (finite-state) plant, C1

and C2 are the controllers, (G/C1 ∧ C2) is the conjunc-
tively [24] controlled system without communication,
L(·) is the unmarked (i.e., prefix-closed) language of
(G/C1 ∧ C2) and Lm(·) is the marked (or accepted) lan-
guage of (G/C1 ∧ C2). In [8], it was shown that check-
ing the existence of decentralized deadlock-free con-
trollers in an ω-regular language setting is undecidable.
In [19], it was shown that checking the existence of non-
blocking controllers, such that Lm(G/C1 ∧ C2) ⊆ E, is
undecidable.1

In this paper, we extend the results of [19] and show
that it is undecidable to check the existence of two con-
trollers such that a set of responsiveness properties is
satisfied, in both cases of (1) unbounded-delay commu-
nication and (2) no communication. We believe that
the decentralized control problem with bounded-delay
communication is decidable. Towards such a result, we
prove decidability of joint observability with bounded-
delay communication. The latter is a modification of
the joint observability notion of [19], to take into ac-
count the fact that the observers communicate to each
other their observations, and these observations are de-
livered with bounded delay.

Related work: [1] studied a related central-
ized control problem, namely, the problem of synthe-
sizing a single controller when there are delays in the
input/output interaction between plant and controller
(i.e., an event generated by the plant is not immediately
observed by the controller, and similarly with controller
outputs), and provided necessary and sufficient condi-
tions for the existence of a controller, in the restricted
case of plants generating a so-called memoryless lan-
guage. [14] studied a related problem of decentralized
diagnosis with communication. Their model of commu-
nication appears to be similar to our unbounded-delay
model.

The problem of decentralized control has been also con-
sidered in different settings, as in the setting of reactive
modules [11, 7, 10]. There, the communication policy

1It is also worth noting that the setting of [18, 17] is slightly
more general than the one considered in [19], in the sense
that [18, 17] allow controllers to have their own acceptance con-
ditions (accepting states), whereas in [19] it is assumed that all
states of the controllers are accepting.
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is not fixed, however, the entire system executes syn-
chronously, thus, the communication delay is zero.

2 Preliminaries

N will denote the set of natural numbers. Let Σ be a
finite alphabet. Σ∗ denotes the set of all finite strings
over Σ, ε denotes the empty string, and Σ+ = Σ∗ \{ε}.
Σω denotes the set of all infinite strings over Σ. Given
two strings ρ and ρ′, such that ρ is finite, ρρ′ or ρ · ρ′
is the concatenation of ρ and ρ′. Given a (finite or in-
finite) string ρ, a prefix of ρ is a finite string π such
that ρ = π · τ , for some τ . Given a set of strings
L, the prefix-closure of L (i.e., the set of all prefixes
of all strings in L) is denoted by pref(L). Let ρ be
a (finite or infinite) string over Σ. Given Γ ⊆ Σ, we
define the projection of ρ to Γ, denoted PΓ(ρ), as the
string obtained from ρ by erasing all letters not in Γ.
For example, if Σ = {a, b, c} and Γ = {a, c}, then
PΓ(a b b c b a c b) = a c a c. For a set of (finite or infi-
nite) strings L, PΓ(L) = {PΓ(ρ) | ρ ∈ L}. For K ⊆ Γ∗

and Σ ⊇ Γ implicitly assumed, P−1
Γ (K) is the inverse

projection of K, that is, the greatest subset L of Σ∗

such that PΓ(L) = K. The length of a string ρ is de-
noted |ρ|. For instance, |ε| = 0 and |ab| = 2.

A responsiveness property over some alphabet Σ is a
formula of the form a ; b, where a, b ∈ Σ. Consider a
(finite or infinite) string ρ over Σ, ρ = c0 c1 c2 · · ·. We
say that ρ satisfies a ; b, denoted ρ |= a ; b, if b
occurs after every a in ρ, that is, for all i, if ci = a,
then there exists j > i, such that cj = b. For exam-
ple, a c b a a b satisfies a ; b, whereas a c c does not.
Notice that a ; b does not require that b occurs only
if a has occurred before. Thus, b |= a ; b. Also no-
tice that multiple a’s can be “covered” by a single b,
thus, a a b |= a ; b. A set of (finite or infinite) strings
L satisfies a property if every string in L satisfies the
property. A specification is a set of properties. L sat-
isfies a specification φ, denoted L |= φ, if L satisfies
every property in φ. Note that if L′ ⊆ L and L |= φ,
then L′ |= φ.

Responsiveness captures other properties, such as in-
variance properties, of the form “event a never occurs”.
This can be expressed by the responsiveness property
a ; b, where b is a new event that never occurs. Then,
a ; b is satisfied iff a never occurs.

A non-deterministic automaton over an alphabet Σ is
a tuple H = (S, q0,Σ,∆), where S is the set of states,
q0 ∈ S is the initial state, and ∆ : S × Σ → 2S is
the non-deterministic transition function (∆ is a total
function, which may return ∅). We write s

a→ s′ if
s′ ∈ ∆(s, a). If, for all s ∈ S, a ∈ Σ, ∆(s, a) con-
tains at most one element, the automaton is called de-

terministic (in this case, the transition function will
be denoted by δ). If ∆(s, a) is never empty, the au-
tomaton is called receptive. A state s is a deadlock
if for all a ∈ Σ, ∆(s, a) = ∅. Given a finite string
ρ = a1 · · · ak ∈ Σ∗, we define ∆(s, ρ) to be the set of
all states s′ ∈ S, for which there exists a sequence of
states s0, s1, . . . , sk ∈ S, such that s0 = s, sk = s′ and
si+1 ∈ ∆(si, ai+1). We write s

ρ→ s′ if s′ ∈ ∆(s, ρ). We
also write ∆(ρ) instead of ∆(q0, ρ).

A state s of H is reachable if there exists some ρ ∈ Σ∗

such that s ∈ ∆(ρ). If ∆(ρ) is non-empty, we say that
ρ is generated by H. Given an infinite string π, we
say that π is generated by H if every finite prefix ρ
of π is generated by H. A string ρ generated by H
is maximal if, either ρ is infinite, or ρ is finite and for
some s ∈ ∆(ρ), s is a deadlock. Lmax(H) is the set of
all (finite or infinite) maximal strings generated by H.

An automaton H as above can be equipped with a set
of marked states Sm ⊆ S. Given such an automaton,
its unmarked language is defined to be L(H) = {ρ ∈
Σ∗ | ∆(ρ) 6= ∅}, and its marked language is defined to
be Lm(H) = {ρ ∈ Σ∗ | ∆(ρ) ∩ Sm 6= ∅}.

A deterministic automaton over Σ with outputs in Γ,
where Γ is an alphabet (not necessarily related to Σ),
is a tuple C = (S, q0,Σ, δ, Γ,Λ), where (S, q0,Σ, δ) is a
deterministic automaton over Σ, and Λ : S → 2Γ is the
output function (total).

3 Centralized and decentralized control
problems

We now define four control problems, namely, central-
ized control, decentralized control without communica-
tion, decentralized control with unbounded-delay com-
munication and decentralized control with bounded-
delay communication. First, we have to define what
is a plant, what are the controllers, what is communi-
cation and what is the effect of one or more controllers
on the plant.

We fix an alphabet Σ, to be used through the whole
section. In all cases, the plant will be modeled as a
finite-state deterministic automaton G over Σ, G =
(SG, q0G,Σ, δG). The controllers will be modeled as
receptive deterministic automata with outputs.

3.1 Centralized control (CC)
Let ΣO,ΣC ⊆ Σ. ΣO models the set of events of the
plant that are observable by the controller and ΣC mod-
els the set of controllable events. The latter can be
“disabled” by the controller. The centralized control
architecture is depicted in Figure 1.

The controller C = (SC , q0C ,ΣO, δC ,ΣC ,ΛC) is a re-
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Figure 1: The centralized control architecture.

ceptive deterministic automaton over ΣO with outputs
in ΣC . The intended meaning is that, when C is in
state s, it disables all events in ΣC − ΛC(s). Notice
that we do not require C to be finite-state a-priori.

The controlled system, denoted (G/C), is defined to be
the deterministic automaton (S, q0,Σ, δ), where S =
SG × SC , q0 = (q0G, q0C), and δ is defined as follows.
Given s = (sG, sC) ∈ S and a ∈ Σ: if δG(sG, a) is un-
defined, then δ(s, a) is undefined; if δG(sG, a) is defined
and a ∈ ΣC −ΛC(sC), then δ(s, a) is undefined; other-
wise, δ(s, a) = (δG(sG, a), s′C), where s′C = δC(sC , a) if
a ∈ ΣO and s′C = sC if a 6∈ ΣO.

