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Abstract

We propose a new framework for black-box conformance testing of real-time systems. The
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Moez Krichen, Stavros Tripakis

1 Introduction

Testing is a fundamental step in any development process. It consists in applying a set of experiments to
a system (system under test− SUT), with multiple aims, from checking correct functionality to measuring
performance. In this paper, we are interested in so-calledblack-box conformance testing, where the aim is
to check conformance of the SUT to a given specification. The SUT is a “black box” in the sense that we
do not have a model of it, thus, can only rely on its observable input/output behavior.

Our work targetsreal-timesystems, that is, systems which operate in an environment with strict timing
constraints. Examples of such systems are many: embedded systems (e.g., automotive, avionic and robotic
controllers, mobile phones), communication protocols, multimedia systems, and so on. When testing real-
time systems, one must pay attention to two important facts. First, it is not sufficient to check whether the
SUT produces the correct outputs; it must also be checked that the timing of the outputs is correct. Second,
the timing of the inputs determines which outputs will be produced as well as the timing of these outputs.

Classical testing frameworks are based on Mealy machines (e.g., see [14, 26]) or finite labeled tran-
sition systems− LTSs (e.g., see [31, 11, 20, 4, 15]). These frameworks are not well-suited for real-time
systems. In Mealy machines, inputs and outputs are synchronous, which is a reasonable assumption when
modeling synchronous hardware, but not when outputs are produced with variable delays, governed by
complex timing constraints. In testing methods based on LTSs, time is typically abstracted away and time-
outs are modeled by specialδ actions [30] which can be interpreted as “no output will be observed”. This
is problematic, because timeouts need to be instantiated with concrete values upon testing (e.g., “if nothing
happens for 10 seconds, output FAIL”). However, there is no systematic way to derive the timeout val-
ues (indeed, durations are not expressed in the specification). Thus, one must rely on empirical, ad-hoc
methods.

A model which has become quite popular during the past decade for modeling and verifying real-time
systems is the model oftimed automata− TA [2]. A number of methods for testing real-time systems based
on variants of the above model (or other similar models such as timed Petri nets) have been proposed (e.g.,
see [9, 16, 19, 23, 27, 29, 28, 12, 24, 22]). However, these methods present two major limitations.

First, only restricted subclasses of the TA model are considered. This is problematic, since it limits the
class of specifications that can be expressed in the above frameworks. For example, [29, 22] consider TA
where outputs areisolatedandurgent. The first condition states that, at any given state, the automaton can
only output a single action. Therefore, a specification such as “when inputa is received, output eitherb or
c” cannot be expressed in this model. Worse, the second condition states that, at any given state, if an output
is possible, then time cannot elapse. This essentially means that outputs must be emitted at precise points in
time. Therefore, a specification such as “when inputa is received, outputb must be emitted within at most
10 time units” cannot be expressed. Most other works consider deterministic or determinizable subclasses
of TA. For instance, [27] useevent-recording automata[3] and [24] use a determinizable TA model with
restricted clock resets. Most of the works also assume that specifications arefully-observable, meaning that
it is assumed that all events can be observed by the tester. All these restrictions limit the applicability of
the methods. Indeed, a specification must be able to leave freedom to potential implementations, especially
on choosing different outputs or output times. Also, as we argue below, partial observability and non-
determinism are essential for ease of modeling, expressiveness and implementability.

The second limitation concerns implementability of tests. Onlyanalog-clocktests (in the sense of [21,
25]) are considered in the works above. These are tests which can observe the time of inputs precisely
and can also react by emitting outputs in precise points in time. For example, a test like “emit outputa at
time 1; if at time 5 inputb is received, announce PASS and stop, otherwise, announce FAIL” is an analog-
clock test. Analog-clock tests are problematic, since they are difficult, if not impossible, to implement with
finite-precision clocks. The tester which implements the test of the example above must be able to emit
a preciselyat time 1 and check whetherb occurredpreciselyat time 5. However, the tester will typically
sample its inputs periodically, say, every0.1 time units, thus, it cannot distinguish betweenb arriving
anywhere in the interval(4.9, 5.1).

Moreover, delays occur in the transmission of events from the SUT to the tester and vice versa. For
instance, a tester may issue an output command when its internal clock expires, say, at time 10. However,
operating system and device-driver delays may result in the SUT receiving the input at time10.5 or later.
These delays must be accounted for, in order not to give incorrect PASS/FAIL verdicts. This point is also
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Figure 1: A compositional specification with internal (unobservable) actions.

made in [12], where other issues in interfacing tester and SUT are also brought up (e.g., observability
problems). Some examples are given on how to control or observe SUT events during execution. However,
no general theory of handling such issues is provided.

In this paper, we propose a new testing framework for real-time systems, which lifts the above lim-
itations. Our framework isexpressive: it can fully handlepartially-observable, non-deterministictimed
automata. It is alsoimplementable: the tests we generate can be implemented using periodic clocks of
finite precision.

