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October 28, 2004

Abstract
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institution ={ Verimag Technical Report},
number ={24},
year ={ 2004},
note ={ }
}



Laurent Mazaŕe

1 Introduction

During the last decade, verification of security protocols has been widely investigated. The majority of the
studies focussed on demonstrating secrecy properties using formal methods (see for example [3], [5], [4]
or [7]). These methods have lead to concrete tools for verifying secrecy such as these proposed by the EVA
project [2]. However, checking security protocols requires studyingother properties such as anonymity
or opacity : hiding a piece of information from an intruder. For instance, in a vote protocol, whereas the
intruder is able to infer the possible values of the vote (yesor no), it should be impossible for him to guess
which vote was expressed, only by observing a session of thisprotocol. Checking a protocol should include
a way of formalizing the information that were leaked and that the intruder could guess. In the last few
years, attempts have been made to properly define opacity properties, to prove their decidability in certain
cases and to propose some verification algorithms.

In this paper, we adopt a simple definition for opacity. The intruderC has a passive view of a protocol
session involving two agentsA andB. He is able to read any exchanged messages but he cannot modify,
block or create a message. A property will be calledopaqueif there are two possible sessions of the
protocol such that : in one of these, the property is true whereas it is not in the other, and it is impossible
for the intruder to differentiate the messages from these two sessions from the messages exchanged in the
original session. The starting point is the notion of similarity. This binary relation noted∼ is an equivalence
relation between messages. Two messages are similar if it isnot feasible for the intruder to differentiate
them. A typical example is two different messages encoded bya key that the intruder could not infer. From
the point of view of the intruder, these messages will be saidsimilar. This notion is of course dependent
of the knowledge of the intruder given by Dolev-Yao theory [6] : if the intruder is able to infer any of the
used keys, then similarity will be equivalent to syntactic equality.

This notion of similarity will allow us to express opacity properties as constraints. We will then use
rewriting techniques to find the set of solutions for such constraints. The rewriting rules are mainly inspired
by the rules used in the unification algorithm. The problem isvery similar to unification except that atomic
constraints make use of similarity instead of syntactic equality. That is why, the rewriting rules are similar
but not exactly the same. This technique will give the same result as for unification : we will be able to
express the set of solutions for any constraint. As the constraint satisfiability is exactly related to opacity,
this gives the main result of this paper : decidability of theopacity property in our case. With some
hypothesis (passive intruder, atomic keys), the opacity ofa given property is decidable and there is an
immediate algorithm to perform this checking.

The remainder of this paper is organized as follows. In section 2, we recall usual definition for messages
and protocols. Similarity over messages is introduced in section 3 and some useful properties are given.
Section 4 formalizes the opacity hypothesis and translate the opacity property to a constraint. Then, it
provides the method to check satisfiability for such constraints. Eventually, section 5 shows the use of this
technique on a simple example, and section 6 concludes this paper.

2 Cryptographic Protocols

LetAtoms andX be two infinite countable disjoint sets.Atoms is the set of atomic messagesa. X is a
set of variables called “protocols variables”x.

Definition 1 (Message)LetΣ be the signatureAtoms∪{pair, encrypt} wherepair andencrypt are two
binary functions. The atomic messages are supposed constant functions. Then amessageis a first order
term overΣ and the set of variablesX , namely an element ofT (Σ, X). A message is said to beclosedif it
is a closed term ofT (Σ, X), i.e. a term ofT (Σ).

In the rest of this paper, we will use the following notations:

〈m1,m2〉 = pair(m1,m2)

{m1}m2
= encrypt(m1,m2)
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The substitutionsσ fromX toT (Σ, X) are defined as usual. Its application to the messagem will be noted
mσ. If σ is defined byxσ = n andyσ = y for any other variablesy, then we could writem[x\n] instead
of mσ. The set of variables used in a messagem is calledvar(m).

Definition 2 (Protocol) LetActors be a finite set of participants calledactors. The set ofprogramsProg
is given by the following syntax whereB is inActors, m1,m2 andm are messages.

G ::= ε

| !Bm.G

| ?m.G

| if m1 = m2 then G else G fi

A protocol over the set of actorsActors is a function fromActors toProgs associating a program to each
actor.

For the following, the set of actors is fixed toActors. Let free(P ) be the set of free variables in the
protocolP . The functionfree will easily be defined over programs by induction and could beextended
over protocols. An instance of the protocolP is a protocolPσ whereσ instantiates exactly the variables
in P with closed messages. For that purpose, it is possible to rename every bound variable with a fresh
variable such that bound variables are distinct and not in the free variables set. The substitutionσ is called
a sessionof the protocolP . Such protocols areclosed, i.e. free(Pσ) = ∅.

