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Abstract 
In this paper, our approach for building embedded applications 
is presented.  The approach is based on the composition of 
reusable components with the addition of a contract principle for 
modelling non-functional constraints.  Non-functional 
constraints are an important aspect of embedded systems, and 
are therefore modelled separately in contracts.  As such, the 
component view presented here differs from traditional 
component based views, where focus is laid on the functional 
part.  The ideas discussed in the paper have been implemented in 
a tool.  This tool enables the construction of embedded software 
by means of components and contracts. Currently, the 
generation of runtime mechanisms - that enable runtime 
monitoring of the contracts - from the component model are 
being included. 

Keywords:  tool, component, embedded, real-time, contract. 

1 Introduction 

Component software is quite common today in traditional 
applications.  A large software system often consists of 
multiple interacting components.  These components can 
be seen as large objects with a clear and well-defined 
task.  Different definitions exist of a component 
(Szyperski 1998); some see objects as components, while 
others define components as large parts of coherent code, 
intended to be reusable and highly documented.  
However, all definitions have one thing in common: they 
focus on the functional aspect of a component.   

The main goal of using components is the ability to reuse 
them.  Reuse of software is currently one of the much-
hyped concepts, since it enables one to build applications 
relatively fast.  Using components is seen as a possible 
way to ensure this reusability and this is one of the 
reasons why they receive a lot of attention. 

In embedded software, one has to consider non-functional 
and resource constraints when building a system (besides 
software quality aspects such as reusability).  Embedded 
systems often have limited processing power, storage 
capacity and network bandwidth.  A developer has to 
cope with these constraints and make sure that the 
software will be able to run on the constrained system.  
Often, embedded systems also have timing constraints on 
their computations.  Missing a time constraint can be 
catastrophic (e.g. late activation of a cooling subsystem in 
a factory) or annoying (e.g. missing some video frames 
on a portable video device). 

Today, embedded software is becoming complex and it is 
not easy to build every system from scratch.  Therefore, it 
is important to reuse existing software as much as 

possible.  This will ensure that one can use validated 
software and in turn results in a smaller development 
time.  To enable reuse, we have chosen for a component-
based approach for building embedded systems. 

Reusing components in embedded systems is not easy to 
do.  The correct working of such a system is not only 
dependent on the correct functional working of the 
component; it is also dependent on its non-functional 
properties.  For example, using a component that 
consumes large amounts of internal memory in memory-
constrained systems is not a good idea.  The same occurs 
for situations where time constraints exist: if a component 
takes too long to process some data then this may render 
the complete application useless. 

It is clear that some way is needed for the specification 
and checking of non-functional constraints.  This will 
enable one to safely reuse components in a design, while 
being sure that the non-functional constraints will be met.  
In our approach, contracts are used to ensure this.   

The paper discusses some core concepts of components 
and contracts in section 2.  Section 3 discusses the tool 
and the basic constructs for building applications.  The 
usage of these constructs occurs by means of models, 
which are described in section 4.  Section 5 describes the 
run-time component system and the generation of run-
time contract monitoring.  In section 76 related work is 
discussed.  Section 7 gives an overview of the current 
status and intended future work.  We conclude in section 
8. 

A tool (SEESCOA Composer tool) has been implemented 
and screenshots of this tool will be shown to illustrate the 
approach.  The work presented in the paper is being 
performed in the scope of the SEESCOA project 
(Software Engineering for Embedded Systems, using a 
Component Oriented Approach), funded by the Belgian 
IWT. 

2 Core Concepts 

This section discusses some techniques and ideas that lie 
at the basis of the tool.  First we (briefly) discuss the 
ROOM methodology [Selic94].  Next the design by 
contract principle is discussed.  We also elaborate on how 
this contract principle can be applied to specify non-
functional constraints. 