Definition 1 (CC problem) Given a finite-state de-
terministic automaton G over Σ, a specification φ over
Σ, and ΣO,ΣC ⊆ Σ, does there exist a receptive de-
terministic automaton C over ΣO with outputs in ΣC ,
such that Lmax(G/C) |= φ.

3.2 Decentralized control without communica-
tion (DC)
Let Σ1O,Σ2O,Σ1C ,Σ2C ⊆ Σ. ΣiO (resp., ΣiC) is the
set of events observable (resp., controllable) to con-
troller i. In case some event a ∈ Σ1C ∩ Σ2C , that
is, a is controllable by both controllers, the conjunctive
decision policy is assumed, that is, the event is enabled
iff both controllers enable it. The conjunctive decen-
tralized control architecture without communication is
depicted in Figure 2.

- � Σ2CΣ1C ∧C1 C2

? ?

- plant

Σ1O Σ2O

Figure 2: The (conjunctive) decentralized control archi-
tecture without communication.

For i = 1, 2, controller Ci is a receptive determinis-
tic automaton over ΣiO with outputs in ΣiC , Ci =
(SiC , qiC ,ΣiO, δiC ,ΣiC ,ΛiC).

The conjunctively controlled system without communi-
cation, denoted (G/C1 ∧ C2), is defined to be the de-
terministic automaton (S, q0,Σ, δ), where S = SG ×

S1C × S2C , q0 = (q0G, q1C , q2C), and δ is defined as
follows. Given s = (sG, s1, s2) ∈ S and a ∈ Σ:
if δG(sG, a) is undefined then δ(s, a) is undefined; if
δG(sG, a) is defined and there is some i = 1, 2 such
that a ∈ ΣiC − ΛiC(si) then δ(s, a) is undefined; oth-
erwise, δ(s, a) = (δG(sG, a), s′1, s

′
2), where, for i = 1, 2,

s′i = δiC(si, a) if a ∈ ΣiO and s′i = si if a 6∈ ΣiO.

Definition 2 (DC problem) Given a finite-state de-
terministic automaton G over Σ, a specification φ over
Σ, and Σ1O,Σ1C ,Σ2O,Σ2C ⊆ Σ, do there exist recep-
tive deterministic automata Ci over ΣiO with outputs
in ΣiC , for i = 1, 2, such that Lmax(G/C1 ∧ C2) |= φ.

3.3 Queues of bounded or unbounded delay
Before defining the decentralized control problems with
communication, we introduce the useful notion of a
FIFO queue with delays (queue, for short). A queue
over some alphabet Γ is an ordered list of pairs of the
form (a, i), where a ∈ Γ and i ∈ N. The index i is
called the time-to-live field and models the remaining
time steps until the message is delivered.2 We require
that if (a, i) is before (b, j) in a queue, then i ≤ j. For
example, [(a, 2), (b, 3)] is a queue with two elements. It
models a network where messages a and b have been
sent, and a has been sent before b. Thus, by the FIFO
property of the network that we assume, a will also be
delivered before b. Moreover, the time-to-live field of
a is 2, meaning that a will be delivered after 2 time
steps. We shall see later how time is counted in our
discrete-event model. The empty queue is denoted ∅.

The first element of a non-empty queue Q is its head,
denoted head(Q), and the last element is its tail, de-
noted tail(Q). If Q 6= ∅ and head(Q) = (a, i), where
i > 0, then Q − 1 denotes the new queue obtained
by decrementing all indices in the elements of Q by
one. For example, if Q = [(a, 2), (b, 3)] then Q − 1 =
[(a, 1), (b, 2)]. By convention, if Q = ∅, we let Q−1 = ∅.

If Q 6= ∅ and head(Q) = (a, 0), then we say that
Q is ready, and we define pop(Q) to be the new
queue obtained by removing the head of Q. So,
pop([(a, 0), (b, 3)]) = [(b, 3)]. By convention, an empty
queue is not ready. Let max(Q) denote the maxi-
mum i such that (a, i) is in Q. If Q is empty, we let
max(Q) = 0. Notice that, by definition, the tail of Q
is some element (b, max(Q)).

We define the operator push(Q, a), which takes a queue
2In fact, we use the term “time-to-live” in a slightly different

way than its standard meaning. In computer networks, “time-to-
live” is a counter which is decremented at specific points (e.g., ev-
ery time the message goes through a switch). When the counter
reaches zero, the message is discarded, as it is considered too
“old”. In our case, when the time-to-live field reaches zero, the
message is ready to be delivered and must be delivered before
time can elapse.
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Q and a message a and returns an infinite set of queues,
push(Q, a) = {Qmax(Q), Qmax(Q)+1, ...}, such that, for
each i ≥ max(Q), Qi is obtained by appending the new
tail (a, i) to Q. For example,

push([(a, 1)], b) = { [(a, 1), (b, 1)], [(a, 1), (b, 2)],
[(a, 1), (b, 3)], [(a, 1), (b, 4)], ...}.

We also define the operator pushk(Q, a), parameter-
ized by k ∈ N, which returns the finite set of queues,
pushk(Q, a) = {Qmax(Q), ..., Qk} (if max(Q) > k, then
pushk(Q, a) = ∅). For example,

push2([(a, 1)], b) = {[(a, 1), (b, 1)], [(a, 1), (b, 2)]}.

The pop operation models the network delivering a
message. The operation Q− 1 models time elapse and
the corresponding “aging” of messages in the network.
The push operations model the network scheduling a
message to be delivered later on: since it is not known
exactly after how many steps the message will be de-
livered, both push and pushk are non-deterministic. In
an unbounded-delay network, push will be used, since
a message may be delivered after an arbitrary (though
finite) number of steps. On the other hand, in a net-
work where a message is guaranteed to be delivered
after at most k steps, pushk will be used. Notice that,
by the FIFO property of the queue (which models the
FIFO assumption we make on the network), a message
cannot be delivered unless all previous messages in the
queue are delivered. For example, push([(a, 1)], b) mod-
els the fact that a is sent after b in an unbounded delay
network. Since b will be delivered after one time unit,
a cannot be delivered earlier. On the other hand, a
can be delivered (much) later, after i time units, where
i is unknown. In a bounded-delay network, a known
bound exists for i.

The following properties follow easily from the defini-
tions.

Lemma 3 For any queue Q over some alphabet Γ, for
any a ∈ Γ, and for any k ∈ N, (1) pushk(Q, a) ⊆
pushk+1(Q, a) ⊆ push(Q, a), and (2) for any Q′ ∈
pushk(Q, a), for any element (b, i) of Q′, i ≤ k.

3.4 Decentralized control with unbounded-
delay communication (DCUC)
Given an event a in some alphabet Σ, â denotes another
event, called the message version of a (â will model the
message sent by a controller that observes a). Given an
alphabet Γ, we define Γ̂ = {â | a ∈ Γ}. Given ρ ∈ Γ∗,
ρ = a1 · · · al, ρ̂ denotes the string â1 · · · âl ∈ Γ̂∗.

Let Σ1O,Σ2O,Σ1C ,Σ2C ⊆ Σ. Controller C1 will ob-
serve its own observable events, Σ1O, plus the message
events it receives from C2, Σ̂2O. In order not to create

delay

delay

? ??

-

- �

�

?

-

plant

Σ2CΣ1C ∧C1 C2

Σ2OΣ1O

Σ̂1O

Σ̂2O

•

•

Figure 3: The (conjunctive) decentralized control archi-
tecture with communication.

confusion, we will assume that Σ̂1O and Σ̂2O are dis-
joint: this can be achieved by renaming if necessary.
However, note that if a ∈ Σ1O ∩ Σ2O (i.e., a is observ-
able by both C1 and C2) then C1 will observe a directly
(the moment it occurs) and will later receive â (the
message sent by C2). The situation is symmetric for
C2. All message events are received in order, without
loss, and within some finite (but possibly unbounded)
delay.

Let Qi be the set of all possible queues over Σ̂jO, for
i, j = 1, 2, i 6= j. A queue Q1 ∈ Q1 will hold the mes-
sages sent from C2 to C1, and Q2 ∈ Q2 will hold the
messages sent from C1 to C2. Let Σ′

1O = Σ1O ∪ Σ̂2O

and Σ′
2O = Σ2O ∪ Σ̂1O. For i = 1, 2, controller

Ci = (SiC , qiC ,Σ′
iO, δiC ,ΣiC ,ΛiC) is a receptive deter-

ministic automaton over Σ′
iO with outputs in ΣiC . Let

t be a new event, and define Π = Σ∪ Σ̂1O ∪ Σ̂2O ∪ {t}.

