
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Defining and translating a “safe” subset
of Simulink/Stateflow into Lustre

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Report no TR-2004-16

July 15, 2004

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Defining and translating a “safe” subset
of Simulink/Stateflow into Lustre

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

July 15, 2004

Abstract

The SIMULINK /STATEFLOW toolset is an integrated suite enabling model-based de-
sign and has become popular in the automotive and aeronautics industries. We have
previously developed a translator calledS2L from SIMULINK to the synchronous
language LUSTRE and we build upon that work by encompassing STATEFLOW as
well. STATEFLOW is problematical for synchronous languages because of its un-
bounded behaviour so we propose analysis techniques to define a subset of STATE-
FLOW for which we can define a synchronous semantics. We go further and define a
“safe” subset of STATEFLOW which elides features which are potential sources of er-
rors in STATEFLOW designs. We give an informal presentation of the STATEFLOW to
LUSTRE translation process and show how our model-checking tool LESAR can be
used to verify some of the semantical checks we have proposed. Finally, we present
a small case-study.

Keywords: Model-based Design, Simulink, Stateflow, Lustre, Formal Methods, Safety-critical,
Model-checking.

Reviewers: Reviewed by EMSOFT04 referees

Notes: This work has been partially supported by the European Community through IST projects
Next-TTA and Rise. This report presents an extended version of a paper accepted by the Fourth
International Conference on Embedded Software EMSOFT04

How to cite this report:

@techreport{ scaife04defining,
title = { Defining and translating a “safe” subset
of Simulink/Stateflow into Lustre},
authors ={ N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi},
institution ={ Verimag Technical Report},
number ={TR-2004-16},
year ={ 2004},
note ={ This is the full version of the paper accepted by EMSOFT’04.}
}

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Contents

1 Introduction 3

2 A safe subset of Stateflow 5
2.1 A short description of Stateflow. 5
2.2 Semantical issues with Stateflow. 6

2.2.1 Non-termination and stack overflow. 6
2.2.2 Backtracking without “undo” . 7
2.2.3 Dependence of semantics on graphical layout. 7
2.2.4 Other problems. 8

3 Simple conditions identifying a “safe” subset of Stateflow 9

4 A Description Language for Stateflow 11

5 Translation into Lustre 11
5.1 Encoding of states. .14
5.2 Compiling transition networks. 17
5.3 Hierarchy and parallel AND states. 19
5.4 Inter-level and inner transitions. 22

5.4.1 Inter-level transitions. .25
5.4.2 Inner transitions .27

5.5 Action language translation. .28
5.5.1 Pseudo-lustre. .29
5.5.2 Stateflow arrays to Lustre arrays. 29
5.5.3 Temporal logic operators. 30

5.6 Event broadcasting. .30
5.7 History junctions .33
5.8 Implicit event keywords. .33
5.9 Translation fidelity .34
5.10 The translatable subset of Stateflow. 34

6 Enlarging the “safe” subset by model-checking 34

7 Tool and case study 38
7.1 Prototype implementation. .38
7.2 Case Study .38

8 Conclusions and further work 41

Verimag Research Report no TR-2004-16 1/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

2/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

1 Introduction

Embedded and real-time systems are often safety-critical and require high-quality design and
guaranteed properties. Model-based design has been advocated as the method of choice for
dealing with systems such as these. The design process consists of building models on which the
required system properties are carefully checked and assessed and then deriving implementations
such that these properties are preserved. This allows high quality to be achieved at a lower cost.

SIMULINK /STATEFLOW1 is a very popular tool-chain in this setting and is considered ade
factostandard in many domains such as control systems and the automotive and aircraft indus-
tries. SIMULINK is a block-diagram based formalism while STATEFLOW provides hierarchical
and parallel state machine notations borrowed from STATECHARTS [10]. In many cases, design-
ers need to use both models and a strength of SIMULINK /STATEFLOW is the integration of these
complementary formalisms within the same tool-chain. However, the tool-chain was originally
designed for simulation purposes and, as such, it lacks many desirable features when it comes
to model-based design, such as static checks, formal semantics2 and associated formal meth-
ods such as formal analysis and synthesis techniques (for example, verification, testing and code
generation).

In previous work [4], we have shown how to translate a subset of SIMULINK into LUSTRE[7],
a synchronous data-flow language which, as opposed to SIMULINK , is formally based and en-
dowed with several formal tools such as the LESAR model-checker [8] and the Prover Plug-in
from Prover Technology3 [17]. Moreover, the industrial version of LUSTRE, SCADE, commer-
cialised by Esterel-Technologies4 is equipped with a DO178-B Level A qualified code generator,
which makes it well-adapted to be used in safety-critical projects. Thus, the intended use of our
translator is quite clear: after a system is designed using SIMULINK , the LUSTREtranslation can
be used to guarantee the formal status of the model, formally check properties of this model and,
finally, generate code which preserves the semantics of the original model.

This work aims at extending the previous work by including support for STATEFLOW. This
is compulsory because, as said above, SIMULINK /STATEFLOW is an integrated tool-chain and
many applications use both complementary tools.

However, STATEFLOW raises many more semantic problems than SIMULINK and the task of
identifying a “clean” subset of STATEFLOW is much harder than it was for SIMULINK 5. This is
why many STATEFLOW users have guidelines restricting the use of unsafe constructs [6]. The
problem with these guidelines is that:

• there is no common agreement between the various guidelines in use,

1Trademarks of theMathWorkscompany
2The semantics of SIMULINK /STATEFLOW is precisely but informally described in a several-hundred-pages long

document [18]. TheMathWorksimplementation is the reference for this behaviour.
3http://www.prover.com
4http://www.esterel-technologies.com
5The reason for this state of affairs may come from the fact that the field of hierarchical and parallel state

machines is much younger than that of block-diagrams. Furthermore, the problem of communicating parallel state
machines is an intricate one and, despite several interesting approaches [10,3,14] does not seem to have yet reached
a satisfactory solution.

Verimag Research Report no TR-2004-16 3/44

http://www.mathworks.com
http://www.prover.com
http://www.esterel-technologies.com

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

• in the absence of automated checking tools they may appear too restrictive to designers
and

• many legacy STATEFLOW models predate the existence of guidelines and bringing them
into conformance with these guidelines would require considerable effort.

The contributions of this paper are two-fold. Firstly, we list the semantic problems associated
with STATEFLOW (Section2) and propose light-weight static checking algorithms which ensure
that a model is free of such problems and can therefore be considered “safe” (Section3). This
may be useful for designing less restrictive guidelines. Secondly, we show how to translate
STATEFLOW into LUSTRE (Section5) and also show how properties that may not be checked
by the algorithms of Section3 can be checked on the LUSTRE translation by means of model-
checking (Section6). This allows us to further enhance our notion of a “safe” subset. Finally,
we discuss a prototype implementation and a simple case study (Section7).

Related work

STATEFLOW evolved as the finite state machine component of SIMULINK and as such must
be viewed principally as a simulator itself. As such its designers have concentrated upon a
user-friendly interface and supporting as many useful features as possible while not impeding
the design process by allowing too many unsafe features. For this purpose STATEFLOW itself
is equipped with manyrun-time error detection features such as stack overflow or consistent
state checking. A formal semantics for such a system is probably not necessary and may even
place too many restrictions upon the tool for use by non-specialists. However, STATEFLOW

has become increasingly used as a design verification tool for which effort can be economised by
using the SIMULINK /STATEFLOW itself for code generation. In such an arena a formal semantics
is essential and there have been some recent attempts to define a semantics for STATEFLOW.

STATECHARTS [10] are sometimes compared with STATEFLOW since both are visual repre-
sentations of state machines. There has been much work into formalization of STATECHARTS

either by translating into a known system such as hierarchical automata [15] or by deriving a se-
mantics for a suitable subset [12]. The two systems have a very different semantics, however, for
example STATEFLOW has no notion of true concurrency so work in this area would be difficult
to adapt for STATEFLOW directly.

One attempt includes Tiwari [19] who describes analyses for SIMULINK /STATEFLOW mod-
els by translating into communicating pushdown automata. These automata are represented in
SAL [2] which allows formal methods such as model-checking and theorem proving techniques
to be applied to these models. Essentially, the system is treated as a special hybrid automata and
algebraic loops involving STATEFLOW charts are not considered.

Hamon and Rushby have developed a structural operational semantics for STATEFLOW [9] for
which they have an interpreter to allow comparison with STATEFLOW. Their subset of STATE-
FLOW seems to have been inspired by the Ford guidelines [6], for instance loops are forbidden in
event broadcasting and local events can only be sent to parallel states. They have other restric-
tions as well, such as forbidding transitions out of parallel states but in general support most of

4/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

the STATEFLOW definition including supertransitions. They also have a translator into the SAL
system which allows various model-checking techniques to be applied to STATEFLOW.

Banphawatthanaraket al. describe a translator from STATEFLOW into the SMV model
checker [1]. As for our translator they do not work from a formal semantics for STATEFLOW

and the main issue seems to be the ordering of actions.
Finally, Reactive Systems Inc. [16] have a tool called REACTIS for automated test generation

for SIMULINK /STATEFLOW models.
Our work differs from these in that the generated LUSTRE program can be used not only

for model-checking but also and primarily for C code generation while preserving the original
semantics. Also, we provide a set of simple static checks which are much “lighter” than model-
checking.

2 A safe subset of Stateflow

Before we can attempt to define which features of STATEFLOW are suitable for translation into
Lustre, we have to illustrate some of the semantical issues with STATEFLOW, which are also
likely to cause problems with our translator. These issues range from “serious” ones, such as non-
termination of a simulation step or stack overflow, to more “minor” ones, such as dependence
of the semantics upon the positions of objects in the STATEFLOW diagram. First, we briefly
describe the STATEFLOW language and informally explain its semantics (for a formal semantics,
see [9]).

2.1 A short description of Stateflow

STATEFLOW is a graphical language resembling Statecharts [10]. The semantics of STATEFLOW

are embodied in the interpretation algorithm of the STATEFLOW simulator, documented in a
900-page long User’s Guide [18] (terminology is borrowed from that guide). A STATEFLOW

chart has a hierarchical structure, where states can be refined into eitherexclusive (OR)states
connected with transitions orparallel (AND)states, which are not connected.6 Figure14 shows
an example:A andB are parallel states (withparentthe root state), while all theirchild states are
exclusive. A transition can be a complex (possibly cyclic) flow graph made ofsegmentsjoining
connectivejunctions. Each segment can bear a complex label with the following syntax (all fields
are optional):

E[C]{Ac}/At

whereE is anevent, C is thecondition (i.e., guard),Ac is thecondition actionandAt is the
transition action. Ac andAt are written in theaction languageof STATEFLOW, which contains
assignments, emissions of events, and so on. Actions written in the action language can also
annotate states. A state can have anentry action, aduring action, anexit actionandon eventE
actions, whereE is an event.

