
The SEESCOA Composer Tool: Using Contracts for
Component Composition and Run-Time Monitoring

Stefan Van Baelen, David Urting, Yolande Berbers
Department of Computer Science

K.U.Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{ stefan.vanbaelen, david.urting, yolande.berbers}@cs.kuleuven.ac.be

Abstract
In this paper, our approach for building embedded applications
is presented. The approach is based on the composition of
reusable components with the addition of a contract principle for
modelling non-functional constraints. Non-functional
constraints are an important aspect of embedded systems, and
are therefore modelled separately in contracts. As such, the
component view presented here differs from traditional
component based views, where focus is laid on the functional
part. The ideas discussed in the paper have been implemented in
a tool. This tool enables the construction of embedded software
by means of components and contracts. Currently, the
generation of runtime mechanisms - that enable runtime
monitoring of the contracts - from the component model are
being included.

Keywords: tool, component, embedded, real-time, contract.

1 Introduction

Component software is quite common today in traditional
applications. A large software system often consists of
multiple interacting components. These components can
be seen as large objects with a clear and well-defined
task. Different definitions exist of a component
(Szyperski 1998); some see objects as components, while
others define components as large parts of coherent code,
intended to be reusable and highly documented.
However, all definitions have one thing in common: they
focus on the functional aspect of a component.

The main goal of using components is the ability to reuse
them. Reuse of software is currently one of the much-
hyped concepts, since it enables one to build applications
relatively fast. Using components is seen as a possible
way to ensure this reusability and this is one of the
reasons why they receive a lot of attention.

In embedded software, one has to consider non-functional
and resource constraints when building a system (besides
software quality aspects such as reusability). Embedded
systems often have limited processing power, storage
capacity and network bandwidth. A developer has to
cope with these constraints and make sure that the
software will be able to run on the constrained system.
Often, embedded systems also have timing constraints on
their computations. Missing a time constraint can be
catastrophic (e.g. late activation of a cooling subsystem in
a factory) or annoying (e.g. missing some video frames
on a portable video device).

Today, embedded software is becoming complex and it is
not easy to build every system from scratch. Therefore, it
is important to reuse existing software as much as

possible. This will ensure that one can use validated
software and in turn results in a smaller development
time. To enable reuse, we have chosen for a component-
based approach for building embedded systems.

Reusing components in embedded systems is not easy to
do. The correct working of such a system is not only
dependent on the correct functional working of the
component; it is also dependent on its non-functional
properties. For example, using a component that
consumes large amounts of internal memory in memory-
constrained systems is not a good idea. The same occurs
for situations where time constraints exist: if a component
takes too long to process some data then this may render
the complete application useless.

It is clear that some way is needed for the specification
and checking of non-functional constraints. This will
enable one to safely reuse components in a design, while
being sure that the non-functional constraints will be met.
In our approach, contracts are used to ensure this.

The paper discusses some core concepts of components
and contracts in section 2. Section 3 discusses the tool
and the basic constructs for building applications. The
usage of these constructs occurs by means of models,
which are described in section 4. Section 5 describes the
run-time component system and the generation of run-
time contract monitoring. In section 76 related work is
discussed. Section 7 gives an overview of the current
status and intended future work. We conclude in section
8.

A tool (SEESCOA Composer tool) has been implemented
and screenshots of this tool will be shown to illustrate the
approach. The work presented in the paper is being
performed in the scope of the SEESCOA project
(Software Engineering for Embedded Systems, using a
Component Oriented Approach), funded by the Belgian
IWT.

2 Core Concepts

This section discusses some techniques and ideas that lie
at the basis of the tool. First we (briefly) discuss the
ROOM methodology [Selic94]. Next the design by
contract principle is discussed. We also elaborate on how
this contract principle can be applied to specify non-
functional constraints.

2.1 ROOM

ROOM stands for Real-time Object Oriented Modelling.
Since then it has received quite some attention from the

(real-time) software area. Although initially intended for
designing and building telecommunication systems, the
ROOM methodology can also be used for the design of
other types of embedded systems.

ROOM designs contain primarily actors, ports, bindings
and state machines:

� An actor is an autonomous piece of code that
plays a specific role in the system. The main
distinction between an actor and an object is the
fact that an actor behaves autonomously. An
advantage of this is that the encapsulation goes a
step further: objects only offer data
encapsulation while actors offers data and thread
encapsulation1.

