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1 Introduction

Historically, verification of cryptographic protocols has been separated in two distinct branches. The first one,
formal verification of security protocols, originates from the work of Dolev and Yao and was first described
in [11]. The main hypothesis, called perfect cryptography assumption, is an abstraction of reality: the intruder
can gain information on an encoded message only if he knows the inverse of the key used to create the message.
Even with this strong assumption, flaws have been found in protocols that were believed to be secure (the most
famous one has been exposed by G. Lowe in [17], some of them are listed in [8]). Under this assumption, auto-
matic verification of security protocols is possible [22, 7]or [23, 14, 4](even if it needs other abstractions when
considering an unbounded number of sessions) and has been successfully implemented in tools such as those
proposed by project EVA [24]. However, the perfect cryptography assumption needs valid foundations and this
is why recent works tried to weaken this hypothesis, either by adding equational theories [9], [1]or by other mod-
ifications of the Dolev-Yao model, adding guessing attacks for example [18]. In the second approach, encryption
schemes are studied using a computational model based on Turing machines. In this context, there is no ide-
alization made concerning the cryptographic schemes: cryptographic functions operate on strings, attackers are
Turing machines and correctness is defined in terms of high complexity and weak probability of success [12, 3].
This computational approach is recognized as more realistic than the formal approach. However, its complexity
makes it very difficult to develop (semi-)automatic verification methods.

In the last years, attempts have been made to bridge the gap between these two approaches. The ultimate
objective is to be able to prove security in the formal model, then to prove properties on the encryption scheme
and with that to deduce security of the protocol in the computational model. These first works successfully proved
this kind of composition properties. Very restrictive hypothesis have been made to deal with the complexity of
the computational model (as for example in the case of [20]). The first paper in this recent trend [2] proved
that a notion of indistinguishability in the formal model is valid in the computational model when making some
assumptions on the encryption scheme. This means that if two messages are not distinguishable in the formal
model, then their computational equivalent cannot be separated by a Turing machine in a reasonable (polynomial)
time. This work has been pushed further in [25] and then in [20]. This last paper proves that if the encryption
scheme verifies a certain property (called IND-CCA), then security in the formal model implies security in the
computational model. The important part of this work is that it works in the case of active adversaries and
so can eventually be applied to protocols working on an insecure network like Internet. Our objective in this
paper is to continue this work and release some of the strong hypothesis made over protocols. Other related
works include Backes, Pflizmann and Waidner [19]. In this paper, the formal model is not exactly the Dolev-Yao
model, although very close. It is not clear whether protocols can be checked automatically in this formalism.
Also, the cryptographic primitives are modeled at a rather detailed level in the computational model. P. Laud [16]
proves safety of the formal model for symmetric encryption. In particular, he deals with encryption cycles.

Our objective in this paper is to continue this work and weaken some of the restrictions imposed on protocols
in previous works. The main restriction in [20] is that secret keys cannot be part of sent messages and that
message forwarding is not allowed. To weaken these restrictions, we first give a general definition of a security
criterion (like IND-CCA). These criteria can be seen as a game that an intruder should not be able to win. Our
first result is a reduction theorem that proves the equivalence between a criterion and simpler criteria. This
allows us to prove that the IND-CCA criterion is equivalent to quite richer and useful criteria. Definition of
criteria is an important part as they make it possible to release some of the restrictions over protocols made by
previous works. Finally, we use these criteria in order to prove that Dolev-Yao constitutes a safe abstraction of
the computational model even for protocols involving both asymmetric encoding and digital signature. The next
section gives the necessary definitions for using both the computational model and the formal model. The main
point in this section is the definition of polynomial random Turing machine that can access oracles. A general
definition for security criteria is given in the third section. We also formulate the reduction theorem and give its
proof in this section. The following section applies this theorem to prove classical and new results. In section
5, the former reductions are used to prove that when the IND-CCA assumption holds, properties proved in [20]
can be extended to a wider class of protocols. Thus, this section prove that verification in the Dolev-Yao model
is sound in the computational model. Finally, section 6 conclude this paper.

Verimag Research Report n � 19 1/19



R. Janvier, Y. Lakhnech and L. Mazaré

2 Preliminaries

2.1 Definitions for the Computational Model

An asymmetric encryption scheme
����������	�
��

����

is defined by three algorithms. The key generation algo-
rithm

��	
is a randomized function which given a security parameter � outputs a pair of keys

������
������
, where���

is a public key and
���

the associated secret key. The encryption algorithm
�

is also a randomized function
which given a message and a public key outputs the encryption of the message by the public key. Finally the
decryption algorithm

�
takes as input a cyphertext and a secret key and outputs the corresponding plain-text, i.e.,�������� !
"�����#
$�������% 

. The execution time of the three algorithms is assumed polynomially bounded by � .
A signature scheme &
& �'���(	�
 & 
�)*� is also defined by three algorithms. The key generation algorithm

randomly generates pairs of keys
�+�-,.�/
102���

, where
�-,.�

is the signature key and
02�

is the verification key. The
signature algorithm & randomly produces a signature of a given message by a given signature key. The verifi-
cation algorithm

)
is given a message

 
, a signature 3 and a verification key

02�
and tests if 3 is a signature of 

with the signature key corresponding to
04�

. Hence,
)5�� 6
 & �� !
��-,.�7�8
102��� returns true for any message

 
and

any pair of keys
�+�9,���
�04�7�

generated by
�(	

. In this case, we still assume that the algorithms have a polynomial
complexity.

Randomized Turing Machines with Oracles

An adversary for a given scheme is a Polynomial Random Turing Machine (PRTM) which has access to a set of
oracles. These oracles depend on the scheme and are given in the different cases thereafter. We consider Turing
machines which execution is polynomially bounded in the security parameter � , i.e. for any input corresponding
to security parameter � , the machine stops within : � � � steps for some polynomial : .

To model access to oracles, we slightly modify the definition of Turing machines. Our Turing machines
have two additional tapes, one for arguments (of function/oracle calls) and one for results. Then, let ; be a
countable set of function names. We define our PRTM as a pair of a Turing machine

�
, where transitions can

be function calls, and a substitution 3 linking function names < =>; to functions from string of bits (arguments)
to string of bits (results). These functions are also described by polynomial Turing machines (which can also
access oracles). To distinguish oracles from real functions (which can be their implementations), function names
are always underlined when considering access to an oracle. The semantics of

�@? 3 are the standard semantics of�
except that whenever

�
fires a transition labeled by a function call < , the content of the results tape becomes

<�3 ��ACB�D2��� , where
ACB�D2�

is the value of the arguments tape.
To simplify notations, we write directly

�@? <CE 
-FGFHFG
 <JI where <JK are functions. Thus, we omit the name of
the function as soon as this name is not relevant for comprehension. Functions are directly called using the <4K
notation when defining

�
.

A function L6M�NPOQN is negligible, if it is ultimately bounded by RTS/U , for each positive VW=YX , i.e., for all
V[Z]\ there exists ^ U such that _ L � R � _�`aR S�U , for all RYZ�^ U .

The definition of messages and of the intruder in the formal model is by now standard, e.g. [11, 22].

2.2 Definitions for the Formal Model

In this section, we give the basic definitions that will be used to introduce the formal aspects of protocol checking.
Formal studies rely on the concept of messages which are first order terms. To define messages, we first introduce
three infinite disjoint sets : ^ ��b V9c � , dCeCc b/f , f.g and h!c g � . Elements of ^ ��b V#c � will usually be denoted by ^
and can be thought as random numbers. Thus, it is impossible for an intruder to guess the value of a nonce
without indications. Elements of dCeic b/f , f.g are the possible names of agents involved in the protocol. Finally,
elements of h!c g � represent asymmetric encryption keys. There is a unary function over h!c g � associating each
key

�
to its inverse

� S E such that
�j�k�"� S E � S E . Two binary operators are defined over messages: concatenation

and encryption. Concatenation of messages
 

and b will be written l  !
 bnm . Encryption of message
 

with key�
will be denoted by �  �po .
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The entailment relation ���  
(
 

is deducible from � ) is defined as in [11] when � is a finite set of
messages and

 
a message. This relation is defined as the least binary relation verifying:

� If
 =�� , then ���  .