6 Notice that parallel states are not executed concurrently, but sequentially.

Verimag Research Report no TR-2004-16 5/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

The interpretation algorithm is triggered every time an event arrives from SIMULINK or from
within the STATEFLOW model itself.7 The algorithm then executes the following steps:

Search for active states:this search is performed hierarchically, from top to bottom. At each
level of hierarchy, when there are parallel states, the search order is agraphical two di-
mensional one: states are searched from top to bottom and from left to right, in order to
impose determinism upon the STATEFLOW semantics.

Search for valid transitions: once an active state is found, its transitions are searched based on
several enabledness criteria: the event of the transition must be present and its condition
must be true. The goal is to find a transition which isvalid all the way from the source state
to the destination state. In particular, when the transition is multi-segment, the condition
actions of each segment are executed while searching and traversing the transition graph.
The search order is again deterministic: transitions are searched according to the12 o’clock
rule.8

Execute a valid transition: once a valid transition is found, STATEFLOW follows these steps:
execute the exit action of the source state, set the source state to inactive, execute the
transition actions of the transition path, set the destination state to active and finally execute
the entry action of the destination state.

Idling: when an active state has no valid output transitions an active state performs its during
action and the state remains active.

Termination: occurs when there are no active states.

It should be emphasized that each of the executionsruns to completionand this makes the be-
haviour of the overall algorithm very complex. In particular,when any of the actions consists
of broadcasting an event, the interpretation algorithm for that event is also run to completion
before execution proceeds.This means that the interpretation algorithm is recursive and uses a
stack. However, as we will see, the stack does not store the full state, which leads to problems of
side effect (Section2.2.2). Also, without care, the stack may overflow (Section2.2.1).

2.2 Semantical issues with Stateflow

2.2.1 Non-termination and stack overflow

As already mentioned, a transition in STATEFLOW can be multi-segment and the segment graph
can have cycles. Such a cycle can lead to non-termination of the interpretation algorithm during
the search for valid transition step.

Another source of potential problems is the run-to-completion semantics of event broadcast.
Every time an event is emitted the interpretation algorithm is called recursively, runs to com-
pletion, then execution resumes from the action statement immediately after the emission of the

7 The SIMULINK event is often a SIMULINK trigger, although it can also be the simulation step of the global
SIMULINK -STATEFLOW model.

8Notice that this is considered harmful even in the STATEFLOW documentation, where it is stated: “Do not design
your Stateflow diagram based on the expected execution order of transitions.”

6/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

event. This can lead, semantically, to infinite recursion and in practice (i.e., during simulation)
to stack overflow.9

A/
en: E

BE { E }

Figure 1: Stack overflow

A model resulting in stack overflow is shown in Figure1. When the default stateA is entered
eventE is emitted in the entry action ofA. E results in a recursive call of the interpretation
algorithm and sinceA is active its outgoing transition is tested. Since the current eventE matches
the transition event (and because of the absence of condition) the condition action is executed,
emitting E again. This results in a new call of the interpretation algorithm which repeats the
same sequence of steps until stack overflow.

2.2.2 Backtracking without “undo”

While searching for a valid transition, STATEFLOW explores the segment/junction graph, until
a destination state is reached. If, during this search, a junction is reached without any enabled
outgoing segments, the search backtracks to the previous junction (or state) and looks for another
segment. This backtrack, however, does not restore the values of variables which might have been
modified by a condition action. Thus, the search for valid transitions can have side effects on the
values of variables.

An example of such a behavior is generated by the model shown in Figure2. The final value
of variablea when stateC is entered will be 1011 and not 1001 as might be expected. This is
because when the segment with condition “false” is reached, the algorithm backtracks without
“undoing” the action “a+=10”.

2.2.3 Dependence of semantics on graphical layout

In order to enforce determinism in the search order for active states and valid transitions (thus
ensuring that the interpretation algorithm is deterministic) STATEFLOW uses two rules: the “top-
to-bottom, left-to-right” rule for states and the “12 o’clock” rule for transitions. These rules
imply that the semantics of a model depend on its graphical layout. For example, as the model

9 This is recognized in the official documentation:“Broadcasting an event in the action language is most useful
as a means of synchronization among AND (parallel) states. Recursive event broadcasts can lead to definition of
cyclic behavior. Cyclic behavior can be detected only during simulation.”

Verimag Research Report no TR-2004-16 7/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

A

C

B
{a=0}

[false] {a+=100}

[true] {a+=10}[true] {a+=1}

[true] {a+=1000}

Figure 2: Example of backtracking

is drawn in Figure3, parallel stateA will be explored beforeB because it is to its left. But ifB
was drawn slightly higher, then it would be explored first. (Notice that STATEFLOW annotates
parallel states with numbers indicating their execution order, e.g., as shown in Figure3.)

The order of exploration is important since it may lead to different results. In the case of “12
o’clock” rule, for example, if the top-most transition of the model of Figure2 emanated from
the 11 o’clock position instead of the 1 o’clock position, then the final value ofa would be 1001
instead of 1011.

Exploration order also influences the semantics in the case of parallel states, even in the
absence of variables and assignments. An example is given by the model of Figure3. A andB
are parallel states. When eventE1 arrives, ifA is explored first, thenE2 will be emitted and the
final global state will be(A2, B3). But if B is explored first then the final global state will be
(A2, B2). Thus, parallel states in STATEFLOW do not enjoy the property ofconfluence.

2.2.4 Other problems

Due to lack of space, we cannot cover all semantical issues with STATEFLOW. We end this part
by briefly mentioning two more potential problems. The first is the possibility of having so-called
super-transitionscrossing different levels of the state hierarchy. This is a feature of Statecharts
as well, but is generally considered harmful in the Statecharts community [10]. Many proposals
disallow such transitions for the sake of simpler semantics [12].

The second problem is termedearly return logicin the STATEFLOW manual. This problem is
illustrated in Figure4. When eventE is emitted, the interpretation algorithm is called recursively.
Parent stateA is active, thus, its outgoing transition is explored and, since eventE is present, the
transition is taken. This makesA inactive, andB active. When the stack is popped and execution
of the previous instance of the interpretation algorithm resumes, stateA1 is not active anymore,
since its parent is no longer active.

8/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

B 1
A 2 B1A1

B2 B3A2

E2E1
E1 { E2 }

Figure 3: Example of non-confluence

A

B
A1 A2

E

{ E }

Figure 4: “Early return logic” problem

3 Simple conditions identifying a “safe” subset of Stateflow

In this section we present a sufficient number of simple conditions for avoiding error-prone mod-
els such as those discussed previously. The conditions can be statically checked using mostly
light-weight techniques. The conditions identify a preliminary, albeit strict, “safe” subset of
STATEFLOW. A larger subset can be identified through “heavier” checks such as model-checking,
as discussed in Section6.

Absence of multi-segment loops: If no graph of junctions and transition segments contains
a loop (a condition which can easily be checked statically) then the model will not suffer from
non-termination problems referred to in Section2.2.1. This condition is quite strict, however, it
is hard to loosen, since termination is undecidable for programs with counters and loops.

Verimag Research Report no TR-2004-16 9/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

Acyclicity in the graph of triggering and emitted events: An eventE is said to betriggering
a states if the state has a “on eventE: A” action or an outgoing transition which can be triggered
by E (i.e.,E appears in the event field of the transition label or the event field is empty).E is said
to beemittedin s if it appears in the entry, during, exit or on-event action ofs, or in the condition
or transition action10 of one of the outgoing transitions ofs. Given a STATEFLOW model, we
construct the following graph. Nodes of the graph are all states in the model. For each pair of
nodesv andv′, we add an edgev → v′ iff the following two conditions hold:

1. There is an eventE which is emitted inv and triggeringv′.

2. Eitherv = v′ or the first common parent state ofv andv′ is a parallel state.

The idea is thatv can emit eventE which can then triggerv′, but only if v andv′ can be active at
the same time. If the graph above has no directed cycle then the model will not suffer from stack
overflow problems.

Absence of assignments in intermediate segments:In order to avoid side effects due to lack
of “undo”, we can simply check that all variable assignments in a multi-segment transition appear
either in transition actions (which are executed only once a destination state has been reached) or
in the condition action of the last segment (whose destination is a state and not a junction). This
ensures that even in case the algorithm backtracks, no variable has been modified. An alternative
is to avoid backtracking altogether, as is done with the following check.

Conditions of outgoing junction segments form a cover: In order to ensure absence of back-
tracking when multi-segment transitions are explored, we can check that for each junction, the
disjunction of all conditions in outgoing segments is the conditiontrue. If segments also carry
triggering events, we must ensure that all possible emitted events are covered as well.

Conditions of outgoing junction segments are disjoint: In order to ensure that the STATE-
FLOW model does not depend on the 12 o’clock rule, we must check that for each state or junc-
tion, the conditions of its outgoing transitions are pair-wise disjoint. This implies at most one
transition is enabled at any given time. In the presence of triggering events, we can relax this by
performing the check for each group of transitions associated with a single eventE (or having
no triggering event).

It should be noted that checking whether STATEFLOW conditions are disjoint or form a cover
is an undecidable problem, because of the generality of these conditions. From a STATEFLOW

design, we can extract very easily the logical properties expressing that a set of conditions are
disjoint and form a cover. These logical properties can be transmitted as a proof obligation to
some external tool such as a theorem prover. However, for most practical cases, recognizing
common sub-expressions is sufficient for establishing that some conditions are disjoint and form
a cover.

10 In fact, transition action events can probably be omitted from the set of emitted events ofs, resulting in a less
strict check. We are currently investigating the correctness of this modification.

10/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Checks for confluence: In order to ensure that the semantics of a given STATEFLOW model
does not depend on the order of exploring two parallel statesA andB, we must check two things.
First, thatA andB do not access the same variablex (both writex or one reads and the other
writesx). But this is not sufficient, as shown in Section2.2.3, because event broadcasting alone
can cause problems. A simple solution is to check that in the aforementioned graph of triggering
and emitted events, there is no edgev → v′ such thatv belongs toA andv′ to B or vice-versa.

Checks for “early return logic”: To ensure that our model is free of “early return logic” prob-
lems, we can check that for every states and each of its outgoing transitions having a triggering
event, this event is not emitted somewhere ins. Note that if a transition has no triggering event
then this transition is enabled for any event, thus, we must check that no event is emitted ins.

