
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Integrating model-based design and
preemptive scheduling in mixed time-

and event-triggered systems

N. Scaife and P. Caspi

Report no TR-2004-12

June 1, 2004

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Integrating model-based design and preemptive scheduling in
mixed time- and event-triggered systems

N. Scaife and P. Caspi

June 1, 2004

Abstract

Model-based design is advocated as the method of choice when dealing with critical
systems as well as high quality systems. However, it often abstracts implementation
details such as execution times. This can be a problem when dealing with urgent
events whose implementation requires preemptive scheduling. In this paper, we pro-
pose an inter-task communication mechanism on top of a fixed-priority deadline
monotonic preemptive execution scheme, which preserves the ordering of computa-
tions validated in a “zero-time” synchronous framework. Then, we formally prove
the correctness of the approach.

Keywords: model-based design, synchrony, fixed priority, preemptive scheduling, wait-free
communication, double buffers.

Reviewers: Pascal Raymond

Notes: This work has been partially supported by the European Community through IST projects
Next-TTA and Rise. This report presents an extended version of a paper presented at the Euromi-
cro Conference on Real-Time Systems ECRTS04

How to cite this report:

@techreport{ ,
title = { Integrating model-based design and preemptive scheduling in mixed time-
and event-triggered systems},
authors ={ N. Scaife and P. Caspi},
institution ={ Verimag Technical Report},
number ={TR-2004-12},
year ={ 2004},
note ={ }
}



Model-based design and preemptive scheduling N. Scaife and P. Caspi

Contents

1 Introduction 3

2 Simulink and Scade modelling 5

3 Schedulability 7
3.1 Problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Exploring the design space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Fixed-priority preemptive scheduling. . . . . . . . . . . . . . . . . . . . . . . . 7

4 Functional semantics 9
4.1 Syntactic restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Signalling and communication. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 A communications scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

5 Formalisation and proof 15
5.1 Formalisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

5.1.1 Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.1.2 Ideal semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.1.3 Real-time semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.1.4 Semantic equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.1.5 Real-time conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.1.6 Proof of equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.2 Model-checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2.1 The communication scheme in LUSTRE . . . . . . . . . . . . . . . . . . 22
5.2.2 Describing the events in LUSTRE . . . . . . . . . . . . . . . . . . . . . 23
5.2.3 TheLESAR proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

6 Conclusions 29

A The utils.lus library 35

Verimag Research Report no TR-2004-12 1/35



N. Scaife and P. Caspi Model-based design and preemptive scheduling

2/35 Verimag Research Report no TR-2004-12



Model-based design and preemptive scheduling N. Scaife and P. Caspi

1 Introduction

Embedded and real-time systems are often safety-critical and require high quality design and
guaranteed properties. For systems such as this, model-based design has been advocated as
the method of choice for dealing with them. The design process consists of building models
on which the required system properties are carefully checked and assessed and then deriving
implementations such that these properties are preserved. This allows high quality to be achieved
at, hopefully, a low cost.

The modelling formalisms and tools used for that purpose are often based on the so-
called “synchronous” paradigm [4] which assumes, for the sake of simplicity and abstrac-
tion, “zero-time” executions. This is the case for the very popular and widely used
“Simulink/Stateflow”1 [24] tools which are considered asde factostandards in many embedded
and real-time domains such as the avionics and automotive industries. This is also the case for
synchronous languages and for most event-based simulation systems such as the “SCADE” [12]
simulator. Furthermore, this paradigm proves to be quite versatile, allowing the handling of
traditional, periodically sampled control systems (also calledtime-triggered(TT) systems[18])
and discrete event ones (calledevent-triggered(ET) systems) as well as mixed time- and event-
triggered systems.

In mixed systems an easy situation is often considered, where hard real-time tasks are time-
triggered and events only drive soft real-time tasks that can be postponed to the idle time left by
the time-triggered tasks. As we shall show in the current paper this restriction can be relaxed
to address the mixed situation with greater generality. In particular, if the system requires the
handling of urgent events then this implies a preemptive scheduling which can be difficult to
reconcile with the synchronous paradigm. We propose methods for coping with such situations.

In practice execution times are not null and this may result in a distortion between the models
with zero-time assumptions and their implementations. If these distortions are important, the
confidence gained from the modelling can be lost. This question is an important one but it is
difficult to answer since it is very domain-dependent:

• When time-triggered systems are derived from continuous processes, the solution is usu-
ally based on numerical analysis, stability and jitter considerations [17].

• In [6], the Esterel [5] programming language is coupled with the Kronos timed-automaton
model-checker [31] so as to check whether the actual timing is compatible with the syn-
chronous hypothesis. The approach is endowed with a compiler, a simulator and a debug-
ger.

• In [27], a different approach is taken which departs from the synchronous assumption by
considering “logical execution times”. This approach can be valuable in some cases but
requires mixing implementation details with the modelling process. It is also relatively
untested and its domain of interest needs to be assessed more thoroughly.

1Trademarks of the Mathworks company.

Verimag Research Report no TR-2004-12 3/35



N. Scaife and P. Caspi Model-based design and preemptive scheduling

In this paper, we consider a quite frequent situation where the zero-time model accounts for
the functional specification while complex timing issues are abstracted into deadlines associated
with tasks,i.e.,selected pieces of the functional specification.

