Adaptor synthesis for real-time

!L components

Pascal Fradet (Pascal.Fradet@inrialpes.fr)
Alain Girault (Alain.Girault@inrialpes.fr)
Gregor Goessler (Gregor.Goessler@inrialpes.fr)

Massimo Tivoli (Massimo.Tivoli@inrialpes.fr)

POP-ART project team - INRIA Rhéne-Alpes

We believe that...

= Model construction should be part of the
development process

= early identification of problems.

= Model analysis and synthesis

= increased confidence on the adequacy and validity of the
final product;

= mechanical verification and enforcing (when possible) of
properties.

= |n particular: design of concurrent systems

= integration of components can introduce interaction
problems that are hard to detect;

= deadlock, starvation, safety, liveness, etc....

Component Based Software
Engineering (CBSE)

CBSE focuses on building software systems by
integrating previously existing software components
[SEI-CMU]J.

It embodies the “buy, don't build” philosophy
[Brooks'87].
Boosted by:

= increase in the quality and variety Commercial-Off-The-Shelf
(COTS) components;

= component integration technologies, e.g., COM & CORBA;
= |ower development and maintenance budget.

It introduces a new approach to system design.

Designing Component Based
(CB) systems

= Components are:

= autonomous, decoupled, concurrent and possibly distributed
entities;

= with well-defined interfaces for communication and
synchronization.
= |ntegration context provides:

= abstraction framework for integrating components, e.g.,
network, O.S., data representation, etc...;

= gstandard services, e.g., naming, yellow pages, etc...;

= [imited capabilities for accessing component services:

= only simple interactions are supported, e.g., in CORBA,
synchronous, deferred synchronous and one-way.

Motivation: why adaptation is
needed (and more...)

= Adaptation of software components is an important issue
in CBSE.

= SOA & Web Services connectivity
= heterogeneous services;
= interaction/architectural mismatches.

= |Legacy,embedded and COTS systems integration
= unavoidable heterogeneity;
= incompatible and/or non-sufficiently specified interaction behavior
= e.g., in COM, only interface signature (it is not enough!!!);

= when the time is not critical, signature + protocol might be
enough;

= when the time is critical, signature + protocol + QoS constraints
might be enough.

= |nterfaces and even frameworks

What is our application context

i and what's the problem?

= Context:

= a CB development framework for the correct-by-
construction and incremental assembly of CB real-
time systems out of a set of already
heterogeneous implemented components.

= Problem:

= the ability to establish/guaranteeing properties on
the assembly code by only assuming a relative
knowledge of the properties of the single
components.

The role of the Software
Architecture (SA)

= A SA represents the reference skeleton
used to compose components and let

them interact
= interactions among components are

represented by the notion of software
connector.

Basic ideas

A simple SA structure which exploits the separation between
functional behavior (i.e., the components) and integration/
communication behavior (i.e., the connectors).

Extra information at component level: component assumptions
on the expected environment

= interface signature + interaction protocol + timing information.

Promoting the use of automatically derived component adaptors as
special components that are used to enhance the behavior of
connectors in order to solve possible incompatibilities (black-box
component settings).

The reference architectural
model

= |t belongs to generic pipe-and-filter
styles and the components follow a
data-flow interaction model.

3{_{(T}

&

' TC *— PC ¢ PLANT

Component information

= Component behavior observable from its external environment

= sequences of reading/writing actions from/to input/output ports plus
QoS constraints on these actions.

= Assumptions on the component expected environment in order
to guarantee a property in a specific integration context.

= |n the case of deadlock-freeness, we use “my context never
blocks me”, e.g.:

= “if the time is elapsing for me, it has to elapse for the environment
as well’”;

= “jf| can perform a writing action on a port p (within a certain
interval of time), the environment must be able to perform the
reading from p within that interval”.

" How do we produce this additional information?

10

Modeling the system

= The DLIPA specification language:

= component behavior modeled using finite state
machines (i.e., LTSs)

= a unique model explicitly describing a combination of
functional and extra-functional behavior in a operational
way (suitable for synthesis purposes);
= integration through parallel composition of
component models;

= mismatches/incompatibilities

= clock inconsistency, reading/writing time inconsistency,
mismatching interaction protocols, etc...;

= all modeled as deadlocks: the system model, seen as the
parallel composition of the component models, can reach
a state where no action is possible.