We model specifications as timed automata with input, output or unobservable actions (without loss
of generality, a single unobservable action is enough). The automata can also be non-deterministic, in the
sense that a given action at a given time might lead the automaton to two different states. Such models
arise often in practice. Specifications are usually built in acompositionalway, from many components (see
Figure1). This greatly simplifies modeling.1 In such cases,internal component interactions are typically
unobservable to the external world, thus, also to the tester.Abstractionsfrom low-level details are also used
often, to simplify modeling and manage complexity. Such abstractions could, for instance, “hide” some
variables, which typically results in non-determinism.

In general, timed-automata cannot be determinized [2] and unobservable actions cannot be removed [6].
It can be argued that, in practice, many models will be determinizable. However, checking this (and
performing the determinization) is undecidable [33]. Thus, the user is left with two alternatives. Either
attempt to fit the specification into a deterministic, fully-observable TA model, or use a framework like
ours, which handles non-determinism and partial observability directly. Clearly, the first alternative is
hardly feasible in practice, especially for large specifications consisting of many components, as it implies
that the user has to perform determinization of such a model “manually”.

Our second contribution is that we propose a technique to generatedigital-clock(or periodic-sampling)
tests. Whereas analog-clock tests can measure precisely the delay between two input events, digital-clock
tests can only count how many “ticks” of a periodic clock have occurred between the events. Regarding
outputs, analog-clock tests can emit outputs at precise points in time, whereas in digital-clock test only
guarantees that the output will be emitted at some point between two clock ticks. Other test-interfacing
issues can also be taken into account, such as clockskew(when the clock of the tester is not perfectly
periodic) or delays in transmitting inputs and outputs from the SUT to the tester and back.

Note that generating digital-clock tests doesnotmean that we discretize time. Indeed, the specification
still has a continuous-time semantics. It is the tester which samples these with a digital clock.

Our test-generation method relies on asymbolic reachabilityalgorithm, inspired from similar algo-
rithms used in timed automata model-checking tools such as Kronos [17]. The technique has been first
introduced in [32], where it is used for fault detection (thus,passivetesting, where the tester only observes
the SUT without providing inputs to it). Symbolic reachability allows us to represent the infinite state-space
of a TA model as a finite graph. Test generation can be performed either in astaticway by extracting a test
suite from this graph, or in anon-the-flyway, by generating the test during test execution. Static test gen-
eration can suffer from the so-calledstate-explosionproblem, because the graph can be very large. On the
other hand, on-the-fly testing requires a time-efficient reachability algorithm, since the tester must be able

1 Notice that a compositional specification does not require that the SUT be implemented following the same structure. Composi-
tion is merely a way of modeling the specification.
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to react to the SUT in real-time. To alleviate this problem, we propose a technique which permits to reduce
the number of symbolic operations required for each time observation, thus, accelerating the reaction time
of the tester.

Generating one test is not enough, and generating complete (or exhaustive up to some depth) test suites
is infeasible in practice. Thus, we propose a new technique to generate test suites with respect to acoverage
criterion. Two standard coverage criteria are considered in this paper, namely,locationandedgecoverage,
where locations and edges refer to the specification automaton. The technique relies on the fact that in the
symbolic reachability graph, every node (resp. edge) can be associated to a set of locations (resp. edges) of
the specification automaton. Thus, covering locations (resp. edges) of the specification reduces to covering
nodes in the symbolic reachability graph.

We have implemented our framework in a prototype tool, calledTTG, on top of the IF environment [8].
We have experimented with our tool on a few toy examples, as well as on a real case study, namely, the
execution software of the K9 Rover by NASA [10].

The rest of this paper is organized as follows. Section2 reviews the model of timed automata. Section3
introduces the testing framework and shows how various specifications can be modeled and how confor-
mance is formally defined. Section4 shows how digital-clock tests can be generated. Section5 presents the
coverage technique. Section6 discusses our tool and two case studies. Section7 presents the conclusions
and future work plans.

2 Timed Automata with Inputs, Outputs and Unobservable Actions

To model the specification, we use timed automata [2] with deadlinesto capture urgency [7], and input,
output and unobservable actions, to capture inputs, outputs and internal actions of the SUT.

As the TA model is well-known, we only give a brief overview here. In particular, we do not consider
a rich discrete-variable state-space and we also omit discussion of how to compose TA. In practice, these
features are essential for ease and clarity of modeling (they are indeed part of our tool, see Section6).
As mentioned in the introduction, specifications are usually modeled compositionally, using anetwork
of communicating TA. There are different ways of communication, using shared variables, synchronizing
actions (rendez-vous), FIFO queues, and so on. Moreover, each automaton can have other local variables
than clocks, including booleans, integers, lists, etc. As long as the discrete state-space of the automaton
remains finite, these features do not add to the expressiveness of the model.

Let R be the set of non-negative reals. Given a finite set ofactionsAct, the set(Act ∪ R)∗ of all
finite real-time sequencesoverAct will be denotedRT(Act). ε ∈ RT(Act) is the empty sequence. Given
Act′ ⊆ Act andρ ∈ RT(Act),PAct′(ρ) denotes theprojectionof ρ to Act′, obtained by “erasing” fromρ all
actions not inAct′. For example, ifAct = {a, b}, Act′ = {a} andρ = a 1 b 2 a 3, thenPAct′(ρ) = a 3 a 3.
The time spent in a sequenceρ, denotedtime(ρ) is the sum of all delays inρ, for example,time(ε) = 0
andtime(a 1 b 0.5) = 1.5.

