
Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Synchronizing Periodic Clocks in Kahn Networks

Albert Cohen1, Marc Duranton2, Christine Eisenbeis1, Claire
Pagetti1 and Marc Pouzet3

(submitted LCTES)

1Inria Futurs, Orsay France

2Philips Research Laboratories, Eindhoven, The Netherlands

3Université Pierre et Marie Curie, Paris, France

February the 3rd, 2005

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Introduction
Example

Context

Domain: real-time video processing
tera-operations per second (on pixel components)
Conception: specific hardware (ASIC)
Evolution: mixing hardware/software because of
costs, variability of supported algorithms.

Domain-specific designs: general-purpose architectures and
compilers are not suitable. Wish: higher compute
density and programmability =⇒ an appropriate
programming language and compiler.

Synchronous paradigm: generation of custom hardware and
software systems with correct-by-construction
structural properties, including real-time and resource
constraints.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Introduction
Example

Multiple Clock Domains

synchronous hypothesis: a common clock for all registers, and an
overall predictable hardware where communications
and computations can be proven to take less than a
clock-cycle.

system-on-chip: is divided into multiple, asynchronous clock
domains: Globally Asynchronous Locally Synchronous
(GALS)

multiple clock domains modular designs with separate compilation
phases, for a single system with multiple
input/output associated with different real-time
clocks;

our assumption: execution layer with a global clock.
Kahn Process Networks (KPN) model for processes

communicating through unbounded FIFO buffers.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Introduction
Example

Downscaler

high definition (HD) → standard definition (SD)
1920 × 1080 pixels 720 × 480

horizontal filter: number of pixels in a line from 1920 pixels
downto 720 pixels,

vertical filter: number of lines from 1080 downto 480

HD input H-filter V-filter SD output

horizontal filtering working set vertical filtering working set

frame

stripe

Reorder

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Introduction
Example

Real-Time Constraints

the input and output processes: 30Hz.
HD pixels arrive at 30 × 1920 × 1080 = 62, 208, 000Hz
SD pixels at 30 × 720 × 480 = 10, 368, 000Hz (6 times slower)
HF: 8:3
Reorder: stores 6 lines, transposes them by column of 6 pixels
VF: 9:4

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Introduction
Example

Required Features of the Language

automatically produces an efficient code for an embedded
architecture, checking that real-time constraints are satisfied and
optimizing the total memory resources to store the intermediate
data and the code itself.

1. a proof that, according to worst-case execution time
hypotheses, the frame and pixel rate will be sustained;

2. an evaluation of the delay introduced by the downscaler in the
video processing chain, i.e., the delay before the output
process starts receiving pixels;

3. a proof that the system has bounded memory requirements;

4. an evaluation of memory requirements, to store data within
the processes, and to buffer the stream produced by the
vertical filter in front of the output process.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Introduction
Example

Outline

Review
Introduction
Example

Clocks as Infinite Binary Words
Definitions
Clock Calculus
Extended Clock Calculus

The Programming Language
Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

I-O Automata Approach

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Infinite Binary Words

infinite binary words: (0 + 1)ω

infinite periodic binary words Σ∗
2:

w ::= u.(v)
v ::= 0 | 1 | 0.v | 1.v
u ::= ε | 0 | 1 | 0.u | 1.u

with (v) = limn vn is the periodic repetition of the pattern v .
|w | length of w , |w |1 number of 1, |w |0 number of 0, w [n] n-th
letter, w [1..n] prefix of length n. w v w ′ ⇒ ∃v binary word, such
that w .v = w ′

[w]p the position of the p-th 1. w1 ≺ w2 iff ∀p ≥ 1, [w1]p ≤ [w2]p

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Clocks

clocks
clk ::= w | clk on w
w ∈ (0 + 1)ω

on:
0.w on w ′ = 0. (w on w ′)
1.w on 0.w ′ = 0. (w on w ′)
1.w on 1.w ′ = 1. (w on w ′)

algorithm
w ′′ = w on w ′ with ∀n ∈

�
, w ′′[n] = w [n] ∧ w ′[|w [1..n]|1].