11

DLIPA (Duration-Latency-
interval Process Algebra)

= |t is an extension of Milner's CCS aiming at
considering a notion of controllability, latency and
duration of actions, and of logical c/lock associated to
each process:

= controllable (i.e., “discardable”) vs. uncontrollable (i.e.,
“mandatory”) actions;

= |atency: the number of global time units that can pass before
the actions is performed from the time it is enabled

= earger vs. delayed actions;

= duration: the number of local time units needed for the action
execution

= time-consuming vs. immediate actions;

= clock: a periodic stream of Boolean values [Pouzet et al.
EMSOFT' 03]

= activation frequency of the component.

12

i DLIPA... continuing

= Two component views:

= clock-independent
= only for sequential processes;

= the behavior is parametric with respect to the
clock that must be still assigned,;

= clock-dependent

= for DLIPA processes (sequential and composite
ones);

= the clock is fixed since it has been instantiated.

13

i Sequential processes (syntax)

=uPp | ptp | X | recX.p
= | is a number standing for [0,]] (latency)
= D is an interval [d,, d,] (duration)

= (L can be
= visible (e.g., a, a, a¥, aY)
= internal (i.e., 1)

14

Sequential processes
(semantics)

C, :=rec X.(a,[12.b,.X)

15

Sequential processes
(semantics)

C, :=rec X.(a,[12.b,.X)

SeqOS(C,)

o |

s5 s6
¢ -time-elapsing actions: € and 0
-concrete actions: aandb

54 E

16

i DLIPA processes (syntax)

P:=<pw> | PP | P\l | PI[f]

= p IS a sequential process

" W IS a clock constant
= e.g, (10) = 10101010101010...

=\ [f] are the , restriction and
relabeling operators, respectively

17

DLIPA processes (semantics)

= <p,w> behaves like SeqOS(p) where the sequences of actions
(concrete and time-consuming) that cannot be performed
respect to w are pruned; its LTS is denoted by OS(<p,w>).

= Model validation:

= if OS(<p,w>) is empty or it is made only of finite paths, w is
an invalid clock for p; otherwise, w may be valid;

= OS(<p,w>) without its finite paths has to preserve the
protocol specified for p

= weak bisimulation between OS(<p,w>) without the finite
paths and SeqOS(p) (tool supported, e.g., CADP).

= |n other words, w is a valid clock if <p,w> exists as sequential
process and by abstracting from the time the protocol of p and
<p,w> has to be the same.

18

DLIPA semantics... continuing

<C,,w,> = <rec X.(a,['21.b,.X),(10)>

OS(<C,,w,>)
SeqO0S(C,)

19

DLIPA semantics... continuing

<C,,w,> = <rec X.(a,['21.b,.X),(10)>

OS(<C,,w,>)
SeqO0S(C,)

20

o |

DLIPA semantics... continuing

<C,,w,> = <rec X.(a,[2.b,.X),(10)>

minimization can be required due to the v.>)
SeqOS(! finite paths pruning process

s0
Yy observational identical paths originating

4 527 from the same source state
e
51

LTS reduction modulo strong equivalence

:5,? = ‘:SErG -~

tool supported (e.q., CADP)

<54, 1=

=s4, 0

21

i DLIPA semantics... continuing

= The restriction operator “\" allows one to define
connections among ports (with the same name)

= in combination with “|", it forces the
synchronization of complementary actions.

= The relabeling operator “[f]” allows one to relabel port
names

= in combination with “\" allows one to redefine
connections (i.e., define new architectural
configurations, e.qg., interpose an adaptor);

= allows one to match different port names (i.e., to
solve interface signature mismatches).

22

DLIPA semantics... concluding

= The parallel composition operator “|”:

" a u action can be executed by performing any its interleaving
(except when it is forbidden by means of “\”). Conversely to this,
when a timed process lets the time elapse, all other timed
processes in the system have to let the time elapse.

" The case of uncontrollable actions

= concrete action (u): a process can either perferm u or let the time
elapse while the environment cannot perform [but it can let the
time elapse

= mismatch! u cannot be discarded!

= time-elapsing action (¥ or &Y, only for duration): a process can
either let the time elapse or perform p while the environment cannot
let the time elapse but it can perform pu

= mismatch! it has not been possible to synchronize for all duration
values!

23

Adaptor synthesis: an
example

= TC ::= <rec X.(tvs!"2.stv.mtvu.X), (10)>
= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>
= PLANT ::= <rec X.(spv.p'.t41.X), (1)>

{n

(10) (10)
é % #mpv

stv tvs Sp

_HTC“ HPC Ts slﬁ?