2.1 ROOM 

ROOM stands for Real-time Object Oriented Modelling.  
Since then it has received quite some attention from the 



(real-time) software area.  Although initially intended for 
designing and building telecommunication systems, the 
ROOM methodology can also be used for the design of 
other types of embedded systems. 

ROOM designs contain primarily actors, ports, bindings 
and state machines: 

� An actor is an autonomous piece of code that 
plays a specific role in the system.  The main 
distinction between an actor and an object is the 
fact that an actor behaves autonomously.  An 
advantage of this is that the encapsulation goes a 
step further: objects only offer data 
encapsulation while actors offers data and thread 
encapsulation1. 

� A port is an opening on the encapsulation shell 
of the actor through which it can send and 
receive messages.  A port has also a 
specification (protocol) associated with it. 

� A binding is a connection between two ports.  
Actors can exchange messages via bindings.  It 
is only possible to create a binding between 
ports that have the same protocol. 

� A state machine describes the internal workings 
of an actor.  This state machine describes how 
the actor will respond to (external) messages and 
the states it will be in.   

The ROOM methodology has some new and interesting 
ideas: it introduces thread encapsulation that hides the 
internal thread mechanisms.  It offers and alternative way 
of connecting software components by means of 
bindings.  Also, the idea of port protocols is an advantage 
since it enforces a designer to only connect compatible 
ports.  To conclude, it offers the ability to generate code 
(by putting code into transitions of the state machines) 
and model execution2. 

ROOM however lacks a consistent way to annotate time 
in designs.  In general, ROOM has no support for the 
annotation of non-functional constraints, like memory 
and bandwidth constraints. 

2.2 Design by Contract 

The design by contract principle is a well-known and 
interesting principle [Meyer97]. 

In general, a contract specifies an agreement between two 
or more parties about a service.  This contract principle 
can be applied to software: since components offer 
services to other components, the properties of these 
services can be put in contracts. 

There are different ways to use a contract: 

                                                            
1 Thread encapsulation means that two different threads 
cannot alter the internal state of the object at the same 
time.  This ensures that the data is always left in a 
consistent state. 
2 Rational RoseRT (www.rational.com) supports code 
generation and model execution. 

� A first approach is to use them in a notational 
manner; the contract is only informing the 
designer about particular service properties.  In 
this case, a contract can be seen as extra 
documentation. 

� Contracts can also by used to test an application; 
the contract is used to perform runtime checking 
of the contract properties.  The contract is thus 
not only used for annotating the application, it is 
also used for monitoring the application.  
However, using contracts for testing does not 
guarantee that the contract will hold at all times.   

� Finally, contracts can be submitted to an analysis 
process; an algorithm performs a static analysis 
on the contracts before execution of the 
application.  This static analysis guarantees the 
correct working of the application at all times.  
A drawback is that such an algorithm can be 
highly complex and in some cases even 
impossible to implement. 

2.3 Contracts and Non-functional Constraints 

Meyer was initially focussing on contracts for the 
description of pre- and postconditions of operations.  
These contracts are describing the semantics of 
applications.  A runtime checking mechanism for these 
semantical contracts has also been implemented in the 
Eiffel language. 

We have taken the same approach (= contract based with 
runtime checking) for specifying and monitoring non-
functional constraints.  Non-functional constraints are 
specified by means of contracts, and a runtime 
mechanism is responsible for the runtime checking of 
these contracts. 

Every non-functional constraint has its own properties 
(deadline, duration, period, … for timing constraints and 
heap usage, stack size, … for memory constraints) and 
thus different contract types need to be defined.  We have 
currently focussed on one particular type of contracts: 
timing contracts.  These contracts are used for the 
specification and monitoring of timing constraints. 

3 Basic Tool Concepts 

As was mentioned earlier, our approach is component 
oriented and based on ROOM.  What follows is the 
definition  of a SEESCOA component:  

A SEESCOA component is an object offering a coherent 
behaviour.  Some other component can access this 
behaviour by sending asynchronously messages to the 
component.  To do so, both components need a port.  
These ports have to be connected by a connector.  Also, 
these ports have to understand each other: they have to 
speak the same protocol.  The port protocol is described 
in the type or interface of the port. 