Definition 3 (Protocol Semantic) The semantic of a protocol is the transition system over protocols de-
fined by the following rules :

• If m is a closed message andσ is the smallest unifier ofm andm′,

Prog(A) =!Bm.PA Prog(B) =?m′.PB

Prog
m
−→ Prog[A→ PA;B → PB ]σ

Note that, ifσ does not exist, the protocol could be blocked.

• If m1 andm2 are the same closed message,

Prog(A) = if m1 = m2 then PA else G fi

Prog → Prog[A→ PA]

• If m1 andm2 are two distinct closed messages,

Prog(A) = if m1 = m2 then G else PA fi

Prog → Prog[A→ PA]

A protocolterminatesiff for anyQ such thatP →∗ Q, it is possible to reach the stateε : Q→∗ ε. Note that
only closed protocols could terminate. Arun of a sessionσ for a protocolP is an ordered set of messages
r = r1.r2...rn such that

Pσ
r1−→ ...

rn−→ ε

A protocol session isdeterministicif it has exactly only one possible run. This run will be notedrun(Pσ).
In the following sections, the protocols will always be supposed deterministic.

This paper will make an extensive use of the Dolev-Yao theory. LetE be a set of messages andm be a
message, then we will noteE ` m if m is deducible fromE using the Dolev-Yao’s inferences.
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3 Similarity

The intuitive definition of opacity is that an intruder is notable to distinguish a run where the property
is satisfied from a run where it is not. To distinguish two messages, the intruder could discompose them,
according to his knowledge but if he does not know the keyk for example, he won’t be able to make the
difference between two different messages encoded by this keyk. Two such messages will be called similar
messages. This definition will be formalized using inference rules.

An environmentis a finite set of closed messages. Usually, it will denote theset of messages known by
the intruder.

Definition 4 (Similar Messages)Two closed messagesm1 andm2 are said to besimilar for the environ-
mentenv iff env ` m1 ∼ m2 where∼ is the smallest binary relation satisfying :

a ∈ Atomes

a ∼ a

u1 ∼ u2 v1 ∼ v2

〈u1, v1〉 ∼ 〈u2, v2〉

env ` k u ∼ v

{u}k ∼ {v}k

¬env ` k ¬env ` k′

{u}k ∼ {v}k′

Intuitively, this means that an intruder with the knowledgeenv will not be able to differentiate two similar
messages. The environment name will be omitted as soon as it is not relevant for the comprehension. The
same thing will be done for Dolev-Yao theory, i.e.env ` m will be notedm. Moreover, the definition of
∼ could easily be extended to non-closed environments and messages by adding this inference :

x ∈ X

x ∼ x

Property 1 The binary relation∼ is an equivalence relation : for every messagesm1,m2 andm3 :

m1 ∼ m1

m1 ∼ m2 ⇒ m2 ∼ m1

m1 ∼ m2 ∧m2 ∼ m3 ⇒ m1 ∼ m3

To prove that the∼ relation is compatible with the context operation, we will have to suppose that only
atomic keys are allowed. This hypothesis will hold for the rest of the document.

Property 2 (Context) For every messagesm1,m2,m3 andm4, if m3 andm4 have only one free variable
x,

m1 ∼ m2 ∧m3 ∼ m4 ⇒ m3[x\m1] ∼ m4[x\m2]

And in particular,
m1 ∼ m2 ⇒ m3[x\m1] ∼ m3[x\m2]

Letm andn be two messages andx a variable. Letσ be a substitution such thatxσ ∼ nσ. Then

mσ ∼ m[x\n]σ

An important problem with similarity is : knowing an environmentenv and a closed messagem, is it
possible to find a closed messagen such that

env ` n andenv ` m ∼ n

For that purpose, thefresh function will be introduced. It is inductively defined over messages by the
following lines where all the variablesy have to be instantiated with different fresh variables (i.e. variables
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that do not occur inenv,m orn). We then callKeys+ the set of keys such thatenv ` Keys+ andKeys−

the set of keys such that¬env ` Keys−.

fresh(a) = a

fresh(x) = x

fresh(〈m,m′〉) = 〈fresh(m), fresh(m′)〉

fresh({m}k) = {fresh(m)}k if k ∈ Keys+

fresh({m}k) = {y}k if k ∈ Keys−

Property 3 For every substitutionσ, we have

mσ ∼ fresh(m)σ

And the most important property is that ifm is similar ton, thenn is an instance offresh(m), i.e.
fresh(m) where all free variables are instantiated by closed messages.