A timed automaton overAct is a tuple(Q, q0, X,Act,E) whereQ is a finite set oflocations; q0 ∈ Q is
the initial location;X is a finite set ofclocks; E is a finite set ofedges. Each edge is a tuple(q, q′, ψ, r , d , a),
whereq, q′ ∈ Q are the source and destination locations;ψ is theguard, a conjunction of constraints of the
form x#c, wherex ∈ X, c is an integer constant and# ∈ {<,≤,=,≥, >}; r ⊆ X is the set of clocks to
be reset; d ∈ {lazy, delayable, eager} is thedeadline; anda ∈ Act is the action. We will not alloweager
edges with guards of the formx > c.

A TA A defines an infinite labeled transition system (LTS). Its states are pairss = (q, v), whereq ∈ Q
andv : X → R is a clockvaluation. ~0 is the valuation assigning0 to every clock ofA. SA is the set of
all states andsA

0 = (q0,~0) is the initial state. There are two types of transitions. Discrete transitions of the
form (q, v) a→ (q′, v′), wherea ∈ Act and there is an edge(q, q′, ψ, r , d , a), such thatv satisfiesψ and
v′ is obtained by resetting to zero all clocks inr and leaving the others unchanged. Timed transitions of

the form(q, v) t→ (q, v + t), wheret ∈ R, t > 0 and there is no edge(q, q′′, ψ, r , d , a), such that: either
d = delayable and there exist0 ≤ t1 < t2 ≤ t such thatv + t1 |= ψ andv + t2 6|= ψ; or d = eager and
v |= ψ. We use notation such ass

a→, s 6 a→, ..., to denote that there existss′ such thats
a→ s′, there is no

suchs′, and so on. This notation naturally extends to timed sequences. For example,s
a1b→ s′ if there exist
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Figure 2: Examples of specifications and implementations.

s1, s2 such thats
a→ s1

1→ s2
b→ s′. A states ∈ SA is reachableif there existsρ ∈ RT(Act) such that

sA
0

ρ→ s. The set of reachable states ofA is denotedReach(A).
In the rest of the paper, we assume given a set of actionsAct, partitioned in two disjoint sets: a set

of input actionsActin and a set ofoutput actionsActout. We also assume there is anunobservable action
τ 6∈ Act. Let Actτ = Act ∪ {τ}.

A timed automaton with inputs and outputs(TAIO) is a timed automaton overActτ . A TAIO is called
observableif none of its edges is labeled byτ . A TAIO A is calledinput-completeif it can accept any input
at any state:∀s ∈ Reach(A) .∀a ∈ Actin . s

a→. It is calleddeterministicif ∀s, s′, s′′ ∈ Reach(A) .∀a ∈
Actτ . s

a→ s′ ∧ s a→ s′′ ⇒ s′ = s′′. It is callednon-blockingif

∀s ∈ Reach(A) .∀t ∈ R .

∃ρ ∈ RT(Actout ∪ {τ}) . time(ρ) = t ∧ s ρ→ .
(1)

The non-blocking property states that at any state,A can let time pass forever, even if it does not receive
any input. This is a sanity property which ensures that a TAIO does not “force” its environment to provide
an input by blocking time.

The set ofobservable timed tracesof A is defined to be

Traces(A) = {PAct(ρ) | ρ ∈ RT(Actτ ) ∧ sA
0

ρ→}. (2)

3 Specifications and Conformance

We now describe our testing framework. We assume that the specification of the system to be tested is
given as a non-blocking TAIOAS . We assume that the SUT, also calledimplementation, can be modeled
as a non-blocking, input-complete TAIOAI . Notice that we do not assume thatAI is known, simply that it
exists. The assumption ofAS andAI being non-blocking is natural, since in reality time cannot be blocked.
The assumption ofAI being input-complete is also reasonable, since a system usually accepts all inputs at
any time, possibly ignoring them or issuing an error message when the input is not valid. Notice that we
do not assume, as is often done, that the specificationAS is input-complete. This is becauseAS needs to
be able to model assumptions on the environment, i.e., restrictions on the inputs, as we show below.

In order to formally define the conformance relation, we introduce a number of operators. In the
definitions that follow,A is a TAIO,σ ∈ RT(Act), s is a state ofA andS is a set of states ofA.

σ(A) = {s ∈ SA | ∃ρ ∈ RT(Actτ ) . sA
0

ρ→ s ∧ PAct(ρ) = σ}
elapse(s) = {t > 0 | ∃ρ ∈ RT({τ}) . time(ρ) = t ∧ s ρ→}
out(s) = {a ∈ Actout | s

a→} ∪ elapse(s)
out(S) =

⋃
s∈S out(s).

σ(A) is the set of all states ofA that can be reached by some timed sequenceρ whose projection to
observable actions isσ. elapse(s) is the set of all delays which can elapse froms withoutA making any
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Figure 3: Specification including assumptions on the environment.

observable action.out(s) is the set of all observable “events” (outputs or delays) that can occur when the
system is at states.