on-associativity
Let w1, w2 and w3 be three infinite binary words. Then
w1 on (w2 on w3) = (w1 on w2) on w3.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Periodic Clocks

Periodic Clocks:
clk ::= w | clk on w
w ∈ Σ∗

2

We can always write clk1 = a.(b) and clk2 = c .(d) with
|a| = |c | = max(|u|, |u′|) and |b| = |d | = lcm(|v |, |v ′|) where lcm
is the least common divisor.
For instance, 010(001100) and 10001(10) become 01000(110000)
and 10001(101010)

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Clock Signatures

A synchronous process transforms an input clock into an output
clock. This transformation is encoded in the process clock
signature
α → α on w , it means that for all valuation w ′ ∈ Σ∗

2 of the
variable α, the output has the clock w ′ on w .

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Downscaler Signatures

1. input process is the binary word (1)

2. HF: α → α on (10100100).

3. reordering process delays the output of 5 × 720 × 8/3 = 7680
cycles. The clock signature α → 07680α.

4. VF:
α → α on (172007201720014401720014401720)

simplification: α → α on (101001001).

5. output’s process clock (100000).

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Synchronizing Clocks

f1 : α1 → C1[α1] and f2 : α2 → C2[α2]
then composition f = f2(f1) : α1 → C2[C1[α1]]

Required: output = buffer(vert(reorder(hor(input))))

I hor(input): (1) on (10100100) = (10100100).

I reorder(hor(input)): 07680(10100100).

I vert(reorder(hor(input))): 07680(10100100) on (101001001) =
07680(100001000000010000000100) 6= (100000).

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Synchronizability

clki are synchronizable, clk1 ./ clk2, iff there exists d , d ′ ∈
�

such
that clk1 ≺ 0d .clk2 and clk2 ≺ 0d ′

.clk1.
It means that we can delay clk1 by d ′ ticks so that the 1 of clk2

occur before the 1 of clk1 and conversely.

1. 11(01) and (10) are synchronizable;

2. 11(0) and (0) are not synchronizable;

3. (010) and (10) are not synchronizable since there are too
much reads or too much writes (infinite buffer).

clk1 ./ clk2 ⇒ ∃ two synchronous processes, called buffers b1 and
b2 such that b1(clk1) = 0d .clk2 and b2(clk2) = 0d ′

.clk1.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Synchronizability: Periodic Clocks

clk1 ./ clk2 iff

{

|v |1
|v ′|1

= |v |
|v ′| if |v ′|1 > 0

|u| = |u|1 ∧ |v |1 = 0 otherwise

The first condition means that are in average the same number of
writes and reads in (v) and (v ′). The second condition deals with
the particular case of finite streams where there must be precisely
the same number of writes and reads.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Delaying a Clock

Delay the reads after the writes

delay = min{l | clk1 ≺ 0l .clk2}

clk1 = u(v) and clk2 = u′(v ′) with |u| = |u′| and |v | = |v ′|. Then
delay= max(d ′, 0) where

d ′ = max {|w | − |w ′|
∣

∣ w .1 v uv , w ′.1 v u′v ′, |w ′|1 = |w |1}

For instance if clk1 = 000001 and clk2 = 001000, then d = 3 is
reached with w = 000001 and w ′ = 00.
Downscaler:

100001 000000 010000 000100
000100 000100 000100 000100

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Buffer Size

clk1 ≺ 0d .clk2. We write clk1 = u(v) and 0d .clk2 = u′(v ′) with
|u| = |u′| and |v | = |v ′|.
The minimal buffer size n satisfies:

n = max{(|w |1 − |w ′|1) | w v uv , w ′ v u′v ′; |w | = |w ′|}

Communication from clk1 to clk2 is called n-synchronous.
Downscaler: simplified version buffer size = 1 and general version
= 400.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Buffer Construction

NOP — w [j] = 0 and w ′[j] = 0: Nothing happens in the buffer:
clki [j] = 0, wi [j] = wi [j − 1]; registers xi are left
unchanged.

