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Abstract

We propose a new framework for black-box conformance testing of real-time systems. The
framework is based on the model of partially-observable, non-deterministic timed automata.
We argue that partial observability and non-determinism are essential features for ease of mod-
eling, expressiveness and implementability. We provide algorithms for on-the-fly or static
generation of digital-clock tests. These tests measure time only with finite-precision, periodic
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1 Introduction

Testing is a fundamental step in any development process. It consists in applying a set of experiments to
a systemgystem under test SUT), with multiple aims, from checking correct functionality to measuring
performance. In this paper, we are interested in so-calieck-box conformance testingshere the aim is

to check conformance of the SUT to a given specification. The SUT is a “black box” in the sense that we
do not have a model of it, thus, can only rely on its observable input/output behavior.

Our work targetseal-timesystems, that is, systems which operate in an environment with strict timing
constraints. Examples of such systems are many: embedded systems (e.g., automotive, avionic and robotic
controllers, mobile phones), communication protocols, multimedia systems, and so on. When testing real-
time systems, one must pay attention to two important facts. First, it is not sufficient to check whether the
SUT produces the correct outputs; it must also be checked that the timing of the outputs is correct. Second,
the timing of the inputs determines which outputs will be produced as well as the timing of these outputs.

Classical testing frameworks are based on Mealy machines (e.g.]4e&]) or finite labeled tran-
sition systems- LTSs (e.g., seeql, 11, 20, 4, 15]). These frameworks are not well-suited for real-time
systems. In Mealy machines, inputs and outputs are synchronous, which is a reasonable assumption when
modeling synchronous hardware, but not when outputs are produced with variable delays, governed by
complex timing constraints. In testing methods based on LTSs, time is typically abstracted away and time-
outs are modeled by speciahctions B(] which can be interpreted as “no output will be observed”. This
is problematic, because timeouts need to be instantiated with concrete values upon testing (e.g., “if nothing
happens for 10 seconds, output FAIL"). However, there is no systematic way to derive the timeout val-
ues (indeed, durations are not expressed in the specification). Thus, one must rely on empirical, ad-hoc
methods.

A model which has become quite popular during the past decade for modeling and verifying real-time
systems is the model timed automata- TA[2]. A number of methods for testing real-time systems based
on variants of the above model (or other similar models such as timed Petri nets) have been proposed (e.g.,
see P, 16,19, 23, 27, 29, 28, 12, 24, 27]). However, these methods present two major limitations.

First, only restricted subclasses of the TA model are considered. This is problematic, since it limits the
class of specifications that can be expressed in the above frameworks. For exampld, onsider TA
where outputs arisolatedandurgent The first condition states that, at any given state, the automaton can
only output a single action. Therefore, a specification suclw&ef input is received, output eithéror
¢” cannot be expressed in this model. Worse, the second condition states that, at any given state, if an output
is possible, then time cannot elapse. This essentially means that outputs must be emitted at precise points in
time. Therefore, a specification such aghen inputa is received, output must be emitted within at most
10 time unit$ cannot be expressed. Most other works consider deterministic or determinizable subclasses
of TA. For instance, 7] useevent-recording automatg] and [24] use a determinizable TA model with
restricted clock resets. Most of the works also assume that specificatidofiyahservablemeaning that
it is assumed that all events can be observed by the tester. All these restrictions limit the applicability of
the methods. Indeed, a specification must be able to leave freedom to potential implementations, especially
on choosing different outputs or output times. Also, as we argue below, partial observability and non-
determinism are essential for ease of modeling, expressiveness and implementability.

The second limitation concerns implementability of tests. Gmiglog-clockiests (in the sense of{,

]) are considered in the works above. These are tests which can observe the time of inputs precisely
and can also react by emitting outputs in precise points in time. For example, a tegrlikeotitputa at
time 1; if at time 5 inpub is received, announce PASS and stop, otherwise, announcéiBAdh analog-
clock test. Analog-clock tests are problematic, since they are difficult, if not impossible, to implement with
finite-precision clocks. The tester which implements the test of the example above must be able to emit
a preciselyat time 1 and check whethéroccurredpreciselyat time 5. However, the tester will typically
sample its inputs periodically, say, evedyl time units, thus, it cannot distinguish betwekemrriving
anywhere in the interval.9, 5.1).

Moreover, delays occur in the transmission of events from the SUT to the tester and vice versa. For
instance, a tester may issue an output command when its internal clock expires, say, at time 10. However,
operating system and device-driver delays may result in the SUT receiving the input adtino later.

These delays must be accounted for, in order not to give incorrect PASS/FAIL verdicts. This point is also
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Figure 1: A compositional specification with internal (unobservable) actions.

made in [L7], where other issues in interfacing tester and SUT are also brought up (e.g., observability
problems). Some examples are given on how to control or observe SUT events during execution. However,
no general theory of handling such issues is provided.