In the presence of event-triggered tasks with short deadlines (urgent tasks) the only possible
implementation has to be based on preemptive scheduling and this raises the problem of data
integrity in inter-task communication. This problem has been intensively studied and solutions
are either based on locking mechanisms or on lock-free ones. The former make the scheduling
problem more complex and can raise the weel-known “priority inversion” problem [29]. This is
why lock-free and wait-free methods have been proposed. Though the terminology has not been
standardized, lock-free methods seem to refer to methods where a reader may loop attempting to
get uncorrupted data [20,19,2], while, in wait-free or loop-free methods, no loop is required but
more spare is needed to store the shared data [11,16].

However, there has actually been little previous work in which both the properties of the
scheduling, the inter-task communication mechanism and the semantical accuracy of the mod-
elling are jointly taken into account and we address issues arising from such considerations.

This paper concentrates on how ET and TT tasks can be modelled in SIMULINK and SCADE
and then scheduled for a mixed implementation. An inter-task communication framework is then
presented within which the fidelity of the modelling process with respect to the running applica-
tion can be proven given some reasonable assumptions about the nature of semantic equality.

4/35 Verimag Research Report no TR-2004-12
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Figure 1: SIMULINK modelling of ET/TT tasks

2 Simulink and Scade modelling

It is a common opinion that the synchronous and time-triggered paradigms are closely related
while event-triggered systems are associated with asynchrony. However, this point of view can
be somewhat misleading. As a matter of fact, synchrony and asynchrony refer to whether concur-
rent activities share common time scales or not and this appears to be orthogonal to the different
ways activities are triggered, either on time basis or on an event basis. This is why synchronous
formalisms are equally able to model event-driven activities as well as time triggered ones and
can also cope with mixed designs where the both are present. Fig.1 shows a SIMULINK model
which can be viewed conceptually as requiring both ET and TT tasks. The system being simu-
lated is a cruise-control system for a car where the setpoint is thedesired speed input. There
are three major components; the engine (Engine ) which is basically an oscillator to which an
impulse (ignition) must be given at the correct time, an ignition control unit (Ignition ) which
takes the required acceleration and generates this sequence of pulses, and a simple PID controller
(Control ). TheIgnition task is triggered by the crank angle and is thus an ET process. The
Control task, on the other hand, performs its computations at regular time intervals and is thus
a TT process. Note that we envisage a system in which ET and TT tasks are mutually interde-
pendent.

The input to our system is a correct SIMULINK model for which we assume that type and
clock2 inference have succeeded and that it has undergone translation into either SCADE by
SIMULINK GATEWAY or into LUSTREby S2L [9]. Figure2 shows a typical SCADE translation.

To prove the feasibility of this system and to maintain properties of correctness and safeness
we have to provide, firstly a characterisation of the scheduling which is possible for the models

2“Clock” refers to the timing information required for a synchronous implementation
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Figure 2: SIMULINK modelling of ET/TT tasks

we have specified, and secondly, that the semantics of the model is preserved under translation,
i.e. that the simulation is a faithful representation of the execution.
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3 Schedulability

3.1 Problem statement

As usual, time-triggered tasks are given a period and a deadline and we assume that only one
instance of a given task can be active at the same time, which amounts to saying that deadlines
are smaller than periods.

We assume that event-triggered tasks are sporadic with a predictable minimal interarrival
time, which therefore plays the part of a minimum period and a deadline and, here also, deadlines
are smaller than minimum periods. Furthermore, tasks are assumed to have known worst-case
execution times. Thus, from an operational point of view, each taskTi, be it time or event-
triggered, has three associated parameters, its period or minimum periodTi, its deadlineDi and
its WCETCi.

3.2 Exploring the design space

Starting from the pionneering work of Liu and Layland [23], many approaches have been pro-
posed for scheduling these kinds of tasks and for assessing their schedulability, among which we
can cite [22,21,30,3] and it is not easy to find one’s way in this intricate landscape. Moreover,
given our goal of semantic preservation, choices for the scheduling and for the communications
are closely related. This is why exloring the design space is not easy. Some of the choices are:

• When only time-triggered tasks are considered, the static “table scheduling” approach of
TTA [28] is appealing as it solves both the scheduling and the communication problem in
an efficient way, by statically partionning long period tasks into subtasks that can fit within
the gcd of the periods.

• When there are event-triggered tasks whose deadline is shorter than the execution time of
another task, preemptive scheduling seems compulsory.

• In this case, fixed priority can be seen as the most “static” approach. It can be adopted
without losing the benefits of a fully static approach. Furthermore, as we shall see in
Section4, fixed priority makes communication easier and less space-consuming.

• As said above, lock- and loop-based methods are likely to complicate the schedulability
analysis. We therefore assume that we shall define wait-free communication methods and
that our scheduling problem deals with independent tasks.