PUSH — w [j] = 1 and w ′[j] = 0: Some data is written into the
buffer and stored in register x1, all the data in the
buffer being pushed from xi into xi+1. Thus
xi = xi−1 and x1 = input, ∀i > 2,wi [j] = wi−1[j − 1],
w1[j] = 1 and clki [j] = 0.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Definitions
Clock Calculus
Extended Clock Calculus

Buffer Construction

POP — w [j] = 0 and w ′[j] = 1: Let
p = max{0} ∪ {1 ≤ i ≤ n|wi [j − 1] = 1}. If p is
zero, then no register stores any data at cycle j :
input data must be bypassed directly to the output,
crossing the wire clocked by clk0, setting clki [j] = 0
for i > 0 and clk0[j] = 1, wi [j] = wi [j − 1].
Conversely, if p > 0, ∀i 6= p, clki [j] = 0, clkp[j] = 1,
∀i 6= p,wi [j] = wi [j − 1] and wp[j] = 0. Registers xi

are left unchanged (notice this is not symmetric to
the PUSH operation).

POP; PUSH — w [j] = 1 and w ′[j] = 1: A POP is performed,
followed by a PUSH, as defined in the two previous
cases.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

A Synchronous Data-flow Kernel

e ::= x | i | (e, e) | e where x = e | e(e)
| e fby e | e when pe | merge pe e e
| fst e | snd e

Expressions (e), constants (i), variables (x), pairs (e, e), local
definitions (e where x = e), applications (e(e)), initialized delays
(e fby e).

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

A Synchronous Data-flow Kernel

e ::= x | i | (e, e) | e where x = e | e(e)
| e fby e | e when pe | merge pe e e
| fst e | snd e

d ::= node x(x) = e | d ; d

stream functions: node x(x) = e

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

A Synchronous Data-flow Kernel

e ::= x | i | (e, e) | e where x = e | e(e)
| e fby e | e when pe | merge pe e e
| fst e | snd e

d ::= node x(x) = e | d ; d

dp ::= period p = pe | dp; dp

periods: period p = pe

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

A Synchronous Data-flow Kernel

e ::= x | i | (e, e) | e where x = e | e(e)
| e fby e | e when pe | merge pe e e
| fst e | snd e

d ::= node x(x) = e | d ; d

dp ::= period p = pe | dp; dp

pe ::= p | w | pe on pe | not pe | pe or pe | pe & pe

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Example

node hf p = o where
o1= p
and o2= 0 fby o1
and o3= 0 fby o2 and o4= 0 fby o3
and o5= 0 fby o4 and o6= 0 fby o5
and o= (o1 + o2 + o3 + o4 + o5 + o6)/6 when (10100100)

node vf (i1,i2,i3,i4,i5,i6) = o where
o= (i1 + i2 + i3 + i4 + i5 + i6)/6 when (101001001)

node main (i : (1)) = (o : 07683(100000)) where
t = fh i and (i1,i2,i3,i4,i5,i6) = buff1(t)

and o = vf (i1,i2,i3,i4,i5,i6);;

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Clock Calculus I

Clock calculus as a type system → judgments of the form
P ,H ` e : ct meaning that “the expression e has clock type ct in
the environment of periods P and the environment H”.

σ ::= ∀α1, ..., αm.ct
ct ::= ct → ct | ct × ct | ck
ck ::= base | ck on pe | α

H ::= [x1 : σ1, ..., xm : σm]
P ::= [p1 : pe1, ..., pn : pen]

clock schemes (σ), unquantified clock types (ct), clock type
variables (α), functional clock types (ct → ct), products (ct × ct),
or stream clocks (ck), base clock (base), sampled clock
(ck on pe), clock variable (α).