Property 4 If for two closed messagesm andn, m ∼ n, then there exists a substitutionσ that acts over
the free variables offresh(m) such thatn = fresh(m)σ.

4 Predicates Using Similarity and Dolev-Yao Theory

We will use classical predicates over messages using the binary relations= (syntactic equality) and∼
(similarity), and the atomic formulaeE ` m wherem is a message andE a set of messages. The set
of these predicates will be calledPred. Satisfiability overPred is defined as usual. The set of models
satisfyingE ` m is the set of substitutionsσ such thatEσ andmσ are closed andEσ ` mσ : mσ
is deducible fromEσ using Dolev-Yao theory. Models for∼ and= are defined in the same way. If a
substitutionσ is a model for a predicateP , we will write σ |= P . If all the atomic formulas inP use the
same environmentE, thenE could be omitted in the predicateP but we will noteσ |=E P .

4.1 The Opacity Problem

Let us consider a protocolP and a sessionσ. The opacity problem considered here needs some hypothesis
:

• The intruderC has a passive view of a protocol session involving two agentsA andB. Passive
means that the intruder could intercept and view any messages betweenA andB but is not able to
block, modify nor to send any message.

• The intruder knows the protocol used.

• Only atomic keys are used for encoding.

• The intruder has an initial knowledgec0, which is a predicate (for example,c0 = k1 ∼ k2 means
thatC knows that the keys that will instantiatek1 andk2) are the same.

The sessionσ defines a witness runrun(Pσ) = m1.m2...mn. A propertyψ will be saidopaquefor this
sessionσ if it is impossible to tell according to the knowledge ofC if ψ is true or false. This means that
there exist two possible sessionsσ1 andσ2 of the protocol giving messages similar to the witness messages
where for example,ψσ1 is true andψσ2 is false. In this case, the intruder will not be able to deduceany
knowledge onψ.
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Definition 5 (Opacity) A propertyψ is said to beopaquefor a protocol sessionσ of P iff there exist two
sessions of the protocolσ1 andσ2 such that

c0σ1 ∧ p1 ∼ m1 ∧ ... ∧ pn ∼ mn ∧ ψσ1

c0σ2 ∧ q1 ∼ m1 ∧ ... ∧ qn ∼ mn ∧ ¬ψσ2

Wherep1.p2...pn is the run of the protocolP related toσ1, q1.q2...qn is related toσ2 andm1.m2...mn is
related toσ. Note that the three runsp, q andm must have the same lengthn.

The environment used in the precedent conjunctions is

{m1, ...,mn, p1, ..., pn, q1, ..., qn}

and could be augmented with an initial knowledge of the intruderenv0.
Our property of opacity could also be used to check anonymity. For example, if we take a definition

of anonymity closed to the one given in [10], we just have to add a “restricted view” for the intruder, i.e.
the intruder only intercepts some of the exchanged messages. Then the opacity of the property “identity of
such actor” will be similar to what is defined as anonymity.

4.2 A Decidable Fragment : Global Key Quantification

A similarity conjunctionis a predicate of the form :

P =

n
∧

i=1

mi ∼ ni

Namely, it is a conjunction of similarities. The set of such predicates will be calledConj. The purpose
of this section is to show that satisfiability overConj is decidable. The decision algorithm will be based
on rewriting rules inspired by these used in unification (seefor example [9]). This will transform any
conjunction to a solved form, and we will show that, for such forms, the set of solutions is computable.
The idea, as in unification, is to reverse the inferences giving∼. An intuitive rule for decoding message
would be :

{m1}k1
∼ {m2}k2

↪→
(

k1 ∼ k2 ∧m1 ∼ m2 ∧ k1

)

∨
(

¬k1 ∧ ¬k2

)

The messages{m1}k1
and{m2}k2

are similar in two cases : if none of the keys are compromised or if the
keys are equals and the encoded messages are similar.

However, using only unification-like rules will not work. The main difference is that a predicate like
x ∼ {x}k has some solutions if the keyk is not deducible by the intruder. For example,x = {a}k satisfies
the former predicate. The usual “occur check” rule could notapply directly, so we will have to use a method
calledkey quantification.