� If ���  and ��� b , then ���Yl  !
 bnm .
� If ���!l  6
 bnm , then ���  .

� If ���!l  6
 bnm , then ��� b .

� If ���  and ��� � , then ��� �  �Jo .
� If ��� �  � o and ��� � S E , then ���  .

Note that symmetric encryption can be represented using keys
�

such that
� S E � �

and signature can be repre-
sented by encoding with a private key to sign and decoding with the related public key to verify the signature.

3 A Generic Reduction Theorem

In [20], protocols allowing sending of secret keys are not considered because it is not possible in IND-CCA
to encode secret keys. To solve that, we introduce a new criterion N-PAT-IND-CCA and prove it equivalent to
IND-CCA. A similar result is needed to introduce signature.

A security criterion � is defined by an experiment that involves an adversary and two ways �
	 and � E of im-
plementing a set of oracles. The adversary is aware of both implementations and is allowed to call the oracles but
does not know which implementation is really used. The challenge consists in guessing which implementation
is used. More precisely, an adversary is a probabilistic polynomial time Turing machine (PRTM) that has access
to a set of oracles (either � 	 or � E ). The adversary’s advantage is the probability that the adversary outputs 1
when the set of oracles is � E minus the probability that the adversary outputs 1 when the set of oracles is � 	 .
An encryption scheme is said � -secure, if the advantage of any adversary is negligible.

In this section, we present a generic result allowing us to prove that a security criterion �/E can be reduced to a
criterion ��� . This means that if there exists an adversary that breaks �
� then there exists an adversary that breaks
��E . The proof is constructive in the sense that such an adversary for ��E can be effectively computed.

Given a finite set R K where
,

ranges from � to b , R denotes the whole set of R K . When more precision is
required, this set can also be denoted by R E���� I . In this section, we give a formal definition of a criterion and show
how a criterion can be partitioned in a safe way. The theorem presented here allows us to verify that a criterion
is equivalent to another one by using such partitions. This result is applied in the following sections to show an
equivalence between a few security criteria.

3.1 Security Criterion

A criterion � is a collection formed by:

� A bit � , this bit is the challenge that has to be guessed by the adversary.

� A finite number of parameters V�E to V#I�� . These parameters are shared by the oracles and most of the time,
they are chosen randomly at the beginning of the experiment. � is the PRTM producing these parameters
(usually a key generation algorithm).

� A finite number of oracles <iE to <JI�� that depend on their argument, V and � . For each <iK , there exist <��K and
< �K such that the corresponding oracles when given argument

����
�BJ�
produce < �K � <��K ���1
 V �8
 V � when � � \

and < �K � <��K ��BJ
 V �8
 V � when � � � .
� A finite number of oracles

D E to
D I U that depend on their argument and V . The corresponding oracles when

given argument R produce
D K � R 
 V � .
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Oracles in
D

do not depend on � , they cannot be used directly by the adversary to gain information on � but they
can be useful by giving information on the shared parameters V that can finally allow the adversary to deduce the
value of � . Oracles in < have two layers � and

�
, these layers are used to decompose a criterion into a partition

of criteria as the � layer allows the
�

layers to depend on less parameters.

Example 3.1 Let � be the criterion
� � 
 � ��� E 
$��� E 
���� � 
$��� � � 
 ��< E 
 < � � 
��i� . Functions < E and < � have no � layer,

i.e. <��K � R 
9FHFHF �5� R and <JK �� 	 
� E � corresponds to the encryption of message
 � using key

��� K . Thus � corre-
sponds to 2-IND-CPA as introduced in [5]: the adversary has to guess the value of bit � by using only two oracles
that encrypt the left or the right message according to � . The 2-IND-CCA criterion can be obtained by adding
two oracles

D E and
D � . These oracles decrypt messages encoded respectively with key

��� E and
��� � assuming that

these messages have not been produced by oracle <4E or < � .
The advantage of a PRTM

�
against � is

�����
	� � � � � : B
� ����� 	� � � 
 � �
� �����6: B
� ����� 	� � � 
 \ �
� ���
Where ��R � is the Turing machine defined by:

Experiment
����� 	� � � 
 � � :

V��� � � � �
if � � \ then
< K ��� ����
�Bp�8F < �K � <��K ����
 V �8
 V � for

,
in � FGFHF b �

else
< K ��� ����
�Bp�8F < �K � <��K ��BJ
 V �8
 V � for

,
in � FGFHF b �

e��� �W? � 
 < 
 D
return e

�
has access to an oracle giving � and to the oracles < and

D
as defined above. Oracles in < depend on � , this

dependence is explicited by ”creating” oracles < according to the value of � .
The advantage of

�
is the probability to answer � when the value of � is � minus the probability to answer

� when the value of � is \ . Thus, if we consider a machine
�

that always outputs the same result, its advantage
is \ , this also holds when considering a machine that gives a random output. Advantages are between � � and � ,
however, if

�
has a negative advantage, it is easy to build a PRTM � that has the opposite of

�
’s advantage (we

simply need to run
�

and to return the inverse of its output).

3.2 Criterion Partition and the Reduction Theorem

Example 3.2 Let us consider the 2-IND-CPA criterion � defined before. Then, we say that �
� � � � 
 � ��� E 
$��� E � 
 ��< E � 
��i�
and ��� � � � � 
 � ��� � 
���� � � 
 �J< � � 
 � � constitutes a valid partition of � when both criteria are valid (i.e. < E and < �
are in the same criterion as their respective parameters

��� E and
��� � ). ��� and ��� � correspond to the IND-CPA

criterion (only one oracle is available). By the reduction theorem, if an encryption scheme is IND-CPA secure
(advantage of any PRTM against �!� and ��� � is negligible), then it is 2-IND-CPA secure.

A pair of criteria ��� 
 ��� � defines a valid partition of � if there exist b A � , b �"� and b V�� such that

� ��� �$# � 
 V-E���� I��"% 
 < �E���� I � % 
1D E���� I U %'&
� ��� � �$# � 
 V)( I � %+* E-, ��� I � 
 <.( I � %/* E0, ��� I � 
�D ( I U %/* E0, ��� I U &
� For

,21 b �"� , <��K only depends on V)( I �"% * E0, ��� I � .
� For

,21 b �"� , < �K only depends on V�E ��� I �"% .
� For

,21 b V�� , D K only depends on V E���� I��"% .
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� For
, Z b �"� , <JK only depends on V)( I � % * E0, ��� I � .

� For
, Z b V�� , D K only depends on V)( I � % * E0, ��� I � .

The four last conditions are necessary for ��� and ��� � to remain valid: oracles from a criterion only have access to
parameters generated by the same criterion. The reduction theorem states that an advantage against a criterion �
can be used to produce an advantage over criterion ��� or criterion ��� � .
Theorem 3.1 (Reduction Theorem) If �!� 
 � � � is a valid partition of � and

�
is a PRTM, then there exist two

PRTM
�

� and � such that
_ � �
� 	� � � � _ 1 � F _ � �
� 	 %� � � � _�� _ ����� 	 % %��� � � � _

Proof Idea for the Reduction Theorem

The purpose of this section is to explain the main ideas underlying the proof of the reduction theorem, the detailed
proof appears in appendix B . An application of this proof to a simple example is given below.

