
Adaptor synthesis for real-time
components

Pascal Fradet (Pascal.Fradet@inrialpes.fr)
Alain Girault (Alain.Girault@inrialpes.fr)

Gregor Goessler (Gregor.Goessler@inrialpes.fr)
Massimo Tivoli (Massimo.Tivoli@inrialpes.fr)

POP-ART project team - INRIA Rhône-Alpes

1

We believe that…
 Model construction should be part of the

development process
 early identification of problems.

 Model analysis and synthesis
 increased confidence on the adequacy and validity of the

final product;
 mechanical verification and enforcing (when possible) of

properties.
 In particular: design of concurrent systems

 integration of components can introduce interaction
problems that are hard to detect;

 deadlock, starvation, safety, liveness, etc….

2

Component Based Software
Engineering (CBSE)
 CBSE focuses on building software systems by

integrating previously existing software components
[SEI-CMU].

 It embodies the “buy, don’t build” philosophy
[Brooks‘87].

 Boosted by:
 increase in the quality and variety Commercial-Off-The-Shelf

(COTS) components;
 component integration technologies, e.g., COM & CORBA;
 lower development and maintenance budget.

 It introduces a new approach to system design.

3

Designing Component Based
(CB) systems
 Components are:

 autonomous, decoupled, concurrent and possibly distributed
entities;

 with well-defined interfaces for communication and
synchronization.

 Integration context provides:
 abstraction framework for integrating components, e.g.,

network, O.S., data representation, etc…;
 standard services, e.g., naming, yellow pages, etc…;
 limited capabilities for accessing component services:

 only simple interactions are supported, e.g., in CORBA,
synchronous, deferred synchronous and one-way.

4

Motivation: why adaptation is
needed (and more…)
 Adaptation of software components is an important issue

in CBSE.
 SOA & Web Services connectivity

 heterogeneous services;
 interaction/architectural mismatches.

 Legacy,embedded and COTS systems integration
 unavoidable heterogeneity;
 incompatible and/or non-sufficiently specified interaction behavior

 e.g., in COM, only interface signature (it is not enough!!!);
 when the time is not critical, signature + protocol might be

enough;
 when the time is critical, signature + protocol + QoS constraints

might be enough.
 Interfaces and even frameworks

5

What is our application context
and what’s the problem?
 Context:

 a CB development framework for the correct-by-
construction and incremental assembly of CB real-
time systems out of a set of already
heterogeneous implemented components.

 Problem:
 the ability to establish/guaranteeing properties on

the assembly code by only assuming a relative
knowledge of the properties of the single
components.

6

The role of the Software
Architecture (SA)
 A SA represents the reference skeleton

used to compose components and let
them interact
 interactions among components are

represented by the notion of software
connector.

7

Basic ideas
 A simple SA structure which exploits the separation between

functional behavior (i.e., the components) and integration/
communication behavior (i.e., the connectors).

 Extra information at component level: component assumptions
on the expected environment

 interface signature + interaction protocol + timing information.

 Promoting the use of automatically derived component adaptors as
special components that are used to enhance the behavior of
connectors in order to solve possible incompatibilities (black-box
component settings).

8

The reference architectural
model
 It belongs to generic pipe-and-filter

styles and the components follow a
data-flow interaction model.

9

Component information
 Component behavior observable from its external environment

 sequences of reading/writing actions from/to input/output ports plus
QoS constraints on these actions.

 Assumptions on the component expected environment in order
to guarantee a property in a specific integration context.

 In the case of deadlock-freeness, we use “my context never
blocks me”, e.g.:
 “if the time is elapsing for me, it has to elapse for the environment

as well”;
 “if I can perform a writing action on a port p (within a certain

interval of time), the environment must be able to perform the
reading from p within that interval”.

 How do we produce this additional information?

10

Modeling the system
 The DLiPA specification language:

 component behavior modeled using finite state
machines (i.e., LTSs)

 a unique model explicitly describing a combination of
functional and extra-functional behavior in a operational
way (suitable for synthesis purposes);

 integration through parallel composition of
component models;

 mismatches/incompatibilities
 clock inconsistency, reading/writing time inconsistency,

mismatching interaction protocols, etc…;
 all modeled as deadlocks: the system model, seen as the

parallel composition of the component models, can reach
a state where no action is possible.