The conjunctive decentralized control architecture with
communication is depicted in Figure 3. Note that, since
we fix the communication policy to “transmit every-
thing you observe”, we do not need to model commu-
nication actions of the controllers explicitly. Instead,
every event observed by one controller is automatically
transmitted to the other controller.

The conjunctively controlled system with unbounded-
delay communication, denoted (G/C1 ∧∞ C2), is
defined to be the non-deterministic automaton
(S, q0,Π,∆), where S = SG × S1C × S2C × Q1 ×
Q2, q0 = (q, q1C , q2C , ∅, ∅), and ∆ is defined as fol-
lows. Given states s = (sG, s1, s2, Q1, Q2) and s′ =
(s′G, s′1, s

′
2, Q

′
1, Q

′
2), ∆ contains the following types of

transitions:

1. (delivery of a message) s
â→ s′: if some queue

Qi is ready with head(Qi) = (â, 0), â ∈ Σ̂jO, in
which case, s′G = sG, Q′

i = pop(Qi), Q′
j = Qj ,

s′i = δiC(si, â), s′j = sj , where i, j = 1, 2, j 6= i,

2. if no queue is ready,
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(a) (plant transition and time progress) s
b→ s′:

if for some b ∈ Σ, δG(sG, b) is defined and
there is no i = 1, 2 such that b ∈ ΣiC −
Λ(si), in which case, s′G = δG(sG, b) and,
for i = 1, 2, if b ∈ ΣiO, then s′i = δiC(si, b),
Q′

j ∈ push(Qj − 1, b̂), otherwise, s′i = si,
Q′

j = Qj − 1, where j = 1, 2, j 6= i,

(b) (time progress) s
t→ s′: if there is no b such

that clause 2(a) is satisfied, and some queue
is non-empty, in which case, s′G = sG, s′i =
si and Q′

i = Qi − 1, for i = 1, 2.

Clause 1 corresponds to the case where a message is
delivered from one of the queues: this happens as soon
as a queue is ready. Clause 2(a) corresponds to the case
where the plant moves: every such move is assumed to
take one time step, so that it results in the aging of both
queues by one step; moreover, if the plant executes b,
then, for each controller Ci, if b is observable by Ci,
then Ci moves according to b, and b̂ is sent to the other
controller Cj . Clause 2(b) corresponds to time elapse,
without any move of the network or the plant: this
happens when the plant is blocked and there is at least
one queue which is not ready and non-empty. In this
case, time elapses, the queue eventually becomes ready
and delivers the message. The special event t models
one time step.

Definition 4 (DCUC problem) Given a finite-
state deterministic automaton G over Σ, a specification
φ over Σ, and Σ1O,Σ1C ,Σ2O,Σ2C ⊆ Σ, do there exist
receptive deterministic automata Ci over ΣiO ∪ Σ̂jO

with outputs in ΣiC , for i, j = 1, 2, j 6= i, such that
Lmax(G/C1 ∧∞ C2) |= φ.

3.5 Decentralized control with bounded-delay
communication (DCC)
Let ΣiO, ΣiC , Ci and Π be as in Section 3.4. In
addition, we are given a natural constant k ∈ N.
The conjunctive decentralized control architecture with
bounded-delay communication is the same as the one
shown in Figure 3. The difference is that delays in this
case are bounded by k.

The conjunctively controlled system with k-bounded-
delay communication, denoted (G/C1 ∧k C2), is de-
fined in the same way as (G/C1 ∧∞ C2), except that
push(·, ·) is replaced by pushk(·, ·), in the definition of
the transition function ∆.

Definition 5 (DCC problem) Given k ∈ N, a
finite-state deterministic automaton G over Σ, a spec-
ification φ over Σ, and Σ1O,Σ1C ,Σ2O,Σ2C ⊆ Σ, do
there exist receptive deterministic automata Ci over
ΣiO ∪ Σ̂jO with outputs in ΣiC , for i, j = 1, 2, j 6= i,
such that Lmax(G/C1 ∧k C2) |= φ.

4 A hierarchy of centralized and decentralized
control problems

We will represent a decentralized control problem by
a tuple (G, Σ1O,Σ2O,Σ1C ,Σ2C , φ). To be able to
compare, we will also represent a centralized control
problem by the same type of tuple, with the con-
vention that ΣO = Σ1O ∪ Σ2O and ΣC = Σ1C ∪
Σ2C . CC will denote the class of all control problems
(G, Σ1O,Σ2O,Σ1C ,Σ2C , φ) for which there exists a cen-
tralized solution, that is, a controller C over Σ1O∪Σ2O

with outputs in Σ1C ∪Σ2C , such that Lmax(G/C) |= φ.
Classes DCCk, DCUC and DC are defined similarly,
w.r.t. the DCC, DCUC and DC problems. We first
observe that decentralized control with zero delay is
equivalent to centralized control.

Proposition 6 CC = DCC0.

Indeed, zero delay means that, each time the plant gen-
erates an observable event a, say, a ∈ Σ1O, message â
is delivered to C2 before the plant has time to gener-
ate another event. But this is equivalent to C2 directly
observing a. Thus, both controllers have same obser-
vation capabilities, equivalent to a single controller ob-
serving Σ1O ∪ Σ2O.

Next, we show that every decentralized control problem
that can be solved with communication of unbounded
delay or delay at most (k + 1) can also be solved if the
delay is at most k, using the same controllers. This is to
be expected, since a network of delay at most k is more
deterministic (i.e., has less behaviors) than a network
of at most k+1 delay, or a network of unbounded delay.

However, as we shall see in Section 5, this natural prop-
erty is violated in the framework of non-blockingness.

Lemma 7 For any k ∈ N, plant G, and controllers
C1, C2, if s

a→ s′ is a transition in (G/C1 ∧k C2),
then it is also a transition in (G/C1 ∧k+1 C2) and in
(G/C1 ∧∞ C2).

Proof: By induction, with basis the fact that
all three systems, (G/C1 ∧k C2), (G/C1 ∧k+1 C2) and
(G/C1 ∧∞ C2), have the same initial state, and using
part 1 of Lemma 3 in the induction step.

Lemma 8 For any k ∈ N, G, C1 and C2, if s is a
reachable deadlock state in (G/C1 ∧k C2), then it is
also a reachable deadlock state in (G/C1 ∧k+1 C2) and
(G/C1 ∧∞ C2).

Proof: We prove the claim only for (G/C1 ∧k+1 C2).
The proof for (G/C1 ∧∞ C2) is similar. For ease of
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notation, we define Hk = (G/C1 ∧k C2) and Hk+1 =
(G/C1 ∧k+1 C2).

Consider a reachable deadlock state s in Hk. By
Lemma 7, s is reachable in Hk+1 as well. Assume s
is not a deadlock in Hk+1, that is, Hk+1 has some
transition s

a→ s′. Let s = (sG, s1, s2, Q1, Q2) and
s = (s′G, s′1, s

′
2, Q

′
1, Q

′
2).

Consider first the case a ∈ Σ̂1O ∪ Σ̂2O ∪ {t}. We can
see that, in this case, the definition of ∆ (clauses 1 or
2(b)) is the same for both Hk and Hk+1, thus, s

a→ s′

is also a transition in Hk, which contradicts that s is a
deadlock in Hk.

Consider now the case a ∈ Σ (clause 2(a)). The def-
initions of the transition relation differ between Hk

and Hk+1 only in case a ∈ Σ1O ∪ Σ2O. Assume
a ∈ Σ1O − Σ2O (the other cases are similar). Then,
we have Q′

1 = Q1−1 and Q′
2 ∈ pushk+1(Q2−1, â). Re-

call that s is reachable in Hk, that is, Q2 has been ob-
tained (potentially) using the pushk(·, ·) operator, and
not pushk+1(·, ·). Therefore, by part 2 of Lemma 3,
for every element (b, j) of Q2, we have j ≤ k, and
pushk(Q2 − 1, â) is not empty. That is, for some
Q′′

2 ∈ pushk(Q2 − 1, â), Hk has a transition s
a→ s′′,

where s′′ = (s′G, s′1, s
′
2, Q

′
1, Q

′′
2). This contradicts the

hypothesis that s is a deadlock in Hk.

Proposition 9 For any k ∈ N, plant G,
and controllers C1, C2, Lmax(G/C1 ∧k C2) ⊆
Lmax(G/C1 ∧k+1 C2) ⊆ Lmax(G/C1 ∧∞ C2).