The adversary
�

� against the criterion �!� � simulates
�

. To do so, he has to answer the queries made to oracles
from � � . Since

�
� cannot construct faithfully these oracles (as it does not have access to parameters from � � � ), it

returns incorrect answers to
�

. Finally
�

� uses the output of
�

to answer its own challenge. If the advantage of�
� is comparable to the advantage of

�
, then � can be reduced to criterion �
� � .

Else the advantage of
�

� is negligible compared to the advantage of
�

, then another adversary, � , has the
same advantage as

�
. The adversary � is playing against the criterion �
� . It generates a challenge for

�
.

Moreover, if � � � the answers to the queries made by
�

are correct and if � � \ the answers are forged in the
same way as in

�
� . When

�
answers its challenge, � verifies it. If it is correct, � supposes that � � � , else it

supposes that � � \ . Indeed,
�

� probably has a lower advantage than
�

.

Example 3.3 Consider our previous (IND-CPA) example. Machine
�

� is opposed to ��� � , it creates the missing
key

��� E and uses it to simulate the missing oracle: the simulation is achieved by always encoding the left argu-
ment, � � o	� < E ����
1Bp� �k�����1
���� E � . Construction of � is detailed in figure 1. Machine � is opposed to �!� with the

(4)

(2)

(3)

(1)




�
���
����������������! #"

if $&%(' then $*) �,+

- .�/ �!021	340 / "

. � �!0 1 340 / "

�!0215340 / "768�!021534029:"
.�/ ��0;1<340;9�"

= ��0;9
3 �>���
������� "

else $*) �@?

$

$�)

' ��BA�?C3	+ED

Figure 1: Behavior of �
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challenge bit ��� . It creates its missing key
��� � and a random bit � (1). The fake oracle � � o	� < � uses this bit � (2).

Oracle <iE is also faked using ��� : � � o	� <iE �� 	 
� E �W� < E �� 	 
� � � . The faked oracles behave like the original
oracles when �"� � � . They behave like the oracles faked in

�
� when �"� � \ . This behavior is summed up in the

following array:

�
BJA V � c � �"� � \ �"� � ���� o�� �� 	 
� E � � �� 	 
"��� E � ���� � 
"��� E ���� o�� �� 	 
� E � ���� � 
���� � � ���� � 
"��� � �

Then, if the underlying
�

machine answers � correctly, we assume that it was confronted to the right oracles
and thus machine � answers � , else it answers \ (4). The intuition behind machine � is that its advantage tells
whether oracles from ��� are useful or can be faked without losing the advantage.

4 Applications of the reduction theorem

4.1 Reducing N-IND-CCA to IND-CCA

The first application of our theorem will concern an already proved result: reducing N-IND-CCA to IND-CCA.
A proof of this result can be found in [5].

Let
���

be an asymmetric encryption scheme. We define the security criterion N-IND-CCA, for ^ � � ,
where ^ is the number of pairs of public/private keys that form the challenge, i.e. an attacker will try to break
one of these private keys. Thus, an attacker is a PRTM

�
that has access to oracles corresponding to the ^

encryption and ^ decryption functions associated to the ^ pairs of keys. When ^ � � , we simply write
IND-CCA.

An N-IND-CCA adversary has access to the ^ left-right encryption oracles
� � o�� �	��
���FH
9FH
 � �1� , which given

two messages
 	 and

 E output the encryption of
 � by

��� K (
��


is defined by
��
��� 	 
1 E 
 � � �  � ). The

adversary must guess the value of bit � . That is, the first implementation corresponds to � � \ and the second to
� � � . The adversary is also given N decryption oracles

�
� o�� ��F � which cannot be used on cyphertexts produced
by the left-right encryption oracles.

Thus, the adversary plays against a criterion ��� including a bit � , parameters V are the pair of keys
����� K 
$��� K � ,

oracles in < are
� � o�� ����
���FH
9FH
 � ��� and oracles in

D
are

��� o�� �1F � where
,

ranges from � to ^ . Oracles in < have no� layer (i.e. < �K is the identity).
An asymmetric encryption scheme

���
is said to be N-IND-CCA iff for all adversary

�
in : 
���� ,

����� 	��� � � �
is negligible.

Lemma 4.1 Let
���

be an asymmetric encryption scheme. If
���

is N-IND-CCA, then
���

is also IND-CCA.

Proof: Let
�

be an IND-CCA adversary. We can easily construct a N-IND-CCA adversary � such that :
_ ����� 	 �� � � � _ � _ � �
� 	��� � � � _ . Hence if

�(�
is N-IND-CCA, the N-IND-CCA advantage (related to � � ) of � is

negligible and so is the IND-CCA advantage of
�

.

Proposition 4.1 Let
���

be an asymmetric encryption scheme. If
���

is N-IND-CCA, then
���

is also (N+1)-
IND-CCA.

Proof: Criterion ��� * E has a valid partition constituted by � E and ��� .
The reduction theorem applies and gives:

_ ����� 	���� �� � � � _ 1 � F _ ����� 	 �� � � � _�� _ ����� 	��� � � � � _
By hypothesis,

���
is N-IND-CCA (hence IND-CCA). Then the advantages of � and

�
� are negligible and

we can conclude that the advantage of
�

is negligible too.
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Corollary 4.1 For any ^ ,
���

is IND-CCA if and only if
�(�

is also N-IND-CCA.

Above, for simplicity’s sake, the adversary does not have access to the public keys whereas he should in the
classical IND-CCA definition. However, it is easy to modify the previous definitions by adding oracles in

D
that

will just output the public keys.
This result can be extended to an unbounded number of keys that is still polynomial in � [21].

4.2 Adding Patterns: N-PAT-IND-CCA

We now introduce a new security criterion and prove it equivalent to IND-CCA by using our reduction theorem.
N-PAT-IND-CCA allows the adversary to obtain the encryption of messages containing challenge secret keys,
even if it does not know the value of these secret keys. For that purpose, the adversary is allowed to give pattern
terms to the left-right oracles.

The pattern terms are terms where new atomic constants have been added: pattern variables. These variables
denote the different challenge secret keys (

� , � asks the oracle to replace it with the value of
��� K ). Variables can be

used as atomic messages (data pattern). When a left-right oracle is given a pattern term, it replaces patterns by
values of corresponding keys and encodes the message. Formally, patterns are given by the following grammar
where � � is a bit-string and

,
is an integer.� A f MGM � l � A f 
���A f1m _ � � A f � � � _ � � _ � , �

The computation (valuation) made by the oracle is easily defined recursively in a context giving the bit-string
values for the different keys. Its result is a bit-string and it uses the encryption algorithm

�
and the concatenation

denoted by operator � .
0�� � �i
 ����
$���2�
� � � 0�� � � � � � 
 ����
$���2�
� ����0�� �T
 ���/
$�����8
 � ���1�0�� � , � 
 ����
$�����
� ��� K 0�� l � E 
�� � m 
 ���/
$�����
� 0���� E 
 ����
����2�8F 0���� � 
 ���/
$���2�

There is yet a restriction: we exclude encryption cycles. Hence keys are ordered and a pattern
� , � can only be

encrypted under
��� � if

, Z�� . Without this restriction N-PAT-IND-CCA is strictly stronger than IND-CCA.
Given an IND-CCA encryption scheme

���
, we can easily produce a new IND-CCA encryption scheme

��� � ����(	 � 
�� � 
�� � � which is not N-PAT-IND-CCA:��	 � � � ��� �(	�� � �� � �� 6
����7�
�] 
if
 � ���

�]���� !
"�����
otherwise� � �� 6
$�����
�] 
if
 � ���

��� �� 6
$�����
otherwise

This new scheme is obviously IND-CCA since
�(�

is IND-CCA but without the restriction for N-PAT-IND-CCA,��� � is not N-PAT-IND-CCA.
Hence when a left-right pattern encryption oracle

��� ���� o�� �	��
���FH
9FH
 � �1� is given two patterns terms
��A f 	 and

� A f E ,
it tests that none contains a pattern

� � � with �j` ,
. If this happens, it outputs an error message, else it produces the

encryption of the message corresponding to
� A f � :

0�� ��A f � 
-FGFHF � encoded by
��� K . This restriction is also justified

by the existence of problems when encoding a key with itself for the DES algorithm. References concerning this
restriction appear in [2].