� A port is an opening on the encapsulation shell
of the actor through which it can send and
receive messages. A port has also a
specification (protocol) associated with it.

� A binding is a connection between two ports.
Actors can exchange messages via bindings. It
is only possible to create a binding between
ports that have the same protocol.

� A state machine describes the internal workings
of an actor. This state machine describes how
the actor will respond to (external) messages and
the states it will be in.

The ROOM methodology has some new and interesting
ideas: it introduces thread encapsulation that hides the
internal thread mechanisms. It offers and alternative way
of connecting software components by means of
bindings. Also, the idea of port protocols is an advantage
since it enforces a designer to only connect compatible
ports. To conclude, it offers the ability to generate code
(by putting code into transitions of the state machines)
and model execution2.

ROOM however lacks a consistent way to annotate time
in designs. In general, ROOM has no support for the
annotation of non-functional constraints, like memory
and bandwidth constraints.

2.2 Design by Contract

The design by contract principle is a well-known and
interesting principle [Meyer97].

In general, a contract specifies an agreement between two
or more parties about a service. This contract principle
can be applied to software: since components offer
services to other components, the properties of these
services can be put in contracts.

There are different ways to use a contract:

1 Thread encapsulation means that two different threads
cannot alter the internal state of the object at the same
time. This ensures that the data is always left in a
consistent state.
2 Rational RoseRT (www.rational.com) supports code
generation and model execution.

� A first approach is to use them in a notational
manner; the contract is only informing the
designer about particular service properties. In
this case, a contract can be seen as extra
documentation.

� Contracts can also by used to test an application;
the contract is used to perform runtime checking
of the contract properties. The contract is thus
not only used for annotating the application, it is
also used for monitoring the application.
However, using contracts for testing does not
guarantee that the contract will hold at all times.

� Finally, contracts can be submitted to an analysis
process; an algorithm performs a static analysis
on the contracts before execution of the
application. This static analysis guarantees the
correct working of the application at all times.
A drawback is that such an algorithm can be
highly complex and in some cases even
impossible to implement.

2.3 Contracts and Non-functional Constraints

Meyer was initially focussing on contracts for the
description of pre- and postconditions of operations.
These contracts are describing the semantics of
applications. A runtime checking mechanism for these
semantical contracts has also been implemented in the
Eiffel language.

We have taken the same approach (= contract based with
runtime checking) for specifying and monitoring non-
functional constraints. Non-functional constraints are
specified by means of contracts, and a runtime
mechanism is responsible for the runtime checking of
these contracts.

Every non-functional constraint has its own properties
(deadline, duration, period, … for timing constraints and
heap usage, stack size, … for memory constraints) and
thus different contract types need to be defined. We have
currently focussed on one particular type of contracts:
timing contracts. These contracts are used for the
specification and monitoring of timing constraints.

3 Basic Tool Concepts

As was mentioned earlier, our approach is component
oriented and based on ROOM. What follows is the
definition of a SEESCOA component:

A SEESCOA component is an object offering a coherent
behaviour. Some other component can access this
behaviour by sending asynchronously messages to the
component. To do so, both components need a port.
These ports have to be connected by a connector. Also,
these ports have to understand each other: they have to
speak the same protocol. The port protocol is described
in the type or interface of the port.

Our approach consists of the following important
constructs: component blueprint, port blueprint,
component instance, port instance, connector and
contract. These constructs are explained in the following
subsections.

3.1 Component and Port Blueprint

A component blueprint is a reusable entity and contains
the type description and implementation of a component.
It is a static construct that has no runtime meaning.
Component blueprints have an identifier, a version and
can be stored in a catalogue. It is represented as a
stereotyped UML class, built as complex composition of
all objects and classes that are contained inside the
component.

The interfaces of a component blueprint are described by
means of port blueprints. A port blueprint has a set of
messages that can be received or sent. A port blueprint is
specified on four levels [Beugnard99]:

� Syntactic level: syntactic description of
messages that can be sent and received.

� Semantic level: pre- and postconditions
associated to the messages.

� Synchronization level: description of the
sequence in which the messages have to occur.
This level is specified by means of extended
MSC’s. This is an MSC3 extended with
constructs for indicating loops, alternative and
optional paths.