In this paper, we propose a new testing framework for real-time systems, which lifts the above lim-
itations. Our framework igxpressiveit can fully handlepartially-observable non-deterministidimed
automata. It is alsimplementable the tests we generate can be implemented using periodic clocks of
finite precision.

We model specifications as timed automata with input, output or unobservable actions (without loss
of generality, a single unobservable action is enough). The automata can also be non-deterministic, in the
sense that a given action at a given time might lead the automaton to two different states. Such models
arise often in practice. Specifications are usually built@@enpositionatvay, from many components (see
Figurel). This greatly simplifies modeliny.In such casesnternal component interactions are typically
unobservable to the external world, thus, also to the teshmtractionsrom low-level details are also used
often, to simplify modeling and manage complexity. Such abstractions could, for instance, “hide” some
variables, which typically results in non-determinism.

In general, timed-automata cannot be determinizgdrid unobservable actions cannot be remo¥gd [

It can be argued that, in practice, many models will be determinizable. However, checking this (and
performing the determinization) is undecidab®][ Thus, the user is left with two alternatives. Either
attempt to fit the specification into a deterministic, fully-observable TA model, or use a framework like
ours, which handles non-determinism and partial observability directly. Clearly, the first alternative is
hardly feasible in practice, especially for large specifications consisting of many components, as it implies
that the user has to perform determinization of such a model “manually”.

Our second contribution is that we propose a technique to gertigits-clock (or periodic-sampliny
tests. Whereas analog-clock tests can measure precisely the delay between two input events, digital-clock
tests can only count how many “ticks” of a periodic clock have occurred between the events. Regarding
outputs, analog-clock tests can emit outputs at precise points in time, whereas in digital-clock test only
guarantees that the output will be emitted at some point between two clock ticks. Other test-interfacing
issues can also be taken into account, such as dkelk(when the clock of the tester is not perfectly
periodic) or delays in transmitting inputs and outputs from the SUT to the tester and back.

Note that generating digital-clock tests dowd mean that we discretize time. Indeed, the specification
still has a continuous-time semantics. It is the tester which samples these with a digital clock.

Our test-generation method relies orsyanbolic reachabilityalgorithm, inspired from similar algo-
rithms used in timed automata model-checking tools such as Krdnfs The technique has been first
introduced in B2], where it is used for fault detection (thysassivetesting, where the tester only observes
the SUT without providing inputs to it). Symbolic reachability allows us to represent the infinite state-space
of a TA model as a finite graph. Test generation can be performed eithstati@vay by extracting a test
suite from this graph, or in aon-the-flyway, by generating the test during test execution. Static test gen-
eration can suffer from the so-callsthte-explosioproblem, because the graph can be very large. On the
other hand, on-the-fly testing requires a time-efficient reachability algorithm, since the tester must be able

1 Notice that a compositional specification does not require that the SUT be implemented following the same structure. Composi-
tion is merely a way of modeling the specification.
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to react to the SUT in real-time. To alleviate this problem, we propose a technique which permits to reduce
the number of symbolic operations required for each time observation, thus, accelerating the reaction time
of the tester.

Generating one test is not enough, and generating complete (or exhaustive up to some depth) test suites
is infeasible in practice. Thus, we propose a hew technique to generate test suites with re et tage
criterion. Two standard coverage criteria are considered in this paper, néocaljpnandedgecoverage,
where locations and edges refer to the specification automaton. The technique relies on the fact that in the
symbolic reachability graph, every node (resp. edge) can be associated to a set of locations (resp. edges) of
the specification automaton. Thus, covering locations (resp. edges) of the specification reduces to covering
nodes in the symbolic reachability graph.

We have implemented our framework in a prototype tool, callée, on top of the IF environmeng].

We have experimented with our tool on a few toy examples, as well as on a real case study, namely, the
execution software of the K9 Rover by NASA({.

The rest of this paper is organized as follows. SecZicgviews the model of timed automata. Section
introduces the testing framework and shows how various specifications can be modeled and how confor-
mance is formally defined. Sectidrshows how digital-clock tests can be generated. Sebtwesents the
coverage technique. Sectiérdiscusses our tool and two case studies. Seatipresents the conclusions
and future work plans.