The timed input-output conformance relation, denotedtioco, requires that after any observable se-
quence specified inAS , every possible observable output ofAI (including delays) is also a possible output
ofAS . tioco is inspired from its “untimed” counterpart,ioco [30]. The key idea is that delays are considered
to be observable events, along with output actions. Formally,AI conforms toAS , denotedAI tioco AS , if

∀σ ∈ Traces(AS) . out(σ(AI)) ⊆ out(σ(AS)). (3)

Due to the fact that implementations are assumed to be input-complete, it can be easily shown thattioco is
a transitive relation, that is, ifA tioco B andB tioco C thenA tioco C. It can be also shown that checking
tioco is undecidable. This is not a problem for black-box testing: sinceAI is unknown, we cannot check
conformance directly, anyway.

tioco permits to express most useful types of requirements for real-time systems, such as the require-
ments that an output must be generated neither too late nor too early. It can also capture “observable
deadlocks”, that is, situations where no output is generated for a “long” time.2 Finally, it can capture as-
sumptions on the environment. In the remaining of this section, we illustrate these features oftioco with
simple examples.

In the examples, input actions are denoteda?, b?, ..., and output actions are denoteda!, b!, .... Un-
less otherwise mentioned, deadlines of output edges aredelayable and deadlines of input edges arelazy.
In order not to overload the figures, we do not always draw input-complete automata. We assume that
implementations ignore the missing inputs (this can be modeled by adding self-loop edges covering these
inputs).

Consider the specificationSpec1 shown in Figure2. Spec1 could be expressed in English as follows:
“after the firsta received, the system must outputb no earlier than2 and no later than8 time units”. Thus,
this specification requires that the outputb is not emitted neither too early nor too late. Implementations
Impl1 and Impl2 conform toSpec1. Impl1 producesb exactly 5 time units after reception ofa. Impl2
producesb sometime in the interval[4, 5]. ImplementationsImpl3 and Impl4 do not conform toSpec1.
Impl3 may produce ab after 1 time unit, which is too early.Impl4 fails to produce ab at all. Formally, letting
σ = a 1, we haveout(σ(Impl3)) = (0, 4] ∪ {b} andout(σ(Impl4)) = (0,∞), whereasout(σ(Spec1)) =
(0, 7].

Impl4 offers an example of the “observable deadlock” situation mentioned above. “Doing nothing” is
not an option for the SUT, since doing nothing is equivalent to letting time pass. But time is observable
to the tester, which timeouts when the deadline for producing an output is violated. This example also
illustrates how a real-time framework such as the one based ontioco handles deadlocks and timeouts in a
seamless way, without the need of adding modeling artifacts.

Often, the SUT is supposed to operate correctly only in a particular environment, not in any environ-
ment. This brings up the issue of how to incorporateassumptionson the environment when building a

2 The requirement “outputb must be emittedsometimeafter inputa is received” cannot be expressed bytioco. However, this
requirement is hardly testable: if we do not have an upper bound on the time that it takes to emitb, how can we check conformance
within a finite amount of time?
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Figure 4: A task with minimal inter-arrival time 20 and deadline 10.

model of specification. Figure3 shows how this can be done. The specification can be modeled compo-
sitionally, in two parts: one part modeling the environment (assumptions) and another part the nominal
behavior of the SUT in this environment (requirements). In this case, the interactions between the two
components are not unobservable, but are exported as inputs and outputs of the global specification.

Let us give a simple example of such a situation. Consider the following specification, ensuring schedu-
lability of an aperiodic task in a typical real-time operating system: “assuming the minimal inter-arrival
time of taskA is 20 time units, the task must be executed within 10 time units”. This specification can
be modeled as shown in Figure4. Notice that environment assumptions generally make the specification
non-input-complete. In the above example, the secondarrive input cannot be accepted until at least 20 time
units have elapsed since the firstarrive.

Modeling input/output variables

The TA model we have presented uses the notion of input/outputactions(or events). In practice, many
systems communicate with the external world using input/outputvariables. This situation can also be
modeled without difficulty in our framework.

There are basically two possibilities to specify real-time requirements related to variables. One is to
refer to variableupdatesand the other to refer to valuedurations. The first can be modeled in our framework
using an action for each update. The second can be modeled using a “begin” action for the point in time
where a variable changes its value to the value that is of interest and an “end” action for the moment where
the variable changes to a different value.

For example, assumex is an input variable andy an output variable. Consider the requirement “y will
be updated at most 10 time units afterx is updated”. Notice thatx is updated by the environment (or the
tester) whiley is updated by the SUT. Thus,updatex can be introduced as an input action andupdatey as
an output action. The specification can be modeled as a TA similar to the one forSpec1 of Figure2, with
a? replaced byupdatex? andb! replaced byupdatey!.