4 A Description Language for Stateflow

Figure5 defines a simple language in which we express our input STATEFLOW and describe
the analysis and translation. We use the convention that capital letters represent lists of syntactic
objects, for instanceN stands for∅N | n.N . This language essentially defines the data struc-
ture in the STATEFLOW model files but with some additional elements synthesized to make the
analysis simpler. For example, Figures6 and7 show a simple STATEFLOW chart and its trans-
lation into our language. Our language defines a graph structure with subgraphs, STATEFLOW

states and junctions are nodes in the graph, transitions are the vertices of the graph. Note that
we actually translate the enclosing SIMULINK into the graph so the top-level syntactic object
sf is actually a subgraph. Subgraphs have no physical representation in the STATEFLOW model
file so we synthesize new subgraphs as the model file is parsed. Similarly, the source for de-
fault transitions has no associated object in STATEFLOW so we generate a default point node
(14, point) in its place.

This is only a partial representation of the full STATEFLOW model. For example, we do
not represent the action language here, of which only a subset can sensibly be translated into
LUSTRE. However, we can represent the full STATEFLOW definition in our language, including
such features asinner , outer andinter-level transitions.

5 Translation into Lustre

The checks on a STATEFLOW model described in Section2 define a subset which is much more
likely to be correct according to the system designer’s intentions than using the full STATEFLOW

definition. It is restrictive, however, since it disallows some of STATEFLOW’s programming
features which designers have become used to. We would therefore like to extend our subset
by employing analysis with sound theoretical underpinnings. One such framework is model-
checking and we have access to the well-established model-checker called LESAR [8] which
takes LUSTRE as its input. A translation of STATEFLOW into LUSTRE therefore opens up the

Verimag Research Report no TR-2004-16 11/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

Graphs
Stateflow sf = (id, N, L, dd)
Graph g = (id, N, L)

Nodes
Node n = (id, nt)
Node type nt = p | j | s | sg
Point p
Junction j
State s = SA
Subgraph sg = (SA, ao, g)
And/Or ao = AND| OR
State action sa = (sn, a)| (on , et, a)
State action name sn = entry | during | exit

Transitions
Transition l = (ui, sn, dn, et, c, ca, ta)
Source node sn = n
Destination node dn = n
Condition action ca = a
Transition action ta = a
Event or Temp et = ∅et | e | t | et1 or et2
Temp t = (tn, int , e)
Temporal name tn = after | before | at | every

Actions
Condition c = ∅c | <condition code>
Action a = ∅a | <action code>

Data
Data dictionary dd = (E, D)
Event e = (ui, nm, sc)
Data d = (ui, nm, sc, ty, init)
Scope sc = INPUT | OUTPUT| LOCAL| TEMP| CONST

Identifiers
Identifier id = (ui, os)
Unique integer ui = uniqueint
Optional string os = “” | string
Name nm = non-emptystring

Figure 5: A language defining a subset of STATEFLOW

12/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Off/
en:switchoff=1
ex:switchoff=0

On/
en:switchon=1
ex:switchon=0

Set/cnt++

Reset/cnt++

Figure 6: A simple STATEFLOW chart

sf=(id=(13,Switch2),
N=[(id=(3,Off),

nt=s(SA=[(exit,<switchoff=0>), (entry,<switchoff=1>)])),
(id=(4,On),

nt=s(SA=[(exit,<switchon=0>), (entry,<switchon=1>)])),
(id=(14,_point), nt=p)],

L=[(ui=5, sn=3, dn=4, et=Set, c= ∅c, ca= ∅a, ta=<cnt++>),
(ui=6, sn=4, dn=3, et=Reset, c= ∅c, ca= ∅a, ta=<cnt++>),
(ui=7, sn=14, dn=3, et= ∅et, c= ∅c, ca= ∅a, ta= ∅a)],

dd=(E=[(ui=8, nm=Set, sc=INPUT), (ui=9, nm=Reset, sc=INPUT)],
D=[(ui=11, nm=switchoff, sc=OUTPUT, ty=int, init= ∅exp),

(ui=10, nm=switchon, sc=OUTPUT, ty=int, init= ∅exp),
(ui=12, nm=cnt, sc=OUTPUT, ty=int, init= ∅exp)]))

Figure 7: The simple chart in the language

Verimag Research Report no TR-2004-16 13/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

possibility of allowing some of the “unsafe” features of STATEFLOW to be used with confidence
provided we can verify the intended properties of the model using LESAR.

We have to be clear, however, about the difference between the subset of STATEFLOW which
is “safe” in the sense of the previous discussion and that which is translatable into LUSTRE.
We can copy the behaviour of STATEFLOW as precisely as required (given sufficient effort in
building the translator) and can even implement loops and recursionprovided we can prove that
the behaviour is bounded. The generated program, however, does not have any guaranteed safety
properties since all the previous discussion about the semantical problems with STATEFLOW

are carried over into the LUSTRE translation. This is where model-checking and other formal
methods can be applied. In this section we describe the translation process informally and in
Section6 we show how some of the previously mentioned properties can be verified and our
subset extended using the LESAR model-checker.

Needless to say, the goal of the translation is not simply to provide a way to model-check
Stateflow models. It is also to allow for semantic-preserving code generation and implementation
on uni-processor or multi-processor architectures [5].

LUSTREis a synchronous language where variables areflows, i.e. a notionally infinite stream
of values. Each value of a flow is its instantaneous value in a particularreactionand for each
time instant,outputscan only depend on current or previousinputs. The previous value of a flow
is accessed by thepre operator and initialisation is performed by the “followed by” operator
-> . In the translator these are the only temporal operators used. In particular, thewhen and
current LUSTREoperators are not used, because STATEFLOW models aresingle-clock.

5.1 Encoding of states

The most obvious method of encoding states into LUSTRE is to represent each state as a boolean
variable and a section of code to update that variable according to the validity of the input and
output transitions. For example, one can envisage a very simple and elegant encoding of the
boolean component (i.e.without the entry actions) of the example in Figure6 in the LUSTRE

code depicted in Figure8. Here a state becomes true if any of its predecessor states are true and
there is a valid transition chain from that state. It becomes false if it is currently true and there is
a valid transition chain to any of its successor states. Otherwise it remains in the same state. The
initial values of the states are defined by the validity of the default transitions.

This code is semantically correct for a system consisting only of states but it is difficult to
incorporate the imperative actions attached to both states and transitions in STATEFLOW. For ex-
ample, if the above code had included the entry actions in the states then all the values referenced
by the action code would have to be updated in each branch of the if-then tree. This causes two
problems. Firstly, for even quite small charts the number of values being updated can become
large and this has to be multiplied by the complexity introduced by the network of transitions
each state participates in. Secondly, the action language is an imperative language for which it
would be difficult to compile a single expression for each sequence of actions. Note also that if
more than one state updates the same value then causality loops and multiple definitions could
arise.

A more practical approach, therefore, is to split the above equations into their components

14/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

node SetReset0(Set, Reset: bool)
returns (sOff, sOn: bool);
let
 sOff = true ->
 if pre sOff and Set then false
 else if (pre sOn and Reset) then true
 else pre sOff;
 sOn = false ->
 if pre sOn and Reset then false
 else if (pre sOff and Set) then true
 else pre sOn;
tel.

Figure 8: Simple LUSTREencoding of the example

and use explicit dependencies to force their order of evaluation. Inspecting the code in Figure8
the state update equation for each state consists of:

• An initialization value computed from default transitions (true for sOff),

• a value for each outgoing transition (Set for sOff),

• an exit clause ((pre sOff and Set) for sOff),

• an entry clause ((pre sOn and Reset) for sOff) and

• a no-change value (pre sOff).

Explicitly separating these components allows us to insert the action code at the correct point
in the computation of a reaction. This results in the rather dense encoding shown in Figure9.
Here, the code has been split into several sections.

• Initial values. These are the intial values for all variables,false for states and the initial
value from the data dictionary for STATEFLOW variables.

• Transition validity. In this section the values for the transitions are computed. For con-
venience in the translator these are actually calls to predefined nodes generated in advance
from the transitions’ events and actions. Note that the test for the activity of the source
state is included in the transition’s validity test.

• State exits. Any states which aretrue and have a valid outgoing transition are set to
false .

• Exit actions. The code for any exiting state’s exit actions is computed. This section also
includes during actions for states which remain active andon actions also for active states.

• Transition actions. The code for the transition actions is executed. Note that the exiting
state’s value isfalse while this occurs.

Verimag Research Report no TR-2004-16 15/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

• State entries.Any states which arefalse and have a valid incoming transition are set to
true .

• Entry actions. Entering states action code is executed with the state’s variable nowtrue .

This sequence corresponds to the sequence of events in STATEFLOW’s interpretation algo-
rithm. Note that by “transition valid” we do not mean that the transition is valid with respect
to the current context but that this is a transition which will be traversed in the current reaction.
Thus the arbitration between competing outgoing transitions has to be resolved by the transition
valid computation.

There are some additional complications in the code shown in Figure9, for instance the use
of theinit andterm flags which are used to control initialization and termination of subgraphs
but these are discussed in the later sections.

node SetReset1(Set, Reset, init, term: bool)
returns (sOff, sOn: bool; switchon, switchoff, cnt: int);
var sOff_1, sOff_2, sOn_1, sOn_2, lv5, lv6, lv7: bool;
 switchon_1, switchon_2, switchoff_1, switchoff_2,
 cnt_1, cnt_2: int;
let
 -- initial values
 sOff_1 = false -> pre sOff;
 sOn_1 = false -> pre sOn;
 switchon_1 = 0 -> pre switchon;
 switchoff_1 = 0 -> pre switchoff;
 cnt_1 = 0 -> pre cnt;
 -- link validity
 lv5 = if sOff_1 then Set else false;
 lv6 = if sOn_1 then Reset else false;
 lv7 = if init and not (sOff_1 or sOn_1) then true else false;
 -- state exits
 sOff_2 = if sOff_1 and (lv5 or term) then false else sOff_1;
 sOn_2 = if sOn_1 and (lv6 or term) then false else sOn_1;
 -- exit actions
 switchoff_2 = if not sOff and sOff_1 then 0 else switchoff_1;
 switchon_2 = if not sOn and sOn_1 then 0 else switchon_1;
 -- transition actions
 cnt_2 = if lv5 then cnt_1+1 else cnt_1;
 cnt = if lv6 then cnt_2+1 else cnt_2;
 -- state entries
 sOff = if not sOff_2 and (lv7 or lv6) then true else sOff_2;
 sOn = if not sOn_2 and lv5 then true else sOn_2;
 -- entry actions
 switchoff = if sOff and not sOff_1 then 1 else switchoff_2;
 switchon = if sOn and not sOn_1 then 1 else switchon_2;
tel.