� QoS level: quality of service description.

Currently, we only use the first three levels. The QoS
level is not formalized yet, but this will be formalized in
the future.

The port blueprint has a MNOI4 property; this property
indicates how many times the port can be instantiated.
We will discuss its use in the next section.

An example of a component blueprint is given in figure 1.
It concerns a sampling component, which defines two
ports, one for setting the sampling frequency and another
port to output the measured values to other components.
The read-out port has an unlimited MNOI, which means
that an unlimited number of other components can read
out the sampling value. The settings port has defined 1 as
MNOI, which means that only one other component can
determine the settings.

3 Message Sequence Chart (ITU-MSC 1996)
4 Maximum Number of Instances

3.2 Component and Port Instance

A component instance is an instantiation of a component
blueprint and has a runtime existence (and state). It is
represented as a stereotyped UML object.
Communication with other component instances occurs
via port instances. These port instances are instantiated
from corresponding port blueprints. The maximum
number of ports that can be instantiated from a port
blueprint is given by its MNOI property. The port
blueprint/instances are also represented as stereotyped
UML classes/objects, linked to the component with a
composition association.

Figure 2 shows an instantiation of the sampling
component. The settings port has been instantiated once,
while the read-out port has been instantiated three times.
This is possible since the read-out port blueprint has an
unlimited MNOI.

3.3 Connector

A connector interconnects two or more port instances so
that messages can be exchanged between them. A port
instance can only be connected once to a connector. A
connector is a stereotyped UML association between
ports.

It is not possible to connect port instances that have an
incompatible protocol: they must be compatible on
syntactic, semantic, synchronization and QoS level. This
means that port instances have to speak the same
‘language’ before being able to communicate in a
coherent way.

A connector has an MSC associated with it. This MSC
can be distilled out of the MSC’s of the port instances to
which it is connected. The MSC of a connector describes
how interaction occurs among the involved port
instances.

In figure 3 an example is given of a connector between a
sampling component instance and a value display
instance. Via this connector, the sampling component
sends value updates to the value display. The MSC of
this connector is also represented in figure 3.

Figure 1: sampling component blueprint

sampling
component

settings
read-out

Figure 2: sampling component instantiation

my
sampling
component

settings read-out

3.4 Contract

The interface QoS definition level is the most challenging
and also the most difficult to specify: it is not
straightforward to describe QoS information in a general
way without knowing the specific environment and
hardware the component will be used in.

There is no single solution to this problem. Nevertheless
three approaches can be used to give at least some idea on
the QoS:

� QoS parameters can be measured against a
reference setting: one hardware configuration,
one OS configuration and one application type
are chosen and then the component is tested in
this setting.

� A formal calculation of the QoS can be
performed. But for this to work, one has to
know the dependencies between hardware, OS,
etc. Also, one must be able to model these
dependencies to create a function that in turn
calculates the QoS parameters. This approach is
very difficult and is not investigated in our
research.

� Execution and measuring. This seems to be a
valuable and achievable approach. The idea is
that a component can be tested on the target
platform before it is used. This testing produces
measurements that can give an idea of the
delivered QoS of the component.

We currently use the execution and measuring approach
in SEESCOA

As was mentioned earlier, a contract is used to impose
constraints on a design. A contract is attached to one or
more participants, where each participant is a component
instance, a port instance or a connector. The number and
type of participants is of course dependent on the contract
type. Currently, only a timing contract has been defined.

A timing contract specifies a time constraint on the
interaction between components. As a result, timing
contracts can be attached to connectors, since the
interaction between components occurs via connectors.

In figure 3, a TwoPartyTimingContract (also called a
TPTC) is shown. It represents the constraint “the value
display must be updated at a frequency of 2 Hertz”. The
contract that is shown is a periodicity timing contract.

This type of contract makes use of the MSC of the
connector between both components. It imposes a
periodicity constraint on the occurrence of the update()
messages.

A TPTC has following attributes:

� Start hook: validity of the contract starts when
this hook occurs,

� End hook: validity of the contract ends when this
hook occurs.

A TPTC has two specific subtypes: a PeriodTPTC and a
DurationTPTC.

A DurationTPTC is a deadline contract, imposing a
maximum duration between two particular interaction
points. It is specified by:

� WCD: the worst-case duration between the
occurrence of the end hook and the occurrence
of the start hook.