The related criterion is ��� where V is a list containing ^ pairs of keys
� ��� K 
$��� K � . Oracles in < are the

encryption oracles. They behave like the oracles defined in the previous example except that they perform the
replacement of pattern variables with key values. The

0
operation is performed in the � layer whereas the

�
layer

corresponds to the previous oracles (i.e. simple encoding). Formally, < �K � R � �P0�� R 
 V � and < �K � R � �P� � R 
���� K � .
Oracles in

D
decrypt a message using secret keys as long as their argument has not been produced by an oracle

in < .
An asymmetric encryption scheme

�(�
is said to be N-PAT-IND-CCA iff for any adversary

�
,
����� 	 ��	��
 � � � �

is negligible. Note that � -PAT-IND-CCA corresponds to IND-CCA.
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Lemma 4.2 Let
�(�

be an asymmetric encryption scheme. If
�(�

is N-PAT-IND-CCA, then
���

is also IND-CCA.

Proof: Let
�

be an IND-CCA adversary. We can easily construct a N-PAT-IND-CCA adversary � such that :
_ ����� 	 �� � � � _ � _ � �
� 	 �� � � � _ . Hence if

���
is N-PAT-IND-CCA, the N-PAT-IND-CCA advantage (related to ��� )

of � is negligible and so is the IND-CCA advantage of
�

.

Proposition 4.2 Let
���

be an asymmetric encryption scheme. If
���

is N-PAT-IND-CCA, then
���

is also
(N+1)-PAT-IND-CCA.

Proof: We have V9K � � ��� K 
$��� K � . Then let ��� and ��� � be the partitions obtained with b A � � b ��� � b V � � � ; < �E andD � E only need V-E ; <��E only needs V � ��� ( � * E-, , this would not hold if we release the acyclicity hypothesis. Finally, <iK
and

D K with
, � �

only need V � ��� ( � * E-, and so this is a valid partition. Hence, criterion ��� * E has a valid partition
constituted by �7E and � � .

The reduction theorem applies and gives:

_ ����� 	���� �� � � � _ 1 � F _ ����� 	 �� � � � _�� _ ����� 	��� � � � � _
By hypothesis,

���
is N-PAT-IND-CCA (hence IND-CCA). Then advantages of � and

�
� are negligible and

we can conclude that the advantage of
�

is negligible too.

Corollary 4.2 For any ^ ,
���

is IND-CCA if and only if
�(�

is also N-PAT-IND-CCA.

This result tells us that if an encryption scheme is IND-CCA secure, then it is still secure when adding the
possibility to ask for encryption of patterns instead of just encryption of messages.

4.3 Signature

In order to extend previous results to the case of protocols using signature, we present here a new definition of
security for signature scheme, UNF-CCA, which is an adaptation of Selective (Un)Forgery Against Adaptive
Chosen Message Attack [13].

The main requirement is that an adversary should not be able to forge a pair containing a message
 

and the
signature of

 
using the secret signature key. An N-UNF-CCA adversary

�
is given ^ verification keys and

has to produce a message and its signature under one of the keys. It has access to the security parameter � , ^
verification keys

02� K and ^ signature oracles & � K o�� ��F � . The experiment outputs bit � if
�

managed to produce a
compromising pair

�� !
 �  � � K o�� � which right part is not the result of a call to a signature oracle. Otherwise, the
experiment outputs bit \ . Formally the experiment is detailed below.

Experiment
����� � S�� ������ 
 � � � � :

for
, � � to ^ do�+�9,�� K 
�04� K � �� �(	*� � ��� !
 3 � �� �W? � 
 02� E 
9FHFGFH
102� � 
& � K o � �1F �#
9FHFGFH
 & � K o � ��F �8


if 3 is a valid signature of
 

under one of the
�-,.� K

not produced by & � K o�� ��F �
return �

else return \
The advantage of adversary

�
in winning the UNF-CCA challenge is defined as:� �
� � S�� ������ 
 � � � ��� : B
� ����� � S�� ������ 
 � � � ��� � �

A signature scheme &
& is said to be N-UNF-CCA iff for any adversary
�

,
� �
� � S�� ������ 
 � � � � is negligible. Instead

of � -UNF-CCA, we write UNF-CCA.
As the challenge is not anymore guessing the value of a bit � , our reduction theorem cannot apply directly.

However, by modifying the proof scheme given above, it is possible to deduce the following property relating
the UNF-CCA and N-UNF-CCA criteria. The proof is given inappendix B .

Proposition 4.3 For any signature scheme &
& , if &
& is UNF-CCA, then it is also N-UNF-CCA.
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4.4 N-PAT-UNF-IND-CCA

To be able to deal with protocols using both an encryption scheme and a signature scheme, we define a new cri-
terion N-PAT-UNF-CCA: a combination of N-PAT-IND-CCA and N-UNF-CCA. Let us consider an asymmetric
encryption scheme

�(�]� ���(	�
��

��@�
and a signature scheme &
& � ���(	 � 
 & 
$)�� . We use two types of adver-

sary: those who try to find the secret bit � used in the N left-right pattern encryption oracles and those who try to
produce a message and its signature under one of the N challenge signature keys. The left-right pattern encryp-
tion oracles accept patterns of the form

� �9,�� K � where
�-,�� K is one of the challenge signature keys. Experiments

^ � : � d E and ^ � : � d � are defined in Figure 2 given in the appendix. Then, the corresponding advantages
are: � �
� � S � ��� �( ����
 ��� , 
 � � � ��� : B � ����� � S � ��� �( �	��
 ��� , 
 � � � 
 � ��� � � � : B � ����� � S � � �( �	��
 ��� , 
 � � � 
 \ �
� ���

� �
� � S � ��� �( ����
 ��� , 
 � � � ��� : B
� ����� � S � ��� �( ����
 ��� , 
 � � � ��� ���
A couple

�"����
 &
& � is said to be N-PAT-UNF-IND-CCA iff for all adversary
�

,
� �
� � S � ��� �( ����
 ��� , 
 � � � � and� �
� � S � ��� �( ����
 ��� , 
 � � � � are negligible.

The following property states that the combination of a secure signature scheme and a secure encryption
scheme is still secure. Its proof can be done using the same proof scheme as for the reduction theorem.

Proposition 4.4 If
���

is N-PAT-IND-CCA and if &
& is N-UNF-CCA,
���(��
 &�& � is N-PAT-UNF-IND-CCA.

To sum up, we proved the following equivalences between criteria:

����� �
	�	
� � � ������� � ����� ��	�	
�
����� �
	�	
� � � � ����� �
	�	
�� ����� ��	�	
� 
 ����� ��	�	
� � � � ������� � ����� � ����� ��	�	
�

5 Dolev-Yao is a Safe Abstraction

In this section, we give a precise formalization of the link between the two commonly used approaches for
verification of cryptographic protocols, i.e. the computational approach and the formal approach. For that
purpose, we first define cryptographic protocols, then we relate traces from both models. This relation is used to
prove the main theorem.

