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1 Introduction

We first recall the objectives of the project.

In the context of past or current projects involving industrial partners from various applica-
tion domains, the participants of FoToVP have observed several approaches for the design of
complex and/or critical embedded systems, based on the notion of virtual prototyping. This
allowed us to identify clearly where there is a need for formal tools. We started studying the
benefits of formal methods and tools in the other projects, with the constraints of partic-
ular application domains, and with practical objectives in mind. Some recurring problems
appeared, that need to be investigated further, independently of these application domains,
and with less constraining short-term practical objectives. In this project called FoToVP,
standing for ”Formal Tools for Virtual Prototyping of Embedded Systems”, we would like to
study these recurring problems, in order to develop more fundamental and generic results.
The motivations are clearly related to industrial applications, and the applicability of the
project results will be evaluated with respect to these industrial practises and applications.
The three application domains we have been studying in other projects, with industrial
partners, are:

• Systems-on-a-chip, with STMicroelectronics
• Sensor networks, with FranceTelecom R&D
• Embedded control systems, with EADS, Airbus, RATP,

In all these domains, we observed that the design of complex systems relies on the definition
of a virtual prototype, in the form of some executable high-level model of the system. This
is made complex because such a model has to cover all elements of the embedded system, at
various levels of abstraction: the hardware pieces, the software (both application software
and operating system or middleware levels), the execution platform, and the physical en-
vironment. First, an executable model may be used extensively for simulations, to observe
functional and non-functional properties of the system under construction. To our opinion,
the main points to be studied and integrated in a generic prototyping framework are:

• Accurate modeling of physical environments and execution platforms
• Extraction of rich executable formal models from non-formally defined proto- typing

languages like SystemC, Java, etc.
• Automatic abstraction of these rich models, according to various criteria
• Integration of external black-box code
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• Modeling of non-functional properties (non-functional time, energy, ...)
• A general formal framework for functional and non-functional modular ab- stractions

2 Definition of the Virtual Prototyping Framework (VPF)
in FoToVP

The first discussions in the project have led to the main choices for the Virtual Prototyping
Framework (VPF) we will study. We have also refined the objectives of the project.

2.1 Needs and Global Picture

A VPF includes all elements that allow to simulate the complete system: the hardware, the
software (both application and infrastructure software), a model of the physical environ-
nement of the system, a model of the communication media.

There is a clear distinction to be made between: 1) models in the sense of physical models,
i.e., mathematical or computer models that represent some physical reality; 2) models for
hardware and software, in the sense of so-called “model-driven” development approaches,
i.e., abstractions of some computer system element. For the latter, it is possible to include
in a VPF the exact definition of the computer system element (a VHDL description of the
hardware, the exact code of a protocol, etc.), but the difficulty comes from the need to use
more abstract models. For the former, a model will always be some approximation of the
reality, and the difficulty is to design a faithful model.

We review all the elements of a VPF below, and comment on the type of model we need,
and on the methods to be used to obtain these models.

2.2 Modeling the Physical Environment

For modeling the physical environment, we will use executable models described in a syn-
chronous language (Lutin, Lustre or Signal). Experiments already exist, and since the
synchronous languages are formally defined, it will be easier to use in a formally defined
context.

The choice is mainly between: 1) executable models; 2) equational models. When the
physical phenomenon to be modeled is well known, and has been described by equations
with perturbations, solution 2 is the right one. But the physical environment to be included
in our VPs are seldom well defined, and it is often easier to describe them directly in some
operional way.

For instance, the physical environment of a sensor network is the source of all the stimuli
on the sensors. If we consider a pollution cloud, the stimuli are strongly correlated both
spatially and temporally (if the cloud is somewhere at a given instant, it is likely to be close
tto this place a small amount of time after that). Describing these correlations is easy if we
“program” the cloud, as a non-deterministic behavior.

This has been described in [5]. The complete integration of such environment models in
functional models of sensor networks will be part of the PhD of L. Samper at Verimag,
available next semester.
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2.3 Modeling the Execution Platform

The notion of execution platform for embedded software may cover various situations. For
instance, it may be the set of hardware components plus the operating systems, in a system-
on-chip. It may also be the hardware of the nodes, plus the radio channel, in a sensor
network. In a distributed system, it includes the computing units, plus the communication
elements (buses, ...).