Proof: Let ρ ∈ Lmax(G/C1 ∧k C2). If ρ
is infinite, then, by Lemma 7, ρ also belongs in
Lmax(G/C1 ∧k+1 C2) and Lmax(G/C1 ∧∞ C2). If ρ is
finite, then it can lead (G/C1 ∧k C2) to a deadlock state
s. By Lemma 7, ρ can also lead Lmax(G/C1 ∧k+1 C2)
and Lmax(G/C1 ∧∞ C2) to s. By Lemma 8, s is a dead-
lock in Lmax(G/C1 ∧k+1 C2) and Lmax(G/C1 ∧∞ C2),
thus, ρ is a maximal string in the latter systems.

Corollary 10 For all k ∈ N, DCCk+1 ⊆ DCCk and
DCUC ⊆ DCCk.

We next observe that every decentralized control prob-
lem that can be solved without any communication, can
also be solved with unbounded-delay communication.
Indeed, any controllers that work without exchanging
any information, will also work on any network, simply
by ignoring all messages they receive.

Proposition 11 DC ⊆ DCUC.

Putting together all the above results, we get the in-
clusions of Formula (1). We now proceed to show that
these inclusions are strict.

Proposition 12 For all k ∈ N, DCCk −DCCk+1 6= ∅.

Proof: We will use the plant depicted in Figure 4.
Assume that u, u1, ..., uk are uncontrollable and unob-
servable events, while a, c are controllable by controller
C1 and b is observable by controller C2. The specifica-
tion φ is {u ; d, b ; c}. In other words, we want to
keep a initially enabled, in case u occurs, but disable
it if b occurs. We can build correct controllers in a k-
bounded-delay network. Controller C2 will do nothing,
except transmit b̂ to C1, if b occurs. Controller C1 will
initially enable both a and c. If it receives b̂, it will dis-
able a. It can be seen that these controllers satisfy φ in
a k-bounded-delay network, because b̂ will be received
by C1 at the latest right after uk occurs, and before
the “illegal” a can occur. However, in a network where
delays can be more than k, the illegal a may happen
before C1 has received b̂. If C1 decides to disable a
right from the start (i.e., without observing anything),
then u ; d will be violated if the plant performs u.

i i i
i

i
i i

i- - - - --

-

6 6

-

u1b u2 · · · uk

a d

u c
a

Figure 4: Solvable with a k-bounded-delay network, but
not with a (k + 1)-bounded-delay network.

Corollary 13 For all k ∈ N, DCCk −DCUC 6= ∅.

Proof: We use the same example as in the proof of
Proposition 12 and the fact that DCUC ⊆ DCCk+1.

Proposition 14 DCUC − DC 6= ∅.

Proof: We will use the plant depicted in Figure 5.
Assume that events a and b are observable by C2 and
events c and d are controllable and observable by C1.
Let the specification be φ = {a ; c, b ; d}. That is,
we want to disable d if a occurs and c if b occurs. If
the controllers can communicate, then C1 can initially
disable both c and d and wait, until it receives â or b̂.
If this ever happens, then C1 knows that either a or b
occurred, and can enable the corresponding response.3

3Note that delays can be arbitrary but they are finite, so there
can be no infinite behavior with only t events.
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In a setting without communication, however, C1 can-
not possibly know which of c, d to disable. It cannot
disable both, since no response will ever be given, then.
It cannot enable both either, since this may result in
an incorrect response.

ii i ii i� - -�

- �

?a bc d

d c

Figure 5: Solvable with an unbounded-delay network, but
not without any network.

5 The case of non-blockingness

In supervisory control theory, specifications are often
given by considering a legal language E ⊆ Σ∗, which
must contain the closed-loop system language, and fur-
ther requiring that the controllers be non-blocking. In-
formally, non-blockingness states that for any behavior
ρ of the closed-loop system, it is possible to extend ρ
to a behavior accepted by the plant.

In this section, we show that non-blockingness is not an
appropriate requirement in the context of decentralized
control with bounded-delay communication. Indeed, in
such a setting, it is not true that controllers which are
non-blocking in a (k + 1)-bounded delay network are
also non-blocking in a k-bounded delay network. We
consider this problematic, since it does not meet our
expectations. If we look at controllers as players in a
“game” against the network, then, since a k-bounded
delay network is a “weaker” player than a (k + 1)-
bounded delay network (the former has less choices
than the latter), a strategy against the latter should
also work against the former. To put it differently, con-
trollers functioning properly in a network where delays
are potentially (but not necessarily) large, should also
function properly in a network where delays are guar-
anteed to be small. This property holds in the setting
we have considered so far in this paper, as shown by
Proposition 9.

Let us begin by defining an alternative decentralized
control problem with bounded-delay communication,
where requirements are not given as responsiveness
properties, but as a legal language plus the require-
ment of non-blockingness.

The plant will be modeled as a deterministic automa-
ton G = (SG, q0,Σ, δ, Sm), equipped with marked
states Sm ⊆ SG. The controllers will be modeled as
in Section 3.5. The closed-loop system will be de-
fined as in Section 3.5, with the addition that it will
now have marked states, in particular, all states in

Sm × S1C × S2C , where SiC is the set of states of
controller Ci, for i = 1, 2 (notice that controllers do
not have marked states). Let (G/C1 ∧k C2) denote the
closed-loop system in a network with bounded delay k.
Recall that L(G/C1 ∧k C2) and Lm(G/C1 ∧k C2) are,
respectively, the unmarked and marked languages of
(G/C1 ∧k C2).

Definition 15 (DCCNB problem) Given k ∈ N,
a finite-state deterministic automaton G over Σ,
equipped with a set of marked states, a regular language
E ⊆ Σ∗, and Σ1O,Σ1C ,Σ2O,Σ2C ⊆ Σ, do there ex-
ist receptive deterministic automata Ci over ΣiO ∪ Σ̂jO

with outputs in ΣiC , for i, j = 1, 2, j 6= i, such that

1. PΣ(Lm(G/C1 ∧k C2)) ⊆ E (legal language re-
quirement), and

2. L(G/C1 ∧k C2) = pref(Lm(G/C1 ∧k C2)) (non-
blockingness requirement).

Theorem 16 There exists a plant G and controllers
C1, C2 such that (G/C1 ∧1 C2) is non-blocking, whereas
(G/C1 ∧0 C2) is blocking.

Proof: We will use the plant and the controllers
shown in Figure 6. Let Σ = {a, b, c}. The marked
state of the plant G is the state drawn with a double
circle. Thus, G generates the regular language (a b)∗ c.
Let Σ1O = {b, c}, Σ1C = {c}, Σ2O = {a}, Σ2C = ∅.
Controller C2 plays no other role except transmitting
its observations to controller C1. Controller C1 disables
the controllable event c in all its states, except state 6.
Intuitively, C1 enables c only when it receives message
â with a unit delay, that is, when it observes b â. As
long as â is received with zero delay, that is, as long as
C1 observes â b, c remains disabled.

(G/C1 ∧1 C2) is depicted in Figure 7. At each state, we
show the local state of the plant, the local state of con-
troller C1 and the contents of the non-empty queues.
The local state of controller C2 is always the same, thus
it is omitted. We do not explicitly identify the two
queues: their contents suffice to identify them. For ex-
ample, at state (0, 3, [(â, 1)]), G is at state 0, C1 is at
state 3, and there is a message â in the receiving queue
of C1 with time-to-live field 1. The marked state of the
closed-loop system automaton is state (2, 7).

It can be verified that (G/C1 ∧1 C2) is non-blocking.
Indeed, from every state of the automaton, the marked
state (2, 7) can be reached (this is a sufficient condition
for non-blockingness).

(G/C1 ∧0 C2) is obtained from (G/C1 ∧1 C2) by re-
moving all states (and corresponding transitions) where
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â

b

c
â
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Figure 6: A plant G and two controllers C1 and C2.
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Figure 7: The closed-loop system (G/C1 ∧1 C2) (where G, C1, C2 are as in Figure 6).
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some element in some queue has a non-zero time-to-live
field. Doing so, we obtain a reachable state space which
is a subset of the one for (G/C1 ∧1 C2). In particular,
(G/C1 ∧0 C2) contains a single cycle, namely, (0, 3) a→
(1, 3, [(â, 0)]) â→ (1, 4) b→ (0, 3, [(b̂, 0)]) â→ (0, 3). Thus,
L(G/C1 ∧0 C2) = pref((a â b b̂)∗). On the other hand,
Lm(G/C1 ∧0 C2) = ∅, since the marked state is un-
reachable in (G/C1 ∧0 C2). Thus, (G/C1 ∧0 C2) is
blocking.