The idea of key quantification lies upon the fact that the setKeys of keys occuring in the protocol
is finite. That is why we will make tries for every possible partition Keys+ ∪ Keys− of Keys with
the following hypothesis : ifσ is a solution, then for everyk+ in Keys+ andk− in Keys−, we have
envσ ` k+σ and¬envσ ` k−σ. So we quantify over the setKeys+ of compromised keys. Furthermore,
if the intruder knows initially some of the keysKeys+0 , we will only quantify forKeys+ ⊇ Keys+0 . After
choosingKeys+, the first step is to substitute the conjunction by :

n
∧

i=1

fresh(mi) ∼ fresh(ni)

Let us callfreshV ar(mi) the set of fresh variables used to computefresh(mi). By extension, let us
definefreshV ar(P ) by :

freshV ar(P ) =

n
⋃

i=1

(freshV ar(mi) ∪ freshV ar(ni))

The rewriting systemR overConj is defined by the following rules.
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• Variable Resolution (Res) : if the variablex occurs inC and not inm,

x ∼ m ∧ C ↪→ x ∼ m ∧ C[x\m]

If m is the variablex,
x ∼ x ∧ C ↪→ C

Else, if the variablex occurs inm,
x ∼ m ∧ C ↪→ ⊥

• Pair Decomposition (Pair) :

〈m1,m2〉 ∼ 〈n1, n2〉 ∧ C ↪→ m1 ∼ n1 ∧m2 ∼ n2 ∧ C

• Axiom (Ax) : for a andb two distinct atoms

a ∼ a ∧ C ↪→ C

a ∼ b ∧C ↪→ ⊥

• Type Mismatch (Type) :
〈m1,m2〉 ∼ {m}k ∧ C ↪→ ⊥

a ∼ 〈m1,m2〉 ∧C ↪→ ⊥

a ∼ {m}k ∧ C ↪→ ⊥

• Code Decomposition (Code) : ifk1 andk2 are inKeys+,

{m1}k1
∼ {m2}k2

∧ C ↪→ C ∧ k1 ∼ k2 ∧m1 ∼ m2

If k1 andk2 are inKeys−,
{m1}k1

∼ {m2}k2
∧ C ↪→ C

Else,
{m1}k1

∼ {m2}k2
∧ C ↪→ ⊥

Definition 6 (Solved Variable/Form) A variablex fromX is solvedin a predicateP iff x appears exactly
in one similarity ofP and this similarity has the formx ∼ m wherem is a message that does not contain
x.

A solved formis an elementP of the setConj of the form

P =

n
∧

i=1

xi ∼ mi

Where for everyi, the variablexi is solved.

Note that, in a solved form, some of the free variables could be unsolved. This will be the case, in particular,
for our fresh variables.

Theorem 1 The rewriting systemR terminates and the normal forms are solved forms and⊥. Moreover,
R is correct and complete, i.e. the solutions of a predicate are exactly the solutions of its normal forms.

Proof 1 To prove the termination of the rewriting system, we will usethe lexicographic order(sf, sp, sc, np)lex

wheresf is the number of non-solved variables,sp is the number of pair used in the predicate,sc is the
number of encryptions andnp is the number of atomic formulas. Then the values decreases strictly during
rewriting as shown in the following array. This proves the termination of the rewriting system.
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Rule sf sp sc np
Res 1 <

Res 2 ≤ ≤ ≤ <

Res 3 <

Pair ≤ <

Ax 1 2 ≤ ≤ ≤ <

Type 1 2 3 ≤ ≤ <

Code 1 2 3 ≤ ≤ <

For the completeness and correction of rewriting, we have toprove for each ruleP1 ↪→ P2 thatP1 andP2

have exactly the same sets of solutions.

The predicate is equivalent to a solved form :

n
∧

i=1

xi ∼ mi

We could now describe the setΣ of possible substitutionsσ satisfying our predicateP by : for any variable
x that is not solved,xσ ranges over all the possible messages. These variables includes in particular some
of the fresh variables included in the setsfreshV ar(mi). For the solved variablesxi,

xiσ = miσ

Asmi could only contain unsolved variables, the former definition is not recursive.
At last, we have to check that the hypothesis we made overKeys+ andKeys− is correct, i.e. there

exists aσ amongΣ such that¬envσ ` Keys−σ. We will not consider the hypothesis overKeys+ as soon
as the keys ofKeys+σ could be considered as part of the initial knowledge of the intruder. To check that
Keys− is not deducible, it is possible to try with the worst solution (for Dolev-Yao theory), i.e. use the
same fresh atoma for all thexσ wherex is not a key and use different fresh atoms for keys.