3.3 Fixed-priority preemptive scheduling

This leads us to adopt the deadline monotonic preemptive scheduling of [3]. Tasks are given
fixed prioritiesPrioi in the reverse order of their deadlines:

Di < Dj ⇒ Prioj < Prioi
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In the setting of critical systems, schedulability tests are an important issue: deadlines must not
be missed. Several schedulability tests have been proposed for this scheduling strategy. A recent
and less pessimistic approach to fixed priority scheduling is to recursively compute worst-case
response times without assuming any deadlines. These response times can then be compared
with the deadlines [8]:

Ri = Ci +
∑
j>i

⌈
Ri

Tj

⌉
Cj

wherei < j impliesPrioi > Prioj. In this expression,
⌈

Ri

Tj

⌉
computes the maximum number

of times the higher-priority taskTj can preempt taskTi while it is running.
If ∀i : Ri ≤ Di then the system is schedulable. This equation implies an iterative solution:

rn+1
i = Ci +

∑
j>i

⌈
rn
i

Tj

⌉
Cj

which converges since the sum is a monotonically increasing function ofn.
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4 Functional semantics

Design in SIMULINK and SCADE can be seen as parallel designs where processes operate con-
currently. In many cases, designers conceptualise the communication between these parallel
processes under the “freshest value” semantic; this is often the case for control systems. In [11]
a three buffer protocol is presented which ensures a wait-free communication protocol provid-
ing for this freshest value semantic. Furthermore, this protocol could be easily optimised using
the techniques presented in [16] by taking advantage of the the fixed-priority scheme we have
chosen.

However, one should be aware that this does not preserve the equivalence that the modelled
behaviour equals the implemented behaviour, under some notion of semantic equality. The prin-
cipal point of difference is that the ideal semantics assumes zero-time execution whereas the
real-time semantics has to include a (bounded) computation time. This raises the problem of
ensuring that in both cases computation proceeds with the same values. Preemption, however,
can cause values in the real-time case to be delayed relative to the ideal case. For cases where
this equivalence matters, we propose, in this section, a means of preserving it, on the basis of
simple syntactic checks on the model structure and careful implementation of communications
between processes.

4.1 Syntactic restrictions

Let us consider two tasksTi andTj such thatPrioi > Prioj andTi computes a valuevi = fi(vj),
i.e. a function of a value produced byTj. Let ei andej be the triggering events3 associated with
the tasks. Let us consider the situation, in the ideal “zero-time” model, where thenth occurrence

a: ideal semantics

b: real implementation

ej(n− 1)
vj(n− 1)

ej(n)
vj(n)

ei(m)
vi(m) = fi(vj(n))

ej(n− 1) vj(n− 1) ej(n) ei(m) vj(n)vi(m) = fi(vj(n− 1))

Tj

Ti Tj

Figure 3: Example illustrating the need for syntactic restrictions

3We do not distinguish here between time- and event-triggered tasks. Thus any of these events can be produced
by a clock.
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of ej takes place just before themth occurrence ofei. Tj instantly executes and producesvj(n).
Then,ei(m) occurs andTi executes and producesvi(m) = fi(vj(n)). This situation is illustrated
at Fig.3-a.

In the real world, even if we provide communications which ensure the data integrity, it may
be the case thatTi interruptsTj before completion. As a result theTj outputs may not be available
for Ti computations. In this case, the result will bevi(m) = fi(vj(n − 1)) and there will be a
difference between the ideal and real-time behaviours (cf. Fig.3-b). A way to overcome this
difficulty is to require that:

A higher priority task should not use values computed by an immediately preceding
lower priority task.

This is a syntactic restriction which amounts to checking that each communication from a
low-priority task to an higher one be mediated by a unit delay triggered by the low-priority
trigger. A SIMULINK trigger is called a clock in SCADE. Henceforth, we refer to these triggers
as clocks.

Note that, conversely, this availability problem does not arise for communications from a
high-priority task to a low-priority one because lower-priority tasks can always be sure that the
higher-priority tasks have completed at the instant of starting computation. We thus do not
require the same constraint for communications from higher to lower priority tasks.

4.2 Signalling and communication

Unfortunately, these syntactic restrictions are not sufficient for ensuring a sensible equivalence
between ideal and real-time behaviours.

For instance, in a communication from high to low, it may be the case that the low-priority
task starts reading, but is interrupted by the high-priority task which changes its results. When
the lower priority task resumes reading, it will get incoherent data.

Even when communications are buffered as in the case of low to high communications, un-
desirable effects can take place, as illustrated by the following situation:

Consider three tasks,T1, T2 andT3 and corresponding triggering eventse1, e2, e3 such that
Prio1 > Prio2 > Prio3 andT2 uses some datav3 from T3. Suppose thate3 occurs followed by
e3 followed bye1 followed bye3 followed bye2.

Let v3(n − 2), v3(n − 1) andv3(n) be the successive values produced byT3. Then, un-
der the zero-time assumption, owing to our unit-delay restriction,T2 will use v3(n − 1) for its
computation. This situation is depicted in Fig.4-a.

However, in the real-time framework, it can be the case that the preemption results in the
execution orderT3 followed byT3 followed byT1 followed byT2 followed byT3 which could
happen under our fixed-priority preemption scheme. In this case, (cf. Fig.4-b) T2 would use
v3(n−2) for its computations because it starts executing beforeT3. This impairs the equivalence
between ideal and real-time behaviours.