Our approach consists of the following important 
constructs: component blueprint, port blueprint, 
component instance, port instance, connector and 
contract.  These constructs are explained in the following 
subsections. 



3.1 Component and Port Blueprint 

A component blueprint is a reusable entity and contains 
the type description and implementation of a component.  
It is a static construct that has no runtime meaning.  
Component blueprints have an identifier, a version and 
can be stored in a catalogue. It is represented as a 
stereotyped UML class, built as complex composition of 
all objects and classes that are contained inside the 
component.  

The interfaces of a component blueprint are described by 
means of port blueprints.  A port blueprint has a set of 
messages that can be received or sent. A port blueprint is 
specified on four levels [Beugnard99]: 

� Syntactic level: syntactic description of 
messages that can be sent and received. 

� Semantic level: pre- and postconditions 
associated to the messages. 

� Synchronization level: description of the 
sequence in which the messages have to occur.  
This level is specified by means of extended 
MSC’s.  This is an MSC3 extended with 
constructs for indicating loops, alternative and 
optional paths. 

� QoS level: quality of service description.   

Currently, we only use the first three levels.  The QoS 
level is not formalized yet, but this will be formalized in 
the future.  

The port blueprint has a MNOI4 property; this property 
indicates how many times the port can be instantiated.  
We will discuss its use in the next section. 

An example of a component blueprint is given in figure 1.  
It concerns a sampling component, which defines two 
ports, one for setting the sampling frequency and another 
port to output the measured values to other components.  
The read-out port has an unlimited MNOI, which means 
that an unlimited number of other components can read 
out the sampling value. The settings port has defined 1 as 
MNOI, which means that only one other component can 
determine the settings. 

 

 

 

 

 

 

 

 

 

                                                            
3 Message Sequence Chart (ITU-MSC 1996) 
4 Maximum Number of Instances 

3.2 Component and Port Instance 

A component instance is an instantiation of a component 
blueprint and has a runtime existence (and state).  It is 
represented as a stereotyped UML object. 
Communication with other component instances occurs 
via port instances. These port instances are instantiated 
from corresponding port blueprints.  The maximum 
number of ports that can be instantiated from a port 
blueprint is given by its MNOI property. The port 
blueprint/instances are also represented as stereotyped 
UML classes/objects, linked to the component with a 
composition association. 

Figure 2 shows an instantiation of the sampling 
component.  The settings port has been instantiated once, 
while the read-out port has been instantiated three times.  
This is possible since the read-out port blueprint has an 
unlimited MNOI. 

 

 

 

 

 

 

 

 

 

3.3 Connector 

A connector interconnects two or more port instances so 
that messages can be exchanged between them.  A port 
instance can only be connected once to a connector. A 
connector is a stereotyped UML association between 
ports. 

It is not possible to connect port instances that have an 
incompatible protocol: they must be compatible on 
syntactic, semantic, synchronization and QoS level.  This 
means that port instances have to speak the same 
‘language’ before being able to communicate in a 
coherent way. 

A connector has an MSC associated with it.  This MSC 
can be distilled out of the MSC’s of the port instances to 
which it is connected.  The MSC of a connector describes 
how interaction occurs among the involved port 
instances.   

In figure 3 an example is given of a connector between a 
sampling component instance and a value display 
instance.  Via this connector, the sampling component 
sends value updates to the value display.  The MSC of 
this connector is also represented in figure 3. 

 

 

 

 

Figure 1: sampling component blueprint 
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Figure 2: sampling component instantiation 
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3.4 Contract 

The interface QoS definition level is the most challenging 
and also the most difficult to specify: it is not 
straightforward to describe QoS information in a general 
way without knowing the specific environment and 
hardware the component will be used in. 