2 Timed Automata with Inputs, Outputs and Unobservable Actions

To model the specification, we use timed automajanfith deadlinesto capture urgency’], and input,
output and unobservable actions, to capture inputs, outputs and internal actions of the SUT.
As the TA model is well-known, we only give a brief overview here. In particular, we do not consider
a rich discrete-variable state-space and we also omit discussion of how to compose TA. In practice, these
features are essential for ease and clarity of modeling (they are indeed part of our tool, see&ection
As mentioned in the introduction, specifications are usually modeled compositionally, usitgvark
of communicating TAThere are different ways of communication, using shared variables, synchronizing
actions (rendez-vous), FIFO queues, and so on. Moreover, each automaton can have other local variables
than clocks, including booleans, integers, lists, etc. As long as the discrete state-space of the automaton
remains finite, these features do not add to the expressiveness of the model.
Let R be the set of non-negative reals. Given a finite seaaifonsAct, the set(Act U R)* of all
finite real-time sequencesver Act will be denotedRT (Act). € € RT(Act) is the empty sequence. Given
Act’ C Actandp € RT(Act), Pacv (p) denotes therojectionof p to Act’, obtained by “erasing” frorp all
actions not inAct’. For example, ifAct = {a, b}, Act’ = {a} andp = a1b2a 3, thenPa. (p) = a3a3.
The time spent in a sequenpedenotedime(p) is the sum of all delays ip, for exampletime(e) = 0
andtime(a160.5) = 1.5.
A timed automaton ovekct is a tuple(Q, qo, X, Act, E) whereQ is a finite set ofocations ¢, € @ is
the initial location;X is a finite set otlocks E is a finite set obdges Each edgeis atuple, ¢’, vy, r, d, a),
whereg, ¢’ € @Q are the source and destination locationss theguard a conjunction of constraints of the
form z#c, wherex € X, cis an integer constant agd € {<, <,=,>,>}; r C X is the set of clocks to
bereset d € {lazy, delayable, eager} is thedeadline anda € Act is the action. We will not alloveager
edges with guards of the form> c.
A TA A defines an infinite labeled transition system (LTS). Its states arepair§;, v), whereqg € Q
andv : X — Ris a clockvaluation 0 is the valuation assigning to every clock ofd. S, is the set of
all states and{' = (qo, 6) is the initial state. There are two types of transitions. Discrete transitions of the
form (¢,v) % (¢',v"), wherea € Act and there is an edg@, ¢', ), , d, a), such thaw satisfies) and
v’ is obtained by resetting to zero all clockssirand leaving the others unchanged. Timed transitions of
the form(q, v) SR (g,v +t), wheret € R,t > 0 and there is no edgg, ¢”, ¥, r, d, a), such that: either
d = delayable and there exish < t; < ¢t < t such thaw + ¢; = ¢ andv + t2 £ ¢; or d = eager and
v |= v. We use notation such as>, s %, ..., to denote that there existssuch thats % s/, there is no

suchs’, and so on. This notation naturally extends to timed sequences. For exarﬁlé’le{ if there exist
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Figure 2: Examples of specifications and implementations.

s1, 82 such thats = s; 4 S b s, A states € S a is reachableif there existsp € RT(Act) such that
s{t & 5. The set of reachable statesis denotedReach(A).

In the rest of the paper, we assume given a set of acthenspartitioned in two disjoint sets: a set
of input actionsAct;, and a set obutput actionsAct..:. We also assume there is anobservable action
7 & Act. LetAct, = ActU {7}.

A timed automaton with inputs and outpTAIO) is a timed automaton oveXct.. A TAIO is called
observabléf none of its edges is labeled by A TAIO A is calledinput-completéf it can accept any input
at any stateYs € Reach(A).Va € Actj,.s 5. Itis calleddeterministidf Vs, s’, s” € Reach(A).Va €
Act,.s 5 s’ As 5 5" = s = . Itis callednon-blockingf

Vs € Reach(A) .Vt € R. 1
3p € RT(Actou U {7}) .time(p) =t As 2. @)
The non-blocking property states that at any stdtean let time pass forever, even if it does not receive
any input. This is a sanity property which ensures that a TAIO does not “force” its environment to provide
an input by blocking time.

The set ofobservable timed tracas A is defined to be

Traces(A) = {Pact(p) | p € RT(Act,) A s 2} 2

3 Specifications and Conformance

We now describe our testing framework. We assume that the specification of the system to be tested is
given as a non-blocking TAIGLs. We assume that the SUT, also callegplementationcan be modeled
as a non-blocking, input-complete TAI®;. Notice that we do not assume thét is known, simply that it
exists. The assumption a@fs and A; being non-blocking is natural, since in reality time cannot be blocked.
The assumption ofl; being input-complete is also reasonable, since a system usually accepts all inputs at
any time, possibly ignoring them or issuing an error message when the input is not valid. Notice that we
do not assume, as is often done, that the specificatipis input-complete. This is becausk; needs to
be able to model assumptions on the environment, i.e., restrictions on the inputs, as we show below.

In order to formally define the conformance relation, we introduce a number of operators. In the
definitions that follow,A is a TAIO,o € RT(Act), s is a state ofd andS is a set of states od.