10/35 Verimag Research Report no TR-2004-12
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b: real implementation

a: ideal semantics

e3(n− 2) e1(m)
v3(n− 2)

e3(n− 1)
v3(n− 1)

e3(n) e2(k)
v2(k) = f2(v3(n− 1))

e3(n− 2) e1(m)e3(n− 1) e3(n) e2(k)
v3(n− 2) v2(k) = f2(v3(n− 2))v3(n− 1)

T3 T3

T1

T2 T3

Figure 4: Example illustrating the need of distinguishing between event occurrence and task
execution.

This shows that, if we want to keep in the implementation the same order of com-
munication as in the model, the buffering mechanism should be controlled by the
triggering event occurrences and not by the task executions.

4.3 A communications scheme

We need to ensure that preemption by higher level tasks does not affect the relative clock timing
for lower priority tasks. We assume here thatTi has a higher priority thanTj.

Communications from Tj to Ti

We institute a double buffering mechanism defined in Fig.5. It is worth emphasising that it is
the occurrenceof ej which toggles the buffers not the start of execution and that since these
operations consist solely of toggling flags, it can be assumed they take no time. Note also that
since we may need to disambiguate in the event of simultaneous occurrences ofei andej the
buffer toggling would have to be implemented by the scheduler rather than the tasks themselves.

Communications from i to j

Conversely,Tj cannot read fromTi, becauseTi can execute several times between the occurrence
of Tj and its subsequent execution. This would require a lot of buffering. What we propose in-
stead is thatTj informsTi where to write its results. The communications mechanism is described
in Fig. 6. Here also, the signalling mechanism is assumed to take no time.

Fig. 7 illustrates a typical low-to-high scenario. To make the figure more readable, each task
is given its own time-line. Note, on the low-to-high part, how theej occurrences toggles the

Verimag Research Report no TR-2004-12 11/35
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TaskTj maintains a double bufferbj:

• an “actual” buffer into whichTj writes results, and

• a “previous” buffer from whichTi reads results.

Algorithm:

• Whenej occurs, it instantaneously toggles the buffers. The “actual” buffer which
has just been filled becomes the “previous” buffer andvice versa.

• WhenTj executes it writes results to the “actual” buffer.

• Whenei occurs, it instantaneously stores the address ofbj ’s “previous” buffer at
that instant.

• WhenTi executes it reads values from the buffer whose address it stored when it
occurred.

Figure 5: Communications scheme from low priority to high priority

buffers whereTj writes. Note also that the buffer whereTi(n) reads becomes the buffer where
Tj(m) writes but, because of fixed priorities, no harm can result from this apparent conflict.

Fig. 8 illustrates a typical high-to-low scenario. Note thatTi(n + 2) overwrites what was
written by Ti(n + 1). This is because noej has occurred betweenei(n + 1) and ei(n + 2).
Note also it may be the case that, whenej(m) occurs, a pendingTi(n) is about to execute. This
pendingTi(n) will write in the “current” buffer, the address of which it stored (as a “next” buffer)
whenei(n) occurred. This is not harmful as we know, because of the fixed priorities, thatTi is
pending and has to complete execution beforeTj can execute and read the “current” buffer.

12/35 Verimag Research Report no TR-2004-12
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TaskTj maintains a double bufferbji and a flag for each of the higher priority tasksTi

it needs values from:

• a “current” buffer from whichTj readsTi’s results, and

• a “next” buffer, whereTi writes its results, and

Algorithm:

• Whenei occurs it:

– gets frombji the address of the “next” buffer at that instant, and

– sets the flag.

• WhenTi executes, it fills the “next” buffer whose address it stored when it oc-
curred.

• Whenej occurs:

– if the flag is set,

∗ it toggles these buffers, and

∗ clears the flag,

– otherwise the buffers remain untoggled.

• WhenTj executes, it get values from its “current” buffers.

Figure 6: Communications scheme from high priority to low priority
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ei(n + 1) ei(n + 2)

ej(m) ej(m + 1)

ei(n)

Low

High

Figure 7: A typical low-to-high communication scenario

ei(n + 1) ei(n + 2)

ej(m) ej(m + 1)

ei(n)

Low

High

Figure 8: A typical high-to-low communication scenario
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5 Formalisation and proof

This communication scheme has been formalised using the Caspi-Halbwachs framework [10]
since this is the theoretical underpinning for SCADE and LUSTRE. It also matches a discrete
time subset of SIMULINK . Moreover, a complete description of the scheme has been developed
in LUSTRE[13] and model-checked using Lesar [14], the model-checker associated with Lustre.

5.1 Formalisation

5.1.1 Framework

There are several ways we could model these semantics, for instance, timed automata [1] or
real-time temporal logics [15]. However, we propose modelling the system using the Caspi-
Halbwachs framework [10] since this is the theoretical underpinning for SCADE and LUSTRE.
It also matches quite well a discrete time subset of SIMULINK . In this framework, a flow is a pair
of sequences(x, d) wherex : N → V is a sequence of values andd : N → T is an increasing
sequence of times (dates), with the interpretation:x(n) takes its value at timed(n).

The counter function

We can also associate witht the counter functionc : T → N, giving, at any timet, the index of
the lastd(n) precedingt:

c(t) = sup {n|d(n) ≤ t}

We then have the Galois connection properties:

d o c ≤ I
c o d ≥ I

whereI is the identity function. Moreover, if we restrict ourselves to events which cannot
occur more than once at a time, the latter gives:

c o d = I

which reads: the number of event occurrences at the time of thenth occurrence is exactlyn.