Property 5 Theσ defined above is the worst according to Dolev-Yao theory, formally for every couple of
messagesm andn,

(

∃η ∈ Σ, envη ` mη ∼ nη
)

⇒ envσ ` mσ ∼ nσ
(

∃η ∈ Σ, envη ` mη
)

⇒ envσ ` mσ

Proof 2 We suppose that there existsη ∈ Σ such thatenvη ` mη ∼ nη. By induction on the proof ’s
structure ofenvη ` mη ∼ nη, the property is easy to prove using the following lemma : forevery key
variablek :

envη ` kη ⇐ envσ ` kσ

Askσ is atomic and keys are atomic,kσ could be obtained fromenvσ using only decomposition rules.
Then, given the nature ofσ, we have thatenv ` k which proves thatenvη ` kη.

To finish our check, we just have to prove¬envσ ` Keys− for our “worst” σ. This last check is of course
decidable. To conclude this section, let us recall the main steps of our decision algorithm :

• Write the opacity property as two constraints. Process these constraints one after the other.

• Choose a setKeys+ included inK (finite number of possibilities).

• Rewrite the constraints using the given rules.

• Check that the setKeys \Keys+ could not be inferred by the intruder using the worst solution.

If for the two constraints, there exists a setKeys+ such that the worst solution is valid, then the studied
property is opaque. Otherwise, the property is not opaque.
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5 Example : The Limited Cryptographs Dinner

To give a simple application of opacity, the example of the cryptographs dinner will be taken. In this
example, only two cryptographs will be present : Alice (A) and Bob (B). They have dinner together in a
restaurant. When comes the time to pay, the waiter tells themthat someone already paid the bill.A andB
want to know if the person who paid is one of them or not, but if this is the case, they also want that name
to remain anonymous. They suppose that an intruder Charlie (C) could listen to whatever they say. They
decide to flip two coins (C can’t see the result), if both are head or both are tail,A have to tell1 if he didn’t
pay,0 else, same thing forB. If the coins gives two different results, thenA andB act in the opposite way.
ObviouslyA andB could know with that protocol who paid the dinner.C could also know ifA orB paid.
Now we want to check thatC cannot deduce who paid.

Let us formalize this protocol. They will toss two coinsp1 andp2 with result the booleansx1 andx2.
The predicatexA is true iffA paid, the predicatexB is true iffB paid. The first step of the protocol is the
distribution ofx1 andx2 by a third actorS using a keyk not deducible byC.

S → A : {〈x1, x2〉}k

S → B : {〈x1, x2〉}k

The following of the protocol is detailed below with respectto the possible values for the different variables.

xA 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
xB 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A→ B 1 0 0 1 1 0 0 1 0 1 1 0 impossible
B → A 1 0 0 1 0 1 1 0 1 0 0 1 impossible

Let us suppose the trace of the protocol is :

S → A,B : {〈0, 1〉}k

A→ B : 1

B → A : 0

So one ofA andB paid the dinner. Intuitively, we could conclude immediately. Let us consider the two
bold columns, they propose the right execution trace but in one caseA paid, in the other one, it isB.
The identity of the payer remains anonymous. The opacity property is the following with the environment
{0, 1}.

∃σ1,
(

{〈x1, x2〉}k ∼ {〈0, 1〉}k ∧A→ B = 1 ∧B → A = 0 ∧ xA

)

σ1

∃σ2,
(

〈x1, x2〉}k ∼ {〈0, 1〉}k ∧A→ B = 1 ∧B → A = 0 ∧ ¬xA

)

σ2

Let suppose thatk is inKeys− (otherwise, the property is not opaque). By developing, we obtain that the
possible sessions for that trace are :[xA\0, xB\1, x1\0, x2\0], [xA\0, xB\1, x1\1, x2\1], [xA\1, xB\0, x1\0, x2\1]
or [xA\1, xB\0, x1\1, x2\0]. And we could take for example :

σ1 = [xA\0, xB\1, x1\0, x2\0]

σ2 = [xA\1, xB\0, x1\1, x2\0]

This proves the anonymity of the payer for this trace.
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6 Conclusion

In this paper, we presented a new simple and intuitive definition for opacity. With that definition, the
opacity of a given property is decidable. The decision algorithm has been implemented and tested in some
example cases. As far as we know, other versions of opacity ([1], [8]) have been given in the literature
but none of these criterion were implemented. This work has some limitation, in particular, the hypothesis
made over the session betweenA andB : only atomic keys are used and public key cryptography is not
allowed. This gives some natural extension to this paper that will be explored later. For example, using tree
automata techniques should allow the use of non-atomic keys. Another interesting extension would be to
make the intruder active. IfC could intercept and modify the messages, could he find the right messages
to alter such that the property is not opaque any more ? Another interesting extension would be to add
syntactic equality to constraints : this equality means that the intruder has receive two exactly identical
messages. With that knowledge, the intruder could make new deductions.
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