Figure 9: Alternative LUSTREencoding of the example

16/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

5.2 Compiling transition networks

A B

[x==0]{y−−}

[x<>0]{y++} [x<2]

Figure 10: A STATEFLOW chart with a junction

Figure10shows a STATEFLOW chart with a junction. Junctions in STATEFLOW do not have a
physical state and can be thought of as nodes in anif-then tree. This is thus the most sensible
encoding of junctions. One problem, however, is that junction networks can be sourced from
more than one state and a single state can have more than one output to the same junction. These
can be handled quite easily if one allows a certain amount of code duplication, the common
subnetwork for two joining outgoing transitions being compiled twice.

We could devise a very natural scheme for LUSTRE to handle this but again it becomes dif-
ficult to insert the condition and transition actions into theif-then tree in LUSTRE. Figure
11 shows the actual code generated11. The functionscv{678}_ not shown compute the con-
dition code for their respective transitions. Note how thecv8 call is duplicated betweenlv6
and lv7 . Essentially, the junction tree is turned into a flattened representation with two flags,
“end ” which signifies the termination of the tree (either a destination state or a terminal junction)
and “exit ” which is true if the terminal was a state. One slight inefficiency is the use of these
flags to defeat further computation after the termination point is reached (thenot end clauses).
These two flags correspond to theEnd, No andFire transition values in [9], the semantics of
our junction processing is identical to the semantics described therein.

There is also a slight problem with the “transition valid” section in the code shown in Figure
9. For the example shown there can only ever be one transition valid flagtrue at each instant
but when a state has (potentially competing) outgoing transitions there has to be some kind of
arbitration between them, hopefully using the same arbitration as STATEFLOW itself. In fact the
statements are chained together with a common flag which indicates when a valid transition has
been found. This is called theok variable and a revised transition validity computation section
is shown in Figure12. In fact we need a separateok flag for each subgraph, this is explained
later when inter-level transitions are discussed.

A more serious problem is that junction networks can have loops which results in unbounded
recursion and therefore a loss of synchronous semantics. Figure13 shows a simplefor -loop.
There are a number of possibilities for handling this.

11 Our code examples have been condensed for brevity and use abbreviated variable names.cv means “condition
valid”, lv “transition valid”,ca “condition action” andsu “state update”

Verimag Research Report no TR-2004-16 17/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

-- link id=7 name=[x<>0]{y++}
node lv7_(x, y: int; ok, lv7, lv8: bool)
returns(yo: int; oko, lv7o, lv8o: bool);
var cv7, cv8, end, end_1, end_2, ok_1: bool;
let
 end_1 = false;
 ok_1, cv7, end_2 =
 if (not (end_1 or ok)) then cv7_(x) else (ok, false, end_1);
 yo = if cv7 then ca7(y) else (y);
 oko, cv8, end =
 if ((not end_2) and cv7) then cv8_(x) else (ok_1, false, end_2);
 lv7o, lv8o = if (cv8 and end) then (true, true) else (lv7, lv8);
tel

-- link id=6 name=[x==0]{y--}
node lv6_(x, y: int; ok, lv6, lv8: bool)
returns(yo: int; oko, lv6o, lv8o: bool);
var cv6, cv8, end, end_1, end_2, ok_1: bool;
let
 end_1 = false;
 ok_1, cv6, end_2 =
 if (not (end_1 or ok)) then cv6_(x) else (ok, false, end_1);
 yo = if cv6 then ca6(y) else (y);
 oko, cv8, end =
 if ((not end_2) and cv6) then cv8_(x) else (ok_1, false, end_2);
 lv6o, lv8o = if (cv8 and end) then (true, true) else (lv6, lv8);
tel

-- node id=3 name=A
node suAlv(x, y: int; ok, sA, trm, ini: bool)
returns(yo: int; oko, lv6, lv7, lv8: bool);
var lv8_1, ok_1: bool; y_1: int;
let
 y_1, ok_1, lv6, lv8_1 = lv6_(x, y, ok, false, false);
 yo, oko, lv7, lv8 = lv7_(x, y_1, ok_1, false, lv8_1);
tel

Figure 11: Code generated for the junctions example

ok_1 = false;
lv5, ok_2 = if not ok_1 and sOff_1 then (Set, Set) else (false, ok_1);
lv6, ok_3 = if not ok_2 and sOn_1 then (Reset, Reset) else (false, ok_2);
lv7, ok = if not ok_3 and init and not (sOff_1 or sOn_1)
 then (init, init) else (false, ok_3);

Figure 12: Chaining together transition valid computations

18/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Junctions as states. An easy solution would be to give junctions a physical state in the exe-
cuting LUSTRE program. This effectively moves the non-termination problem outward into the
code calling the STATEFLOW model but also moves the burden of the proof of non-termination to
the client code. This has been implemented in our translator where we also provide an additional
status flag called “valid ” as an output which istrue only if the current state is not a junction.
In theory, the client code could loop over the STATEFLOW code until this flag becomestrue at
which point the other outputs are also valid.

Loop unrolling with external proof obligations. This is unsatisfactory from the point of view
of using the translator as a development tool. We would prefer to simply impose a synchronous
semantics upon STATEFLOW and outlaw such constructs if they cannot be proven to be bounded.
Given a synchronous semantics for STATEFLOW we have to outlaw such constructs in the gen-
eral case. It is possible, however, to unroll such loops (Figure13 also shows the expansion of
the simple loop) without loss of generality, provided bounds can be proven on the number of
iterations. This means we can generate proof obligations for external tools such as Nbac [11]. If
a bound exists and is feasible we can unroll loops individually as required. This requires further
investigation. Currently, we detect all junction loops and reject models which have them.

A B

{x=0}

[x<3]{x++}

A B{x=0} {x++} {x++}{x++}

Figure 13: Afor -loop implemented in STATEFLOW junctions and its expansion

5.3 Hierarchy and parallel AND states

We initially make the assumption that supertransitions are not allowed. This restriction could be
removed in future since there is no reason why they could not be implemented but the analysis
of hierarchical and parallel states is greatly simplified by this assumption. In fact the entire
hierarchy boils down to simple function calls of nested states, the only complication being the
initialization and termination of the nested states.

Verimag Research Report no TR-2004-16 19/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

B 2 A 1

A1

A2

B1 B2

B1a

B1b

B2a

B2b

E/J E/I
H

F/E F/EG/E G/E

H

Figure 14: A model with parallel (AND) and exclusive (OR) decompositions

For example, Figure14 illustrates a simple model with both parallel and exclusive substates.
For both types of substate we insert the function calls to the substates after computation of the
local state variables, the LUSTRE nodes generated for the top-level state (parallel) and stateB
(exclusive) for this model are depicted in Figure15.

Initialization and termination are controlled by two variables, “init ” and “term ” which
are passed down the hierarchy. This is a standard method for implementing state machines in
synchronous languages [13]. One way of viewing theinit value is as apseudo-statewhich
the model is in prior to execution and in fact this plays the rôle of the state variable for default
transitions. For parallel states the local state variable depends only on theinit and term
variables, as do the flags for entry, exit and during actions. These are computed as in Figure16
(s is the local state variable) and are embodied in auxiliary nodes (for example the state variable
is computed by the nodesfs in Figure15).

For exclusive substates theinit and term flags are computed solely from the local state
variable (init = s and not pre s and term = not pre s and s). The compli-
cation is that we need the value of the state variable at the end of the reaction without actually
setting the variable itself because the nested states have to be executed using the input value. This
is why we call the state entry computation beforehand (sgu8 B1en for example) but save the
value in a temporary variable (sg8 B1t) and then update the actual value at the end of the com-
putation. The temporary value then stands for the new value and the input value (sg 8B1in)
for the previous one. Actually, for the code presented here this is unnecessary but when event
broadcasting is enabled (Section5.6) the value of the state variable can be updated by actions.

20/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

-- State B (OR,[B1,B2])
node sf_7(F,G,H,E: event; okB2,okB1,okSubgraph36,sB2ain,sB2bin,sB1ain,
 sB1bin,sgB2in,sgB1in,sgB,trm, ini: bool)
returns(okB2o,okB1o,okSubgraph36o,sB2a,sB2b,sB1a,sB1b,sgB2,sgB1: bool;
 Eo: event);
let
 ...
 sgB1t = sguB1en(okSubgraph36o,lv16,lv18,sgB1_1,trm,ini);
 sgB2t = sguB2en(okSubgraph36o,lv17,sgB2_1,trm,ini);
 okB1o,sB1a,sB1b,E_1 =
 sf_8(G,E,okB1,okSubgraph36o,lv17,sB1ain,sB1bin,sgB1t,
 ((not sgB1t) and sgB1in),(sgB1t and (not sgB1in)));
 okB2o,sB2a,sB2b,Eo =
 sf_11(F,E_1,okB2,okSubgraph36o,lv18,sB2ain,sB2bin,sgB2t,
 ((not sgB2t) and sgB2in),(sgB2t and (not sgB2in)));
 ...
tel

-- Toplevel graph (AND,[A,B])
node sf_2(F,G,H: event) returns(I,J: event);
let
 ...
 sgA = sfs(ini,trm);
 J,I,okA,sA1,sA2 = sf_4(E_1,I_1,J_1,okA_1,sA1_1,sA2_1,sgA,trm,ini);
 sgB = sfs(ini,trm);
 okB2,okB1,okSubgraph36,sB2a,sB2b,sB1a,sB1b,sgB2,sgB1,E =
 sf_7(F,G,H,E_1,okB2_1,okB1_1,okSubgraph36_1,sB2a_1,sB2b_1,sB1a_1,
 sB1b_1,sgB2_1,sgB1_1,sgB,trm,ini);
 ...
tel

Figure 15: LUSTREcode fragments for parallel and hierarchical states

state (init and not term) ->
(init or pre s) and (not term)

entry init -> s and not pre s
exit (init and term) ->

((pre s or ((not pre s) and init)) and (not s))
during false -> s and pre s

Figure 16: Computation of parallel state variables

Verimag Research Report no TR-2004-16 21/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

Note also that for the top-level call we setinit to true->false andterm to false .