5.1 Description of Cryptographic Protocols

A multi-party protocol is defined by a list of triples
�� E 
� � 
 
�� , called actions. The action

�� E 
1 � 
 
�� means
that an agent playing role



sends a message

 � after receiving a message
 E . It is possible to replace

 E with
an empty message denoted by “-” for the first action of the protocol. For the last action, the same thing can be
done with

 � . A role



represents a program that is executed by an agent � D during a session � . In session
� , we say that agent � D impersonates role



. Let us consider the Needham-Schroeder-Lowe protocol (NSL

introduced in [17]) there are two roles: the initiator and the receiver.
For a session � , an agent � D has some local variables used during the execution of his role: his local copy of

variable � ACB is denoted by � D�F � F � ACB . Each agent has five variables for each of his sessions: d b , f 
 
 c�V 
 ^ A�
 ^ � 
 :�V .
The list of actions is:

� � � 
 �Cl"d b , f 
 ^ A m � � o������ 
 d b , f �
� � �Cl , b , f 
 b A m � � o � �!� 
 �Cl 
 c�V 
 b A 
 ^ � m � � o �#"��%$ 
 
 c�V �
� � �Cl 
 c�V 
 ^ A�
 b � m � � o'&("��#$ 
-� � b � � � o������ 
 d b , f �
� ��� ��^ � � � o � ��� 
 � 
 
 c�V �
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We make a distinction between values known before an action and values received during the action: values
already known are denoted using a capital for their first letter. Let � D be an agent impersonating the ini-
tiator. In the first action, � D chooses � as a receiver, and the value of nonce ^ A for session

�
. He sets

variables � D�F �iF d b , f to � D , � D�F � F 
 c�V to � and � D�F �iF ^ A with the chosen value. Then he sends message
�Cl � D�F �iF d b , f 
 � D�F �iF ^ A m ����� � � � � � U . In the second action, � receives a message encrypted with his public key.
He decrypts it and parses the plain-text as a pair l , b , f 
 b A m . After that, he chooses a new session number

� �
and sets � F � � F d b , f to

, b , f , � F � � F 
 c�V to � , � F � � F ^ A to b A and finally chooses a fresh value for � F � � F ^ � . Fi-
nally, he sends message �Cl�� F � � F 
 c�V 
 � F � � F ^ A�
 � F � � F ^ � m � � o��	� 
 % � &�" �%$ to � D . The remaining actions have similar
semantics.

Hypothesis over Protocols

The following restrictions are made over the protocol � considered in this section. � has to be executable, that
is each role can be run by a PRTM. In the formal world, for any execution, secret keys of honest agents remain
secrets, there is no encryption cycle, there is a nonce in each signed message that also remains secret. Moreover,
we ask that messages include enough typing information to allow parsing of received messages. We also assume
that any agent knows identities of all the other agents.

Computational and Formal Models

For both models, agents involved in a protocol send their messages through a network. This network is modeled
by the Adversary. The Adversary intercepts any message sent by an agent. He can forge new messages using his
knowledge and send these messages to agents usurping an agent’s identity.

In the formal model, the Adversary is a classical Dolev-Yao Intruder [11]. In the computational model, both
the Adversary and the implementation of the protocol are PRTM, denoted by

�
U and � U . � U is used as an oracle

by
�
U . Messages are bit-strings, new nonces generated by agents are random bit-strings. Keys used by agents

are generated using
�(	

. Encryptions and decryptions are obtained using algorithms from
���

. Signatures related
functions use &�& .



�
denotes random coins used by � U , for generation of keys, of nonces and any other random

action used during an execution of the protocol.

 �

denotes the random coins used by an Adversary
�

. The
implementation of the protocol (i.e. behavior of the different agents) is given to the adversary through an oracle.
If

 �

and

 �

are fixed, the behavior of
�
U against the oracle � U is deterministic.�

U can create new valid identities and thus impersonate some dishonest agents.

5.2 Non Dolev-Yao Traces

The main result of this section is that if the encryption scheme used in the implementation of � is IND-CCA,
then the computational Adversary acts as a formal adversary with overwhelming probability. A trace is a list of
tuples

�� E 
1 � 
 � D�
$��� called transitions where
 E is a message sent by the Adversary to agent � D for session

�
and

 � is the answer from � D . As before, message
 E and

 � can be “-”. Assignment f U � �
U
? � 
 � U denotes

that the trace f U is obtained by the computational Adversary
�
U (using the random coins


 �
)confronted to � U

(using the random coins

��

). We assume that only messages accepted by an agent appear in the trace. We now
transform a computational trace into a pseudo formal trace. The resulting trace is only pseudo formal because
even if messages are expressed using Dolev-Yao terms, this does not imply that there exists a formal Adversary
producing this trace. The transformation given here can be seen as verification of the trace by all the honest
agents working together. Their goal is to check if the adversary performed an action that is not in the Dolev-Yao
model. To achieve this, messages in the computational trace (which are bit-strings) are replaced with Dolev-Yao
terms using the following:

� Bit-strings corresponding to identities are associated to fresh atoms: � E 
 � � 
-FGFHF for honest agents and
d E 
 d � 
9FHFHF for dishonest agents.

� Bit-strings corresponding to long-term keys are associated to fresh keys: : ��� � 
 : ��� � 
9FHFHF and : � � �

 : � � �


-FGFHF
for public keys, � � ��� for associated secret keys.
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� Bit-strings corresponding to nonces ^ generated in session � by an honest agent are associated to fresh
atoms ^

�
.

� Bit-strings corresponding to fresh public or secret keys generated by an honest agent in session
�

are
associated with fresh keys : �

�
and � �

�
.

� Bit-strings corresponding to keys generated by the Adversary are associated with fresh keys : � �� and � � �� .
� Bit-strings corresponding to concatenation of a message associated to term

� E with a message associated
to term

� � are associated with l � E 
 � � m .
� Bit-strings corresponding to encryption of a message associated to term

�
with a key associated to term h

are associated to term � � ��� .

Note that this is not complete as we have not yet taken into account nonces generated by the Adversary. As
the Adversary is a PRTM, whenever he has to send a new nonce, he does not have to generate it randomly:
he can send composed messages instead of nonces or perform operations over bit-strings (XOR, changing bit
order, adding or removing bits...). Hence for the honest agents it is impossible to guess how the Adversary has
chosen his nonces. This is why when transforming a bit-string corresponding to a message where an honest agent
receives a new nonce, we only test if the corresponding bit-string is an already known nonce. In this case, the
bit-string is associated to the nonce term. Else, it is associated to a fresh variable

� K . If later this bit-string is
parsed as something else (tuple, encoding), variable

� K is replaced by the appropriate term. The same thing is
done when an honest agent receives a message encrypted with a key which inverse is not known or a signature
impossible to verify (at reception time). When every message in the trace has been transformed, each remaining� � is replaced by the fresh atom ^ �� , i.e. remaining variables are considered as fresh nonces. The pseudo-formal
trace corresponding to computational trace f U is denoted by � � f U � . Two computational traces are said equivalent
if they have the same pseudo formal trace.

Definition 5.1 (Non Dolev-Yao Traces) A formal trace f � is said Non Dolev-Yao (NDY) iff there exists a mes-
sage sent by the Adversary which cannot be deduced from previous messages using Dolev-Yao’s deduction, this
message is called a NDY message. A computational trace f U is said NDY iff � � f U � is NDY.

5.3 A Computational Trace is Certainly a Dolev-Yao Trace

In this section, we prove that if the encryption and signature schemes verify IND-CCA resp. UNF-CCA and
if the number of possible nonces is exponential in � , then the probability that a computational trace is NDY is
negligible. This means that the computational Adversary, even with all the computing power of PRTM, cannot
have a behavior not represented by a formal adversary. We first state this with only encryption then extend it to
the case of encryption and signature.

Theorem 5.1 Let � be a protocol. Let
���

be the encryption scheme used in � U . If
���

is IND-CCA then for any
concrete Adversary

�
U :: B�� f U ���



���� �

U
? � 
 � U
	 f U ^���
�� is negligible.