6 Undecidability results

In this section, we show that checking existence of con-
trollers in both cases of unbounded-delay communica-
tion and no communication are undecidable problems.
The proofs are by reduction of an undecidable decen-
tralized observation problem, namely, checking joint
observability [19]. We first recall the definition of joint
observability and state its properties of interest, with-
out proof.

Definition 17 (joint observability) Given regular
languages K ⊆ L ⊆ Σ∗ over some finite alphabet Σ,
and Σ1,Σ2 ⊆ Σ, K is said to be jointly observable with
respect to L and Σ1,Σ2, if there exists a total function
f : Σ∗

1 × Σ∗
2 → {0, 1}, such that

∀ρ ∈ L .
(
ρ ∈ K ⇐⇒ f(PΣ1(ρ), PΣ2(ρ)) = 1

)
.

The following lemma comes from [19] and gives neces-
sary and sufficient conditions for joint observability.

Lemma 18 K is jointly observable with respect to L
and Σ1,Σ2 iff

∀ρ, ρ′ ∈ L .

(ρ ∈ K ∧ ρ′ ∈ L−K) ⇒
(PΣ1(ρ) 6= PΣ1(ρ

′) ∨ PΣ2(ρ) 6= PΣ2(ρ
′)).

The following theorem comes from [19].

Theorem 19 Checking joint observability is undecid-
able.

Based on the above result, we now show undecidability
of decentralized control with unbounded-delay commu-
nication or without communication. The undecidabil-
ity result for decentralized control without communi-
cation is similar to the result proven in [19]. However,
the setting in [19] is slightly different: requirements
are expressed by legal languages and non-blockingness.
Also, the proofs here use directly the undecidability of
joint observability, reducing the latter problem to each
of the two control problems.

i
i
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stop

stop

good′

bad′bad

(if ρ ∈ L−K)

ρ ∈ L

(if ρ ∈ K)

good

Figure 8: Plant for the proof of Theorem 20.

Theorem 20 The decentralized control problem with
unbounded-delay communication is undecidable.

Proof: Consider regular languages K ⊆ L ⊆ Σ∗

and Σ1,Σ2 ⊆ Σ. We will define a plant G over a new
alphabet Γ, alphabets Σ1O,Σ2O,Σ1C ,Σ2C ⊆ Γ, and
a property φ over Γ, such that K is jointly observ-
able with respect to L,Σ1,Σ2 iff there exist controllers
Ci over ΣiO ∪ Σ̂jO with outputs in ΣiC , i, j = 1, 2,
i 6= j, such that Lmax(G/C1 ∧∞ C2) |= φ. Since check-
ing joint observability is undecidable, checking the ex-
istence of such controllers is also undecidable.

Let Γ = Σ ∪ {stop, good, good′, bad, bad′}, where
stop, good, good′, bad, bad′ are new events. Let Σ1O =
Σ1 ∪ {stop} and Σ2O = Σ2 ∪ {stop}. Let Σ1C =
{good′, bad′} and Σ2C = ∅. G is the automaton shown
in Figure 8. G initially generates strings in L. At some
point, G may decide to stop generating strings in L.
Let ρ ∈ L be the generated string at that point. If
ρ ∈ K, G executes good, otherwise, it executes bad.
After that, G executes stop and waits for controller 1
to enable either good′ or bad′.

Let φ be {good ; good′, bad ; bad′}. That is, if
G generates a string in K, then we want good′ to be
enabled, and if G generates a string in L − K, then
we want bad′ to be enabled. In other words, we are
“asking” the controllers to decide whether the initially
generated string was in K or not.

We claim that (G, Σ1O,Σ2O,Σ1C ,Σ2C , φ) ∈ DCUC iff
K is jointly observable with respect to L,Σ1,Σ2.

Suppose K is jointly observable with respect to
L,Σ1,Σ2. Then, there exists a function f : Σ∗

1 ×Σ∗
2 →

{0, 1}, such that for any ρ ∈ L, f(PΣ1(ρ), PΣ2(ρ)) = 1
iff ρ ∈ K. Controllers C1, C2 can be constructed as
follows.4 C2 will do nothing, except transmit its obser-
vations to C1. C1 will initially disable both good′ and
bad′ and wait until it receives ŝtop. At that point, and
supposing that G generated ρ ∈ L, C1 “knows” both
PΣ1(ρ) (from its own observations) and PΣ2(ρ) (from
what it received from C2). If f(PΣ1(ρ), PΣ2(ρ)) = 1
then C1 will enable good′, otherwise it will enable bad′.

4Note that the controllers may be infinite-state.

p. 10



To see that the above construction yields correct con-
trollers, observe the following. First, every infinite be-
havior in (G/C1 ∧∞ C2) cannot contain neither good,
nor bad, thus, φ is trivially satisfied. Second, if good
ever occurs, then stop will also occur (by maximality,
and the fact that stop is uncontrollable), thus, ŝtop will
eventually be received by both controllers (even though
this will happen after an unbounded number of steps).
Then, good′ will be enabled and the specification will
be satisfied. The situation is similar if bad occurs.

Now, suppose K is not jointly observable with respect
to L,Σ1,Σ2, that is, by Lemma 18, there exist ρ ∈
K, ρ′ ∈ L − K, such that PΣi

(ρ) = PΣi
(ρ′) = σi, for

i = 1, 2. Assume that controllers satisfying φ exist.
Suppose that G initially performs ρ good stop: this can
happen, since all events in Σ ∪ {good, bad, stop} are
uncontrollable. Also suppose that all events sent by C2

to C1 are received by C1 after C1 observes stop: this
can happen, since the network delay can be greater
than the length of ρ. Since φ must be satisfied, good′

must be enabled after stop. Moreover, bad′ cannot be
enabled at all after stop, otherwise the specification can
be violated.

Suppose C1 enables good′ for the first time (af-
ter stop) when it observes π = σ1 stop τ , where
τ is a prefix of σ̂2 ŝtop, that is, σ̂2 ŝtop = τ τ ′.
Then, ρ good stop τ good′ τ ′ is a maximal behav-
ior of (G/C1 ∧∞ C2). We claim that the string
ρ′ bad stop τ good′ τ ′ is also a maximal behavior of
(G/C1 ∧∞ C2). To see this, note that, having observed
π, C1 is in some state s1 and Λ1C(s1) = {good′}. Sup-
pose G performs ρ′ bad stop, and all events sent by C2

to C1 are received by C1 after it observes stop. Then,
ρ′ produces the same observations as ρ, the sequence
observed by C1 is again σ1 stop τ = π. Since C1 is
receptive and deterministic, it reaches state s1 and en-
ables good′. Thus, ρ′ bad stop τ good′ τ ′ is also a max-
imal behavior of (G/C1 ∧∞ C2). But this violates the
property bad ; bad′. Thus, correct controllers cannot
exist.

Theorem 21 The decentralized control problem with-
out communication is undecidable.

Proof: The proof is similar to the one of Theo-
rem 20, except that a slightly different plant is used,
shown in Figure 9. This plant offers the possibility to
controller C2 to transmit its observations to controller
C1, by enabling and disabling controllable events ti.
That is, communication between the two controllers is
“simulated” by the plant.

We use the notation of the proof of Theorem 20. As-
suming Σ2 = {a1, ..., an}, let Σt = {t1, ..., tn, end}
be a set of new events, and define Γ′ = Σ ∪

{stop, good, good′, bad, bad′} ∪ Σt. Let Σ1O = Σ1 ∪
{stop} ∪ Σt and Σ2O = Σ2 ∪ {stop} ∪ Σt. Finally, let
Σ1C = {good′, bad′} and Σ2C = Σt.

The new plant G′ is over Γ′. The initial behavior of G′

(up to stop) is as the initial behavior of G in the proof
of Theorem 20. After stop, G′ waits for C2 to transmit
its observation to C1. C2 can do this by enabling a se-
quence ti1 · · · til

end, which corresponds to the message
“I have observed ai1 · · · ail

”.5 Finally, C1 must enable
either good′ or bad′. The property φ is defined to be
{good ; good′, bad ; bad′}.

We claim that (G′,Σ1O,Σ2O,Σ1C ,Σ2C , φ) ∈ DC iff K
is jointly observable with respect to L,Σ1,Σ2. The
first direction, where we assume K jointly observable
and construct the controllers, is almost identical to the
previous proof, with two differences: first, C2 explicitly
transmits what it observed to C1, using the sequence
of ti’s followed by end; second, C1 waits for ênd instead
of ŝtop, before it decides.