5.4 Inter-level and inner transitions

The methods described so far work in a natural way for STATEFLOW charts which are structured
as trees, which allows the LUSTRE code also to be structured as a tree. One consequence of
this is that we can map states onto LUSTRE nodes and still retain the same action sequences
as STATEFLOW. STATEFLOW, however, allows inter-level transitions, ie. between states not
at the same level of the node hierarchy which means that the model becomes a more general
graph structure rather than a tree. This in itself does not break any of the characteristics of
a synchronous implementation but it does greatly complicate the translation. As such, early
versions of the translator simply outlawed transitions of this type in favour of a much simpler
analysis. A large amount of legacy STATEFLOW code uses inter-level transitions, however, so a
preliminary version of our translator which can handle inter-level transitions has been developed.

B

A

B1

B2

[x==0]
E

[x<>0] E

E

Figure 17: A model with inter-level transitions

Figure17 illustrates a simple STATEFLOW chart with an inter-level transition network, from
A to B andB2. Figure18 shows the different kinds of inner transitions that can be used. The
top transition[x==0] is an inner transition which terminates in the parent stateA, transitions
[x==1] and[x==2] show inner transitions to and from a substate ofA and transition[x==3]
terminates in a junction (this style of inner transition is known as aflowchart in STATEFLOW

terminology).
These charts show a number of problems with inter-level transitions:

• The inter-level transition from the junction toB2 in Figure 17 acts in lieu of a default

22/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

A

A1

A2

[x==0]

[x==1] [x==2]

[x==3]

Figure 18: A model with inner transitions

transition when it is taken so any default transition in the states traversed by the path have
to be ignored.

• Any transition which traverses a state inwards results in activation of that state and likewise
any transition which traverses outwards results in deactivation of the state.

and inner transitions:

• The semantics of inner transitions mean that, for example, transition[x==1] in Figure
18 acts as a default transition for stateA when this transition results in termination of a
currently active substate but not when stateA is entered from outside. The other three
transitions do not have this property since none of them terminate in an internal state.

• StateAneither exits nor enters when an inner transition is taken and itsduring actions are
executedbeforethe inner transitions are taken. Thus, if either of the transitions[x==0]
or [x==2] are taken stateA2 is reached. Note, however, that ifA1 is the active substate
and transition[x==3] is taken then stateA1 remains active.

• Note that transitions[x==0] , [x==1] and [x==3] are considered to emanate from
the same source and thus require arbitration and are subject to STATEFLOW’s check for
multiple valid transitions. They also take precedence over default transitions when an
inner transition is taken.

• Only one inner transition can be taken at a time so that if stateA1 exits on transition
[x==2] it cannot return on transition[x==1] .

Verimag Research Report no TR-2004-16 23/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

• Flowchart transitions are taken, if valid, each time the state is active and a higher priority
transition is not valid. Inner transitions are pritoritized according to the 12 o’clock rule so
that they are checked in the order[x==0] , [x==3] then[x==1] . Inner transitions from
the parent state take precedence over those emanating from substates. They do not result
in a change of state and are evaluated purely for their side-effects.

In addition, a transition network can bemixed ie. has paths through it which can be inter-
level, inner, flowchart or normal paths, or an arbitrary combination of all of them. Note also
that both inner and inter-level transitions can lead to inconsistent states if not implemented prop-
erly. This results in a highly complex semantics for STATEFLOW transitions which would be
extremely difficult to emulate precisely. The semantics in [9] follows STATEFLOW’s interpreta-
tion algorithm very closely but is essentially an imperative method which would be difficult to
adapt to LUSTRE’s synchronous semantics.

We have, instead, implemented a compromise solution which behaves in a very similar man-
ner to STATEFLOW with some distortions on the state, condition and transition actions. This
solution is based on splitting transition networks into separatepathsand associating them with
theoutermostpoint traversed by any transition in the path. Evaluation then proceeds top-down
as before but computing transition validity when the transitions come into scope. The results of
this computation can then be passed down the hierarchy. For instance, the transitions labeledE
andF in Figure19 are computed at the top level of the hierarchy and then flags corresponding
to their validity are passed as arguments to the nodes generated for statesA andB. StatesA1 and
B1 then include these additional parameters in their entry and exit clauses.

A B

A1 B1E

F

Figure 19: Inter-level transitions with action order distortion

The problem then arises as to how to ensure that the sequence of exit action followed by
transition action followed by entry action is in the correct order. If substates are checked in a
fixed order then at least one of transitionsE or F must be evaluated in reverse, ie. the entry and
exit actions will be executed in the wrong order. Several solutions are possible:

• We could dynamically order the calls to the nodes forA andB according to which transi-
tions have been computed as valid.

24/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

• We could move the entry, transition and exit actions to either the source for the transition
path, the outermost scope of the transition path or the destination of the transition path.

• We could lift all the actions to the top-level node in the hierarchy and impose an order on
the actions based upon some abtraction of STATEFLOW’s interpretation algorithm.

All of these options would result in other more subtle distortions in the actions as compared
to STATEFLOW. They also have the additional complexity of computing all the entry and exit
actions for states along the paths traversed.

Currently, none of these options are implemented so we can guarantee the correct order of
action execution only forfor non-inter-level transitions. We can, however, guarantee that all
actions which would have been executed within a single LUSTRE reaction will get executed in
some order.

5.4.1 Inter-level transitions

The basic scheme, however, is relatively easy to implement for inter-level transitions provided
we are careful to compute the correct arguments (transitions) to the substate nodes.

The only major complication is the computation of theok value for inter-level transitions.
Because of the presence of default transitions we need anok flag for each substate because the
computation of transition validity is disjoint for each default transition taken within the hierarchy.
We also need a separateok flag for each parallel state because transition computations are also
disjoint between parallel states. Luckily, STATEFLOW outlaws inter-level transitions between
parallel states but we still need a flag for each subgraph because of default transitions. This
means that we need to associate anok value with each transition (in fact we associate it with the
flag for itssourcegraph) so that the transition is only valid if both its validity flag and associated
ok flag are true.

Figure20 shows the code produced for Figure17. This is a direct implementation of the
scheme described above. Points to note about this code include:

• transitions 8 (default for A), 9 (A to junction), 10 (B2 to A), 12
(junction to B) and 13 (junction to B2) are all computed at the top-level, of
which 9, 10 and 13 are passed to the node for subgraphB,

• the node for stateBaugments these with the transitions 11 (B1 to B2) and 14 (default
for B1),

• the complex predicate for the default transition to stateB1 has to take into account whether
stateB is being entered by inter-level transition 13 or normal transition 12,

• the distortions in the actions (stateA enters beforeB2 exits if transition 10 is taken) and

• the computation of theok flags, for example, transition 12 usesokTop whereas transition
10 usesokB.

Verimag Research Report no TR-2004-16 25/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

-- link id=8 name= point -> A
-- link id=9 name=E A -> junction
-- link id=10 name=E B2 -> A
-- link id=11 name=E B1 -> B2
-- link id=12 name=[x==0] junction -> B
-- link id=13 name=[x<>0] junction -> B2
-- link id=14 name= point -> B1

-- graph id=17 name=B,NONTOP
node sf_4(E:event; okB,okTop,lv9,lv10,lv13,sB1in,sB2in,sgB,trm,ini:bool)
returns(okBo,sB1,sB2:bool);
var lv11,lv11_1,lv14,lv14_1,okB_1,sB1_1,sB2_1:bool;
let
 lv11_1,lv14_1=(false,false);
 okB_1,lv11=if sB1in then suB1lv(E,okB,sB1in,trm,ini) else (okB,lv11_1);
 okBo,lv14=if not ((okTop and lv13) and (okTop and lv9))) and
 (ini and (not (sB2in or sB1in))
 then iniu19__pointlv(okB_1,trm,ini) else (okB_1,lv14_1);
 sB2_1=if sB2in then suB2ex(okBo,lv10,sB2in,trm,ini) else (sB2in);
 sB1_1=if sB1in then suB1ex(okBo,lv11,sB1in,trm,ini) else (sB1in);
 sB2=suB2en(okBo,okTop,lv11,lv9,lv13,sB2_1,trm,ini);
 sB1=suB1en(okBo,lv14,sB1_1,trm,ini);
tel

-- graph id=18 name=Top,GCTOP
node sf_2(E:event; x:int) returns(sB1,sB2,sgB,sA:bool);
var ini,lv10,lv10_1,lv12,lv12_1,lv13,lv13_1,lv8,lv8_1,lv9,lv9_1,okB,okB_1,
 okB_2,okTop,okTop_1,okTop_2,okTop_3,sA_1,sA_2,sAt,sB1_1,sB2_1,
 sgB_1,sgB_2,sgBt,trm:bool;
let
 sA_1=false -> pre sA; sgB_1=false -> pre sgB;
 sB2_1=false -> pre sB2; sB1_1=false -> pre sB1;
 okTop_1,okB_1=(false,false);
 lv10_1,lv9_1,lv12_1,lv13_1,lv8_1=(false,false,false,false,false);
 okB_2,okTop_2,lv10=
 if sB2_1 then suB2lv(E,okB_1,okTop_1,sB2_1,trm,ini)
 else (okB_1,okTop_1,lv10_1);
 okTop_3,lv9,lv12,lv13=
 if sA_1 then suAlv(E,x,okTop_2,sA_1,trm,ini)
 else (okTop_2,lv9_1,lv12_1,lv13_1);
 okTop,lv8=
 if ini and not (sA_1 or sgB_1)
 then iniu20__pointlv(okTop_3,trm,ini) else (okTop_3,lv8_1);
 sA_2=if sA_1 then suAex(okTop,lv9,lv12,lv13,sA_1,trm,ini) else (sA_1);
 sgB_2=if sgB_1 then sguBex(okB_2,lv10,sgB_1,trm,ini) else (sgB_1);
 sA=suAen(okB_2,okTop,lv8,lv10,sA_2,trm,ini);
 sgB=sguBen(okTop,lv9,lv12,lv13,sgB_2,trm,ini);
 okB,sB1,sB2=sf_4(E,okB_2,okTop,lv9,lv10,lv13,sB1_1,sB2_1,sgB,
 sgB and trm -> (not sgB) and (pre sgB),
 sgB -> sgB and not (pre sgB));
tel.

Figure 20: LUSTREcode fragments for inter-level transitions

26/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

5.4.2 Inner transitions

Although we have treated inter-level and inner transitions separately here, they are intimately
interlinked due to the possibility of a single path through a transition network having transitions
of both types. It is even possible for a single transition to be of both types. In some ways, inner
transitions are simpler than inter-level transitions since they are nearly local (only involving the
immediate parent state) but are more complicated in the way they interact with other transitions
at the same level.