The preceding value

We also have the preceding value which can be implemented in SIMULINK using the1/z block
(with inherited sample time) and in SCADE using thefby operator:

p(x) = x o (I − 1)

where(I − 1) = λn ·max(0, n− 1) acts as a unit delay. Thus,

Verimag Research Report no TR-2004-12 15/35
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p(x)(0) = x(0)
p(x)(n + 1) = x(n)

Sampling and holding

Sampling and holding take place in SIMULINK ’s “triggered subsystems” and in SCADE’s “ac-
tivation conditions”.

Holding takes place at the outputs of a subsystem: given an output flow(xs, ds) which runs at
the paceds of the subsystem, the external world sees a trajectoryv such that:

v = x o c

which reads: the value of a flow at timet is the value at the index of the last occurrence of
the corresponding event precedingt.

Sampling takes place at the inputs of a subsystem: given an input flow(x, d) and the sampling
eventds, the result of the sampling is the flow(xs, ds) such that:

xs = x o c o ds

which is simply the value of the trajectory picked at the sampling instants. This can be
rephrased as: thenth value ofxs is the value taken byx at the last occurrence ofx preceding the
nth occurrence ofds.

These very simple primitives, together with usual mathematical functions allow us to provide
a simple and accurate semantics of SIMULINK and SCADE diagrams.

5.1.2 Ideal semantics

We define the ideal semantics in terms ofn tasks, each computing a flow. The computation of
the flow in each task can use values from the other tasks. Priorities are in reverse order such that
task 1 has the highest priority.

This arises naturally from viewing a SIMULINK computation as a set of parallel tasks which
compute values and communicate results instantaneously. The prioritisation scheme corresponds
roughly to that of the statically-ordered interactions which ensure the uniqueness of SIMULINK

simulations.
STATEFLOW is more problematical since its behaviour is defined solely by the interpretation

algorithm. However, we can choose to impose a set of syntactical checks upon models which
allow us to view the simulation as having a synchronous semantics with a suitable prioritisation
scheme. Models which cannot be made to conform have to be rejected by our system. For both
SIMULINK and STATEFLOW we are also constrained to a particular set of simulation parameters
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which allow us to view the simulation in this way. However, for a model intended to be imple-
mented directly in an application there will be a sensible set of parameters, for example only
discrete-time simulation need be considered.

Thus, under this synchronous semantics and according to the syntactic restrictions stated in
Section4.1each task computes its value as a function of:

• thecurrentvalue of theprecedingvalue of tasks with lower priorities, and
• thecurrentvalue of tasks with higher priorities.

Thus the system can be specified in terms of the following system of equations:

x1 = f1(p(x1), . . . p(xj) o cj o d1, . . . p(xn) o cn o d1)
...
xi = fi(x1 o c1 o di, . . . p(xi), . . . p(xn) o cn o di)
...
xn = fn(x1 o c1 o dn, . . . xj o cj o dn, . . . p(xn))

5.1.3 Real-time semantics

The real-time, preemptive semantics is defined in similar terms except that each task is charac-
terised by three sequences of times,d, db andde, the times at which computation is requested,
begins and ends, respectively. It is assumed that each task samples its environment at the begin-
ning of computations. This gives a similar set of equations as for the ideal case:

x1 = f1(p(x1), . . . p(xj1), . . . p(xn1))
...
xi = fi(x1i, . . . p(xi), . . . p(xni))
...
xn = fn(x1n, . . . xjn, . . . p(xn))

where, fori < j (i.e. i has higher priority):

xij(n) = (xi o (I + 1) o cei o di o ci o dj o cj o dbj)(n)

This is the value sent at the next execution ofi following the last arrival ofi preceding the
last arrival ofj preceding the time whenj executes. Also:

xji(n) = (xj o cej o dj o cj o di)(n)

This is the value stored at the last execution ofj preceding the last arrival ofj preceding the
time wheni occurs.

These equations embody the syntactic restrictions of Section4.1and the buffering mechanism
proposed in Section4.2.
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5.1.4 Semantic equivalence

At this point, we can make more precise our notion of equivalence. What we require is:

Given the same sequences of external inputs, the ideal and real-time behaviours
exhibit the same sequences of outputs.

Clearly, inputs may not be acquired at the same instants and the value at an arbitrary instant
may also differ. Neither will outputs be emitted at the same instants, but we know the limits of
the temporal distortion between the ideal and real timings which are embodied in the deadlines
used in the schedulability analysis. The question of whether the overall system can tolerate the
resulting value and time distortions is domain and design dependent and will be left out of the
scope of the present paper.

5.1.5 Real-time conditions

Before being able to prove the equivalence defined above, we need to formalise the operating
conditions of the real-time system and in particular, formalise our fixed-priority scheduling pol-
icy.

The priority conditions assumingi < j are shown in Fig.9. These conditions can be derived
from either the basic properties of flows or from the fixed priority scheduling properties. For
instance, condition 1 is a direct result of our definition of the real-time flow and the resultant
interpretation of the associated three sequences of times. Condition 2 is a result of the scheduling
assumptions. Since we can assume we are working with a schedulable system then the property
of deadline preservation (∀i : Ri ≤ Di) leads directly to this deadline condition. The fixed
priority scheduling assumption has several consequences. Mostly, we are interested in the case
where a higher priority task is pending but not executing when a lower priority task occurs. In
this case preemption gives condition 3.(c). Note that 3.(c) is equivalent to the combination of
3.(a) and 3.(b) (i.e. that taski preempts taskj) but from the point of view of the lower priority
task rather than the higher priority one.