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

0-Synchrony Compilation

Compilation

node t i =
..... clock calculus

rules (OP)

prog
(caml ..)

rejected

accepted

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Relaxed Clock Calculus

n-synchronous programs ↔ programs which can be executed using
buffers of size at most n.
Kahn networks ↔ ∞-synchronous programs.
Synchronous programs ↔ 0-synchronous programs.

Extension of the previous clock calculus with a sub-typing rule:

P ,H `s e : ck on pe1 pe1 ≺ pe2
(SUB)

P ,H `s e : ck on pe2

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Example

node f (x) = y where y = (x when (01)) + (x when 1(10))

(01) and 1(10) can be synchronized using a buffer of size 1. We
can apply the rule:

P ,H `s x when 1(10) : α on 1(10) 1(10) ≺ (01)

P ,H `s x when (01) : α on (01)

and then, classical rules apply and we get the final signature:

f : ∀α.α → α on (01)

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Translation Semantics

programs accepted with the relaxed clock calculus → synchronous
programs which are accepted by the original clock calculus
through a program transformation which insert a buffer every time
the (SUB) is applied.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Relaxed Synchrony Compilation

Compilation

prog

(caml ..)

node t i =

..... clock calculus

rules (OP)

rejected

accepted

SUB

ck on p <−> ck on p’

insert

buff(p/p’)

extended transformation

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Syntax
Synchronous Semantics
Relaxed Synchronous Semantics

Buffer in Lucid size 1

let buffer1 (push, pop, i) = (empty, o) where
rec o = if pempty then i

else pmemo
and memo = if push then i else pmemo
and pmemo = 0 fby memo
and empty = if push then if pop then pempty

else false
else if pop then true
else pempty

and pempty = true fby empty

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Alphabet

Σ = {i/o, i/ō, ī/o, ī , /ō}.

- the symbol i stands for an input occurs,

- the symbol o stands for an output occurs, so that for
instance the event i/o means that an input and an
output occur simultaneously,

- ī stands for no input occurs and the symbol ō stands
for no output occurs.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Example

0

ī/o

A0 = input

0 1 2 3

4566

A1 = horizontal filter

i/o i/ō i/o

i/ō

i/ōi/oi/ō

i/ō

L ⊆ Σ∗ can be seen as L1 × L2 ⊆ {0, 1}∗ × {0, 1}∗ with l ↔ 1 and
l̄ ↔ 0 with l = i , o

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Synchronization

q q′ ‖ s s′ = (q, s) (q′, s′)
a/o i/b a/b

q q′ ‖ s s′ = (q, s) (q′, s′)
a/ō ī/b a/b

L(A1) ≡ L1
1 × L1

2 and L(A2) ≡ L2
1 × L2

2. Then A = A1 ‖ A2

recognizes L(A) ≡ L1 × L2. We have L1 → L1 on L2 = L1
1 → (L1

1

on L1
2 on (L2

1 on L2
2)). This means that L1 = L1

1 and L2 = L1
2 on

(L2
1 on L2

2).

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Conclusion

I design of real-time applications: strong correctness
requirements, decomposition into modular components
communicating thanks to a buffering mechanism;

I global system is synchronous but hard by hand;

I extended synchronous framework: automatic generation of the
synchronous buffers which are semantically (as defined by
Kahn) guaranteed correct.

I periodic clocks;
I synchronous functional programming language.

Verimag Grenoble - February - 2005 ACI Alidecs

Review
Clocks as Infinite Binary Words

The Programming Language
I-O Automata Approach

Future Work

I algebraic characterization of clocks (diadic numbers);

I connection between retiming and delay insertion;

I towards a criterion of optimization of the buffers (here we
choose a particular solution but no unicity);

I delays in the language.

Verimag Grenoble - February - 2005 ACI Alidecs

	Review
	Introduction
	Example

	Clocks as Infinite Binary Words
	Definitions
	Clock Calculus
	Extended Clock Calculus

	The Programming Language
	Syntax
	Synchronous Semantics
	Relaxed Synchronous Semantics

	I-O Automata Approach