-- link id=7 name=[x==0] A -> A
-- link id=8 name=[x==1] A -> A1
-- link id=9 name=[x==2] A1 -> A
-- link id=10 name=[x==3] A -> j6
-- link id=11 name= p17 -> A
-- link id=12 name= p16 -> A2

-- node id=3 name=A
node sguAlv(x:int; okA,sgA,trm,ini:bool) returns(okAo,lv7,lv8,lv10:bool);
var okA_1,okA_2:bool;
let
 okA_1,lv7=lv7_(x,okA,false);
 okA_2,lv8=lv8_(x,okA_1,false);
 okAo,lv10=lv10_(x,okA_2,false);
tel

-- graph id=14 name=A,NONTOP
node sf_3(x:int; okA,sA1in,sA2in,sgA,trm,ini:bool)
returns(okAo,sA1,sA2:bool);
var inner,lv10,lv10_1,lv12,lv12_1,lv7,lv7_1,lv8,
 lv8_1,lv9,lv9_1,okA_1,okA_2,sA1_1,sA2_1:bool;
let
 lv9_1,lv7_1,lv8_1,lv10_1,lv12_1=(false,false,false,false,false);
 okA_1,lv9=if sA1in then suA1lv(x,okA,sA1in,trm,ini) else (okA,lv9_1);
 okA_2,lv7,lv8,lv10=if sgA and (not ini)
 then sguAlv(x,okA_1,sgA,trm,ini)
 else (okA_1,lv7_1,lv8_1,lv10_1);
 inner=((okA_2 and lv9) or (okA_2 and lv7)) and
 (not ((okA_2 and lv10) or (okA_2 and lv8)));
 okAo,lv12 =if inner or (ini and (not (sA2in or sA1in)))
 then iniu16__pointlv(okA_2,inner,trm,ini)
 else (okA_2,lv12_1);
 sA2_1=if sA2in
 then suA2ex(okAo,lv7,lv8,lv10,sA2in,trm,ini) else sA2in;
 sA1_1=if sA1in
 then suA1ex(okAo,lv7,lv8,lv9,lv10,sA1in,trm,ini) else sA1in;
 sA2=suA2en(okAo,lv12,sA2_1,trm,ini);
 sA1=suA1en(okAo,lv8,sA1_1,trm,ini);
tel.

Figure 21: LUSTREcode fragments for inner transitions

Figure21 shows the code produced for Figure18. Only the node for stateA is shown since

Verimag Research Report no TR-2004-16 27/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

all inner transition activity is computed at this level. The main problem is to arrange the priorities
of the transitions in the correct order. This is achieved with the aid of an additional flag, called
inner , which is true when an inner transition is about to be taken which terminates in the
parent state. This is needed to control the default transition (transition 12 to stateA2). If an
inner transition terminates in the parent state (transitions 7,[x==0] and 9,[x==2]) then the
default transition is traversed. Inner transitions which terminate in either substates (transition 8,
[x==1]) or junctions (transition 10,[x==3]) result in the default transition being overridden.
This results in the complex boolean condition forinner in Figure21.

The remainder of the computation of transition validity is relatively simple given this flag:

• Transition 9 is computed as an ordinary transition between substates since its source is the
substateA1.

• The inner transitions 7, 8 and 10 should be prioritized according to the STATEFLOW model.
Unfortunately, we have so far been unable to deduce this order from the STATEFLOW model
file so they are current computed in arbitrary order.

• Once all the inner transitions are computed theinner flag can be generated.

• Once theinner flag is produced the default transitions can be computed if either the
normal default transition conditions exist or theinner flag istrue . Note that theinner
flag is passed to the function which computes the default transition’s validity.

• The rest of the code is same as if there were no inner transitions.

This behaviour is fairly accurate with respect to executions of STATEFLOW charts with some
very subtle departures, for example we do not handle inner transitions to history junctions cor-
rectly.

5.5 Action language translation

There are two basic options for translating the simple imperative language implemented by
STATEFLOW into the synchronous language LUSTRE. One possibility would be to generate C
code from the action code and use the external function call facility of LUSTRE to call the action
code. This has appeal since this translation would be essentially a one-to-one correspondence
between semantic objects. However, the model-checking and other verification tools are unable
to work with embedded C code and we lose expressive power for our system. The alternative,
and harder, approach is to translate the action code into LUSTRE. The problem here is that we
need to impose a sequential order on the generated LUSTREstatements which matches the execu-
tion order in the STATEFLOW. We also have efficiency problems since any values in the context
not referenced by the action code have to be copied across but we are not concerned with the
efficiency of the generated LUSTREcode at this point.

28/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

5.5.1 Pseudo-lustre

To ease this translation we have defined a simple sequential subset of LUSTREcharacterised by
the following properties:

• LUSTREstatements are considered to be evaluated from top to bottom.

• Any inputs which are updated have an output value created for them12.

• Any outputs referenced before their first definition have inputs created for them.

• Values referenced withinpre statements are not considered as instances.

• Values on the left hand side of the equations are made unique.

• References to sequenced values on the right hand side are transformed to refer to the most
recent instance.

-- a) Untransformed -- b) Transformed
node test(x: int) node test(x, y_in: int)
returns(y: int); returns(y, x_out: int);
let var x_1: int;
 x = x + y; let
 x = x + 1; x_1 = x_in + y_in;
 y = y + 1; x_out = x_1 + 1;
tel. y_out = y_in + 1;
 tel.

Figure 22: Transformation of pseudo-LUSTRE

For example, Figure22 shows the transformation of a simple test node. This transformation
allows us to virtually transliterate the action code directly into LUSTREwith minimal alteration.
In fact, this style of LUSTRE is also useful for code generated elsewhere and is used ubiquitously
in the translator.

5.5.2 Stateflow arrays to Lustre arrays

The only significant complication is arrays for which we synthesize access code which allows
them to behave as variables. For example, the action codex[0]++ , wherex has typeintˆ3 is
translated into:

xo = aset1_i(3, 0, aget1_i(3, 0, x) + 1, x);

We synthesize a function “a(get|set|fill)<n>_<ts> ” for each<n>-dimensional ar-
ray value of type<ts> . Note that each time an array value is accessed or updated the entire
array is searched or copied resulting in very inefficient code.

12Created output variables are suffixed with the string “out ” (or simply “o” in abbreviated form) and created
inputs are suffixed with “in ”. Unique variables are suffixed by an integer.

Verimag Research Report no TR-2004-16 29/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

5.5.3 Temporal logic operators

-- Counter function for temporal events
node sfcnts(s, E: bool) returns(a: bool; cnt: int);
var inc: int;
let
 a = s -> s and not pre s;
 inc = if a and E then 1 else 0;
 cnt = inc ->
 if a then inc
 else if s and E
 then (pre cnt) + 1
 else pre cnt;
tel

-- after function for temporal events
node sfaft(n: int; s, E: bool) returns(flg: bool);
var a: bool; cnt: int;
let
 a, cnt = sfcnts(s, E);
 flg = n >= 0 and s and (cnt >= n);
tel

Figure 23: Counter function for temporal logic

A similar complication arises for temporal logic code, for which we synthesize auxiliary
LUSTRE routines. Figure23 shows the synthesized code for theafter temporal operator. The
main issue is that the counter is only incremented when the state is active so we have to pass the
associated state variable to the counter function. The code shown here simply tests if the current
count (cnt) is greater than the required number of counts (n), the code forbefore , at and
every being similar.

5.6 Event broadcasting

One of the most difficult aspects of STATEFLOW to translate is the generation of eventswithin
the STATEFLOW model, these are calledlocal events in STATEFLOW terminology. The prob-
lem is that STATEFLOW implements these by running the interpretation algorithm to completion
on each transmitted local event which implies the possibility of unbounded behaviour (since
transmission of one event can trigger the transmission of another). On the other hand, LUSTRE

provides a bounded (and known at compile time) recursion mechanism. Therefore, if we can
prove (or assume) that the implicit recursion is bounded by a constantk, then we can translate
the STATEFLOW model into a LUSTREprogram with recursion bounded byk.

Up to now, nothing we have described implies any kind of recursive behaviour in the trans-
lator, we could simply generate the code by preserving the hierarchy in the original STATEFLOW

model. Now, however, we have to know the arguments to the top-level call when we implement
a broadcast event. We could either make the translator a fix-point computation where the argu-
ments to previously generated graphs are updated when event broadcasts happen, we could use

30/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

a two-pass method where the first pass computes the nodes and arguments and the second gen-
erates the code or, since theonly recursion point is the top-level call we could simply predict the
arguments to this node and use that for the broadcasts. Currently, we use the last (and simplest)
option but if, for example, we were to implement thesend function as a function call to the
relevant node we would require a more general analysis.

Another slight complication is that LUSTRE will not accept a constant value for the top-
level node. Bounded recursion requires the presence of a recursion variables which have to be
statically evaluated. We thus generate a proxy node for the top-level call and seed this with
the value of the recursion variable. We implement bounded recursion by creating aconst 13

recursion variable for event broadcasts which we call the “event stack size”. We can then call
the top-level node at the point where an event is broadcast, reducing this constant by one. This
allows emulation of the recursive nature of STATEFLOW’s interpretation algorithmup to a finite
limit set by the event stack size. If we have a proof of the bound on event broadcast recursion
then our behaviour will be the same as STATEFLOW’s.

B/
on E: F;

1
A/
en: E;

2

Figure 24: A model with non-confluent parallel states requiring event broadcasting

In Figure24 the two statesA andB are evaluated in the orderB thenA but A emits event
E whereasB receives it. Figure25 shows the relevant parts of the generated code. The event
broadcast routines simply call the recursion point (sf 2ca). At the point of call, all events are
cleared (clr) and the event being broadcast is set. The recursion point is thesf 2ca node and
the top-level function (sf 2) is simply a wrapper forsf 2ca replacing the recursion variable
(const n) with the event stack size. This is needed because LUSTREwill not accept aconst
value as an input to the top-level node.

Within this scheme it is possible to implement STATEFLOW’s “early return logic” which is in-
tended to reduce the possibility of inconsistent states arising from the misuse of event broadcasts.
It results, however, in messy and inefficient code since virtually all activity after the potential pro-
cessing of an event has to be guarded with a check of the parent or source state. This has been
partially implemented in our translator, for example, in the above code, if stateA was within
another state, sayA1, then the call to the entry action for stateA would actually be something
like:

if (sgA1 and enA) then enaA1(...);

13A const value in LUSTRE is not actually a constant. It refers to a value which can be statically evaluated at
compilation time.