5.1.6 Proof of equivalence

For the purposes of proving the equivalence of the ideal and real semantics the communications
mechanism described above would make this proof extremely complex. However, assuming that
this mechanism works and is correct we can simply reduce it to the assumption on the real-time
clocks that they are equivalent to instantaneous computation with respect to the temporal ordering
of value emission events. Given this assumption the rest of the proof is relatively simple.

Communications from j to i

This is easy because as soon asi arrives, it knows thatj will not execute beforei completes exe-
cution itself. Thus, as a first approximation, it is sufficient to show thati reads the current value
contained in the “previous” buffer wherej stores its values. However, as mentioned previously,
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1. Ends should follow beginnings:

di(n) ≤ dbi(n) < dei(n)

2. The scheduling conditions are such that deadlines are not missed:

(dei o (I − 1))(n) < di(n)

3. Fixed-priority scheduling implies that:

(a) If di takes place between the beginning and the end of aj computation, then so also
dodbi anddei take place in this interval:

∀n, (cej o di)(n) < (cbj o di)(n) ⇒ (cej o di)(n) = (cej o dbi)(n) = (cej o dei)(n)

(b) If di takes place between the request and the beginning of aj computation, thendbi

anddei also take place in this interval:

∀n, (cbj o di)(n) < (cj o di)(n) ⇒ (cbj o di)(n) = (cbj o dbi)(n) = (cbj o dei)(n)

(c) If dj takes place between the request and the end of ai computation, thendbj does
not take place beforedei:

∀n, (cei o dj)(n) < (ci o dj)(n) ⇒ (ci o dbj)(n) = (cei o dbj)(n)

Figure 9: Priority conditions (i has higher priority thanj)
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we need to assume that this buffer is instantaneously toggled whenj occurs and that the address
of this buffer is instantaneously stored byi as soon asi occurs. Thus, given:

xji(n) = (xj o cej o dj o cj o di)(n)

It is easy to prove that:

(cej o dj o cj o di)(n) = ((I − 1) o cj o di)(n)

or that:

(cej o dj)(n) = (I − 1)(n)

Actually, the number ofj ends at the time of thenth j occurrence is obviouslyn− 1.

Communications from i to j

Again, as stated previously,j cannot read fromi, becausei can execute several times between
the occurrence ofj and its subsequent execution, so we arrange fori to send values toj so that
j can select the appropriate one.

As a first approximation, it is sufficient to ensure thati sends its value to a buffer from which
j can read it. However, we need to assume that this buffer is instantaneously toggled whenj
occurs and that the address of this buffer is instantaneously stored byi as soon asi occurs. As
before:

xij(n) = (xi o (I + 1) o cei o di o ci o dj o cj o dbj)(n)

We need to prove:

((I + 1) o cei o di o ci o dj o cj o dbj)(n) = (ci o dj)(n)

This is easy since the number ofj occurrences at the time of thenth j beginning is obviouslyn:

(cj o dbj)(n) = I(n)

Also, the number ofi ends at the time of thenth i occurrence is obviouslyn− 1:

((I + 1) o cei o di)(n) = I(n)

Availability from i to j

We also need to prove that this value is available, and this should come from the real-time con-
ditions. We need to prove:

(dei o (I + 1) o cei o di o ci o dj o cj o dbj)(n) ≤ dbj(n)

According to condition 3.(c), we have to consider two cases:
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1) No preemption ofj by i occurs, i.e. whenj occurs,i has executed:

(cei o dj)(n) = (ci o dj)(n)

We then have:

dei o (I + 1) o cei o di o ci o dj o cj o dbj(n)
= dei o (I + 1) o cei o di o ci o dj(n)
= dei o (I + 1) o cei o di o cei o dj(n)
= dei o cei o dj(n)
≤ dj(n)
< dbj(n)

2) Preemption ofj by i occurs, possibly multiple times. However, we can assume that when
j begins execution noi computations are pending:

(ci o dbj)(n) = (cei o dbj)(n)

We then have:

dei o (I + 1) o cei o di o ci o dj o cj o dbj(n)
= dei o (I + 1) o cei o di o ci o dj(n)
= dei o ci o dj(n)
≤ dei o ci o dbj(n)
= dei o cei o dbj(n)
≤ dbj(n)

5.2 Model-checking

Surprisingly, this communication scheme can be model-checked,i.e., automatically proved, us-
ing LUSTREandLESAR . This is achieved by:

1. Describing the communication scheme in LUSTRE.

2. Describing the driving events in LUSTRE.

3. Comparing the ideal and real-time behaviours in LUSTRE.

4. Running theLESAR proof.

In doing this, several difficulties have to be overcome:

1. LESAR can only reason about boolean data-types. But our communication scheme is
assumed to be able to convey any data-type and, if we replace these data-types by booleans,
it may be the case that our scheme looks correct because the values it conveys cannot
take more than two values. Yet, using the technique of uninterpreted functions [7], we
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node lowtohighbuf(fromev, toev, fromact: bool; fromval: boolˆn)
returns (toval: boolˆn);
var even, odd: boolˆn;

bitfrom, bitto: bool;
let

bitfrom = false -> if fromev then not pre bitfrom
else pre bitfrom;

bitto = false -> if toev then not bitfrom
else pre bitto;

even = if fromact and bitfrom then fromval
else (init -> pre even);

odd = if fromact and not bitfrom then fromval
else (init -> pre odd);

toval = if bitto then even
else odd;

tel

Figure 10: A low-to-high double buffer

can replace the unknown data-type with a fixed number of distinct values and run model-
checking. This number is the maximum numberm of distinct values that can be present
in the systems at the same time. To implement this idea, we replace the data-type with a
n-vector of booleans, such that2n exceedsm.