There is no single solution to this problem. Nevertheless 
three approaches can be used to give at least some idea on 
the QoS: 

� QoS parameters can be measured against a 
reference setting: one hardware configuration, 
one OS configuration and one application type 
are chosen and then the component is tested in 
this setting.   

� A formal calculation of the QoS can be 
performed.  But for this to work, one has to 
know the dependencies between hardware, OS, 
etc. Also, one must be able to model these 
dependencies to create a function that in turn 
calculates the QoS parameters.  This approach is 
very difficult and is not investigated in our 
research. 

� Execution and measuring.  This seems to be a 
valuable and achievable approach.  The idea is 
that a component can be tested on the target 
platform before it is used.  This testing produces 
measurements that can give an idea of the 
delivered QoS of the component.    

We currently use the execution and measuring approach 
in SEESCOA  

As was mentioned earlier, a contract is used to impose 
constraints on a design.  A contract is attached to one or 
more participants, where each participant is a component 
instance, a port instance or a connector.  The number and 
type of participants is of course dependent on the contract 
type.  Currently, only a timing contract has been defined. 

A timing contract specifies a time constraint on the 
interaction between components.  As a result, timing 
contracts can be attached to connectors, since the 
interaction between components occurs via connectors.  

In figure 3, a TwoPartyTimingContract (also called a 
TPTC) is shown. It represents the constraint “the value 
display must be updated at a frequency of 2 Hertz”.  The 
contract that is shown is a periodicity timing contract.  

 

 

 

 

 

 

 

 

 

 

This type of contract makes use of the MSC of the 
connector between both components.  It imposes a 
periodicity constraint on the occurrence of the update() 
messages. 

A TPTC has following attributes: 

� Start hook: validity of the contract starts when 
this hook occurs, 

� End hook: validity of the contract ends when this 
hook occurs. 

A TPTC has two specific subtypes: a PeriodTPTC and a 
DurationTPTC.  

A DurationTPTC is a deadline contract, imposing a 
maximum duration between two particular interaction 
points. It is specified by: 

� WCD: the worst-case duration between the 
occurrence of the end hook and the occurrence 
of the start hook. 

The start and end hook does not have to belong to a single 
connector. Multiple components and connectors can be 
included  

A PeriodTPTC imposes a periodicity constraint on a 
particular interaction point. It consists of: 

� Periodic hook: the hook that should occur 
periodically, 

� Period: a value indicating the period length. 

A contract has a specification purpose: it shows the 
requirements in a formal way.  It is also used by the code 
generator (which is a part of the tool): contracts are 
compiled to code.  As such, these contracts can be 
monitored and violations can be logged, reported or even 
caught by the involved components at run-time. 

4 Application Building 

Until now, only the basic constructs for building 
applications have been discussed.  This section introduces 
the component composer CASE tool5 that has been built , 

                                                            
5 Currently, the tool is not available for external use, but 
it will be made available in the future via the following 
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which enables a designer to build an application with 
components and contracts. The tools supports three model 
types that are used for building applications: blueprint, 
instance and scenario models.  Every model type has its 
own purpose, but the key idea is that they provide a way 
for decomposing a system in coherent parts. 

The models consist of multiple instantiated component 
blueprints.  Of course, the corresponding component 
blueprints need to be available when building these 
models.  These component blueprints can be designed 
and implemented when needed, or can eventually be 
reused from a component library.  This last aspect is very 
important, since reuse of existing components will 
shorten the development cycle.   

The tool lets a designer create and design: 

� Component blueprints: these component 
blueprints can then be deployed in the 
application or stored for later (re)use6 .  

� Applications (or compositions): after having 
created and loaded component blueprints, the 
designer is able to create an application by 
means of: 

o Blueprint models: component 
blueprints can be loaded into blueprint 
models.   

o Instance models: component blueprints 
that have been loaded into blueprint 
models can be instantiated and 
connected to each other. 

o Scenario models: constraints on the 
application are modelled by means of 
scenario models. 