Proof: As the proof of this theorem is complex, it is presented in appendix D.
Here, we use a simple example to show how the proof works. Let us consider that

�
U
? � 
 � U produces a tracef U such that

� � f U �
�k� � 
 � � 
 ^ � � o 
 � 
$��� 	 � ��� 
 ^ � � o 
 � 
 � 
$���
As key

���
is secret, f U is non Dolev-Yao: message ��� 
 ^ � � o is not deducible because ^ is not deducible. Hence,

it is possible to build an Adversary � against IND-CCA by using nonce ^ .
For that purpose, � generates randomly an identity � and two different nonces ^ 	 and ^@E . � then calls its

encryption oracle with parameters l � 
 ^ 	 m and l!� 
 ^ E m which gives � � 
 ^ � � � o ( � is the challenge bit of IND-
CCA). � then executes

�
U and gives it the previous message when

�
U asks for an input.

�
U outputs ��� 
 ^ � � � o
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that � immediately submits to its decryption oracle. Hence, � obtains ^ � , compares it to ^ 	 and ^�E and so
knows � . At this stage, � is able to win the IND-CCA challenge.

By applying this method, it is possible to gain the challenge against IND-CCA for any non Dolev-Yao trace.
Thus, the probability of producing a non Dolev-Yao trace is negligible.

This theorem can be extended to protocols using both an encryption scheme and a signature scheme.

Theorem 5.2 Let � be a protocol. Let
���

be the encryption scheme and &
& the signature scheme used in � U .
If
���

is IND-CCA and &
& is UNF-CCA then for any concrete Adversary
�
U :: B � f U � �



� �� �

U
? � 
 � U
	 f U ^���
 � is negligible.

Proof: The proof of this theorem is presented in appendix E.

5.4 Formal and Computational Properties

Let : U be a property in the computational world represented by a predicate over computational traces. A protocol
� verifies : U (denoted by � _ � U : U ) iff for any Adversary

�
U ,: B � f U � �

U
? � 
 � U 	 � : U

� f U
� � is negligible. A property in the formal world is represented by a predicate :��

over formal traces. Hence, a protocol � verifies : � (denoted by � _ � ��: � ) iff any trace produced by a Dolev-Yao
adversary against � verifies : � .

Using theorem 5.2, we prove the following result which states that proving formally :�� allows us to deduce
: U .
Theorem 5.3 Let : � and : U be a formal and a computational property such that

� f U

 � f � 
 # : � � f � ��� � � f U �
� f � &�� : U

� f U
�

If
���

is IND-CCA and &
& is UNF-CCA, then

� _ � ��: � � � _ � U : U
This theorem states that if the formal property correctly under-approximates the computational property then the
formal abstraction is correct.

This theorem has been applied to mutual authentification in [20] and holds for nonce secrecy [10].

6 Conclusion

The main result of this paper is a significant step towards reconciling the computational and the formal ap-
proaches to security. It is a contribution to a research endeavor popularized, maybe even initiated, by Abadi and
Rogaway [2] and pursued by, e.g., Micciancio and Warinschi [25, 20], Herzog [15] and others. It is the problem
of relating the formal approach which assumes perfect cryptographic primitives on one hand and the more de-
tailed computational approach on the other hand. This question comes in two different forms: 1.) passive intruder
is considered and 2.) active intruder that interacts with participants running a protocol. The work of Abadi and
Rogaway falls in the first category. Micciancio and Warinschi [20] work belongs to the second category. They
proved that under some restrictions on the protocol, if the encryption scheme is IND-CCA then the formal model
is a safe abstraction of the computational. The restrictions they put are, however, too restrictive. In this paper,
we considered active intruders. Our main result is that an adversary behavior follows the formal model with
overwhelming probability, if the encryption scheme is IND-CCA and the signature scheme is UNF-CCA. This
result has immediate applications as automatic verification of security protocols is quite developed now and as
there are encryption algorithms that verify the required properties. Our result extends previous ones and allow:

� Multi-party protocols.

� More cryptographic primitives: combination of digital signature and asymmetric encryption.
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� Protocols where encoding of secret keys and message forwarding are allowed.

A second main contribution of our paper is a formal definition for security criteria and a reduction theorem. This
theorem and its proof scheme seem to apply in a wide variety of cases. It allows to prove equivalences between
a security criterion and some of its sub-criteria. This theorem allowed us to give a quick proof of already known
results, to generalize this to new results and we believe that it could be useful whenever one wants to relate two
security criteria.

Concerning extensions of this work, in [21], we extend these results to protocols using simultaneously all the
classical cryptographic primitives: asymmetric and symmetric encoding, signature and hashing. This paper also
deals with simple equational theories.

When considering the famous Clark and Jacobs survey [8], previous results can only apply to the Needham-
Schroeder-Lowe protocol, this can now be applied to a wider class of protocols as shown in appendix A. In fact,
our generalisation (including results from this paper and [21]) allows us to deduce security in the computational
model for all the protocols in this survey that are secure in the formal model.
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A Appendix: Security Results

The following table summarizes the protocols on which we can use our result to prove secrecy in the computa-
tional model. Secrecy in the Dolev-Yao model has been checked using HERMES (see [7]), a protocol verifier
capable of dealing with an infinite number of sessions. In the HERMES results column, OK means that the
protocol has been successfully verified for the secrecy property and so the protocol is secure in Dolev-Yao model
(as the abstraction made by HERMES to deal with an infinite number of sessions is safe). For more details on
HERMES verification of these protocols, see [6].

Then, for protocols that are secure in the formal model, the Computational results tells whether the protocol
fits in our framework or not and so OK means that the protocol is safe in the computational model. The letters in
parenthesis indicate which extension of the previous results (in particular, [20] where any exchanged messages
has to be an encryption of nonces and identities using the public key of the next agent) is useful:

�
means

symmetric encryption,
�

encryption of keys under keys,
�

encryption inside an encrypted message and b nonces
without encoding.

Protocol Name Hermes (Formal) Computational

Yahalom OK OK(sk)

Needham-Schroeder Public Key Attack -

Needham-Schroeder-Lowe OK OK

Otway-Rees OK � OK(sk)

Denning Sacco Key Distribution with Public Key Attack -

Wide Mouthed Frog (modified) OK OK(skn)

Kao-Chow OK OK(skn)

Neumann-Stubblebine OK � OK(skn)

Needham-Schroeder Symmetric Key Attack -

TMN Attack -

ISO-Symmetric-Key-One-Pass-Unilat.-Auth. OK OK(skn)

ISO-Symmetric-Key-Two-Pass-Unilat.-Authent. OK OK(sn)

Andrew Secure RPC OK OK(skl)

Woo and Lam Mutual Authentication (modified) OK OK(skn)

Skeme (modified) OK OK(skn)

� There is a known attack of the untyped version of the protocol. Discovering this type attack automatically
requires to deal with non-atomic keys. This is not yet implemented in HERMES.

B Proof of the Reduction Theorem

This section provides details of the proof of the reduction theorem. Let
�

be an adversary to the criterion � . The
machines

� 	 and � use
�

as a sub-process and since they do not have access to all the oracles required by
�

,
they simulate the missing oracles. The adversary

�
� needs to generate V�E ��� I � % and to construct the associated

oracles from < and
D
. As it is impossible to build the correct oracles, instead we use fake oracles

D E���� I U % using
the generated parameters. The fake parameters are denoted by � � o<� V#K , the corresponding fake oracles � � o<� <JK and
� � o	� D K . As the partition is valid, all the arguments needed by fake oracles are included in fake parameters and so�

� can be constructed as follows.
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Adversary
�

� :

� � o	� V-E���� I��"% �� � � � �
� � o	� <JK ��� ����
�Bp�8F < �K � <��K ����
 V �I � %+* E ��� I � �8
 � � o	� V-E ��� I �"% � for

,
in � FHFGF b �"�

� � o	� D K ��� � R �#F D K � R 
 � � o	� V-E ����� I �"% � for
,

in � FHFGF b V��
e �� �W? � 
 � � o<� < E ��� I � % 
 � � o	� D E���� I U %
return e

Fake oracles behave like normal oracles using generated parameters � � o	�9V E���� I�� % : applied to R , � � o	� D K returnsD K � R 
 � � o	�9V E ��� I � % � (for
,21 b V�� ). For

, 1 b �"� , � � o	�-< K applied to
����
1Bp�

returns:

< �K � < �K ����
 V �I � % * E���� I�� �#
 � � o	�9V E ��� I �"% �
The left argument

�
is always chosen. V �I � % * E ��� I � represents a known value for parameters V I � %/* E to V I � (for ex-

ample, parameters obtained using tail for any random coin needed in their computation). The main characteristic
of these parameters is to be fixed (which is useful as machine � also uses them).