Consequently, the model of the execution platform that has to be included in a global virtual
prototype of an embedded system may need: 1) the modelling of some physical phenomenon
(e.g., the radio channel); 2) the modelling of dedicated hardware; 3) the modelling (or the
inclusion in the model) of the infrastructure software.

For case 1), see the previous section on physical models. For cases 2) and 3), the problem
is either to build models from scratch, or to extract models from existing languages which
are not necessarily well-defined. See next subsection.

As demonstrated by the related work [2, 3], the environment of the system and the execution
platform can be specified using AADL [1] and then interpreted in a synchronous model of
computation and hence incorporated and understood in the present virtual prototyping
framework.

The use of similar techniques is under study at VERIMAG, for the fine description of a the
hardware architecture of the ATV (Automatic Transfer Vehicle). This will be available as a
master student report at the end of june 08.

2.4 Model Extraction for Hardware and Software Descriptions

Model extraction is the operation that produces a formal model (e.g., that can be exploited
by some automatic verification tool like a model-checker), from the description of a computer
system element, in some programming or hardware-description-language (HDL).

In FoToVP we will concentrate on the extraction of models from languages of the C family
(C, C++, Java, SystemC). For the software part it is representative of the languages used in
the embedded system domain. For the hardware part, it is representative of the languages
used for the description of hardware at a higher level of abstraction than the Register-
Transfer-Level which is the entry point of synthesis tools.

For the hardware part, one important need is to be able to extract a model of the architecture
of the system.

3 First Unifying Task

This first view on the needs for FoToVP has led to the definition of the first unifying task:
the definition of a formal model that could be used as a central format for all the models
described above.

Comparing the experiments made previously by VERIMAG and Espresso, we decided to
study the definition of a formalism based on automata and products of automata, with the
following characteristics:

• The basic automata should be usable for the description of software at any level of
details. Hence they should be interpreted automata, with no limitation on the expres-

VERIMAG, IRISA-Espresso (F. Maraninchi, J.-P. Talpin) page: 3/5



ANR FoToVP - Deliverable 1 December 15, 2007

sive power. However, an interpreted automaton allows a clear distinction between a
finite control structure, and a set of variables of any type on which all operations are
permitted. This form of description is adequate for the use of abstract interpretation
tools.

• These basic automata should be able to describe the notion of atomicity needed in any
parallel language. We suggest two kinds of states, as already explored with MicMac
automata in the PhD of Jérôme Cornet at VERIMAG (available next semester). The
idea is to distinguish between micro-states that represent the internal activity of a
process, and macro-states, that represent the points at which a process may yield
to the scheduler (or let the other activities change the global state). This kind of
automaton with two kinds of states may be used to describe the semantics of the
non-preemptive scheduler of SystemC. It can also be used to describe the semantics
of parallel threads in Java: the synchronized keyword identifies pieces of code that
have to be translated by micro-states.

• The products should be able to describe both the pure synchronous composition, and
the various kinds of asynchronous compositions.

The first technical work will be on the redefinition of the HPIOM formalism (as defined in
the PhD thesis of Matthieu Moy [4]), and the integration with what can be done by using
the SSA form of the GCC compiler to obtain models extracted from software. In HPIOM,
the basic steps of a C++ program first give successive transitions in the automaton; then
some transitions are merged if they represent code that can be executed in parallel.

The translation of the SSA form into Signal is done the other way round. It exploits the
structural properties of the control-flow in an SSA program: since all variables on a path
of the control-flow are guaranteed to be assigned at most once, each path can be translated
by the composition of data-flow equations. The translation of the SSA form hence consists
of interpreting each instruction of the SSA program by an equation of equivalent meaning.
This results in the exposition of maximal parallelism and gives opportunities for verification
and optimization.

Although the two methods are different, and may be compared on performance criteria
(time, size of the automaton produced, ...), they rely on the same idea: an automaton
representing a sequential program should expose maximal parallelism.

4 Conclusion

The various aspects of the project have been clarified, and several subtasks have been started
(modeling the architecture, moldeing the physical environment, studying special kinds of
automata for the representation of various synchronous and asynchronous frameworks).

A special task has been started, on the comparison between the HPIOM approach (Verimag)
and the approach based on SSA (Espresso), for the prodution of automata that encode pieces
of programs written in languages like C, C++ or Java.
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