2. LUSTRE is a synchronous untimed formalism and we need to express timing relations and
schedulability. Yet, we can do it by running a logical abstraction which over approxi-
mate these timing relations. Provided this over-approximation is not too large, proofs can
succeed.

5.2.1 The communication scheme in LUSTRE

Figure10shows the LUSTREmodelling of a low-to-high buffer.
In this figure,the booleansfromev, toev tell when the triggering events of the writing

and reading tasks occur. The booleanfromact tells when the input task writes the buffer. The
boolean vector verb-fromval- is the value that is written whenfromact occurs. Finally,toval
is the value the buffer makes available to the reading task.4

even andodd are the two buffers andbitfrom is the bit telling which one is the current
one.bitto is the address of the previous buffer. As a matter of fact, this bit should be encapsu-
lated in the reading tasks, as there should be different instances of this bit for each reading task.
Since we consider here only one reading task, we encapsulated it in the buffer itself.

4In the LUSTREdata-flow framework, it suffices that the buffer displays the value. The reading operation will be
performed by the receiving task.
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node hightolowbuf(fromev, toev, fromact: bool; fromval: boolˆn)
returns (toval: boolˆn);
var even, odd: boolˆn;

bitfrom, bitto: bool;
let

bitfrom = false -> if fromev and ((pre bitfrom) = pre bitto)
then not pre bitfrom
else pre bitfrom;

bitto = false -> if toev then bitfrom
else pre bitto;

even = if fromact and bitfrom then fromval
else (init -> pre even);

odd = if fromact and not bitfrom then fromval
else (init -> pre odd);

toval = if bitto then even
else odd;

tel

Figure 11: A high-to-low double buffer

The equation definingbitfrom shows the buffer toggling whenfromev occurs. The equa-
tion definingbitto shows how thetoev occurrence samples the previous buffer. The equa-
tions definingeven andodd show how these buffers are updated when thefromact takes
place, according to which one is the current buffer. Finally,toval shows how these buffers are
displayed according to which one is the previous buffer.

Figure11shows a high-to-low buffer. The interface and local variables are the same as in the
low-to-high case. Not yet that now, thebitto is a private bit of the buffer as there is one such
buffer for each communicating couple of tasks.

Note in the equation definingbitfrom how the test(pre bitfrom) = pre bitto
stands for the flag allowing the buffer toggling. Note also that, whentoev occurs,bitto is set
to the next buffer (thus current and next become the same).

5.2.2 Describing the events in LUSTRE

Figure12 shows how we model fixed-priority, preemptive scheduling in LUSTRE. It also shows
how we model hypotheses in LUSTREby defining a boolean expression (in general calledprop )
that should stay true as long as the hypothesis holds.

Then, nodecyclic says that the triggering event, the beginning and the end of the cor-
responding task occur cyclically. This expresses that the schedulability conditions are met and
that dead-lines are satisfied. Here,after(s1, s2) says thats2 always occurs afters1 and
forgetfirst(s1) eliminates the first occurrence ofs1 .

Finally, priority says that task1 has higher priority than task 2, in that both are cyclic and
that task 2 can neither begin nor end between the occurrence of task 1 triggering event and the
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include "utils.lus";

-- s event occurrence
-- sb begin execution
-- se end of execution

node cyclic(s, sb, se: bool) returns (prop: bool);
let

prop = after(s, sb) and
after(sb, se) and

after(se, forgetfirst(s));
tel

-- s1 has higher priority than s2

node priority (s1, sb1, se1, s2, sb2, se2: bool)
returns (prop: bool);
let

prop = cyclic(s1, sb1, se1) and
cyclic(s2, sb2, se2) and

neverbetween(s1, se1, sb2) and
neverbetween(s1, se1, se2);

tel

Figure 12: Fixed priority preemptive scheduling in LUSTRE
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node lthverif(val: boolˆn; s1, sb1, se1, s2, sb2, se2: bool)
returns(prop: bool);
var ideal1, ideal2: boolˆn;
let

assert priority(s1, sb1, se1, s2, sb2, se2);
ideal2 = if s2 then val

else (init -> pre ideal2);

ideal1 = if s1 then current ((init when s2) -> pre (ideal2 when s2))
else (init -> pre ideal1);

prop = if sb1 then vecteq(ideal1, lowtohighbuf(s2, s1, se2, ideal2))
else true;

tel

Figure 13: The low-to-high proof in LUSTRE

end of its execution.
Undefined nodes are drawn from the includedutils.lus library. For the sake of com-

pleteness, this library is given in appendixA.