0(A)={s e Sa|3peRT(Act,) . s & 5 A Pace(p) =0}
elapse(s) = {t > 0| 3p € RT({7}) . time(p) =t A s >}
out(s) = {a € Actoyt | s =} U elapse(s)

out(S) = J g out(s).

o(A) is the set of all states ofl that can be reached by some timed sequeneéose projection to
observable actions is. elapse(s) is the set of all delays which can elapse frewithout A making any

4/15 Verimag Research Report TR-2004-13



Moez Krichen, Stavros Tripakis

assumptions |
(on the environment)

,,,,,,,,,,,,,,,,,

Figure 3: Specification including assumptions on the environment.

observable actionout(s) is the set of all observable “events” (outputs or delays) that can occur when the
system is at state

The timed input-output conformance relatiodenotedtioco, requires that after any observable se-
guence specified id g, every possible observable outputf (including delays) is also a possible output
of Ag. tioco is inspired from its “untimed” counterpaitco [30]. The key idea is that delays are considered
to be observable events, along with output actions. Formajlyzonforms toAg, denotedA; tioco Ag, if

Vo € Traces(Ag) . out(o(Ar)) C out(o(Ag)). (3)

Due to the fact that implementations are assumed to be input-complete, it can be easily showveotisat
a transitive relation, that is, il tioco B andB tioco C' thenA tioco C. It can be also shown that checking
tioco is undecidable. This is not a problem for black-box testing: siigés unknown, we cannot check
conformance directly, anyway.

tioco permits to express most useful types of requirements for real-time systems, such as the require-
ments that an output must be generated neither too late nor too early. It can also capture “observable
deadlocks”, that is, situations where no output is generated for a “long™4iFiaally, it can capture as-
sumptions on the environment. In the remaining of this section, we illustrate these feattites @fith
simple examples.

In the examples, input actions are denot€db?, ..., and output actions are denotéd !, .... Un-
less otherwise mentioned, deadlines of output edgedeagable and deadlines of input edges asey.

In order not to overload the figures, we do not always draw input-complete automata. We assume that
implementations ignore the missing inputs (this can be modeled by adding self-loop edges covering these
inputs).

Consider the specificatioBpec; shown in Figure2. Spec, could be expressed in English as follows:
“after the firsta received, the system must outputo earlier thar2 and no later thas time units”. Thus,
this specification requires that the outpus not emitted neither too early nor too late. Implementations
Impl; andImpl, conform toSpec;. Impl; producesb exactly 5 time units after reception af Impl,
producesh sometime in the interval, 5]. Implementationdmpl; andImpl, do not conform tcSpec; .

Impl; may produce & after 1 time unit, which is too earlympl, fails to produce & at all. Formally, letting
o = al, we haveout(o(Impls)) = (0,4] U {b} andout(o(Impl,)) = (0, c0), whereasut(c(Spec,)) =
(0,7].

Impl, offers an example of the “observable deadlock” situation mentioned above. “Doing nothing” is
not an option for the SUT, since doing nothing is equivalent to letting time pass. But time is observable
to the tester, which timeouts when the deadline for producing an output is violated. This example also
illustrates how a real-time framework such as the one basewomnhandles deadlocks and timeouts in a
seamless way, without the need of adding modeling artifacts.

Often, the SUT is supposed to operate correctly only in a particular environment, not in any environ-
ment. This brings up the issue of how to incorporassumption®n the environment when building a

2 The requirementdutputb must be emittedometimeafter inputa is received cannot be expressed joco. However, this
requirement is hardly testable: if we do not have an upper bound on the time that it takes &plemitcan we check conformance
within a finite amount of time?
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Figure 4: A task with minimal inter-arrival time 20 and deadline 10.

model of specification. Figurd shows how this can be done. The specification can be modeled compo-
sitionally, in two parts: one part modeling the environment (assumptions) and another part the nominal
behavior of the SUT in this environment (requirements). In this case, the interactions between the two
components are not unobservable, but are exported as inputs and outputs of the global specification.

Let us give a simple example of such a situation. Consider the following specification, ensuring schedu-
lability of an aperiodic task in a typical real-time operating system: “assuming the minimal inter-arrival
time of taskA is 20 time units, the task must be executed within 10 time units”. This specification can
be modeled as shown in Figude Notice that environment assumptions generally make the specification
non-input-complete. In the above example, the seeeriek input cannot be accepted until at least 20 time
units have elapsed since the figstive.

Modeling input/output variables

The TA model we have presented uses the notion of input/oatptidns(or events). In practice, many
systems communicate with the external world using input/ougpaiables This situation can also be
modeled without difficulty in our framework.

There are basically two possibilities to specify real-time requirements related to variables. One is to
refer to variablaipdatesand the other to refer to valukeirations The first can be modeled in our framework
using an action for each update. The second can be modeled using a “begin” action for the point in time
where a variable changes its value to the value that is of interest and an “end” action for the moment where
the variable changes to a different value.

For example, assumeis an input variable ang an output variable. Consider the requirementill
be updated at most 10 time units afteis updated”. Notice that is updated by the environment (or the
tester) whiley is updated by the SUT. Thuspdate, can be introduced as an input action apdate, as
an output action. The specification can be modeled as a TA similar to the ofipetgrof Figure2, with
a? replaced bypdate,? andb! replaced byupdate, !.