Verimag Research Report no TR-2004-16 31/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

-- entry action for node id=3 name=A
node enaA(F,E: event; sB,sA,term,init: bool;
 const n: int)
returns(Fo: event; sBo,sAo: bool; Eo: event);
let
 Fo,sBo,sAo,Eo=
 with n=0 then (F,sB,sA,E)
 else sf_2ca(clr,set,sB,sA,term,init,n-1);
tel

-- graph id=7 name=Parallel5,call
node sf_2ca(F,E: event; sB,sA,term,init: bool;
 const n: int)
returns(Fo: event; sBo,sAo: bool; Eo: event);
...

-- graph id=7 name=Parallel5,top
node sf_2(dummy_input: bool) returns(F: event);
let
 ...
 F,sB,sA,E=sf_2ca(F_1,E_1,sB_1,sA_1,term,init,1);
tel

Figure 25: Code showing event stack

This static recursion technique allows us, in theory, to emulate the behaviour of STATEFLOW

charts which exhibit bounded-stack behaviour. In practice, there is a heavy penalty to pay for
static recursion since the recursion encompasses practically the entire program. This means that
each event broadcast point results in expansion of the whole program at that point, down to the
level of the event stack. Practical experience with the translator shows that an event stack size of
4 is about the greatest that can be accomodated in reasonable space and time.

Finally, we can easily accomodate STATEFLOW’s send facility which allows sending of
an event to a named state. One possibility is to view this as a function call of the target state
[9], however, this would require generalization of the recursion mechanism to allow calls to
intermediate nodes. A simpler solution is to simply treat events as integers and use the convention
that 0 is an inactive event, 1 is a broadcast event and events with other integer values are targetted
at the state with that identity number. For this purpose we abstract theevent type and provide
constants for event testing:

type event = int;
const set = 1; clr = 0;

Theon action for stateB (id number 4) would thus become guarded by:

if ((E = set) or (E = 4)) then ...

32/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

5.7 History junctions

History junctions are a STATEFLOW feature which allow states to “remember” their previous
configuration in between activations. This is easily handled by our translator by keeping local
variables within each node corresponding to a state with a history junction. The only complica-
tion is how to trigger storage and restoring of the history values. Luckily, theinit andterm
flags correspond almost exactly to the semantics of history junctions, we only need to store them
whenterm is true and restore them wheninit is true . Figure26shows the relevant code.

node sf_3(sAin,sBin,sgTOP,term,init: bool)
returns(sA,sB: bool);
var sAh,sBh,...: bool;
let
 sB_1,sA_1=(false,false) ->
 if init then (pre sBh,pre sAh) else (sBin,sAin);
 ...
 sBh,sAh=(false,false) ->
 if term then (sBin,sAin) else (pre sBh,pre sAh);
tel

Figure 26: Saving and restoring history values

There is also a slight complication with entry actions since the normal entry action flag com-
putation does not take into account the fact that a state may become active by being “remem-
bered” rather than entered via a transition. A simple fix for this is to augment the flag with a test
for external activation of the state. For example, in Figure26, if stateA had an entry action we
would add the following lineafter the state entry predicate:

enA = enA or ((not sgAin) and sgAt);

WheresgAin is the initial value of the state andsgAt is the final value of the state (which
does take into account the possibility of activation by memory). The exit actions have no such
problems.

5.8 Implicit event keywords

This is a feature of STATEFLOW which allows an event to be generated upon some specific condi-
tions; a state entering, a state exiting, data changing or upon every time instant (tick) ie. every
time the chart wakes up. The most obvious method of implementing these is to actually generate
a physical event for these occurrences. The problem here is that their existence needs to be known
in advance. Thus for each implicit event encountered during parsing of the model we build a table
of these events. This can then be used to generate an event when the relevant code is encountered,
for example when a state enters or exits or when data changes. We have defined a naming con-
vention for such events, for example the state entry event is:<state name>_enter_event ,
and these events are generated in the state’s entry action (one is created if the state has no entry

Verimag Research Report no TR-2004-16 33/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

action). This has also been implemented for statements in condition, transition and state actions
for changing data. Thetick keyword is easily handled by defining thetick event event at
the toplevel and setting this event each time the chart is entered.

5.9 Translation fidelity

It is not possible to formally verify the equivalence of STATEFLOW’s and our translator’s be-
haviours, principally because of a lack of a formal definition for STATEFLOW. Our translator
was developed, however, directly from the STATEFLOW documentation and its description of the
intepretation algorithm which, as far as possible, we have encoded into LUSTRE. We have also
manually verified the equivalence of the two systems on a substantial set of example STATEFLOW

models based around the subset of STATEFLOW which we currently support. From our point of
view, however, the primary reference for the behaviour of the translated code is the LUSTRE

translation. In a real-world example we would perform tests and validation upon the LUSTRE

code and not upon the STATEFLOW model directly.
This also applies to our link with SAFE STATE MACHINES (SSM) byEsterel Technologies,

Inc.. SSM, like STATEFLOW, is also a graphical interface to a finite state machine system but,
unlike STATEFLOW, is based on a sound formal semantics and there exists a formal translation
path into languages such as LUSTRE. The question exists, however, as to how to translate legacy
STATEFLOW code into SSM and the issues embodied in our translator also apply to translation
from STATEFLOW into SSM. Our translator can, however, be used as a reference semantics for
this translation since its output should, in theory, have the same semantics as the output from
STATEFLOW → SSM→ LUSTRE.

5.10 The translatable subset of Stateflow

Currently, we can translate hierarchical and parallel AND states assumingno inter-level tran-
sitions. We can implement event broadcasting provided the broadcasting recursion is bounded
by a reasonably small value. State entry, exit, during and on-actions as well as condition and
transition actions for transitions are all supported. Only part of the action language is translat-
able but we can implement array processing and so-calledtemporal logic operators. This gives
basic functionality. In addition, however, we can implement sending of events to specific states,
history junctions and inner transitions.

6 Enlarging the “safe” subset by model-checking

For future work we intend to provide a separate semantical analysis of STATEFLOW models
which should either transform the model into a semantically equivalent model which conforms
to a specified subset which we can implement or reject the model with reasons as to why it does
not conform. For now, however, the existence of a translation from STATEFLOW into LUSTRE

allows us to immediately apply the existing model-checking tools for LUSTRE to STATEFLOW

models.

34/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Observer 1

{prop=sOn && (~sOff) || (~sOn) && sOff;}

Figure 27: Simple observer in Stateflow

For example, Figure27 shows a simple observe implemented in STATEFLOW for the model
in Figure6. Here the property is a trivial mutual exclusion of states and LESAR verifies this
property without consuming any significant time or memory.

In this section we demonstrate two useful properties that can be model-checked in STATE-
FLOW models, i.e. confluence of parallel states and boundedness of event broadcasting. Our
translator is able to generate auxiliary LUSTRE nodes which are observers for properties sup-
plied to the translator. Currently, these are LUSTREexpressions but it should be possible to allow
these expressions to be supplied by the STATEFLOW model in the form of graphical functions or
some other form of annotation. This would obviate the necessity of the user learning LUSTRE’s
syntax and semantics. In this section we simply demonstrate two useful properties that can be
model-checked in STATEFLOW models, i.e. confluence of parallel states and boundedness of
event broadcasting.

Figure28 shows a set of parallel states14. StatesN1 andN2 (executed in the orderN1 then
N2) and statesN3 andN4 (executedN4 thenN3) form two versions of the same simple machine
except for the order of parallel execution. The figure also shows an observer which directly
compares equivalent state variables between the two machines. Running LESARon the generated
LUSTRE code results in aTRUEvalue so we can deduce that the order of execution of parallel
states in the machineN1/N2 (or N3/N4) is irrelevant.

Figure29 shows a STATEFLOW chart which requires either parallel state confluence or the
use of an event stack. StateTOP1generates a local eventE upon receiving input eventG. Event
E is received by stateTOP2which then emits output eventF. To allow detection of event stack
overflow the translator generates an additional local value “error ” which is set if there is an
attempt to broadcast an event when the event stack counter is zero. The broadcast statement for
eventF is show in Figure30.

If TOP2 is executed beforeTOP1 we need event broadcasts to allowE to be received by
TOP2. Furthermore, if output eventF is to be broadcast we need a minimum event stack of 2
which is verified by LESAR. Model-checking using theerror property gives aFALSEproperty
for an event stack depth of 1 but aTRUEproperty if the event stack is set to 2. Finally, if we
reverse the order of execution of statesTOP1andTOP2we can get aTRUEproperty with an
event stack size of zero.

14The state variable names are accessible in our translator sosOn refers to the variable for theOn state. These
pseudo-variableshave to be included in STATEFLOW’s data dictionary.

Verimag Research Report no TR-2004-16 35/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

N2 3 N3 4N1 1 N4 2

Observer 5

F

EA GC

DB H

R1S1 R2S2R1S1R2S2

{prop=(sgN1==sgN3 && sgN2==sgN4 && ...
 sA==sE && sC==sG && sB==sF && sD==sH);}

Figure 28: An observer for parallel state confluence

36/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Observer 3

TOP1 2 TOP2 1

C

B D

A

E/F; E/F;G/E; G/E;

{prop=~error;}

Figure 29: An observer for event stack overflow

propo,Fo,sAo,sBo,sCo,sDo,sgObservero,sgTOP1o,sgTOP2o,
erroro,Eo =
 with n = 0
 then (prop,F,sA,sB,sC,sD,sgObserver,
 sgTOP1,sgTOP2,true,E)
 else sf_2ca(clr,clr,set,prop,sA,sB,sC,sD,
 sgObserver,sgTOP1,sgTOP2,error,
 term,init,n-1);

Figure 30: Code for event broadcast with error detection

Verimag Research Report no TR-2004-16 37/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

Although these examples are trivial the analysis itself can be extended to models of com-
plexity. We envisage using the model-checking not just for verification of safety properties but
also as a means of enhancing the subset of STATEFLOW which we are able to implement. A
designer can use model-checking to spot where his design does not conform and where to fix the
model to bring it into conformance.

7 Tool and case study

7.1 Prototype implementation

We have developed a prototype translator of SIMULINK /STATEFLOW to LUSTRE, calledSS2LUS.
The tool integrates and extends the existing SIMULINK -to-LUSTREtranslatorS2L [5] with a new
module, calledSF2LUS. All examples shown in the paper have been translated automatically
with the tool.

S2L andSF2LUS interface in a “clean” manner: wheneverS2L finds a STATEFLOW block, it
submits it toSF2LUS which translates it into a LUSTRE node and returns this node (body plus
type signature) back toS2L. Type and clock inference, which have been major issues inS2L,
are much easier with STATEFLOW. Types of variables are explicitly declared in STATEFLOW, so
they need not be inferred. In fact, type checking is required by the translator but this is solely for
constant and operator resolution and it suffices to typecheck the generated LUSTRE code. The
STATEFLOW block is triggered by a SIMULINK signal and uses a single clock, thus, no clock
inference is needed either.