5.2.3 TheLESAR proofs

The low-to-high case Figure 13 shows the proof node of the low-to-high communication
scheme. Hereval is an arbitrary flow of values,s1, sb1, se1, s2, sb2, se2 are
arbitrary flows of events.

ideal2 is theval flow sampled by the triggering events2 and figures out the value that
would be transmitted in the ideal semantic world. Similarly,ideal1 is the values that would be
read by task 1 in the ideal world. Note here the presence of the unit delaypre on the clock of
the writing task.

Finally prop computes the truth value of the property according to which, when task 1 reads
the buffer, it gets exactly the value which it would have received in the ideal world.

In the proof results given in figure14, LESAR automatically show that, under the assumptions
given in theassert clause, theprop defined in this node stays always true.

The high-to-low case Figures15 and16 display similarly the high-to-low case. Note that,
here, task 1 is the writing task and task 2 the reading one and that there is no unit delay in the
ideal communication pattern.
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arve# lesar verif.lus lthverif -v -states 100000
--Pollux Version 1.6
start normalisation ... done
start minimal network generation ...... done (226 -> 165 nodes)
building bdds ... 64 (on 64)

computing relevant statevars ... done (39 on 39)
DONE => 99529 states 367161 transitions

=>total bdd memory : 614431 nodes (˜ 62403.15 K)
TRUE PROPERTY

Figure 14: The low-to-high proof inLESAR

node htlverif(val: boolˆn; s1, sb1, se1, s2, sb2, se2: bool)
returns(prop: bool);
var ideal1, ideal2: boolˆn;
let

assert priority(s1, sb1, se1, s2, sb2, se2);
ideal1 = if s1 then val

else (init -> pre ideal1);

ideal2 = if s2 then ideal1
else (init -> pre ideal2);

prop = if sb2 then vecteq(ideal2, hightolowbuf(s1, s2, se1, ideal1))
else true;

tel

Figure 15: The high-to-low proof in LUSTRE
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arve# lesar verif.lus htlverif -v -diag -states 100000
--Pollux Version 1.6
start normalisation ... done
start minimal network generation .... done (201 -> 148 nodes)
building bdds ... 57 (on 57)

computing relevant statevars ... done (32 on 32)
DONE => 22489 states 88105 transitions

=>total bdd memory : 106880 nodes (˜ 10855.00 K)
TRUE PROPERTY
root@arve:/home/caspi/RISE/ETTT/LUSTRE#

Figure 16: The high-to-low proof inLESAR
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6 Conclusions

We have outlined a mixed event-triggered and time-triggered system. Firstly, a method of mod-
elling such systems using SIMULINK and translating through SIMULINK GATEWAY to SCADE
was described. This would allow the verification of important properties by the SCADE verifi-
cation tool before implementation on the target architecture.

The two most important properties of this system are schedulability and correctness of the
modelling with respect to the implementation. For schedulability, we applied a simple dead-
line monotonic scheme which has a degree of optimality, is easily computed and matches our
communications mechanisms. For functional correctness we proposed the use of unit delays to
overcome problems of temporal ordering in preemptive systems and a suitable double buffering
communication scheme. The originality of this double buffering technique lies in the dissocia-
tion between the instants when the buffers are chosen and toggled and the instants when they are
used for proper communication.

With suitable generalisation and making some minimal assumptions about the timing of com-
munications we were able to prove the correctness of event orderings. There has been little work
in the past on systems which address both of these issues together. However, using the properties
of the scheduling algorithm we were able to derive a set of semantical constraints within our
framework which we were then able to use in the correctness proof. This is the novel aspect to
our work. It is difficult to say how general the technique is, or how feasible it would be to au-
tomate some of the reasoning we have used, but for the system we have described here it works
very well.

We are still obliged, however, to find adequate RTOS concepts and tools supporting both our
scheduling policy and signalling and communication scheme. Depending upon the application
domains we investigate, compliance with standards may be required. It is unlikely that a stan-
dard exists which can directly support our methods, for instance the combination of the OSEK
standard [26] and its time-triggered equivalent OSEKTIME [25] for the automotive industry as-
sumes non-preemption of time-triggered tasks by event-triggered ones, so it may be necessary to
propose the evolution of such standards to meet our requirements.

Future work in this direction could also include studying whether the functional semantics
can be preserved under different scheduling schemes such as incorporating inter-task dependen-
cies, period less than deadline or tasks with variable run-times.
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A The utils.lus library

-- event library
-- event are assumed to be separated

node separated(s: bool) returns (prop: bool);
let

prop = (true -> pre s) => not s;
tel

-- after

node after(s1, s2 : bool) returns (prop : bool);
var todo : bool;
let

assert separated(s1);
assert separated(s2);
todo = if s1 then true

else if s2 then false
else (false -> pre todo);

prop = s2 => (false -> pre todo);
tel

-- forget the first occurrence of s1

node forgetfirst(s1: bool) returns (s2: bool);
var done: bool;
let

assert separated(s1);
done = if s1 then true

else (false-> pre done);
s2 = s1 and (false-> pre done);

tel

-- never between

node neverbetween (s1, s2, s3: bool) returns (prop: bool);
var now: bool;
let now = if s1 then false

else if s2 then true
else (true -> pre now);

prop = s3 => now;
tel
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