This way of modeling supposes that updates are immediately perceived (by the SUT or by the tester)
when they occur. This is not always true. For instance, a sampling controller typically reads its inputs
only periodically (but may write the outputs as soon as they are ready). In this case, it could be that the
specification only requires that the output be produced at most 10 time units after the input is sampled by the
controller, not after it is updated by the environment. This situation can also be modeled in our framework
by explicitly adding automata modeling the sampling (either at the SUT side, or at the tester side, or both).
In fact, we will add such an automaton, called theTick automaton (see Figure6), to the specification, in
order to generate digital-clock tests, as shown in the section that follows. TheTick automaton models
sampling at the tester side. A similar automaton can be used to model sampling at the SUT side, with the
difference that thetick event would in this case be an input event.
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Input := nil;
State := init_state();
Alarm := set_alarm( State );
loop

await( Alarm or Input );
State := update( State, Alarm, Input );
Verdict := check( State );
if ( Verdict = FAIL or Verdict = PASS ) then

announce( Verdict );
stop;

end if;
Output := decide_output( State );
if ( Output <> nil ) then

emit( Output );
State := update( State, Output );

end if;
Alarm := set_alarm( State );

end loop

Figure 5: Pseudo-code of a generic timed tester.

Other conformance relations

We end this section with a few comments on other conformance relations, such astimed bisimulation(e.g.,
considered in [29, 13]), timed trace equivalence(e.g., in [24, 22]), or a must/may preorder[27]. We believe
that these relations are not appropriate for real-time testing, because they are too strict. For instance, none
of Impl1, Impl2 conform toSpec1 with respect to any of the above relations. This is becauseSpec1 does
not specify what should happen if a second inputa is received before the outputb is emitted. Thus, it is safe
for Impl1 andImpl2 to ignore all but the first inputa (recall that we implicitly assume input-completeness
of Impl1 and Impl2). This results, however, in traces such asa 1 a 1 b, which are in the implementation
but not in the specification, hence, non-conformance with respect to the above relations. For an extensive
discussion of various untimed conformance relations, see [31].

4 Testing

A test is an experiment performed on the SUT by an agent, thetester. A generic algorithm for a real-time
tester is shown in Figure5. The tester maintains a current state and has access to an alarm (more than one
alarms are also possible). The tester is triggered by two types of events: inputs received from the SUT or
expirations of the alarm. After initializing its state and setting the initial expiration date of the alarm, the
tester enters the following loop:

− the tester awaits for a trigger (an input or the expiration of the alarm);
− when the trigger occurs, the tester updates its state accordingly;
− then it checks whether the test must stop with a PASS or FAIL verdict;
− if the test should continue, the tester decides whether to emit an output to the SUT and if so, it emits

the output and updates its state;
− finally, the tester resets the alarm and re-enters the loop.
Notice that a periodic-sampling tester is a special case of the above generic tester. It resets its alarm

always to the same value (the period) and reads the input when triggered by the alarm (and upon updating
its state).

In building a concrete tester out of this generic scheme, we must answer a number of questions:what
is the initial state? how is the state updated? how is the verdict computed? when to emit an output and
which output if many are possible? how to set the alarm? We provide provide answers to these questions
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in the sequel.
The first step in building the tester is to compose the specification automatonAS with aTick automaton.

The latter models the digital clock of the tester. Two possibleTick automata are shown in Figure6. The one
on the left models a perfectly periodic clock while the one on the right models a clock with a skew. Notice
that the time units in theTick automaton must be in accordance with the time units inAS (if necessary,
scaling must be applied to bring all constants to integer values). The composition ofAS with Tick yields a
new TAIO, denotedATick

S . The latter is depicted in Figure7. It has as inputs the inputs ofAS and as outputs
the outputs ofAS plus the new outputtick. Indeed, since the tester cannot measure time precisely, but only
read the digital clock, we can consider that the tester reacts to time simply by observingtick (possibly
counting the number oftick events it observes).

A state of the tester will be a setS of states ofATick
S . S represents theuncertaintyof the tester on which

state the specification could be according to the history of observations. Note thatS does not contain
states of the SUT (since its model is unknown) but states ofATick

S . The initial state of the tester will be

the set containing the singletonsATick
S

0 , i.e., the initial state ofATick
S . The tester updatesS with each input

a ∈ Actout ∪ {tick} (notice that inputs of the tester are outputs of the specification). IfS becomes empty,
this implies thata is not allowed by the specification, given the present history of observations. Thus, the
SUT is non-conforming and the tester issues a FAIL verdict.

The updates are based on the operator defined below, wherea ∈ Act ∪ {tick}:

succ(S, a) = {s′ | ∃s ∈ S . ∃ρ ∈ RT({τ}) . s ρ→ a→ s′}. (4)

succ(S, a) contains all states which can be reached by some state inS via a sequence of unobservable
actions ending with the observable actiona. Let succk(·) be a shorthand notation for the application of
succ(·, tick) k times. For example,succ2(S) = succ(succ(S, tick), tick).

The updates will be performed as follows. Suppose the current state of the tester isS. Suppose the
alarm readsk and it is set to expire atm > k. If the alarm expires with no input being received meanwhile,
this means thatm− k tick events occurred, thus, the next state of the tester is computed asS′ = succk(S).
If an inputa ∈ Actout is received before the alarm expires, when the alarm readsn,m > n > k, thenn−k
ticks occurred followed bya, thus, the next state of the tester is computed asS′ = succ(succn(S), a). As
said above, if everS′ = ∅, the tester announces FAIL and stops.

