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We believe that…
 Model construction should be part of the 

development process
 early identification of problems.

 Model analysis and synthesis
 increased confidence on the adequacy and validity of the 

final product;
 mechanical verification and enforcing (when possible) of 

properties.
 In particular: design of concurrent systems

 integration of components can introduce interaction 
problems that are hard to detect;

 deadlock, starvation, safety, liveness, etc….
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Component Based Software 
Engineering (CBSE)
 CBSE focuses on building software systems by 

integrating previously existing software components 
[SEI-CMU].

 It embodies the “buy, don’t build” philosophy 
[Brooks‘87].

 Boosted by:
 increase in the quality and variety Commercial-Off-The-Shelf 

(COTS) components;
 component integration technologies, e.g., COM & CORBA;
 lower development and maintenance budget.

 It introduces a new approach to system design.
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Designing Component Based 
(CB) systems
 Components are:

 autonomous, decoupled, concurrent and possibly distributed 
entities;

 with well-defined interfaces for communication and 
synchronization.

 Integration context provides:
 abstraction framework for integrating components, e.g., 

network, O.S., data representation, etc…;
 standard services, e.g., naming, yellow pages, etc…;
 limited capabilities for accessing component services:

 only simple interactions are supported, e.g., in CORBA, 
synchronous, deferred synchronous and one-way.
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Motivation: why adaptation is 
needed (and more…)
 Adaptation of software components is an important issue 

in CBSE.
 SOA & Web Services connectivity

 heterogeneous services;
 interaction/architectural mismatches.

 Legacy,embedded and COTS systems integration
 unavoidable heterogeneity;
 incompatible and/or non-sufficiently specified interaction behavior

 e.g., in COM, only interface signature (it is not enough!!!);
 when the time is not critical, signature + protocol might be 

enough;
 when the time is critical, signature + protocol + QoS constraints 

might be enough.
 Interfaces and even frameworks
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What is our application context 
and what’s the problem?
 Context:

 a CB development framework for the correct-by-
construction and incremental assembly of CB real-
time systems out of a set of already 
heterogeneous implemented components.

 Problem:
 the ability to establish/guaranteeing properties on 

the assembly code by only assuming a relative 
knowledge of the properties of the single 
components. 
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The role of the Software 
Architecture (SA)
 A SA represents the reference skeleton 

used to compose components and let 
them interact
 interactions among components are 

represented by the notion of software 
connector.
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Basic ideas
 A simple SA structure which exploits the separation between 

functional behavior (i.e., the components) and integration/
communication behavior (i.e., the connectors).

 Extra information at component level: component assumptions 
on the expected environment

 interface signature + interaction protocol + timing information.

 Promoting the use of automatically derived component adaptors as 
special components that are used to enhance the behavior of 
connectors in order to solve possible incompatibilities (black-box 
component settings).
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The reference architectural 
model
 It belongs to generic pipe-and-filter 

styles and the components follow a 
data-flow interaction model.
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Component information
 Component behavior observable from its external environment

 sequences of reading/writing actions from/to input/output ports plus 
QoS constraints on these actions.

 Assumptions on the component expected environment in order 
to guarantee a property in a specific integration context.

 In the case of deadlock-freeness, we use “my context never 
blocks me”, e.g.:
 “if the time is elapsing for me, it has to elapse for the environment 

as well”;
  “if I can perform a writing action on a port p (within a certain 

interval of time), the environment must be able to perform the 
reading from p within that interval”.

 How do we produce this additional information? 
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Modeling the system
 The DLiPA specification language:

 component behavior modeled using finite state 
machines (i.e., LTSs)

 a unique model explicitly describing a combination of 
functional and extra-functional behavior in a operational 
way (suitable for synthesis purposes);

 integration through parallel composition of 
component models;

 mismatches/incompatibilities
 clock inconsistency, reading/writing time inconsistency, 

mismatching interaction protocols, etc…;
 all modeled as deadlocks: the system model, seen as the 

parallel composition of the component models, can reach 
a state where no action is possible.
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DLiPA (Duration-Latency-
interval Process Algebra)
 It is an extension of Milner’s CCS aiming at 

considering a notion of controllability, latency and 
duration of actions, and of logical clock associated to 
each process:
 controllable (i.e., “discardable”) vs. uncontrollable (i.e., 

“mandatory”) actions;
 latency: the number of global time units that can pass before 

the actions is performed from the time it is enabled
 earger vs. delayed actions;

 duration: the number of local time units needed for the action 
execution

 time-consuming vs. immediate actions;
 clock: a periodic stream of Boolean values [Pouzet et al. 