The start and end hook does not have to belong to a single
connector. Multiple components and connectors can be
included

A PeriodTPTC imposes a periodicity constraint on a
particular interaction point. It consists of:

� Periodic hook: the hook that should occur
periodically,

� Period: a value indicating the period length.

A contract has a specification purpose: it shows the
requirements in a formal way. It is also used by the code
generator (which is a part of the tool): contracts are
compiled to code. As such, these contracts can be
monitored and violations can be logged, reported or even
caught by the involved components at run-time.

4 Application Building

Until now, only the basic constructs for building
applications have been discussed. This section introduces
the component composer CASE tool5 that has been built ,

5 Currently, the tool is not available for external use, but
it will be made available in the future via the following

my
sampling
component

settings

read-out

my value
display
component

read-out

C1

Figure 3: connectors, MSC’s and contract definitions

C1: PeriodTPTC

d

e

f

start

stop

update

START: d END: F

PERIODIC HOOK: e

PERIOD: 500 ms

LOOP

sampling display

which enables a designer to build an application with
components and contracts. The tools supports three model
types that are used for building applications: blueprint,
instance and scenario models. Every model type has its
own purpose, but the key idea is that they provide a way
for decomposing a system in coherent parts.

The models consist of multiple instantiated component
blueprints. Of course, the corresponding component
blueprints need to be available when building these
models. These component blueprints can be designed
and implemented when needed, or can eventually be
reused from a component library. This last aspect is very
important, since reuse of existing components will
shorten the development cycle.

The tool lets a designer create and design:

� Component blueprints: these component
blueprints can then be deployed in the
application or stored for later (re)use6 .

� Applications (or compositions): after having
created and loaded component blueprints, the
designer is able to create an application by
means of:

o Blueprint models: component
blueprints can be loaded into blueprint
models.

o Instance models: component blueprints
that have been loaded into blueprint
models can be instantiated and
connected to each other.

o Scenario models: constraints on the
application are modelled by means of
scenario models.

Component blueprints that are being designed can be
stored on disk or used in the application. It is not
possible to alter a component blueprint after it has been
included in the application7.

4.1 Blueprint Model

A blueprint model is a set of component blueprints that
are being used in (a part of) the application. An
application will often consist of multiple blueprint
models, but a particular component blueprint can occur in
only one blueprint model.

link: http://www.cs.kuleuven.ac.be/cwis/research/distrinet
/projects/SEESCOA/
6 The support for component blueprint storage is an
important aspect if one wants to reuse component
blueprints. Additional mechanisms like version control
are also important and will be added to the tool in the
future.
7 There is an important distinction between the design of
a blueprint and its use: a component blueprint is not
necessarily made by the person who is using it.

Component blueprints that are closely related are put in
the same model. In fact, a blueprint model is a
functional, static decomposition of the application.

4.2 Instance Model

An instance model is a collection of interconnected
component instances. An application can consist of
multiple instance models, and a component instance can
be present in more than one instance model.

An instance model represents the runtime situation of the
application, so it represents a functional dynamic
decomposition of the application.

This model can be compared to an UML object diagram,
with the difference that a component instance model is
used for an exact modelling of the runtime situation
(there is a one to one mapping between design and
runtime) while an UML object diagram is a ‘drawing’.

4.3 Scenario Model

A scenario model is a collection of interconnected
component instances, with contracts attached to them.
These contracts are used to specify a non-functional
constraint on the application. A scenario model can
contain more than one component instance, but the idea is
to only add components instances that participate in the
constraint. As such, a scenario model specifies a non-
functional requirement on the application.

It is not possible to alter the structure of the application in
a scenario model. A scenario model is thus used for the
non-functional dynamic decomposition of the application.

In a future extension of the tool, we will add a code
generator and runtime support for monitoring the
contracts specified in scenario models. Scenario models
are thus an important part of the overall approach:
scenario models will support the monitoring of non-
functional constraints imposed on an application.

5 Generation of run-time contract monitoring
code

The SEESCOA Composer tool generates code for the
SEESCOA run-time component system. The component
system offers a platform for distributed, asynchronous
component communication by intercepting each inter-
component call on a component port and forwarding it to
the receiver port, based on the present connections.