The tester also usessucc to check whether to emit an output and update its state in such a case. For
eacha ∈ Actin, the tester computes a temporary valueSa = succ(S, a). If Sa = ∅, thena is not valid. This
means that issuinga would violate the specification assumptions on the inputs, thus, it is useless to issuea
at this point. On the other hand, ifSa is non-empty, thena can be emitted and the state updated toSa.
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Figure 8: Specification composed with I/O delay automata.

Modeling interfacing delays

As mentioned in the introduction, it is often the case that there are interfacing delays between the tester
and the SUT. Unless such delays are taken into account, the tester may issue wrong verdicts. Luckily, the
TA model allows such delays to be captured directly in the specification. This can be done in the same way
as in modeling environment assumptions or tester sampling directly in the specification. The specification
is composed with input/output delay automata, as shown in Figure8. A simple input delay automaton is
shown to the right of the figure. Input actiona is the original action whereasat is the output command of
the tester. This automaton models the assumption that the tester output may experience a delay of at most
2 time units until it is perceived by the SUT. Notice that this automaton does not allow a new input to be
produced while the previous one is still in “transit”. For this, a more complicated automaton is necessary,
which buffers input events. We omit it due to lack of space.

Symbolic tester implementation

Sets of states of a timed automaton can be representedsymbolicallyusing simple polyhedra to encode the
continuous state-space. For instance, the polyhedron1 ≤ x ≤ 2 ∧ x = y represents the fact that clock
x reads some value within[1, 2] and clocky is equal tox. Such polyhedra can be implemented using
various data structures, such as DBMs (difference bound matrices) [18]. Computing updates using thesucc
operator can be also done symbolically, using abounded-time reachability analysisfor timed automata, as
shown in [32]. Reachability algorithms are standard technology in timed automata verification tools such
as Kronos [17], thus, we do not discuss them further here.

On-the-fly testing versus static test generation

The testing method presented above can be applied in anon-the-flyor in a static manner. On-the-fly
testing means that the tester computes its state and makes decisions such as whether to emit an output or
wait during the execution of the test. In static test generation, these choices are resolved off-line and are
encoded in a test represented in the form of a finite tree, like the one shown in Figure9. Nodes in this tree
are either “input” or “output”. In an input node, the tester waits for an input from the SUT or for the next
tick of its digital clock. In an output node, the tester emits an output to the SUT. Leaves are labeled PASS
or FAIL. In the context of “untimed” systems, on-the-fly testing is supported by the tool Torx [4] and static
test generation by the tool TGV [20].

On-the-fly testing is advantageous in what concerns memory, since the tester need only keep the current
state, whereas the number of nodes in the static test tree can explode. On the other hand, static test execution
is faster, since the tester need only move to a child node in the tree, whereas a reachability analysis needs
to be performed for each application ofsucc. This can sometimes be costly, especially whensucck is
computed, for largek.

A technique to tackle this problem is to use aparametricTick automaton, as shown in Figure10.
In such an automaton, the period is defined by one or more parameters, e.g.,P in the exactly periodic
automaton or[L,U ] in the automaton with skew. These parameters are instantiated upon execution, when
their value is known. For example, if we use the exactly periodic automaton and we know that1023 ticks
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Figure 10: ParametricTick automata.

occurred, we can setP = 1023. In the skewed clock automaton, we would setL = 1023 · (1 − ε)
andU = 1023 · (1 + ε), whereε is the skew. In this case, themultitick event no longer represents a
single tick, but1023 ticks. The advantage is that we now need apply the symbolic successor operator
succ(S,multitick) only once, instead of1023 times. Note that this technique relies on the fact that our
prototype tool (discussed in Section6) allows parametric automata to be created and destroyed dynamically,
which is a feature few such tools possess.

Soundness and strictness

The tests generated by the method presented above aresound, in the sense that if the tester announces
FAIL and the SUT is indeed non-conforming to the specification. Obviously, this is a minimal correctness
requirement from a testing framework. In fact, our tests satisfy a stronger property than soundness (which
can be trivially satisfied by a test always announcing PASS), calledstrictness[25]. Informally, a test is strict
if, every time it outputs PASS, then indeed the behavior of the SUT was a conforming behavior according
to the specification. In other words, the subset of the SUT tested by this particular test is guaranteed to be
conforming.

5 Coverage

A test suite iscompleteif it is sufficient to guarantee conformance (i.e., passing all tests in the suite implies
that the SUT is conforming). It is generally impossible to generate a finite complete test suite.3 Even when
this is possible in principle (e.g., by assuming an upper bound on the number of states of the implementa-
tion, it is usually infeasible in practice, because the number of tests required is prohibitively large [29]).