Component blueprints that are being designed can be 
stored on disk or used in the application.  It is not 
possible to alter a component blueprint after it has been 
included in the application7. 

4.1 Blueprint Model 

A blueprint model is a set of component blueprints that 
are being used in (a part of) the application.  An 
application will often consist of multiple blueprint 
models, but a particular component blueprint can occur in 
only one blueprint model. 

                                                                                                

link: http://www.cs.kuleuven.ac.be/cwis/research/distrinet 
/projects/SEESCOA/ 
6 The support for component blueprint storage is an 
important aspect if one wants to reuse component 
blueprints. Additional mechanisms like version control 
are also important and will be added to the tool in the 
future. 
7 There is an important distinction between the design of 
a blueprint and its use: a component blueprint is not 
necessarily made by the person who is using it. 

Component blueprints that are closely related are put in 
the same model.  In fact, a blueprint model is a 
functional, static decomposition of the application. 

4.2 Instance Model 

An instance model is a collection of interconnected 
component instances.  An application can consist of 
multiple instance models, and a component instance can 
be present in more than one instance model. 

An instance model represents the runtime situation of the 
application, so it represents a functional dynamic 
decomposition of the application.   

This model can be compared to an UML object diagram, 
with the difference that a component instance model is 
used for an exact modelling of the runtime situation 
(there is a one to one mapping between design and 
runtime) while an UML object diagram is a ‘drawing’. 

4.3 Scenario Model 

A scenario model is a collection of interconnected 
component instances, with contracts attached to them.  
These contracts are used to specify a non-functional 
constraint on the application.  A scenario model can 
contain more than one component instance, but the idea is 
to only add components instances that participate in the 
constraint.  As such, a scenario model specifies a non-
functional requirement on the application. 

It is not possible to alter the structure of the application in 
a scenario model.  A scenario model is thus used for the 
non-functional dynamic decomposition of the application. 

In a future extension of the tool, we will add a code 
generator and runtime support for monitoring the 
contracts specified in scenario models.  Scenario models 
are thus an important part of the overall approach: 
scenario models will support the monitoring of non-
functional constraints imposed on an application. 

5 Generation of run-time contract monitoring 
code 

The SEESCOA Composer tool generates code for the 
SEESCOA run-time component system. The component 
system offers a platform for distributed, asynchronous 
component communication by intercepting each inter-
component call on a component port and forwarding it to 
the receiver port, based on the present connections. 

The generation of the run-time contract monitoring code 
consists of 2 parts: 

• The Event Gathering part: all occurences of relevant 
events will be intercepted, recorded and timestamped 
by a probe added to the run-time system 

• The Event Processing part: the timestamped events 
will be used to validate the specified timing 
constraints. 

The SEESCOA Composer Tool generates code for the 
runtime monitoring of timing contracts. To do this, the 
timing contracts are mapped on RTL formulas.  At 



runtime, these RTL formulas are checked by a RTL 
monitoring engine.  

The run-time system extension has been designed as such 
that the event processing part of the monitor can be put 
outside the component system on any node in a network, 
while the event gathering part has to remain in the 
component system. This is done to minimize the 
intrusion, so that only the probe introduces a low and 
predictable overhead. The monitor activity processing can 
be placed outside the system on a separate node, thus 
causing no additional intrusion at all. This is illustrated in 
figure 4. 

 

 

 

 

 

 

 

 

 

 However, if timing violations have to be reported to 
components that are part of the monitored application, 
then the monitoring system has to reside within the 
component system. In that case, there is no monitor 
proxy: all communication between the probe system 
(event gathering) and monitoring system (event 
processing) occurs directly.  

6 Related Work 

As mentioned in section 2, some concepts in this paper 
are based on ROOM [Selic94]. Ports, connectors and 
components are also present in the ROOM notation and 
methodology, although named differently. ROOM 
however lacks a mechanism for annotating and verifying 
non-functional constraints.  