EMSOFT’05]
 activation frequency of the component.
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DLiPA… continuing
 Two component views:

 clock-independent
 only for sequential processes;
 the behavior is parametric with respect to the 

clock that must be still assigned;
 clock-dependent

 for DLiPA processes (sequential and composite 
ones);

 the clock is fixed since it has been instantiated.
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Sequential processes (syntax)

 l is a number standing for [0,l] (latency)
 D is an interval [d1, d2] (duration)
 µ can be

 visible (e.g., a, a, au, au)
 internal (i.e., τ)

p := µl
D.p  |  p+p  |  X  |  rec X.p
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Sequential processes 
(semantics)

C1 := rec X.(a1
[1,2].b2.X)

C1

w1

a b
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Sequential processes 
(semantics)

C1 := rec X.(a1
[1,2].b2.X)

SeqOS(C1)

-time-elapsing actions: ε and δ
-concrete actions: a and b
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DLiPA processes (syntax)

 p is a sequential process
 w is a clock constant

 e.g, (10) = 10101010101010…
 |, \, [f] are the parallel, restriction and 

relabeling operators, respectively

P := <p,w>  |  P|P  |  P\I  |  P[f]
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DLiPA processes (semantics)
 <p,w> behaves like SeqOS(p) where the sequences of actions 

(concrete and time-consuming) that cannot be performed 
respect to w are pruned; its LTS is denoted by OS(<p,w>).

 Model validation:
 if OS(<p,w>) is empty or it is made only of finite paths, w is 

an invalid clock for p; otherwise, w may be valid;
 OS(<p,w>) without its finite paths has to preserve the 

protocol specified for p
 weak bisimulation between OS(<p,w>) without the finite 

paths and SeqOS(p) (tool supported, e.g., CADP).

 In other words, w is a valid clock if <p,w> exists as sequential 
process and by abstracting from the time the protocol of p and 
<p,w> has to be the same.
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DLiPA semantics… continuing
<C1,w1> := <rec X.(a1

[1,2].b2.X),(10)>

SeqOS(C1)
OS(<C1,w1>)
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DLiPA semantics… continuing
<C1,w1> := <rec X.(a1

[1,2].b2.X),(10)>

SeqOS(C1)
OS(<C1,w1>)
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DLiPA semantics… continuing
<C1,w1> := <rec X.(a1

[1,2].b2.X),(10)>

SeqOS(C1)
OS(<C1,w1>)minimization can be required due to the

finite paths pruning process

observational identical paths originating
from the same source state

LTS reduction modulo strong equivalence

tool supported (e.g., CADP)
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DLiPA semantics… continuing
 The restriction operator “\” allows one to define 

connections among ports (with the same name)
 in combination with “|”, it forces the 

synchronization of complementary actions.

 The relabeling operator “[f]” allows one to relabel port 
names
 in combination with “\” allows one to redefine 

connections (i.e., define new architectural 
configurations, e.g., interpose an adaptor);

 allows one to match different port names (i.e., to 
solve interface signature mismatches).
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DLiPA semantics… concluding
 The parallel composition operator “|”:

 a μ action can be executed by performing any its interleaving 
(except when it is forbidden by means of “\”). Conversely to this, 
when a timed process lets the time elapse, all other timed 
processes in the system have to let the time elapse.