To remedy this fact, test generation methods usually make a compromise: instead of generating a
complete test suite, generate a test suite whichcoversthe specification. Different coverage criteria have
been proposed for software, such as statement coverage (every statement of the program must be “explored”
by at least one test), branch coverage, and so on (see, for instance, the survey [35]). In the TA case the
state space is infinite, thus, existing methods attempt to cover either finite abstractions of the state space
or structural elements of the specification. For instance, [29, 19] cover theregion graphabstraction [2]
and [27] cover thetime-abstracting partition graph[34]. [22] propose techniques for edge, location, or
definition-use pair coverage and can also generate time-optimal tests. [9] consider various coverage criteria
in the context of timed Petri nets.

3 This is because implementations can have an arbitrary number of states, while a finite test suite can only explore a bounded
number of states. But an implementation could be conforming up to a certain point and not conforming afterwards.
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Here, we propose a new technique for edge or location coverage. Notice that we cannot use the tech-
nique of [22]. This technique relies on the assumption that outputs in the specification are urgent and
isolated. Thanks to this assumption, every input sequence results in a unique output sequence. This means
that tests aresequences, rather than trees. Finding a test can then be reduced to finding a run from a source
to a target state, which can be done using standard reachability algorithms for timed automata.

Our technique relies on the concept ofobservable graphof the composed automatonATick
S , denoted

OG. This graph is generated as follows. The initial node of the graph is{sATick
S

0 }. For each generated node
S and eacha ∈ Act ∪ {tick}, a successor nodeS′ = succ(S, a) is generated and an edgeS

a→ S′ is added
to the graph. Using arguments similar to the finiteness of theregion graph[2], it can be shown that the
observable graph is finite. Its size, however, can be exponential in the number of clocks.4

Every node ofOG corresponds to a set of statesS of ATick
S . Each states ∈ S includes a location of

AS . Thus, every node ofOG can be associated with a set of locations ofAS , which can be computed while
generatingOG. On the other hand, every static test tree is essentially a sub-graph ofOG. We say that such
a testcoversthe set of locations associated with all nodes ofOG appearing in the test. We say that a set of
tests (ortest suite) achieveslocation coverageif every reachable location ofAS is covered by some test in
the suite.5 Clearly, sinceOG is finite and the set of locations ofAS is also finite, a finite number of tests
suffices to achieve location coverage.

Similarly, every edge ofOG can be associated to a set of edges ofAS . In particular, an edgeS
a→ S′

will be associated to all edges which are visited during the reachability algorithm which computesS′ from
S. Formally, if s ∈ S, s′ ∈ S′ ands

ρ→ a→ s′ for an un observable sequenceρ, all edges in the path froms
to s′ are covered by the edgeS

a→ S′. We say that a test suite achievesedge coverageif every reachable
edge ofAS is covered by some test in the suite. As with location coverage, a finite number of tests suffices
to achieve edge coverage.

The above definitions imply a straightforward algorithm to generate a test suite which achieves location
or edge coverage. The first step is to build the observation graph ofATick

S . Then, tests are extracted statically
from OG, until coverage is achieved. Tests are extracted as follows.

While there are locations not covered, the algorithm picks such a location, sayq. Next, it picks a node
v of OG associated withq (such a node exists sinceq is reachable) and finds a path inOG from the initial
node tov. Then, it extends this path into a test tree. This can be done by completing the path with the
missing edges, labeled with tester inputs. For instance, if there is an edgev1

a→ v2 in the path, with

a ∈ Actout ∪ {tick}, then every outgoing edge ofv1 labeled with a tester inputb, i.e., every edgev1
b→ v′,

b ∈ Actout ∪ {tick}, must be added. The leaves of the tree are labeled PASS, except if a leaf is empty, in
which case it is labeled FAIL. This new test is added to the set of tests already generated and the algorithm
repeats choosing a new uncovered location, until all locations are covered.

An edge-covering test suite can be extracted in a similar way. The only difference is that instead of
finding a path reaching a target node ofOG, the algorithm must find a path reaching a target edge. Notice
that these algorithms are very similar to an AND/OR search in a finite graph (AND for tester inputs and
OR for tester outputs).

The worst-case complexity of the above algorithm is polynomial (quadratic) in the size ofOG. Indeed,
finding a node (or edge) ofOG associated with a location (or edge) ofAS is linear. Finding a path inOG
and extending the path into a test tree is also linear. These steps are performed at most as many times as
there are locations (or edges) inAS .

One drawback of the algorithm is that it does not always generateminimal test suites. A test suite is
minimal in the sense that if any test is removed from the suite, then coverage is no longer achieved. In
general the minimal suite is not unique. Moreover, adding a new test to the suite may result in making one
or more previously generated tests redundant. We are currently studying methods of generating minimal
test suites.

4 This is an inherent worst-case complexity barrier, even for the simplest analysis problems in timed automata (e.g., reachability).
In practice, symbolic methods have permitted to treat industrial case studies of moderate size (tens of components).

5 Unreachable locations ofAS can be ignored, since they play no role regarding conformance.
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Figure 11: A lighting device.

6 Tool and case studies

We have built a prototype test-generation tool, calledTTG, on top of the IF environment [8]. The IF mod-
eling language allows to specify systems consisting of many processes communicating through message
passing or shared variables and includes features such as hierarchy, priorities, dynamic creation and com-
plex data types. The IF tool-suite includes a simulator, a model checker and a connection to the untimed
test generator TGV [20]. TTG is implemented independently from TGV. It is written in C++ and uses the
basic libraries of IF for parsing and symbolic reachability of timed automata with deadlines.