In the other direction, suppose K is not jointly ob-
servable with respect to L, Σ1,Σ2. Then, there exist
ρ ∈ K, ρ′ ∈ L − K, such that PΣi

(ρ) = PΣi
(ρ′) = σi,

for i = 1, 2. Assume that controllers satisfying φ exist.
Suppose G′ performs ρ good stop and at this point, for
i = 1, 2, controller Ci has observed σi and is in state
si. Now, we claim that C2 transmits some sequence
τ end ∈ Σ∗

t . C2 cannot transmit an infinite sequence,
because good′ will never take place and φ will not be
satisfied. Notice that C2 may enable both end and some
ti at the same time, and it is possible that the plant
chooses ti instead of end. If this happens, C2 observes
ti and decides what to do next. In any case, C2 must
eventually disable all ti events and enable end: other-
wise, it is possible to have an infinite transmission and
good′ will never occur. Still, we can see that the se-
quence τ is not unique. This is not a problem, because
for each such sequence τ transmitted to C1, C1 must
make the correct decision. Therefore, we assume that
τ is one of the possible sequences transmitted to C1.

C1 enables good′ for the first time after stop, once it
observes some prefix π of τ end. Now, suppose G′ per-
forms ρ′ bad stop. Since ρ and ρ′ yield the same ob-
servations to both C1 and C2, and the controllers are
deterministic and receptive, C2 will transmit the same
sequence(s) to C1 as when ρ good stop occurred. C1 will
also behave in exactly the same manner and, after ob-
serving π, will enable good′, violating the specification.
Thus, correct controllers cannot exist.

5Enabling a sequence of controllable and observable events
c1 · · · cm can be easily done by starting at a state s1 with all
events disabled except c1, then, when c1 is observed, moving to
state s2 where all events are disabled except c2, and so on.
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Figure 9: Plant for the proof of Theorem 21.

7 Decidability of a decentralized observation
problem with bounded-delay communication

We believe that the decentralized control problem with
bounded-delay communication is decidable. Towards
such a result, we show decidability of a decentralized
observation problem with bounded-delay communica-
tion. The latter problem is a modification of the joint
observability problem, with bounded-delay communi-
cation added between the observers.

7.1 Joint observability with bounded-delay
communication
Given regular language L over Σ, subalphabets
Σ1,Σ2 ⊆ Σ, and k ∈ N, we construct a regular lan-
guage Lk

Σ1,Σ2
. The latter models the observation of L

by two observers which communicate in a k-bounded
delay network, as illustrated in Figure 10. Observer i
observes all events in Σi immediately when they occur,
and receives all events in Σ̂j within a delay of at most
k, for i, j = 1, 2, j 6= i. We use the notation introduced
in Section 3 and assume that Σ̂1 and Σ̂2 are disjoint
(this can be achieved by renaming, if necessary).

delay

delay

? ??

�

?

-

L

Σ2Σ1

Σ̂1

Σ̂2

•

•

Lk
Σ1,Σ2

Figure 10: The language L observed by two observers in
a bounded-delay network.

Let (SL, q0,Σ, δ, F ) be a deterministic finite-state au-
tomaton equipped with marked states F , which ac-
cepts L (i.e., whose marked language is L). Let Qi

be the set of queues over Σ̂i, for i = 1, 2. We define
a new automaton, Ak

Σ1,Σ2
= (S′, q′0,Π,∆, F ′), where

S′ = SL×Q1×Q2, q′0 = (q0, ∅, ∅), Π = Σ∪Σ̂1∪Σ̂2∪{t},
F ′ = F ×{∅}×{∅}, and ∆ contains the following types
of transitions:

1. (delivery of a message) (s,Q1, Q2)
â→ (s,Q′

1, Q
′
2):

if Qi is ready with head(Qi) = (â, 0), â ∈ Σ̂j ,
in which case, Q′

i = pop(Qi), Q′
j = Qj , where

i, j = 1, 2, j 6= i,

2. if no queue is ready,

(a) (plant transition and time progress)
(s,Q1, Q2)

b→ (s′, Q′
1, Q

′
2): if b ∈ Σ,

s′ = δ(s, b) is defined and, for i = 1, 2,
if b ∈ Σi, then Q′

j ∈ pushk(Qj − 1, b̂),
otherwise, Q′

j = Qj − 1, where j = 1, 2,
j 6= i,

(b) (time progress) (s,Q1, Q2)
t→ (s,Q1 −

1, Q2 − 1): if there is no b such that clause
2(a) is satisfied and some queue Qi, i = 1, 2,
is non-empty.

The definition of ∆ is similar to the one for the decen-
tralized control problem with communication. The t
transitions are added to “clear up” the queue of any
pending messages at the end of the operation of the
plant (an example is given below).

Lk
Σ1,Σ2

is defined to be the marked language of Ak
Σ1,Σ2

.

For example, let L = {a b b a c b a c} and Σ1 = {a},
Σ2 = {b}, k = 2. Then, possible strings of Lk

Σ1,Σ2
are

the following:

π1 = a â b b̂ b b̂ a â c b b̂ a â c,

π2 = a â b b̂ b b̂ a â c b b̂ a c t â,

π3 = a b b â b̂ a c b̂ â b a b̂ c â.

String π1 corresponds to all messages being delivered
immediately (zero delay). String π2 is the same as π1,
up to the transmission of the last a, which is delayed
by two steps. Notice that since operation of the plant
ends with the last c, the t event modeling time elapse is
necessary to decrement the time-to-live field of pending
message â and allow the message to be delivered. In
string π3, the first a is delayed by two steps and the
other two a’s by one step; the first and third b’s are
delayed by one step and the second b by two steps; c
is not transmitted, since it is not observable by any
observer.
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On the other hand, the following strings do not belong
in Lk

Σ1,Σ2
:

π4 = a â b̂ b · · · , π5 = a b b a â · · · .

π4 is not valid since a message cannot be received before
it is transmitted. π5 is not valid since the first a is
delayed by three steps whereas the maximum allowed
delay is two.

Although the set of all potential states of Ak
Σ1,Σ2

is
infinite, its set of reachable states is finite, as shown
below. Thus, the language Lk

Σ1,Σ2
is regular.

Lemma 22 (queue invariant) In any reachable
state of Ak

Σ1,Σ2
, a queue can contain at most k + 1 el-

ements. Moreover, if a queue contains l ≥ 1 elements,
then the time-to-live of the head of this queue is at
most k − l + 1.

Proof: We prove the second part of the lemma,
by induction on l. It holds for l = 1, by definition of
pushk. Assuming it holds for some l, we can prove that
it holds for l′ = l +1 by looking at the definition of the
transition relation ∆. Indeed, every time an element
is added to the queue using the pushk operator, the
time-to-live field of all elements already in the queue is
decremented by one. When the queue contains k + 1
elements, the head of the queue has time-to-live k −
(k+1)+1 = 0. Thus, by definition of ∆, no more push
operations are allowed, until the head is popped.

Corollary 23 The set of reachable states of Ak
Σ1,Σ2

is
finite.

Proof: By Lemma 22, a queue in a reachable state
of Ak

Σ1,Σ2
contains at most k + 1 elements. Thus, the

number of reachable states is bounded by |SL|·|Σ1|k+1 ·
|Σ2|k+1.

We now formally define the problem of joint observ-
ability with bounded-delay communication.

Definition 24 (bounded-delay joint observability)
Given regular languages K, L over Σ, K ⊆ L,
Σ1,Σ2 ⊆ Σ and k ∈ N, K is said to be jointly
observable with bounded-delay k with respect
to L and Σ1,Σ2 if there exists a total function
g : (Σ1 ∪ Σ̂2)∗ × (Σ2 ∪ Σ̂1)∗ → {0, 1}, such that

∀π ∈ Lk
Σ1,Σ2

.

PΣ(π) ∈ K ⇐⇒ g(P
Σ1∪Σ̂2

(π), P
Σ2∪Σ̂1

(π)) = 1.

The following lemma gives necessary and sufficient con-
ditions for bounded-delay joint observability.

Lemma 25 K is jointly observable with bounded-delay
k with respect to L and Σ1,Σ2 iff

∀π, π′ ∈ Lk
Σ1,Σ2

.

(PΣ(π) ∈ K ∧ PΣ(π′) ∈ L−K) ⇒
(P

Σ1∪Σ̂2
(π) 6= P

Σ1∪Σ̂2
(π′) ∨ P

Σ2∪Σ̂1
(π) 6= P

Σ2∪Σ̂1
(π′)).