The contract-based approach is based on work done by 
[Meyer97].  The use of a four-level interface description 
was introduced by [Beugnard99]. 

The fourth level in that approach lets one specify QoS 
constraints.  The specification of QoS constraints has 
received a lot of attention during the last years.  Examples 
of such languages are described by [Frolund98] and 
[Loyall98]. However, the focus of these languages is not 
especially on timing constraints.  

There is also a lot of research done on the specification of 
timing constraints.  This research is often oriented on 
static verification of timing constraints.  Examples of this 
are: RTL8 [Jahanian86], ACSR9 [Clarke97] and timed 
MSC’s (Ben-Abdallah97].  A classification of RT 
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specification languages can be found in a survey written 
by [Singhal96].  Little efforts have been done till now 
concerning the dynamic verification of timing constraints. 
Initially RTL has been adapted for specifying and 
monitoring runtime constraints [Raju92, Mok97).  RTL is 
a powerful formalism, but not all RTL formulas can be 
monitored efficiently at runtime. Our contract approach 
lets the designer choose from a set of predefined 
constraint types, which can afterwards be mapped on 
RTL formulas (see also the next section on future work).  
As a result, the contract approach has the advantage that 
only valid timing constraints can be added to a design. 

7 Status and Future Work 

The concepts discussed in this paper have been 
implemented in a tool.  This tool enables the construction 
of applications by means of blueprint, instance and 
scenario models.  Currently, we have been looking at 
timing contracts, and we plan to further work out this 
type of contract, by adding more subtypes.   

Next steps will be the addition of other types of contracts, 
like memory contracts. Research on non-functional 
constraint specification and verification for real-time and 
embedded systems is often only focussed on timing 
constraints.  In contrast, we will also consider other 
embedded software constraints (like memory usage, 
power consumption, and so on).  We believe that a 
contract-based approach is valuable for specifying and 
monitoring these constraints.  

In the near future, we will investigate topics like 
evolution of components and component designs, and live 
updates10.  Results from this research will also be 
included in the tool.   

Another important area of related research is on record-
replay techniques for distributed and embedded software.  
Research done here is based on the deterministic replay 
of executions of multithreaded and distributed software. 
To enable this, a lot of information is needed about task 
scheduling, interrupt arrival and handling, 
synchronization, input/output, and so on. This 
information is logged by means of a monitor that resides 
inside the kernel. Afterwards the complete application 
can be replayed deterministically.  We are also doing 
research on record/replay techniques in the SEESCOA 
project [Ronsse00]. A very interesting source of 
information on record/replay is [Thane00], which also 
discusses embedded software monitoring and testing.     

8 Conclusion 

In this paper we have described how component based 
applications are built by using basic constructs like 
components, ports and contracts.  Next, different types of 
models have been discussed.  These models allow one to 
subdivide the application into coherent parts. 

                                                            
10 Live updates are updates applied to a running 
application. This is of particular importance for devices 
that cannot be switched off. 
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An explicit construct (a contract) for annotating non-
functional constraints has been defined.  Contracts have a 
specification and a runtime meaning: they are used to 
annotate constraints at design time, and to monitor these 
at runtime.  This runtime monitoring of contracts is 
valuable if one wants to detect non-functional failures at 
runtime.  Of course, a contract-based approach does not 
prove the correctness of the application.  This requires the 
use of static verification methods. 

Tool support for run-time contract checking has been 
presented, by transforming contracts to RTL expressions. 
A probe system generates timestamped event information 
with only limited intrusion on the application to be 
monitored. The constraint validation based on the 
gathered information can be performed on a separate 
node. 

The approach that was presented in this paper is based on 
some well-known principles: components, constraint 
specification languages, contracts, and runtime 
monitoring support.   We have combined and extended 
these basic principles, to enable the construction of 
embedded software with support for the specification and 
runtime verification of non-functional constraints. 
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