This way of modeling supposes that updates are immediately perceived (by the SUT or by the tester)
when they occur. This is not always true. For instance, a sampling controller typically reads its inputs
only periodically (but may write the outputs as soon as they are ready). In this case, it could be that the
specification only requires that the output be produced at most 10 time units after the input is sampled by the
controller, not after it is updated by the environment. This situation can also be modeled in our framework
by explicitly adding automata modeling the sampling (either at the SUT side, or at the tester side, or both).
In fact, we will add such an automaton, called fhiek automaton (see Figum, to the specification, in
order to generate digital-clock tests, as shown in the section that follows.TiEkeautomaton models
sampling at the tester side. A similar automaton can be used to model sampling at the SUT side, with the
difference that theick event would in this case be an input event.
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Input := nil;
State := init_state();
Alarm := set_alarm( State );
loop
await( Alarm or Input );
State := update( State, Alarm, Input );
Verdict := check( State );
if ( Verdict = FAIL or Verdict = PASS ) then
announce( Verdict );
stop;
end if;
Output := decide_output( State );
if ( Output <> nil ) then
emit( Output );
State := update( State, Output );
end if;
Alarm := set _alarm( State );
end loop

Figure 5: Pseudo-code of a generic timed tester.

Other conformance relations

We end this section with a few comments on other conformance relations, sticteddisimulatior(e.g.,
considered in9, 13]), timed trace equivalende.qg., in P4, 27]), or a must/may preorddr? 7]. We believe

that these relations are not appropriate for real-time testing, because they are too strict. For instance, none
of Imply, Impl, conform toSpec, with respect to any of the above relations. This is bec&pse,; does

not specify what should happen if a second inpigt received before the outplits emitted. Thus, it is safe

for Impl; andImpl, to ignore all but the first inpui (recall that we implicitly assume input-completeness

of Impl; andImpl,). This results, however, in traces suchaalsa 1 b, which are in the implementation

but not in the specification, hence, non-conformance with respect to the above relations. For an extensive
discussion of various untimed conformance relations, 3ée [

4 Testing

A test is an experiment performed on the SUT by an agentetter A generic algorithm for a real-time

tester is shown in Figurg. The tester maintains a current state and has access to an alarm (more than one
alarms are also possible). The tester is triggered by two types of events: inputs received from the SUT or
expirations of the alarm. After initializing its state and setting the initial expiration date of the alarm, the
tester enters the following loop:

— the tester awaits for a trigger (an input or the expiration of the alarm);

— when the trigger occurs, the tester updates its state accordingly;

— then it checks whether the test must stop with a PASS or FAIL verdict;

— if the test should continue, the tester decides whether to emit an output to the SUT and if so, it emits
the output and updates its state;

— finally, the tester resets the alarm and re-enters the loop.

Notice that a periodic-sampling tester is a special case of the above generic tester. It resets its alarm
always to the same value (the period) and reads the input when triggered by the alarm (and upon updating
its state).

In building a concrete tester out of this generic scheme, we must answer a number of questains:
is the initial stat® how is the state updat@dhow is the verdict comput@dwhen to emit an output and
which output if many are possildlenow to set the alarf We provide provide answers to these questions

Verimag Research Report TR-2004-13 7115
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Figure 6: Possibldick automata.
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Figure 7: Specification composed with thek automaton.

in the sequel.

The first step in building the tester is to compose the specification automgtaiith a Tick automaton.
The latter models the digital clock of the tester. Two possliék automata are shown in FiguBe The one
on the left models a perfectly periodic clock while the one on the right models a clock with a skew. Notice
that the time units in th&ick automaton must be in accordance with the time unitd in(if necessary,
scaling must be applied to bring all constants to integer values). The compositignwith Tick yields a
new TAIO, denoted! . The latter is depicted in Figui® It has as inputs the inputs dfs and as outputs
the outputs ofdg plus the new outputick. Indeed, since the tester cannot measure time precisely, but only
read the digital clock, we can consider that the tester reacts to time simply by obsgckirfgossibly
counting the number aick events it observes).

A state of the tester will be a sgtof states ofA}iCk. S represents thencertaintyof the tester on which
state the specification could be according to the history of observations. Noté thads not contain
states of the SUT (since its model is unknown) but stated . The initial state of the tester will be

the set containing the singlet@é‘?k, i.e., the initial state ofAT’™®. The tester update$ with each input
a € Acto,: U {tick} (notice that inputs of the tester are outputs of the specificatiortj.bécomes empty,
this implies that is not allowed by the specification, given the present history of observations. Thus, the
SUT is non-conforming and the tester issues a FAIL verdict.
The updates are based on the operator defined below, wherect U {tick}:

succ(S,a) ={s' | Is€ S .3p e RT({7}) . s B35 &'} 4)

succ(S,a) contains all states which can be reached by some statevia a sequence of unobservable
actions ending with the observable actionLet succ,(-) be a shorthand notation for the application of
succ(+, tick) k times. For examplesucca (S) = succ(succ(S, tick), tick).