(2)

Proof: Assume the negation of Condition (2),
that is, assume there exist π, π′ ∈ Lk

Σ1,Σ2
such that

PΣ(π) ∈ K, PΣ(π′) ∈ L−K, P
Σ1∪Σ̂2

(π) = P
Σ1∪Σ̂2

(π′)
and P

Σ2∪Σ̂1
(π) = P

Σ2∪Σ̂1
(π′). Let σ1 = P

Σ1∪Σ̂2
(π) =

P
Σ1∪Σ̂2

(π′) and σ2 = P
Σ2∪Σ̂1

(π) = P
Σ2∪Σ̂1

(π′). Then,
g(σ1, σ2) must equal both 1 (because of π) and 0 (be-
cause of π′), thus, g cannot exist.

Conversely, assume Condition (2) holds and define, for
σ1 ∈ (Σ1 ∪ Σ̂2)∗, σ2 ∈ (Σ2 ∪ Σ̂1)∗,

g(σ1, σ2) =


1, if ∃π ∈ Lk

Σ1,Σ2
. PΣ(π) ∈ K ∧

P
Σ1∪Σ̂2

(π) = σ1 ∧ P
Σ2∪Σ̂1

(π) = σ2,

0, otherwise.

We claim that g solves the bounded-delay decen-
tralized observation problem. Indeed, let π ∈
Lk

Σ1,Σ2
. If PΣ(π) ∈ K then, by definition,

g(P
Σ1∪Σ̂2

(π), P
Σ2∪Σ̂1

(π)) = 1. If PΣ(π) 6∈ K then we
claim that g(P

Σ1∪Σ̂2
(π), P

Σ2∪Σ̂1
(π)) = 0. Otherwise,

there must exist π′ ∈ Lk
Σ1,Σ2

such that PΣ(π′) ∈ K,
P

Σ1∪Σ̂2
(π′) = P

Σ1∪Σ̂2
(π) and P

Σ2∪Σ̂1
(π′) = P

Σ2∪Σ̂1
(π),

which contradicts Condition (2).

7.2 Decidability

Theorem 26 Checking joint observability with
bounded-delay k is decidable, for any k ∈ N.

In the rest of the section, we prove the theorem. Define
Γ1 = Σ1 ∪ Σ̂2 and Γ2 = Σ2 ∪ Σ̂1. Also, Π = Σ ∪ Σ̂1 ∪
Σ̂2 ∪ {t}, as defined above.

The algorithm for checking bounded-delay joint observ-
ability is to build an automaton A and check that the
marked language of A is empty. A is constructed as a
special product of two finite automata, A1 and A2. A1

generates π and A2 generates π′, so that π and π′ con-
tradict Condition (2). To ensure that PΣ(π) ∈ K, A1

is defined to be the automaton generating the language
L1 = Lk

Σ1,Σ2
∩P−1

Σ (K). To ensure that PΣ(π′) ∈ L−K,
A2 is defined to be the automaton generating the lan-
guage L2 = Lk

Σ1,Σ2
∩ P−1

Σ (L−K). Regular languages
are closed under intersection, complementation and in-
verse projection. Thus, both L1 and L2 are regular and
A1, A2 are finite automata. Let Ai = (Si, q

i
0,Π,∆i, Fi),

for i = 1, 2.
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To ensure that the projections of π and π′ on Γ1 are
the same, the two automata synchronize on all tran-
sitions labeled by an event in Γ1. To ensure that the
projections of π and π′ on Γ2 are the same, the prod-
uct automaton is equipped with a FIFO queue storing
events in Γ2 − Γ1. This queue is simpler than the one
defined in Section 3.3, namely, it is just a finite string of
events, without time-to-live field. To avoid confusion,
we call this queue a buffer.

To understand the usage of the buffer, assume for the
moment that Γ1 and Γ2 are disjoint (this is not nec-
essarily the case, since Σ1 and Σ2 are not necessarily
disjoint). Initially the buffer is empty. The first au-
tomaton among A1 and A2 that generates an event in
Γ2, say, A1, inserts it in the buffer. From this point on,
every time A1 generates an event in Γ2, it appends it at
the end of the buffer, and this until the buffer becomes
empty again. We say that A1 is the leader. Every time
A2 generates an event in Γ2, this event must be the
same as the event in the head of the buffer. If this con-
dition is satisfied, A2 generates the event and removes it
from the head of the buffer. Otherwise A2 cannot gen-
erate the event. We say that A2 is the follower. The
operation continues in the same way until the buffer
becomes empty. The next time some automaton gener-
ates an event in Γ2, this automaton becomes the leader
and the other automaton the follower.

For the general case where Γ1 and Γ2 are not disjoint,
the same rules hold, with the additional condition that
the buffer must be empty whenever an event in Γ1∩Γ2

is generated. This ensures that the follower “catches
up” with the leader whenever some event in Γ1 ∩ Γ2

occurs. The operation must end with the buffer being
empty. This ensures that the follower “catches up”
with the leader at the end, thus, the projections of π
and π′ on Γ2 are identical.

Formally, A is defined to be the automaton
(S, q0,Π,∆, F ), where S = S1×S2×(Γ2−Γ1)∗×{1, 2},
q0 = (q1

0 , q2
0 , ε, 1), F = F1×F2×{ε}×{1, 2}. A state s

of A is a tuple (s1, s2, β, l), consisting of the local states
s1 and s2 of A1 and A2, the contents of the buffer β,
and the index of the leader l. When the buffer is empty
(β = ε) the value of l is unimportant.

The transition relation ∆ is defined below. To simplify
its definition, we introduce the predicate move1 (respec-
tively, move2) as a short notation for s′1 ∈ ∆1(s1, a) ∧
s′2 = s2 (respectively, s′2 ∈ ∆2(s2, a) ∧ s′1 = s1). ∆
contains the following types of transitions:

1. (s1, s2, ε, l)
a→ (s′1, s

′
2, ε, l), such that a ∈ Γ1 ∩ Γ2

and s′1 ∈ ∆1(s1, a) and s′2 ∈ ∆2(s2, a),

2. (s1, s2, β, l) a→ (s′1, s
′
2, β, l), such that a ∈ Γ1−Γ2

and s′1 ∈ ∆1(s1, a) and s′2 ∈ ∆2(s2, a),

3. (s1, s2, β, l) a→ (s′1, s
′
2, β

′, l′), such that a ∈ Γ2 −
Γ1 and

• either β = ε (no current owner) and

– either move1 and β′ = a and l′ = 1 (A1

becomes owner),
– or move2 and β′ = a and l′ = 2 (A2

becomes owner),

• or β 6= ε and l = 1 (current owner is A1)
and

– either move1 and β′ = βa and l′ = l,
– or move2 and β = aβ′ and l′ = l,

• or β 6= ε and l = 2 (current owner is A2)
and

– either move1 and β = aβ′ and l′ = l,
– or move2 and β′ = βa and l′ = l,

4. (s1, s2, β, l) a→ (s′1, s
′
2, β, l), such that a ∈ Π −

(Γ1 ∪ Γ2) and either move1 or move2.

Note that the “either-or” above are exclusive. Also
note that the non-determinism in A comes from the
non-determinism of A1 and A2. Otherwise, the transi-
tion relation ∆ is deterministically defined.

The first two clauses define transitions labeled by an
event in Γ1. A1 and A2 synchronize on all such events.
If the event is also in Γ2 (first clause) then the buffer
must be empty. The third clause defines transitions
labeled by an event in Γ2 −Γ1. Different cases are dis-
tinguished, depending on whether an owner currently
exists or not. The fourth clause defines transitions la-
beled by an event in Π − (Γ1 ∪ Γ2). These are unob-
servable events, on which no constraints are imposed.
The semantics on these events are interleaving, that is,
either A1 or A2 moves, but not both at the same time.

In the rest of the section we will use the following nota-
tion, to avoid confusion: → will refer to the transition
relation ∆ of A, while →1,→2 will refer to the transi-
tion relation ∆1,∆2 of A1, A2, respectively.

Lemma 27 Let π, π′ ∈ Π∗, such that s1
π→1 s′1,

s2
π′

→2 s′2, PΓ1(π) = PΓ1(π
′) and PΓ2(π) = PΓ2(π

′).
Then, there exists τ ∈ Π∗, such that (s1, s2, ε, 1) τ→
(s′1, s

′
2, ε, l

′), for some l′ ∈ {1, 2}.