 The case of uncontrollable actions
 concrete action (μ): a process can either perform μ or let the time 

elapse while the environment cannot perform μ but it can let the 
time elapse

 mismatch! μ cannot be discarded!
 time-elapsing action (εu or δu, only for duration): a process can 

either let the time elapse or perform μ while the environment cannot 
let the time elapse but it can perform μ

 mismatch! it has not been possible to synchronize for all duration 
values!
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Adaptor synthesis: an 
example
 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>
 PLANT ::= <rec X.(spv.p1.tu1.X), (1)>
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Adaptor synthesis: an 
example
 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>
 PLANT ::= <rec X.(spv.p1.tu1.X), (1)>

HEControl
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First solution
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First solution

Ad1

Step 1

27



First solution

PC’
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First solution

PC’

Step 2

Ad2
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First solution

HEControl
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Second solution
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Second solution
Step 1

Ad1
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Second solution

CascadeController
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Second solution

CascadeController
Ad2

Step 2
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Second solution

CascadeControllerHEControl
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC|PC)\{tvs,sp} -> vvs.nil
interface signature mismatch!, i.e.,
different connected port names
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC[{sp/tvs}]|PC)\{sp} -> vvs.nil
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC[{sp/tvs}]|PC)\{sp} -> vvs.nil

timing assumption inconsistency!
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

(TC[{sp/tvs}]|PC)\{sp} -> vvs.nil

timing assumption inconsistency!

Ad1
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

Ad1

What’s about checking the existence of
the adaptor?
bounded: proportional time scale;

BUT (controllable vs. uncontrollable):
is it sufficient for deadlock- and livelock-
freeness?
deadlock- and livelock-free: identical time
scale.
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Second solution… continuing

 TC ::= <rec X.(tvs[1,2].stv.mtvu.X), (10)>
 PC ::= <rec X.(vvs1.mpv.sp1.X), (10)>

TC

PC

Ad1
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Ad1 adaptor synthesis

PC

TC
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Ad1 adaptor synthesis

PC

TC

PC

TC[{sp/tvs}]

1) derive the component expected 
environment in order to not block;
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Ad1 adaptor synthesis
1) derive the component expected 

environment in order to not block;
2) derive the component PN model 

according to the restriction and 
parallel operator (i.e., the partial 
adaptor view of the component);
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Ad1 adaptor synthesis
1) derive the component expected 

environment in order to not block;
2) derive the component PN model 

according to the restriction and 
parallel operator (i.e., the partial 
adaptor view of the component);

3) unify all the component partial
       views of the adaptor according
       to the parallel operator.
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Ad1 adaptor synthesis
1) derive the component expected 

environment in order to not block;
2) derive the component PN model 

according to the restriction and 
parallel operator (i.e., the partial 
adaptor view of the component);

3) unify all the component partial
       views of the adaptor according
       to the parallel operator.
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Ad1 adaptor synthesis
1) derive the component expected 

environment in order to not block;
2) derive the component PN model 

according to the restriction and 
parallel operator (i.e., the partial 
adaptor view of the component);

3) unify all the component partial
       views of the adaptor according
       to the parallel operator.
4) the coverability graph is computed,
       minimized (TINA + CADP
       toolboxes) and “cleaned”

PC[{sp_pc/sp}]

TC[{sp/tvs}][{sp_tc/sp}]

Ad1

CascadeController = (TC[{sp/tvs}][{sp_tc/sp}] | Ad1 | PC[{sp_pc/sp}])\{sp_tc, sp_pc}
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Second solution… again
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Second solution… again
Step 1

Ad1
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Second solution… again

CascadeController
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Second solution… again

CascadeController
Ad2

Step 2
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Second solution… again

CascadeControllerHEControl
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Conclusion and future works
 What’s good:

 automatic derivation of the correct assembly code
 by implementing a DLiPA compiler and the adaptor synthesis 

algorithm the entire approach can be automated being integrated 
with TINA and CADP toolboxes

 TINA is for PNs analysis (coverability graph and its properties);
 CADP for automata analysis (minimization, tau-reduction, bi-

simulation);
 the approach may be carried on incrementally hence allowing the 

architect to manage the system complexity, although the approach 
is exponential. 

 What’s bad:
 more validation is needed

 so far, only for HeatExchanger and ACC;
 is the approach always incremental? Nope! :(

 it is tightly coupled with the system SA;
 it depends on the system architectural configuration (e.g., Dining 
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Open issues
 Beyond periodic clocks

 in many cases, the activation frequency of a 
component might depend on values computed 
at run-time (e.g., operational modes).

 Supporting the architect while 
instantiating clocks

 it would be useful to infer the n-tuple of 
“allowable” clocks (with respect to the adaptor 
to be built).
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