The updates will be performed as follows. Suppose the current state of the teSteBigppose the
alarm read and it is set to expire ah > k. If the alarm expires with no input being received meanwhile,
this means that — k tick events occurred, thus, the next state of the tester is computd=asuccy(.5).

If an inputa € Acto,: is received before the alarm expires, when the alarm reads> n > k, thenn — k
ticks occurred followed by, thus, the next state of the tester is computed’as succ(succ,,(5),a). As
said above, if evef’ = (), the tester announces FAIL and stops.

The tester also usescc to check whether to emit an output and update its state in such a case. For
eacha € Act;,, the tester computes a temporary vafije= succ(S, a). If S, = 0, thena is not valid. This
means that issuing would violate the specification assumptions on the inputs, thus, it is useless te issue
at this point. On the other hand,Sf, is non-empty, thea can be emitted and the state updatedto
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Figure 8: Specification composed with I/O delay automata.

Modeling interfacing delays

As mentioned in the introduction, it is often the case that there are interfacing delays between the tester
and the SUT. Unless such delays are taken into account, the tester may issue wrong verdicts. Luckily, the
TA model allows such delays to be captured directly in the specification. This can be done in the same way
as in modeling environment assumptions or tester sampling directly in the specification. The specification
is composed with input/output delay automata, as shown in Figufesimple input delay automaton is

shown to the right of the figure. Input actians the original action whereas is the output command of

the tester. This automaton models the assumption that the tester output may experience a delay of at most
2 time units until it is perceived by the SUT. Notice that this automaton does not allow a new input to be
produced while the previous one is still in “transit”. For this, a more complicated automaton is necessary,
which buffers input events. We omit it due to lack of space.

Symbolic tester implementation

Sets of states of a timed automaton can be repressgtetolicallyusing simple polyhedra to encode the
continuous state-space. For instance, the polyhetlrahz < 2 A 2 = y represents the fact that clock

x reads some value withifi, 2] and clocky is equal toxz. Such polyhedra can be implemented using
various data structures, such as DBM#férence bound matricgfl1 8. Computing updates using thecc
operator can be also done symbolically, usingpanded-time reachability analydisr timed automata, as
shown in 37]. Reachability algorithms are standard technology in timed automata verification tools such
as Kronos [ 7], thus, we do not discuss them further here.

On-the-fly testing versus static test generation

The testing method presented above can be applied ionathe-flyor in a static manner. On-the-fly

testing means that the tester computes its state and makes decisions such as whether to emit an output or
wait during the execution of the test. In static test generation, these choices are resolved off-line and are
encoded in a test represented in the form of a finite tree, like the one shown in Bidloees in this tree

are either “input” or “output”. In an input node, the tester waits for an input from the SUT or for the next

tick of its digital clock. In an output node, the tester emits an output to the SUT. Leaves are labeled PASS
or FAIL. In the context of “untimed” systems, on-the-fly testing is supported by the tool Tpen( static

test generation by the tool TG\2(].

On-the-fly testing is advantageous in what concerns memory, since the tester need only keep the current
state, whereas the number of nodes in the static test tree can explode. On the other hand, static test execution
is faster, since the tester need only move to a child node in the tree, whereas a reachability analysis needs
to be performed for each application @afcc. This can sometimes be costly, especially wheec;, is
computed, for largé.

A technique to tackle this problem is to usgarametric Tick automaton, as shown in Figue.

In such an automaton, the period is defined by one or more parameters? éngthe exactly periodic
automaton ofL, U] in the automaton with skew. These parameters are instantiated upon execution, when
their value is known. For example, if we use the exactly periodic automaton and we knaW2Rdicks
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Figure 9: A test represented statically as a tree.
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Figure 10: Parametritick automata.

occurred, we can seé®? = 1023. In the skewed clock automaton, we would get= 1023 - (1 — ¢)

andU = 1023 - (1 + €), wheree is the skew. In this case, theultitick event no longer represents a
single tick, but1023 ticks. The advantage is that we now need apply the symbolic successor operator
succ(S, multitick) only once, instead 0f023 times. Note that this technique relies on the fact that our
prototype tool (discussed in Secti6nallows parametric automata to be created and destroyed dynamically,
which is a feature few such tools possess.

Soundness and strictness

The tests generated by the method presented aboveoare] in the sense that if the tester announces
FAIL and the SUT is indeed non-conforming to the specification. Obviously, this is a minimal correctness
requirement from a testing framework. In fact, our tests satisfy a stronger property than soundness (which
can be trivially satisfied by a test always announcing PASS), csifexinesg25]. Informally, a test is strict

if, every time it outputs PASS, then indeed the behavior of the SUT was a conforming behavior according
to the specification. In other words, the subset of the SUT tested by this particular test is guaranteed to be
conforming.