The generation of the run-time contract monitoring code
consists of 2 parts:

• The Event Gathering part: all occurences of relevant
events will be intercepted, recorded and timestamped
by a probe added to the run-time system

• The Event Processing part: the timestamped events
will be used to validate the specified timing
constraints.

The SEESCOA Composer Tool generates code for the
runtime monitoring of timing contracts. To do this, the
timing contracts are mapped on RTL formulas. At

runtime, these RTL formulas are checked by a RTL
monitoring engine.

The run-time system extension has been designed as such
that the event processing part of the monitor can be put
outside the component system on any node in a network,
while the event gathering part has to remain in the
component system. This is done to minimize the
intrusion, so that only the probe introduces a low and
predictable overhead. The monitor activity processing can
be placed outside the system on a separate node, thus
causing no additional intrusion at all. This is illustrated in
figure 4.

 However, if timing violations have to be reported to
components that are part of the monitored application,
then the monitoring system has to reside within the
component system. In that case, there is no monitor
proxy: all communication between the probe system
(event gathering) and monitoring system (event
processing) occurs directly.

6 Related Work

As mentioned in section 2, some concepts in this paper
are based on ROOM [Selic94]. Ports, connectors and
components are also present in the ROOM notation and
methodology, although named differently. ROOM
however lacks a mechanism for annotating and verifying
non-functional constraints.

The contract-based approach is based on work done by
[Meyer97]. The use of a four-level interface description
was introduced by [Beugnard99].

The fourth level in that approach lets one specify QoS
constraints. The specification of QoS constraints has
received a lot of attention during the last years. Examples
of such languages are described by [Frolund98] and
[Loyall98]. However, the focus of these languages is not
especially on timing constraints.

There is also a lot of research done on the specification of
timing constraints. This research is often oriented on
static verification of timing constraints. Examples of this
are: RTL8 [Jahanian86], ACSR9 [Clarke97] and timed
MSC’s (Ben-Abdallah97]. A classification of RT

8 Real-Time Logic
9 Algebra of Communicating Shared Resources

specification languages can be found in a survey written
by [Singhal96]. Little efforts have been done till now
concerning the dynamic verification of timing constraints.
Initially RTL has been adapted for specifying and
monitoring runtime constraints [Raju92, Mok97). RTL is
a powerful formalism, but not all RTL formulas can be
monitored efficiently at runtime. Our contract approach
lets the designer choose from a set of predefined
constraint types, which can afterwards be mapped on
RTL formulas (see also the next section on future work).
As a result, the contract approach has the advantage that
only valid timing constraints can be added to a design.

7 Status and Future Work

The concepts discussed in this paper have been
implemented in a tool. This tool enables the construction
of applications by means of blueprint, instance and
scenario models. Currently, we have been looking at
timing contracts, and we plan to further work out this
type of contract, by adding more subtypes.

Next steps will be the addition of other types of contracts,
like memory contracts. Research on non-functional
constraint specification and verification for real-time and
embedded systems is often only focussed on timing
constraints. In contrast, we will also consider other
embedded software constraints (like memory usage,
power consumption, and so on). We believe that a
contract-based approach is valuable for specifying and
monitoring these constraints.

In the near future, we will investigate topics like
evolution of components and component designs, and live
updates10. Results from this research will also be
included in the tool.

Another important area of related research is on record-
replay techniques for distributed and embedded software.
Research done here is based on the deterministic replay
of executions of multithreaded and distributed software.
To enable this, a lot of information is needed about task
scheduling, interrupt arrival and handling,
synchronization, input/output, and so on. This
information is logged by means of a monitor that resides
inside the kernel. Afterwards the complete application
can be replayed deterministically. We are also doing
research on record/replay techniques in the SEESCOA
project [Ronsse00]. A very interesting source of
information on record/replay is [Thane00], which also
discusses embedded software monitoring and testing.

8 Conclusion

In this paper we have described how component based
applications are built by using basic constructs like
components, ports and contracts. Next, different types of
models have been discussed. These models allow one to
subdivide the application into coherent parts.

10 Live updates are updates applied to a running
application. This is of particular importance for devices
that cannot be switched off.