Oracles given by
�

� to
�

does not have the behavior expected by
�

. Either this does not affect the advantage
of
�

, which means that
�

� can use this against ��� � , or
�

deviates from its normal behavior, which means that�
obtains information over the challenge bit � in the left-right oracles faked in

�
� . In this case, the adversary �

tries to distinguish between the normal behavior of
�

, given a criterion � , and the behavior of
�

with the oracles
given as in

�
� . The adversary � picks a random bit � which will be the challenge bit given to

�
. It also produces

the missing (fake) parameters and will use the corresponding fake oracles. For oracles � � o	� <JK when
, Z b � � , these

oracles can be faked using bit � . Else, for
, 1 b � � , it uses its own challenge bit � � and when called using

 	 
1 E ,
it returns the result of oracle < �K called with parameters < �K �� 	 
 V �I � % * E 
 ��� I � � and <��K �� � 
 � � o<�8V I �"% * E 
 ��� I � � . The
parameter is chosen according to the value of bit � � of criterion ��� . If �"� � \ , oracles given to

�
are exactly the

oracles given to
�

� and if �"� � � , oracles correspond to normal � oracles. To solve its own challenge (i.e. return
the value of ��� ), � assumes that

�
has a better advantage if it is given the normal oracles. Hence if

�
wins its

challenge by answering � , � answers the bit � . Otherwise it answers \ .

Adversary � :

� �� � \ 
 � �
� � o	�#V I �"% * E���� I�� �� � � � �
if � � \ then
� � o<�#< K ��� ���1
1Bp�8F < �K � <��K ���1
 V �I � % * E 
 ��� I � �8
 <��K ����
 � � o<�8V I �"% * E 
 ��� I � �1� for

,
in � FGFHF b �"�

� � o<�#< K ��� ���1
1Bp�8F < �K � <��K ���1
 � � o	�8V I �"% * E 
 ��� I�� �#
 � � o	�9V I �"% * E 
 ��� I � � for
,

in b ���C� � FHFGF b �
else
� � o<�#< K ��� ���1
1Bp�8F < �K � <��K ���1
 V �I ��% * E 
 ��� I � �8
 <��K ��BJ
 � � o	�9V I � % * E 
 ��� I�� ��� for

,
in � FGFHF b �"�

� � o<�#< K ��� ���1
1Bp�8F < �K � <��K ��BJ
 � � o	�#V I�� % * E 
 ��� I � �#
 � � o	�8V I � % * E 
 ��� I�� � for
,

in b ���C� � FHFGF b �
� � o	� D K ��� � R �#F D K � R 
 � � o	�9V I � % * E ����� I � � for

,
in b V �C� � FHFGF b V

e �� �W? � 
 � � o<�#< E ��� I � 
 � � o	� D I U % * E ��� I U
if e � � return �
else return \

When ��� � � , � outputs � whenever
�

wins its challenge. Hence:
��� : B
� ����� 	 %� � � 
 � �
� ��� � : B
� ����� 	 %� � � 
 � �
� �4_ � � ��� �a: B
� ����� 	 %� � � 
 � � � �C_ � � \ �� : B
� ����� 	� � � 
 � �
� ��� �a: B
� ����� 	� � � 
 \ ��� \)�� � � � �
� 	� � � �
A similar calculus gives that

��� : B � ����� 	 %� � � 
 \ �
� � � � � � � �
� 	 % %� � � � � .
Thus,

��� ����� 	 %� � � ��� � �
� 	�5� � � � � �
� 	 % %� � � � � . This gives, with the triangle inequality:

_ � �
� 	�5� � � _ 1 � F _ � �
� 	 %� � � � _�� _ ����� 	 % %� � � � � _
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C Signature Result

Let &�& be a UNF-CCA signature scheme. Let
�

be a polynomial N-UNF-CCA adversary. We give the construc-
tion of an UNF-CCA adversary � such that

��� ^ F � �
� � S�� ������ 
 � � � � ��� 1 ��� � �
� � ������ 
 � � � � ��� . The idea is that there is no
common knowledge shared between the N signature oracles given to

�
, unlike the bit � shared by the left-right

oracles in the case of N-IND-CCA. Moreover, to win the challenge,
�

only has to produce a signature under
one of the signature keys

�-,�� K . The adversary � is given a challenge
� � 
�04�/
 & � K o ��F �8
$)�� o �1FG
-F ��� . It can run

�
as a sub-process giving him

02�
, & � K o ��F � and

)�� o �1FG
-F � instead of oracles related to
�"�-,�� K 
�04� K � : 02� K , & � K o�� �1F � and)�� o�� ��FH
9F � . � also generates the ^ � � other pairs of keys and simulates the associated oracles. Eventually, �

outputs the pair
�� 6
 3 � produced by

�
. Since � does not know

A��7B�,
�
B�,

which key will be falsified, it first picks
a random number

,
in

� � 
9FHFG
 ^ � and bets that
�

will try to falsify
�-,�� K . Formally we define � as:

Adversary � :, �� � � 
9FHFG
 ^ �
for � � � to ^ do

if
, � � 02� K � 04�

& � K o � ��� R F & � K o � R �) � o � ��� �� 6
 3 �#F ) � o �� 6
 3 �
else �"�-,�� � 
102� � � �� ��	*� � �

construct & � K o�� �1F � and
) � o�� �1FG
-F ��� !
 3 � �� �W? � 
 02� E 
9FHFGFH
102� � 
& � K o � �1F �#
9FHFGFH
 & � K o � ��F �8
)�� o � ��FH
9F �8
9FHFHFG
$)�� o � �1FG
-F �

return
�� 6
 3 �

The adversary � wins its challenge whenever it has chosen the right key and
�

outputs a valid signature under
this key. We then obtain: ��� ^ F � �
� � S�� ������ 
 � � � � ��� 1 ��� � �
� � ������ 
 � � � � ���
We should also note that the adversary � is polynomially bounded iff

�
is polynomially bounded too. Hence if

&
& is UNF-CCA, the UNF-CCA advantage of � is negligible and so is the N-UNF-CCA advantage of
�

.