5 Coverage

A test suite izompleteaf it is sufficient to guarantee conformance (i.e., passing all tests in the suite implies
that the SUT is conforming). It is generally impossible to generate a finite complete test Buitéa.when
this is possible in principle (e.g., by assuming an upper bound on the number of states of the implementa-
tion, it is usually infeasible in practice, because the number of tests required is prohibitivelyZgige [

To remedy this fact, test generation methods usually make a compromise: instead of generating a
complete test suite, generate a test suite whimrersthe specification. Different coverage criteria have
been proposed for software, such as statement coverage (every statement of the program must be “explored”
by at least one test), branch coverage, and so on (see, for instance, the Séfkein[the TA case the
state space is infinite, thus, existing methods attempt to cover either finite abstractions of the state space
or structural elements of the specification. For instanzg, 19 cover theregion graphabstraction ]
and [27] cover thetime-abstracting partition grapfi34]. [27] propose techniques for edge, location, or
definition-use pair coverage and can also generate time-optimal tdstengider various coverage criteria
in the context of timed Petri nets.

3 This is because implementations can have an arbitrary number of states, while a finite test suite can only explore a bounded
number of states. But an implementation could be conforming up to a certain point and not conforming afterwards.
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Here, we propose a new technique for edge or location coverage. Notice that we cannot use the tech-
nigue of 27]. This technique relies on the assumption that outputs in the specification are urgent and
isolated. Thanks to this assumption, every input sequence results in a unique output sequence. This means
that tests arsequencegather than trees. Finding a test can then be reduced to finding a run from a source
to a target state, which can be done using standard reachability algorithms for timed automata.

Our technique relies on the conceptaifservable graplof the composed automatohl*, denoted

OG. This graph is generated as follows. The initial node of the gra@hg}é‘w}. For each generated node
S and each: € Act U {tick}, a successor nod# = succ(S, a) is generated and an ed§e® S’ is added
to the graph. Using arguments similar to the finiteness oféb@n graph[Z], it can be shown that the
observable graph is finite. Its size, however, can be exponential in the number ofclocks.

Every node ofOG corresponds to a set of statéof AL, Each state € S includes a location of
As. Thus, every node dG can be associated with a set of locationsigf which can be computed while
generatingdG. On the other hand, every static test tree is essentially a sub-gr&ph. dl/e say that such
a testcoversthe set of locations associated with all node©6&f appearing in the test. We say that a set of
tests (ortest suit¢ achievedocation coveragéf every reachable location od g is covered by some test in
the suite? Clearly, sinceOG is finite and the set of locations ofg is also finite, a finite number of tests
suffices to achieve location coverage.

Similarly, every edge 0©G can be associated to a set of edgesiof In particular, an edgé = S’
will be associated to all edges which are visited during the reachability algorithm which conspiites
S. Formally, ifs € S, s’ € S ands %% s’ for an un observable sequengeall edges in the path from
to s’ are covered by the edge = S’. We say that a test suite achievatige coverag# every reachable
edge ofAg is covered by some test in the suite. As with location coverage, a finite number of tests suffices
to achieve edge coverage.

The above definitions imply a straightforward algorithm to generate a test suite which achieves location
or edge coverage. The first step is to build the observation graphéf Then, tests are extracted statically
from OG, until coverage is achieved. Tests are extracted as follows.

While there are locations not covered, the algorithm picks such a location, $&xt, it picks a node
v of OG associated witly (such a node exists singds reachable) and finds a path@& from the initial
node tov. Then, it extends this path into a test tree. This can be done by completing the path with the
missing edges, labeled with tester inputs. For instance, if there is amedge v, in the path, with

a € Actoy U {tick}, then every outgoing edge of labeled with a tester input i.e., every edge; LS

b € Actou U {tick}, must be added. The leaves of the tree are labeled PASS, except if a leaf is empty, in
which case it is labeled FAIL. This new test is added to the set of tests already generated and the algorithm
repeats choosing a new uncovered location, until all locations are covered.

An edge-covering test suite can be extracted in a similar way. The only difference is that instead of
finding a path reaching a target node(, the algorithm must find a path reaching a target edge. Notice
that these algorithms are very similar to an AND/OR search in a finite graph (AND for tester inputs and
OR for tester outputs).

The worst-case complexity of the above algorithm is polynomial (quadratic) in the s2@.dhdeed,
finding a node (or edge) @G associated with a location (or edge)4f is linear. Finding a path iQG
and extending the path into a test tree is also linear. These steps are performed at most as many times as
there are locations (or edges)y;.

One drawback of the algorithm is that it does not always genenatemaltest suites. A test suite is
minimal in the sense that if any test is removed from the suite, then coverage is no longer achieved. In
general the minimal suite is not unique. Moreover, adding a new test to the suite may result in making one
or more previously generated tests redundant. We are currently studying methods of generating minimal
test suites.

4 This is an inherent worst-case complexity barrier, even for the simplest analysis problems in timed automata (e.g., reachability).
In practice, symbolic methods have permitted to treat industrial case studies of moderate size (tens of components).
5 Unreachable locations ofg can be ignored, since they play no role regarding conformance.
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Figure 11: A lighting device.