*mtv

b —
——
—h
oter™

PLANT

24

Adaptor synthesis: an
example

= TC 1= <rec X.(tvs!!2.stv.mtvu.X), (10)>
= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>
= PLANT ::= <rec X.(spv.p'.t41.X), (1)>

___________________________________ (1)
HEControl B 4:}’

tvs SpP

TC #* % pC %. %t PLANT

25

i First solution

(10)

(10)
% % mev

stv tvs Sp
- TC ¢ PC s

*mw

PLANT

26

i First solution

Step 1
(1%?"3')
= TC |

27

ﬁ First solution

*(1)

PLANT

fmw

* First solution

Step 2

(10)

{2

TC

fmw

*(1)

PLANT

29

* First solution

ﬁ“)

PLANT

30

& Second solution

PLANT

31

i Second solution

. L
o PLANT

Step 1
(10) (10)
% % mev
stv tvs Sp
- TC PC s

32

ﬁ Second solution

&(1)

1 PLANT

33

ﬁ Second solution
Step 2

*(1)

PLANT

34

* Second solution

ﬁ“)

PLANT

35

i Second solution... continuing

(10) (10)
;

mpv

stv tvs sp
> TC P PC VWS sp

fmw PC)..'EE »®_ £ »@ MO

=v1,0> <2, 0= =3, 1= <3, 0= <vd D=

mty Y

TC\'—W?-QL-O Em
O <57 0>
0 S

=51,0> <52 0= =53, 1>

tv

m TC = <rec X(tV_SH -.StV.mtVU.X), (10)> <55,1> <s6,0>
= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

36

& Second solution... continuing

(10) (10)
mpv

Et:u TC 'E%E‘ PC VVS Sp
*mtv PC '/7

| \.ﬁ_.ﬁ“ E_pg@ MDY

=v1,0> <2, 0= =3, 1= <3, 0= <vd D=
mtv Y
TC|IPC)\{tvs,sp} -> vvs.nil -
(TCIPC)\{tvs,sp} e 7 5 . o
interface signature mismatch!, i.e., <1,0> <s2,0> <s3,1> 0= <s/.0=
different connected port names 5 sty
P 51> 6,0=
= TC ::= <rec X.(tvs" -.stv.mtvv.X), (10)> =

= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

37

i Second solution... continuing

(10) (10)
g mpy
% TC *—* PC -
miv -
i PC,‘T_’ 5 e Em
=v1,0=> <v2, 0> =v3,1= =<vd 0> <v4, 0=
(TC[{sP/ HIPC)\{sp} -> VWVS.nil mtv Y
TC‘O’—W?-QL-O m
=51,0= =52,0= =53, 1= O <5/ 0=
O stv
m TC = <rec X(tV_SH -.StV.mtVU.X), (10)> <55,1> <s6,0>

= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

38

i Second solution... continuing

(10) (10)
% mpv

5 5 Sp

= TC —* PC e o
miv -
| PO g 5 ,q ¢ omiy

=v1,0> <2, 0= =3, 1= <3, 0= <vd D=

1IPC)\{sp} -> Vvs.nil mtv U

(TCI{P/yys e
TCoJ g 5 10t ve Vie
timing assumption inconsistency! 0= <s7,0>
O S

=51,0> <52 0= =53, 1>

tv

m TC = <rec X(tV_SH -.StV.mtVU.X), (10)> <55,1> <s6,0>
= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

39

& Second solution... continuing

(10) (10)

% mpv
*mtv '/7

| PC\. ﬁ_. 5 p@ £ pgMmDV

=v1,0> <2, 0= =3, 1= <3, 0= <vd D=

1IPC)\{sp} -> Vvs.nil mty Y

(TCI{P/yys e
TCoJ g 5 10t ve Vie
timing assumption inconsistency! 0= <s7,0>
O S

=51,0> <52 0= =53, 1>

tv

= TC = <rec X.(tvs!" -.stv.mtvu.X), (10)> <bl> <s60
= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

40

Second solution... continuing

(10) (10)
U mpv
S
Et:* TC 'Es : PC VVS sp
Kty - '(
What's about checking the existence of C\. 9> »@ £ »@ MV
the adaptor'? <v1,0= <v2,0= <v3,1= <v3,0= <v4, 0=

bounded: proportional time scale;

BUT (controllable vs. uncontrollable): C (

is it sufficient for deadlock- and livelock-

{51. = =52 O

freeness?
deadlock- and livelock-free: identical time
scale.
PR 51> B,0=
= TC ::= <rec X.(tvs" -.stv.mtvv.X), (10)> =

= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

41

& Second solution... continuing

(10) (10)

% mpv
*mtv '/7

| PC\. ﬁ_. 5 p@ £ pgMmDV

=v1,0> <2, 0= =3, 1= <3, 0= <vd D=

mtyv U

TCoJ g 5 .0 Eﬁ,
0> <57,0>

=51,0> <52 0= =53, 1>

= TC ::= <rec X.(tvs/" -.stv.mtvu.X), (10)>
= PC ::= <rec X.(vvs'.mpv.sp,.X), (10)>