TTG takes as main input the specification automaton, written in IF language, and can generate digital-
clock tests with respect to a given (parametric)Tick automaton. By modifying theTick automaton, the
user can implement different sampling rates, model skew or jitter in the clock, and so on.TTG can be
executed ininteractivemode, where the user guides the test generation by resolving decision points.TTG
can also be asked to generate a single testrandomlyor theexhaustivetest suite, up to a user-defined depth.
The depth of a test is the longest path from the initial state to a pass or fail state. The tests are output in IF
language. Implementation of test selection criteria is underway.

6.1 A toy example

We have appliedTTG to a small case study, which is a modification of the light switch example presented
in [22]. The (modified) specification is shown in Figure11. It models a lighting device, consisting of
two modules: the “Button” module which handles the user interface through a touch-sensitive pad and the
“Lamp” module which lights the lamp to intensity levels “dim” or “bright”, or turns the light off. The user
interface logic is as follows: a “single” touch means “one level higher”, whereas a “double” touch (two
quick consecutive touches) means “one level lower”. It is assumed that higher and lower is modulo three,
thus, a single touch while the light is bright turns it off.

The device communicates with the external world through inputtouch and outputsoff, dim, bright.
Eventssingle and double are used for internal communication between the two modules throughsyn-
chronous rendez-vousand are unobservable to the external user. The Button module uses the timing pa-
rameterD which specifies the maximum delay between two consecutive touches if they are to be considered
as a double touch. The Lamp module uses the timing parametersm andM which specify the minimum and
maximum delay for the lamp to change intensity (e.g., to warm-up a halogen bulb). In order not to overload
the figure, we omit most guards, resets and deadlines in the Lamp module. They are placed similarly to the
ones shown in the figure (i.e., resets in inputs, guards and deadlines in outputs).

We have usedTTG to generate the exhaustive digital-clock test suite for the above specification, with
parameter setD = 1,m = 1,M = 2, for various depth levels. We have obtained 68, 180, 591 and 2243
tests, for depth levels 5, 6, 7 and 8, respectively. Notice that these are the sets of all possible tests up to
the specified depth: no test selection is performed. Moreover, the current implementation is sub-optimal
because it generates tests announcingpass before the maximum depth is reached. Notice that a single test
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suffices to achieve location-coverage of this specification: it first applies three single touches and then three
double touches.

One of the tests generated byTTG is shown in Figure12. The drawing has been produced automatically
using theif2eps tool by Marius Bozga.

6.2 The K9 Rover case study

We have also usedTTG to test the executive subsystem of the Mars rover controller K9, developed at
NASA Ames. For a more extensive description of the case study, the reader is referred to [10]. Our
treatment is presented in detail in [5]. Here, we only present a brief overview.

The Rover executive is a multi-threaded program that consists of approximately 35000 lines of C++
code, of which 9600 lines of code are related to actual functionality. The executive is responsible of
executing a givenplan. The plan defines the steps to be performed in the mission, and also gives detailed
information about their order, their timing, what to do in case of failures, and so on. Thus, the plan can be
taken to be the specification. On the other hand, the SUT is the executive fed with this plan as input. Indeed,
executing the plan on the executive must produce a behavior which meets the requirements specified in the
plan.

We have automatically translated various plans into timed automata specifications using the technique
of [1]. Notice that this technique is compositional, thus, the resulting TA contained unobservable internal
events. From each TA specification, we generated a tester usingTTG. Then we applied the tester to a
number of “log-traces” generated by the executive on this plan, kindly provided to us by people at NASA.
The results were very encouraging. In all cases, the tester found out the bugs that were already known to
be contained in the traces. Generation and execution of each tester took a matter of seconds.

7 Summary and future work

We have proposed a testing framework for real-time systems based on partially-observable, non-deterministic
timed-automata specifications and on digital-clock tests. To our knowledge, this is the first framework that
can fully handle such specifications and such tests. We introduced a timed version of the input-output con-
formance relation of [30] and proposed techniques to generate location- or edge-covering test suites. We
reported on a prototype tool and two case-studies.

We are currently implementing inTTG the coverage technique discussed in Section5 and are also
studying methods to generate minimal test suites. We are also examining heuristics to choose tester output
times on-the-fly. This can permit to guarantee some coverage in on-the-fly testing, by performing multiple
tests and using appropriate book-keeping, without having to generate the symbolic reachability graph.
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main
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[1] output touch();
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[1] input off();

[2] input dim();

[3] input bright();[4] informal ’TICK’;

FAIL

loc_0_0_0

[1] input off();

[2] input dim();

[3] input bright();[4] informal ’TICK’;
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[2] input dim(); [3] input bright();[4] informal ’TICK’;
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[1] informal ’accept’;
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[1] input off();[2] input dim(); [3] input bright(); [4] informal ’TICK’;

loc_0_1_0_0_0_0

[1] informal ’accept’;

PASS

Figure 12: A test generated automatically byTTG.
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