Sketch of proof: We proceed by “composing”
the moves of A1 and A2 in A, according to π and
π′, respectively. For instance, assuming a ∈ Γ1 ∩ Γ2,
b ∈ Γ1 − Γ2, c ∈ Γ2 − Γ1 and u1, u2 ∈ Π − (Γ1 ∪ Γ2),
and letting pi = u1 a b c and π′ = u2 a c b, we get
the following possible run in A: (s0

1, s
0
2, ε, 1) u1→

(s1
1, s

0
2, ε, 1) u2→ (s1

1, s
1
2, ε, 1) a→ (s2

1, s
2
2, ε, 1) c→
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(s2
1, s

3
2, c, 2) b→ (s3

1, s
4
2, c, 2) c→ (s4

1, s
4
2, ε, 2), where

s0
1 = s1, s0

2 = s2, s4
1 = s′1 and s4

2 = s′2. Note that
another run exists, where u1 and u2 are executed in the
reverse order and the rest of the run does not change.
The resulting behavior of A is τ . In the example
above, τ = u1 u2 a c b c. Equality of projections of π
and π′ on Γ1 and Γ2 ensures that the synchronizing
transitions can occur and that the buffer is left empty
in the end.

Lemma 28 Let τ ∈ Π∗, such that (s1, s2, β, l) τ→
(s′1, s

′
2, β

′, l′). Then, there exist π, π′ ∈ Π∗ such that

s1
π→1 s′1, s2

π′

→2 s′2, and PΓ1(π) = PΓ1(π
′). Moreover,

if β = β′ = ε, then PΓ2(π) = PΓ2(π
′).

Sketch of proof: We proceed by “decomposing”
τ into π, corresponding to the steps where automaton
A1 moves and π′, corresponding to the steps where
automaton A2 moves. PΓ1(π) = PΓ1(π

′) follows by
definition of ∆ and the fact that the two automata
synchronize on events in Γ1.

If β = β′ = ε, then we proceed by induction on the
number of substrings of τ , τ = τ1 · · · τm, such that
si

τi→ si+1, si = (si
1, s

i
2, ε, l

i), where each τi has the
property that either the buffer is empty all along
si

τi→ si+1, or the buffer is empty in si and si+1 and
non-empty in-between. Then, we “decompose” each
τi into πi, π

′
i, as indicated above. In case the buffer

is empty all along si
τi→ si+1, no events in Γ2 − Γ1

occur in τi and PΓ2(πi) = PΓ2(π
′
i) follows from the

fact that A1 and A2 synchronize on Γ2 ∩ Γ1. If the
buffer is non-empty all along si

τi→ si+1, except at si

and si+1, then observe that no events in Γ2 ∩ Γ1 can
occur in τi and that there is a single owner during
this period. PΓ2(πi) = PΓ2(π

′
i) follows from the fact

that every event inserted in the buffer by the owner
must be removed by the follower, in the same order.

Lemma 29 The set of reachable states of A is finite.

Proof: We will show that for any reachable state
(s1, s2, β, l) of A, |β| ≤ 2k + 1. Thus, the number of
reachable states is at most |S1| · |S2| · |Γ2 − Γ1|2k+1 · 2.
(Recall that S1, S2 are the sets of states of automata
A1, A2 out of which A is built.)

Recall that the buffer stores events in Γ2 − Γ1 =
(Σ2 ∪ Σ̂1) − (Σ1 ∪ Σ̂2) = (Σ2 − Σ1) ∪ Σ̂1 (from the
fact that Σ̂1 and Σ̂2 are disjoint). We will show that
every event inserted in the buffer by some automaton
will be removed after this automaton has performed at
most k steps, where a step corresponds to an event in

Σ∪{t}. This suffices to prove that the size of the buffer
never grows above 2k + 1, since in k steps, at most 2k
events in (Σ2−Σ1)∪ Σ̂1 can occur. Indeed, every event
in Σ2 − Σ1 counts as a step and every event in Σ̂1 is
generated by an event in Σ1 occurring at most k steps
earlier and also counting as a step.

In what follows we prove the above claim. We assume,
without loss of generality, that the event is inserted in
the buffer by A1. This means that A1 is the leader at
this point and will remain the leader until the buffer
becomes empty. We distinguish two cases, illustrated
in Figure 11.

Case 1: the event is some â ∈ Σ̂1. At most k steps
before A1 inserts â, A1 must have generated a ∈ Σ1.
At that point, A1 synchronized with A2, which also
generated a. A2 must generate â at most k steps after
generating a. Since A2 is the follower, it can generate
â only after A1 does so. Upon generating the event, A2

removes â from the head of the buffer.

Case 2: the event is some b ∈ Σ2−Σ1. At most k steps
after A1 generates b, it generates b̂ ∈ Σ̂2, synchronizing
with A2 at that point. In order to generate b̂, A2 must
have generated b at most k steps earlier. Since A2 is the
follower, it can generate b only after A1 does so. Upon
generating the event, A2 removes b from the head of
the buffer.

a ∈ Σ1

â ∈ Σ̂1removed
from buffer

inserted
in buffer

removed
from buffer

inserted
in buffer -

-� -

� -̂
b

≤ k

≤ k

b

b

A1:

A2:

b ∈ Σ2 − Σ1

b̂ ∈ Σ̂2

Case 2

-

-

� -

� -

a

≤ k

â

≤ k

â

A1:

A2:

Case 1

Figure 11: The two cases used in the proof of Lemma 29.

We are now ready to assemble the previous results into
a proof of Theorem 26.

Proof: [of Theorem 26] We claim that K is jointly
observable with bounded-delay k w.r.t. L and Σ1,Σ2

iff Lm(A) = ∅. Indeed, by Lemma 25, K is jointly ob-
servable iff Condition (2) holds. By Lemma 27, if there
exist π, π′ violating Condition (2), then Lm(A) 6= ∅.
Conversely, if Lm(A) 6= ∅, then there exist π, π′ violat-
ing Condition (2), by Lemma 28. Since A is a finite-
state automaton, checking Lm(A) = ∅ is decidable.
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7.3 Complexity of checking bounded-delay joint
observability
Checking Lm(A) = ∅ is linear in the size of A. From
the proof of Lemma 29, the number of states of A is
bounded by |S1| · |S2| · |Γ2 − Γ1|2k+1 · 2, where S1, S2

are the sets of states of automata A1, A2. Recall that
A1 and A2 are the automata generating the languages
L1 = Lk

Σ1,Σ2
∩P−1

Σ (K) and L2 = Lk
Σ1,Σ2

∩P−1
Σ (L−K),

respectively. Assume languages L and K are given as
finite-state automata AL and AK with sets of states SL

and SK , respectively. The automaton AL−K accepting
L−K can be implemented by building the automaton
AK accepting the complement of K and then building
the product of AL and AK accepting the intersection
of L and the complement of K. Because of exponential
worst-case cost of complementation, the worst-case size
of AL−K is O(|SL| · 2|SK |). Inverse projection can be
implemented by adding “self-loop” transitions which
“cover” the missing letters, thus, does not change the
number of states of an automaton. Lk

Σ1,Σ2
is generated

by automaton Ak
Σ1,Σ2

which, by Corollary 23, has at
most |SL|·|Σ1|k+1·|Σ2|k+1 states. Thus, |S1| is bounded
by |SL| · |Σ1|k+1 · |Σ2|k+1 · |SK | and |S2| is O(|SL| ·
|Σ1|k+1 · |Σ2|k+1 · |SL| · 2|SK |). Putting it all together,
along with the fact that |Σi| ≤ |Σ| and |Γ2−Γ1| ≤ 2·|Σ|,
we get that the number of states of A is

O(|SL|3 · |SK | · 2|SK | · |Σ|6k+5 · 22(k+1)).

8 Summary and perspectives

We have introduced a framework of decentralized con-
trol for discrete-event systems with various types of
communication: bounded-delay, unbounded-delay or
no communication at all. We have shown that, for a
fixed, simple communication policy (“transmit every-
thing you observe”) a natural hierarchy of control prob-
lems arises, where the smaller the network delays are,
the more the problems that admit a solution. We have
also shown that checking the existence of controllers in
the cases of unbounded-delay or no communication are
undecidable problems. We conjectured that the prob-
lem becomes decidable in the case of bounded-delay
communication. Towards such a result, we showed de-
cidability of a related bounded-delay decentralized ob-
servation problem.

Apart from proving the conjecture, other perspec-
tives include removing some of the assumptions of our
model, namely, the lossless and FIFO properties of
the network. We believe that removing these assump-
tions should not affect the hierarchy or (un)decidability
results. The algorithm we presented for checking
bounded-delay joint observability has a high complex-
ity, exponential in the delay bound k. It would be in-
teresting to examine whether more efficient algorithms

exist. Another direction is to study the synthesis of the
communication policy itself.

The decentralized control problems formulated in this
paper ask whether controllers exist, not excluding
infinite-state controllers. Indeed, as shown in [12],
there are problems which can be solved with infinite-
state controllers but not with finite-state controllers.
It is an interesting open problem to examine the de-
cidability of decentralized control problems where con-
trollers are required to be finite-state.
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