What we have, therefore, is a development tool for SIMULINK /STATEFLOW which allows,
firstly, verification of subset inclusion for our various subsets of STATEFLOW, secondly, verifi-
cation of application-specific model properties using model-checking and finally, an alternative
means of code-generation for SIMULINK /STATEFLOW models via the various LUSTREcompilers
and interpreters. To demonstrate this tool’s applicability, we present a simple case study.

7.2 Case Study

Figure31 shows a hypothetical alarm monitoring system for a car. This contains two parallel
states,Speedometer which adjusts thespeed variable according to input events andCar
which is hierarchical, the outer layerengine on monitoring the engine status and the next
inner layer monitoring the car’s speed. The innermost level has two parallel states,belt which
monitors the seatbelt status and generates thebelt alarm alarm if the seatbelts are not on and
the speed is greater than 10, andlocks which monitors the door lock switch and controls the
locks.

LESAR only has limited support for numerical values, and does not handle thespeed vari-
able very well. Since we now have a LUSTREprogram, we could use the tool Nbac [11], which
is based on abstract interpretation techniques, to handle thespeed variable. However, the only
rôle of this variable in the model is in boolean tests so we can abstract this variable and use an
equivalent set of boolean flags. This chart is shown in Figure32. Here, theSpeedometer state

38/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

Car 2

Speedometer 1

engine_off

engine_on

running

stopped

belt 1

locks 2

locks_off locks_on/
en: locks_down

time_tic { speed = 0 } road_tic { speed ++ }

toggle_engine

toggle_locks_button

[!belt && speed > 10] { belt_alarm }

[speed == 0] [speed > 0]

toggle_engine [speed > 20]

open_door || toggle_locks_button

Figure 31: An alarm controller for a car

Verimag Research Report no TR-2004-16 39/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

outputs flags according to whether the speed is zero, non-zero or greater than 10 or 20. The rest
of the model has been suitably transformed. The observer for this model states that there should
be no alarms when the engine is off and that the door locks should always be on when the speed
is greater than 20. Furthermore, the belt alarm should be on if the speed is greater than 10 and
thebelt status is off.

Observer 3

Car 2

Speedometer 1

engine_off

engine_on

running

stopped

locks 2

belt 1

locks_on/
en: locks_down

locks_off

road_tic

[speed_eq_0]{speed_eq_0=false;}

[!speed_eq_0]
time_tic {
speed_eq_0=true;
speed_gt_10=false;
speed_gt_20=false;}

[!speed_gt_10]{speed_gt_10=true;}

[speed_gt_10]{speed_gt_20=true;}

[speed_eq_0]

[speed_eq_0]
[!speed_eq_0]

[!speed_eq_0]

toggle_engine

[!belt && speed_gt_10] { belt_alarm }

[!speed_gt_20]

toggle_engine

open_door || toggle_locks_button[!speed_gt_20]

toggle_locks_button

[speed_gt_20]
[speed_gt_20]

{prop=((sgengine_on&&((!speed_gt_20)||(speed_gt_20&&slocks_on))
 &&((!srunning)||(srunning&&((belt)||(!belt&&speed_gt_10&&belt_alarm)))))
 ||(sengine_off&&(!belt_alarm&&!locks_down)));}

Figure 32: Abstracted and corrected version of the alarm controller

Running LESAR on the original model results in aFALSEproperty with the following coun-
terexample:

--- TRANSITION 1 ---
road_tic
--- TRANSITION 2 ---
toggle_engine and not time_tic and road_tic
--- TRANSITION 3 ---
not toggle_engine and not time_tic and road_tic

40/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

What the model-checker has spotted is that if the engine is switched on while the car is mov-
ing (not an impossibility by any means) then it is possible to reach a state where the speed
is greater than 20 and not be in thelocks on state. The solution is simple, split up the
default transitions in theengine on and locks states (for example,[speed_eq_0] and
[!speed_eq_0]) so that the correct state is reached depending upon the initial conditions
when these states are entered. These additional default transitions are shown in Figure32. The
new model gives aTRUELESAR property with the observer shown.

This model is perhaps not a realistic application but even with such a simple model the prop-
erties verified by LESAR are not intuitively obvious. It is also not very well-written STATEFLOW

since the use of conditions on default transitions is warned against in the STATEFLOW documen-
tation. The point, however, is that given suitable observers and verification by model-checking,
even badly written STATEFLOW can be used with confidence.

8 Conclusions and further work

The success of SIMULINK /STATEFLOW lies partly in the integration of heterogeneous model-
ing styles, namely, dataflow and automata based. In this paper, we have extended our previous
work on translating discrete-time SIMULINK to LUSTREby incorporating a large part of STATE-
FLOW. Our method and tool, although still incomplete (we cannot handle arbitrary for-loops,
for instance), translates most of STATEFLOW, including features which may be considered “un-
safe” (e.g., backtracking and dependence on graphical layout). This is important for reasons of
legacy. Still, realizing the importance of identifying a “safe” subset of STATEFLOW and perhaps
developing standard guidelines which restrict engineers to this subset, we have also provided
a number of light-weight static checks which guarantee absence of most semantic problems of
STATEFLOW. In the case where a model fails these checks, the generated LUSTREprogram can
be model-checked instead. Finally, the LUSTRE program can be used for C code generation,
which is guaranteed to preserve the semantics.

We are currently working on extending the capabilities of the translator and experimenting
with more case studies. We are also studying ways to make the static checks less strict. Finally,
we are examining the limits of preserving the structure of the STATEFLOW model in the generated
LUSTRE program. This is useful, among other reasons, for debugging purposes, in particular,
when mapping the model-checker diagnostics back to the original STATEFLOW model.

Verimag Research Report no TR-2004-16 41/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

42/44 Verimag Research Report no TR-2004-16

Subsets of Simulink/Stateflow N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. Maraninchi

References

[1] C. Banphawatthanarak, B. H. Krogh, and K. Butts. Symbolic verification of executable
control specifications. InProceedings of the Tenth IEEE International Symposium on Com-
puter Aided Control System Design, pages 581–586, Hawaii, Aug 1999.1

[2] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Mu noz, S. Owre, H. Rueß, J. Rushby, V. Rusu,
H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In C. Michael
Holloway, editor,LFM 2000: Fifth NASA Langley Formal Methods Workshop, pages 187–
196, Hampton, VA, jun 2000. NASA Langley Research Center.1

[3] G. Berry and G. Gonthier. TheESTEREL synchronous programming language, design,
semantics, implementation.Science Of Computer Programming, 19(2):87–152, 1992.5

[4] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-time
simulink to lustre. In R. Alur and I. Lee, editors,EMSOFT’03, Lecture Notes in Computer
Science. Springer Verlag, 2003.1

[5] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From Simulink to
SCADE/Lustre to TTA: a layered approach for distributed embedded applications. InACM-
SIGPLAN Languages, Compilers, and Tools for Embedded Systems (LCTES’03), 2003. 5,
7.1

[6] Ford. Structured Analysis Using Matlab/Simulink/Stateflow - Modeling Style Guidelines.
Technical report, Ford Motor Company, 1999.1, 1

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE.Proceedings of the IEEE, 79(9):1305–1320, September 1991.
1

[8] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous Observers and the Verification
of Reactive Systems. InAlgebraic Methodology and Software Technology, pages 83–96,
1993. 1, 5

[9] G. Hamon and J. Rushby. An operational semantics for stateflow. InProceedings of Fun-
damental Approaches to Software Engineering (FASE), Barcelona, Spain, March 2004.1,
2, 5.2, 5.4, 5.6

[10] David Harel. Statecharts: A Visual Formalism for Complex Systems.Science of Computer
Programming, 8(3):231–274, June 1987.1, 5, 1, 2.1, 2.2.4

[11] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical
properties. InStatic Analysis Symposium, pages 39–50, 1999.5.2, 7.2

Verimag Research Report no TR-2004-16 43/44

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis and F. MaraninchiSubsets of Simulink/Stateflow

[12] G. Lüttgen, M. von der Beeck, and R. Cleaveland. A Compositional Approach to State-
charts Semantics. In D.Rosenblum, editor,Proceedings of the 8th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 120–129. ACM Press,
2000. 1, 2.2.4

[13] F. Maraninchi and N. Halbwachs. Compiling ARGOS into boolean equations. InProc. 4th
Int. School and Symposium “Formal Techniques in Real Time and Fault Tolerant Systems”
FTRTFT, pages 72–89, Uppsala, Sweden, 1996.5.3

[14] F. Maraninchi and Y. Ŕemond. Argos: an Automaton-Based Synchronous Language.Com-
puter Languages, (27):61–92, 2001.5

[15] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical Automata as a Model for Statecharts.
In Asian Computing Science Conference (ASIAN’97), number 1345 in Lecture Notes in
Computer Science. Springer, December 1997.1

[16] Reactive Systems Inc. http://www.reactive-systems.com.1

[17] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and a
SAT-solver. InProc. Formal Methods in Computer Aided Design (FMCAD 2000), LNCS.
Springer, Nov 2000.1

[18] The MathWorks. Stateflow and stateflow coder, user’s guide, version 5. Available at
http://www.mathworks.com/products/stateflow/. 2, 2.1

[19] A. Tiwari. Formal semantics and analysis methods for Simulink
Stateflow models. Technical report, SRI International, 2002.
http://www.csl.sri.com/ ∼tiwari/stateflow.html . 1

44/44 Verimag Research Report no TR-2004-16

http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf

	Introduction
	A safe subset of Stateflow
	A short description of Stateflow
	Semantical issues with Stateflow
	Non-termination and stack overflow
	Backtracking without ``undo''
	Dependence of semantics on graphical layout
	Other problems

	Simple conditions identifying a ``safe'' subset of Stateflow
	A Description Language for Stateflow
	Translation into Lustre
	Encoding of states
	Compiling transition networks
	Hierarchy and parallel AND states
	Inter-level and inner transitions
	Inter-level transitions
	Inner transitions

	Action language translation
	Pseudo-lustre
	Stateflow arrays to Lustre arrays
	Temporal logic operators

	Event broadcasting
	History junctions
	Implicit event keywords
	Translation fidelity
	The translatable subset of Stateflow

	Enlarging the ``safe'' subset by model-checking
	Tool and case study
	Prototype implementation
	Case Study

	Conclusions and further work