42

* Ad1 adaptor synthesis

ch.m

=v1,0= =2 0= =3, 1= =3, 0= =yd 0=

mtv Y

TC‘*%: 5 o Em

<51,0> <820> <831 =s7,0=>

43

* Ad1 adaptor syn

POl g g 2 g

=v1,0= =2 0= =3, 1= =3, 0= =yd 0=
mtv Y
<51,0=> <520 <53,1=> <54 0= =57 0=
S
PC —
g WS, g 0 @ E @MV
=v1,0= v 0= =3, 1= =3 0= vl 0=
mtv Y
S
TC[{ p/ tvs}]
Sp 5 E stv
b S SN i Sl KN

thesis

1) derive the component expected
environment in order to not block;

44

* Ad1 adaptor synthesis

Sp 1) derive the component expected
\.(5 ER environment in order to not block;
e 0 e 2) derive the component PN model
according to the restriction and
mtvY parallel operator (i.e., the partial
‘.(5 . = adaptor view of the component);
.. .. <57 0=
<51,0> <820 <s31> <54 0= !

Sp” BE/Q p_sp

-
£ R g e —

<v3,0=

T_pc &0 e 1 T"_pC

45

* Ad1 adaptor synthesis

Sp 1) derive the component expected
\.(5 . BV environment in order to not block;
X ;ﬁ} ;3.’1} ﬂ"ra.’ﬂ} o (R 2) derive the component PN model
according to the restriction and
mtvY parallel operator (i.e., the partial

(s . < adaptor view of the component);
;..ﬂ} {:E,ﬂ} ;’?’1} ;ﬁb) 0o 3) unify all the component partial
views of the adaptor according
to the parallel operator.

46

* Ad1 adaptor synthesis

Sp_ 1) derive the component expected
\.(5 ER environment in order to not block;
o ;ﬁ} ;3.’1} ﬁ"r?’ﬂ} > 2) derive the component PN model
according to the restriction and
mtv Y parallel operator (i.e., the partial
(s . v adaptor view of the component);
;Qﬂ} 52’1} ;,?,1; ;ﬁb Y<7.0> 3) unify all the component partial

views of the adaptor according

/_\S'iﬁc to the parallel operator.
|

w3 0> <v4,0=

47

Ad1 adaptor synthesis

SP_pC CI{sP-P/,)] 1) derive the component expected
f environment in order to not block;
™ »® mpv 2) derive the component PN model
<v10= <wv20= ﬂﬂ 1= <vil= <vd0= according to the restriction and

sp/ p_tc/ parallel operator (i.e., the partial
TELE IR epl] adaptor view of the component);

p_t \ 3) unify all the component partial
". views of the adaptor according

=51,0= -::53 1=
to the parallel operator.
Sp_pc 4) the coverability graph is computed,

¥ oot 1 o 10 minimized (TINA + CADP
\ /. toolboxes) and “cleaned

sp_pc
CascadeController = (TC[{F/, J][{sP-/,}] | Ad1 | PCI{SP-P¢/ })\{sp_tc, sp_pc}

48

i Second solution...

again
5 J
31 PLANT

49

i Second solution...

again
5 J
31 PLANT

Step 1
(10) (10)
% % mev
stv tvs Sp
o 10 R ro k

50

ﬁSecond solution... again

UK

&(1)

1 PLANT

51

ﬁSecond solution... again
Step 2

*(1)

PLANT

52

ﬁSecond solution... again

ﬁ“)

PLANT

53

Conclusion and future works

= What's good:
= automatic derivation of the correct assembly code
= by implementing a DLiPA compiler and the adaptor synthesis

algorithm the entire approach can be automated being integrated
with TINA and CADP toolboxes

= TINAis for PNs analysis (coverability graph and its properties);

= CADP for automata analysis (minimization, tau-reduction, bi-
simulation);

= the approach may be carried on incrementally hence allowing the
architect to manage the system complexity, although the approach
is exponential.

= What's bad:
= more validation is needed
= so far, only for HeatExchanger and ACC;

= is the approach always incremental? Nope! :(
= it is tightly coupled with the system SA;
= it depends on the system architectural configuration (e.g., Dining

54

i Open issues

= Beyond periodic clocks

= in many cases, the activation frequency of a
component might depend on values computed
at run-time (e.g., operational modes).

= Supporting the architect while
instantiating clocks

= it would be useful to infer the n-tuple of
“allowable” clocks (with respect to the adaptor
to be built).

55