11

DLiPA (Duration-Latency-
interval Process Algebra)
 It is an extension of Milner’s CCS aiming at

considering a notion of controllability, latency and
duration of actions, and of logical clock associated to
each process:
 controllable (i.e., “discardable”) vs. uncontrollable (i.e.,

“mandatory”) actions;
 latency: the number of global time units that can pass before

the actions is performed from the time it is enabled
 earger vs. delayed actions;

 duration: the number of local time units needed for the action
execution

 time-consuming vs. immediate actions;
 clock: a periodic stream of Boolean values [Pouzet et al.

EMSOFT’05]
 activation frequency of the component.

12

DLiPA… continuing
 Two component views:

 clock-independent
 only for sequential processes;
 the behavior is parametric with respect to the

clock that must be still assigned;
 clock-dependent

 for DLiPA processes (sequential and composite
ones);

 the clock is fixed since it has been instantiated.

13

Sequential processes (syntax)

 l is a number standing for [0,l] (latency)
 D is an interval [d1, d2] (duration)
 µ can be

 visible (e.g., a, a, au, au)
 internal (i.e., τ)

p := µl
D.p | p+p | X | rec X.p

14

Sequential processes
(semantics)

C1 := rec X.(a1
[1,2].b2.X)

C1

w1

a b

15

Sequential processes
(semantics)

C1 := rec X.(a1
[1,2].b2.X)

SeqOS(C1)

-time-elapsing actions: ε and δ
-concrete actions: a and b

16

DLiPA processes (syntax)

 p is a sequential process
 w is a clock constant

 e.g, (10) = 10101010101010…
 |, \, [f] are the parallel, restriction and

relabeling operators, respectively

P := <p,w> | P|P | P\I | P[f]

17

DLiPA processes (semantics)
 <p,w> behaves like SeqOS(p) where the sequences of actions

(concrete and time-consuming) that cannot be performed
respect to w are pruned; its LTS is denoted by OS(<p,w>).

 Model validation:
 if OS(<p,w>) is empty or it is made only of finite paths, w is

an invalid clock for p; otherwise, w may be valid;
 OS(<p,w>) without its finite paths has to preserve the

protocol specified for p
 weak bisimulation between OS(<p,w>) without the finite

paths and SeqOS(p) (tool supported, e.g., CADP).

 In other words, w is a valid clock if <p,w> exists as sequential
process and by abstracting from the time the protocol of p and
<p,w> has to be the same.

18

DLiPA semantics… continuing
<C1,w1> := <rec X.(a1

[1,2].b2.X),(10)>

SeqOS(C1)
OS(<C1,w1>)

19

DLiPA semantics… continuing
<C1,w1> := <rec X.(a1

[1,2].b2.X),(10)>

SeqOS(C1)
OS(<C1,w1>)

20

DLiPA semantics… continuing
<C1,w1> := <rec X.(a1

[1,2].b2.X),(10)>

SeqOS(C1)
OS(<C1,w1>)minimization can be required due to the

finite paths pruning process

observational identical paths originating
from the same source state

LTS reduction modulo strong equivalence

tool supported (e.g., CADP)

21

DLiPA semantics… continuing
 The restriction operator “\” allows one to define

connections among ports (with the same name)
 in combination with “|”, it forces the

synchronization of complementary actions.

 The relabeling operator “[f]” allows one to relabel port
names
 in combination with “\” allows one to redefine

connections (i.e., define new architectural
configurations, e.g., interpose an adaptor);

 allows one to match different port names (i.e., to
solve interface signature mismatches).

22

DLiPA semantics… concluding
 The parallel composition operator “|”:

 a μ action can be executed by performing any its interleaving
(except when it is forbidden by means of “\”). Conversely to this,
when a timed process lets the time elapse, all other timed
processes in the system have to let the time elapse.

 The case of uncontrollable actions
 concrete action (μ): a process can either perform μ or let the time

elapse while the environment cannot perform μ but it can let the
time elapse

 mismatch! μ cannot be discarded!
 time-elapsing action (εu or δu, only for duration): a process can

either let the time elapse or perform μ while the environment cannot
let the time elapse but it can perform μ

 mismatch! it has not been possible to synchronize for all duration
values!