Component System

RTL
Checker

Figure 4: Implementation of Constraint Monitoring

A B
event
occurrence
reporting

C1 C2

An explicit construct (a contract) for annotating non-
functional constraints has been defined. Contracts have a
specification and a runtime meaning: they are used to
annotate constraints at design time, and to monitor these
at runtime. This runtime monitoring of contracts is
valuable if one wants to detect non-functional failures at
runtime. Of course, a contract-based approach does not
prove the correctness of the application. This requires the
use of static verification methods.

Tool support for run-time contract checking has been
presented, by transforming contracts to RTL expressions.
A probe system generates timestamped event information
with only limited intrusion on the application to be
monitored. The constraint validation based on the
gathered information can be performed on a separate
node.

The approach that was presented in this paper is based on
some well-known principles: components, constraint
specification languages, contracts, and runtime
monitoring support. We have combined and extended
these basic principles, to enable the construction of
embedded software with support for the specification and
runtime verification of non-functional constraints.

9 References

BEN-ABDALLAH, H., LEUE, S. (1997): Expressing and
Analyzing Timing Constraints in Message Sequence
Chart Specifications. Technical Report 97-04,
Department of electrical and Computer engineering,
University of Waterloo, Canada.

BEUGNARD, A., JEZEQUEL, J.M., PLOUZEAU, N.,
WATKINS, D. (1999): Making components contract
aware. Computer IEEE 32(7): 38-45.

CLARKE, D., LEE, I. (1997): Automatic Specification-
Based Testing of Real-Time Properties, Proceedings of
the Third International Workshop on Object-Oriented
Real-Time Dependable Systems, IEEE, California, USA.

FROLUND, S., KOISTINEN, J. (1998): QML: a
Language for Quality of Service Specification. Hewlett-
Packard Laboratories, Palo Alto, California, USA.

ITU-MSC (1996): Recommendation Z.120. ITU-T
Telecommunication Standardization Sector, Geneva.

JAHANIAN, F., MOK, A.K., STUART, D.A. (1988):
Formal Specification of Real-Time Systems. Technical
Report UTCS-TR-88-25, Department of Computer
Sciences, the University of Texas at Austin, USA.

LOYALL, J.P., SCHANTZ, R.E., ZINKY, J.A.,
BAKKEN, D.E. (1998): Specifying and Measuring
Quality of Service in Distributed Object Systems. IEEE
Proceedings of ISORC’98, Japan.

MEYER, B. (1997): Object oriented software
construction 2nd edition. Englewood Cliffs NJ, Prentice
Hall.

MOK, A.K., LIU, G. (1997): Efficient Run-Time
Monitoring of Timing Constraints. Proceedings of the 3rd
IEEE Real-Time Technology and Applications
Symposium (RTAS '97), Montreal, Canada.

RAJU, S.C.V., RAJKUMAR, R., JAHANIAN, F. (1992):
Monitoring Timing Constraints in Distributed Real-Time
Systems. IEEE Real-Time Systems Symposium, Arizona,
USA: 57-67.

RONSSE, M., DE BOSSCHERE, K., CHASSIN DE
KERGOMMEAUX, J. (2000): Execution replay and
debugging. Proceedings of the Fourth International
Workshop on Automated Debugging (AADEBUG2000),
TUM/IRISA, Munchen, Germany.

SCHMIDT, D.C., LEVINE, D.L., MUNGEE, S. (1998):
The design and performance of real-time object request
brokers. Computer Communications, 21(4): 294-324.

SELIC,B., GULLEKSON, G., WARD, P.T. (1994): Real-
time object oriented modelling. New York, John Wiley &
Sons.

SINGHAL, A. (1997): Real Time Systems: A Survey.
Computer Science Department, University of Rochester,
New York, USA.

SZYPERSKI, C (1998): Component Software: Beyond
object-oriented programming. New York, Addison-
Wesley.

THANE, H. (2000): Monitoring, Testing and Debugging
of Distributed Real-Time Systems. Ph.D. Thesis,
Mechatronics Laboratory, Department of Machine
Design, Royal Institute of Technology, Sweden.

URTING, D., VAN BAELEN, S., HOLVOET, T.,
BERBERS, Y. (2001): Embedded Software
Development: Components and Contracts. Proceedings of
the IASTED International Conference on Parallel and
Distributed Computing and Systems, Anaheim, USA:
685-690, ACTA Press.