6 Tool and case studies

We have built a prototype test-generation tool, calldds, on top of the IF environmeng]. The IF mod-
eling language allows to specify systems consisting of many processes communicating through message
passing or shared variables and includes features such as hierarchy, priorities, dynamic creation and com-
plex data types. The IF tool-suite includes a simulator, a model checker and a connection to the untimed
test generator TGVZ[J]. TTG is implemented independently from TGV. It is written in C++ and uses the
basic libraries of IF for parsing and symbolic reachability of timed automata with deadlines.

TTG takes as main input the specification automaton, written in IF language, and can generate digital-
clock tests with respect to a given (parametifiggk automaton. By modifying th&ick automaton, the
user can implement different sampling rates, model skew or jitter in the clock, and sbTdgh.can be
executed innteractivemode, where the user guides the test generation by resolving decision goi@s.
can also be asked to generate a singlerteslomlyor theexhaustivdest suite, up to a user-defined depth.
The depth of a test is the longest path from the initial state to a pass or fail state. The tests are output in IF
language. Implementation of test selection criteria is underway.

6.1 Atoy example

We have applied TG to a small case study, which is a modification of the light switch example presented
in [22]. The (modified) specification is shown in Figutd. It models a lighting device, consisting of

two modules: the “Button” module which handles the user interface through a touch-sensitive pad and the
“Lamp” module which lights the lamp to intensity levels “dim” or “bright”, or turns the light off. The user
interface logic is as follows: a “single” touch means “one level higher”, whereas a “double” touch (two
quick consecutive touches) means “one level lower”. It is assumed that higher and lower is modulo three,
thus, a single touch while the light is bright turns it off.

The device communicates with the external world through inputh and outputsff, dim, bright.
Eventssingle and double are used for internal communication between the two modules threyigh
chronous rendez-vowend are unobservable to the external user. The Button module uses the timing pa-
rameteiD which specifies the maximum delay between two consecutive touches if they are to be considered
as a double touch. The Lamp module uses the timing parametansiM which specify the minimum and
maximum delay for the lamp to change intensity (e.g., to warm-up a halogen bulb). In order not to overload
the figure, we omit most guards, resets and deadlines in the Lamp module. They are placed similarly to the
ones shown in the figure (i.e., resets in inputs, guards and deadlines in outputs).

We have used TG to generate the exhaustive digital-clock test suite for the above specification, with
parameter séddb = 1, m = 1,M = 2, for various depth levels. We have obtained 68, 180, 591 and 2243
tests, for depth levels 5, 6, 7 and 8, respectively. Notice that these are the sets of all possible tests up to
the specified depth: no test selection is performed. Moreover, the current implementation is sub-optimal
because it generates tests announgiyg before the maximum depth is reached. Notice that a single test
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suffices to achieve location-coverage of this specification: it first applies three single touches and then three
double touches.

One of the tests generated BY G is shown in Figurd.2. The drawing has been produced automatically
using theif2eps  tool by Marius Bozga.

6.2 The K9 Rover case study

We have also used@ TG to test the executive subsystem of the Mars rover controller K9, developed at
NASA Ames. For a more extensive description of the case study, the reader is referfiédl t@®[r
treatment is presented in detail is].[ Here, we only present a brief overview.

The Rover executive is a multi-threaded program that consists of approximately 35000 lines of C++
code, of which 9600 lines of code are related to actual functionality. The executive is responsible of
executing a giveplan. The plan defines the steps to be performed in the mission, and also gives detailed
information about their order, their timing, what to do in case of failures, and so on. Thus, the plan can be
taken to be the specification. On the other hand, the SUT is the executive fed with this plan as input. Indeed,
executing the plan on the executive must produce a behavior which meets the requirements specified in the
plan.

We have automatically translated various plans into timed automata specifications using the technique
of [1]. Notice that this technique is compositional, thus, the resulting TA contained unobservable internal
events. From each TA specification, we generated a tester U§igg Then we applied the tester to a
number of “log-traces” generated by the executive on this plan, kindly provided to us by people at NASA.
The results were very encouraging. In all cases, the tester found out the bugs that were already known to
be contained in the traces. Generation and execution of each tester took a matter of seconds.

7 Summary and future work

We have proposed a testing framework for real-time systems based on partially-observable, non-deterministic
timed-automata specifications and on digital-clock tests. To our knowledge, this is the first framework that
can fully handle such specifications and such tests. We introduced a timed version of the input-output con-
formance relation of (] and proposed techniques to generate location- or edge-covering test suites. We
reported on a prototype tool and two case-studies.

We are currently implementing i TG the coverage technique discussed in Secliand are also
studying methods to generate minimal test suites. We are also examining heuristics to choose tester output
times on-the-fly. This can permit to guarantee some coverage in on-the-fly testing, by performing multiple
tests and using appropriate book-keeping, without having to generate the symbolic reachability graph.
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Figure 12: A test generated automatically By G.
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