23

Adaptor synthesis: an
example
 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>
 PLANT ::= <rec X.(spv.p1.tu1.X), (1)>

24

Adaptor synthesis: an
example
 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>
 PLANT ::= <rec X.(spv.p1.tu1.X), (1)>

HEControl

25

First solution

26

First solution

Ad1

Step 1

27

First solution

PC’

28

First solution

PC’

Step 2

Ad2

29

First solution

HEControl

30

Second solution

31

Second solution
Step 1

Ad1

32

Second solution

CascadeController

33

Second solution

CascadeController
Ad2

Step 2

34

Second solution

CascadeControllerHEControl

35

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

36

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC|PC)\{tvs,sp} -> vvs.nil
interface signature mismatch!, i.e.,
different connected port names

37

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC[{sp/tvs}]|PC)\{sp} -> vvs.nil

38

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC[{sp/tvs}]|PC)\{sp} -> vvs.nil

timing assumption inconsistency!

39

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC[{sp/tvs}]|PC)\{sp} -> vvs.nil

timing assumption inconsistency!

Ad1

40

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

Ad1

What’s about checking the existence of
the adaptor?
bounded: proportional time scale;

BUT (controllable vs. uncontrollable):
is it sufficient for deadlock- and livelock-
freeness?
deadlock- and livelock-free: identical time
scale.

41

Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

Ad1

42

Ad1 adaptor synthesis

PC

TC

43

Ad1 adaptor synthesis

PC

TC

PC

TC[{sp/tvs}]

1) derive the component expected
environment in order to not block;

44

Ad1 adaptor synthesis
1) derive the component expected

environment in order to not block;
2) derive the component PN model

according to the restriction and
parallel operator (i.e., the partial
adaptor view of the component);

45

Ad1 adaptor synthesis
1) derive the component expected

environment in order to not block;
2) derive the component PN model

according to the restriction and
parallel operator (i.e., the partial
adaptor view of the component);

3) unify all the component partial
 views of the adaptor according
 to the parallel operator.

46

Ad1 adaptor synthesis
1) derive the component expected

environment in order to not block;
2) derive the component PN model

according to the restriction and
parallel operator (i.e., the partial
adaptor view of the component);

3) unify all the component partial
 views of the adaptor according
 to the parallel operator.

47

Ad1 adaptor synthesis
1) derive the component expected

environment in order to not block;
2) derive the component PN model

according to the restriction and
parallel operator (i.e., the partial
adaptor view of the component);

3) unify all the component partial
 views of the adaptor according
 to the parallel operator.
4) the coverability graph is computed,
 minimized (TINA + CADP
 toolboxes) and “cleaned”

PC[{sp_pc/sp}]

TC[{sp/tvs}][{sp_tc/sp}]

Ad1

CascadeController = (TC[{sp/tvs}][{sp_tc/sp}] | Ad1 | PC[{sp_pc/sp}])\{sp_tc, sp_pc}

48

Second solution… again

49

Second solution… again
Step 1

Ad1

50

Second solution… again

CascadeController

51

Second solution… again

CascadeController
Ad2

Step 2

52

Second solution… again

CascadeControllerHEControl

53

Conclusion and future works
 What’s good:

 automatic derivation of the correct assembly code
 by implementing a DLiPA compiler and the adaptor synthesis

algorithm the entire approach can be automated being integrated
with TINA and CADP toolboxes

 TINA is for PNs analysis (coverability graph and its properties);
 CADP for automata analysis (minimization, tau-reduction, bi-

simulation);
 the approach may be carried on incrementally hence allowing the

architect to manage the system complexity, although the approach
is exponential.

 What’s bad:
 more validation is needed

 so far, only for HeatExchanger and ACC;
 is the approach always incremental? Nope! :(

 it is tightly coupled with the system SA;
 it depends on the system architectural configuration (e.g., Dining

54

Open issues
 Beyond periodic clocks

 in many cases, the activation frequency of a
component might depend on values computed
at run-time (e.g., operational modes).

 Supporting the architect while
instantiating clocks

 it would be useful to infer the n-tuple of
“allowable” clocks (with respect to the adaptor
to be built).

55