D Proof of Theorem 2

The intuition is that if
�
U produce a NDY trace, then he had to break the encryption scheme

�(�
. Let � be the

polynomial bounding the execution of
�
U . We build a Q-PAT-IND-CCA Adversary � such that

: B � f U �� �
U
? � 
 � U 	 f U ^ � 
 �

1 � � � � � F b � F ������� S � �	��	��
 � � � � (1)

where b � is a the number of nonces used in the protocol description. If
���

is IND-CCA, the Q-PAT-IND-CCA
advantage of � is negligible (Corollary 3.2). Hence, the probability for

�
U to produce a non Dolev-Yao trace is

negligible.
The Q-PAT-IND-CCA Adversary � uses

�
U as a subroutine and will deduce the challenge bit � as soon as�

U
? � 
 � U produces a non Dolev-Yao trace. Using his own oracles, � simulates the oracle � U (used by

�
U ) and

produces the pseudo formal trace in order to find NDY messages.
First, let us consider the case where all the non Dolev-Yao traces produced by

�
U
? � 
 � U are equivalent (i.e.

have the same associated pseudo-formal trace). Let
 
��

� be the first NDY message and ^ be the nonce

(generated by agent � in session
�
) that makes this message NDY. In order to answer queries from

�
U , �

randomly generates identities for honest agents, nonces created by honest agents except ^ . � uses his challenge
keys for their public keys. For the nonce � F �iF ^ , � generates two nonces ^ 	 and ^ E .
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When
�
U waits for a message

 
, � has to forge the message: if the message does not contain � F �iF ^ , it can

be computed without using his left-right encryption oracles, else as
 
��

� is non Dolev-Yao, � F �iF ^ is encoded

by a public key in
 

. Let �  � � � o be the biggest sub-message of
 

which is an encryption. � can compute
 �	

and
 � E (

 � � is equal to
 � where ^ � replaces � F �iF ^ ) and uses the left-right encryption oracle

���
on

�� �	 
1 � E �
to build

 
.

When
�
U emits a message

 
,
 

is parsed according to the protocol specification (as described previously for
pseudo formal trace). During parsing, if � has to decrypt a message then either this message has been produced
using a left-right encryption oracle and there is no new information inside or � can use his decryption oracles
( � only has to decrypt messages encrypted using keys which inverse is known by an honest agent). Eventually,
when � receives

 
(in the case of a NDY trace), he uses his decryption oracles to obtain ^ � . Then, � knows the

challenge bit � and wins its challenge. Note that nonce ^ � cannot be protected under an encoding produced by
an encryption oracle: then message

 
would not be non Dolev-Yao because of � F �iF ^ .

The probability that � obtains ^ � is equal to the probability that
�
U produces a NDY trace. Since � does

not know a priori which nonce � F �iF ^ to choose, he randomly picks a nonce ^ among the b � nonces appearing
in the description of the protocol, an honest agent � among � � � � possible, a session

�
among � � � � possible

sessions.

: B � � � � f AC, b � ^ � � � : B � f U � �


� �� �

U
? � 
 � U 	 f U ^�� 
 �� � � �8F � � � �#F b �

This is not an equality since a trace can be NDY because of two nonces. However, � may not be able to build a
message containing � F �iF ^ (as this nonce can occur not protected by a public key associated to an oracle, � does
not know which value to choose ^ 	 or ^@E ). In this case and when � does not obtain ^ � , he answers a random
bit. Else, he answers � . Note that as

�
U is a PRTM, � is a PRTM too. The advantage of � is:

: B
� ����� � S � �	�� � � 
 � ��� ��� � : B
� � � � f AC, b � ^ �-_ � � � � � : B
� �ae � c � b ��f � � f Ai, b ^ ��_ � � ����

: B
� ����� � S � �	�� � � 
 \ �
� ��� � : B
� � e � c � b ��f � � f AC, b ^ �-_ � � \ ��
The event ” � does not obtain ^ � ” is independent from the value of � and so formula 1 holds.

[Adding Secret Keys] We can now extend the proof for protocols in which fresh keys are generated. Fresh
keys are more difficult to handle because, unlike long term keys, a fresh secret key can be shared with a dishonest
agent, even if it was generated by an honest agent. Hence, when an honest agent has to generate a fresh key, two
distinct cases may occur. In the first case, the secret key will only be shared with honest agents. As it will only
appear in messages encrypted with the public key of an honest agent, � can use one of his challenge key and
whenever he needs to send a message containing the secret key, he uses his pattern encryption oracles. In the
second case, the secret key is shared with a dishonest agent, � generates a new pair of key with

�(	*� � � and will
use this fresh keys.

When � receives a message encrypted with a fresh key, if it is a challenge key, the case is similar other
challenge keys, otherwise either � has generated the key and thus knows its inverse, or the key has been sent by�
U to an honest agent, and thus is known by � .

The adversary � can find bit � when he obtains the challenge nonce ^ � or a challenge secret key. With this
construction, formula 1 is still true.

E Proof of Theorem 3

The proof is very similar to the previous one. Using the same notations, we build two adversaries: � E , a Q-PAT-
UNF-IND-CCA E adversary and � � , a Q-PAT-UNF-IND-CCA � adversary such that:

: B � f U �� �
U
? � 
 � 	 f U ^�� 
 �

1 � � � � � F b � F � �
� � S � ��� �( ����
 ��� , 
 � � � � � � ������� S � ��� �( ����
 ��� , 
 � � � � � (2)

Adversaries ��E and � � are similar to � in the previous proof. ��E chooses a nonce � F �iF ^ , gives it two values ^ 	
and ^ E and tries to obtain the value of its challenge bit � , � � just uses

�
U and waits for a newly created signature.

Emission and reception of messages are made as in the previous proof using oracles.
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The main difference is that a message can be NDY because it contains a signature. If the first NDY message
contains a signature that always appeared encrypted by the public key of an honest agent, then this signature
contains a nonce. If this nonce is the nonce chosen by � E , then ��E obtains the bit � . Else, if this is a new
signature, � � wins its challenge. From then, it is easy to deduce formula 2.

Nonces are Probably Different

We consider that anytime a computational adversary picks up some nonces, they are different one from another.
The adversary can only get a number

 
of nonces that is polynomial in � and we suppose that the number b of

possible nonces is exponential in � (so
 ` b ). Let : be the probability that the adversary gets two times the

same nonces.

� � : � b
b
b � �b FGFHF b � �� � � �b

Thus, we have the following inequalities:

\ 1 : 1 � � # � �
 � �b & �

Proposition E.1 For any R = � \ 
 � � and
A � � ,

# � �!R & � � � �!R F A
Proof: Consider the function < � R ��� # � �!R & � � � � R F A . Derive it twice to get the result. Applying the
proposition, we get:

\ 1 : 1  !F �� � � �b
As

 
is polynomial and b is exponential in � , : is negligible in � . When considering an adversary that has

a non-negligible advantage against something, it still has its advantage if we consider only executions where
nonces are distinct.

Experiment
����� � S � ��� �( ����
 ��� , 
 � � � � :

� �� � \ 
 ���
for

, � � to ^ do����� K 
���� K � �� �(	*� � ��+�9,�� K 
�04� K � �� �(	 � � � ��� !
 3 � �� �@? � 
���� E 
9FHFGFH
���� � 
02� E 
-FGFHFG
�04� � 
� � � �� o�� ����
���FH
9FH
 � ���8
9FHFHFG
�� � � �� o � ����
��1FG
-FG
 � �1�#
� � o � ��F �8
-FGFHFG
1� � o � ��F �1�
& � K o � ��F �8
-FGFHFG
 & � K o � �1F �#
) � o � ��FH
9F �8
-FGFHFH
�)�� o � ��FH
9F �

if 3 is a valid signature of
 

under
�-,.� K

not produced by & � K o � ��F �
return �

else return \

Experiment
����� � S � ��� �( ����
 ��� , 
 � � � 
 � � :

for
, � � to ^ do� ��� K 
$��� K � �� ��	*� � ��"�-,�� K 
102� K � �� ��	 � � � �

� �� �@? � 
���� E 
9FHFGFH
���� � 
02� E 
9FHFHFG
�04� � 
� � � �� o�� ����
@�1FG
-FG
 � �1�#
9FHFGFH
1� � � �� o � ����
��1FG
-FG
 � �1�#
� � o � ��F �8
-FGFHFG
1� � o � ��F �1�
& � K o � ��F �8
-FGFHFG
 & � K o � �1F �#
) � o � ��FH
9F �8
-FGFHFH
�)�� o � ��FH
9F �

return �

Figure 2: N-PAT-UNF-IND-CCA Experiments
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