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Abstract Real-time critical systems can be considered as correct if they compute
both right and fast enough. Functionality aspects (computing right) can be addressed
using high level design methods, such as the synchronous approach that provides lan-
guages, compilers and verification tools. Real-time aspects (computing fast enough)
can be addressed with static timing analysis, that aims at discovering safe bounds on
the Worst-Case Execution Time (WCET) of the binary code. In this paper, we aim
at improving the estimated WCET in the case where the binary code comes from a
high-level synchronous design. The key idea is that some high-level functional prop-
erties may imply that some execution paths of the binary code are actually infeasible,
and thus, can be removed from the worst-case candidates. In order to automatize the
method, we show (1) how to trace semantic information between the high-level de-
sign and the executable code, (2) how to use a model-checker to prove infeasibility
of some execution paths, and (3) how to integrate such infeasibility information into
an existing timing analysis framework. Based on a realistic example, we show that
there is a large possible improvement for a reasonable computation time overhead.

Keywords WCET · Model-Based Design · Synchronous Languages · Model
Checking · Traceability

1 Introduction

Hard real-time systems are generally built using model-based design. Particularly,
control engineering systems are often generated from synchronous designs. In hard
real-time systems, any execution must fulfill timing constraints. To guarantee that
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these constraints are respected, a bound on the Worst-Case Execution Time is neces-
sary.

Static timing analyses aim at estimating this upper-bound on the WCET. They
are based on abstractions of the hardware and the software. They generally suffer
the necessary over-estimation due to abstraction. The source of this overestimation
is twofold: the hardware model may generate over-estimation when joining abstract
states, the semantics of the program may generate over-estimation due to the fact that
the execution path corresponding to the estimated WCET may be infeasible. In this
paper, we aim at improving static WCET analysis when the program under analysis
has been generated from a synchronous model. We improve the WCET estimation by
reducing the set of feasible paths. We do not focus on the hardware analysis that we
consider orthogonal.

WCET analyses are derived on the binary level. When programs are generated
from high-level design, they are first translated into an intermediate language (usu-
ally C or ADA) then compiled into binary. Due to this two-step compilation, it may
appear that most of semantic information is lost: the WCET estimation should be en-
hanced by considering this high-level semantic information. Two main issues must be
solved to integrate these high-level semantic properties: (i) how to extract interesting
semantic properties at the high-level, (ii) how to transfer information from one level
to the lower next level (traceability).

This paper is structured as follows. First, we introduce the context: WCET anal-
ysis, synchronous approach, and why synchronous models are good candidates to
enhance WCET estimation. Then, we show on a realistic example, written in Lus-
tre (Caspi et al 2007), that the WCET estimation may be largely refined. This experi-
ment is completed by a section where the example is re-designed using the industrial
design tool Scade, in order to illustrate the influence of the high-level language and
compiler on the proposed method.

2 Context

2.1 WCET/Timing Analysis

In this paper, we consider static timing analysis of binary code, which is widely ac-
cepted as the most accurate method (versus, e.g. analysis of C code).

Timing analysis workflow. Figure 1 shows the general timing analysis workflow used
by most of the WCET tools (Wilhelm et al 2008). The first step is to reconstruct the
control flow graph (CFG) from the binary code and to establish, in this way, a con-
venient representation for further semantic extraction phases. The second step works
on the CFG and consists of a set of analyses for accessed memory addresses (value
analysis), loop bounds (loop bound analysis) and simple infeasible paths (control-
flow analysis). These analyses are usually performed at either the binary, or the C
level. Note that, in case the C files are used, some traceability analysis is necessary
to relate them to the binary code. The CFG, annotated with this semantic and address
information, is considered for the micro-architectural analysis and the path analysis.
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Fig. 1 WCET analysis workflow

The micro-architectural analysis mainly estimates the execution time of basic
blocks taking into account the whole architecture of the platform (pipeline, caches,
buses,...). Note that, in this paper, we consider mono-processor platforms. The last
step, called path analysis, takes as input the CFG annotated with basic block execu-
tion time and outputs the WCET estimation. There are several alternative ways to
perform path analysis, but the prevalent approach in the WCET analysis community
is through solving an integer linear programming problem.

In this paper we are contributing in the path analysis and the value/control-flow
analysis. We extract semantic information from design-level (semantic analysis) and
add them to the path analysis as integer linear constraints. In the rest of this section,
we detail the most popular path analysis: the implicit path enumeration technique.
More information about previous steps or different path analyses may be found in
state of the art survey papers (Wilhelm et al 2008; Asavoae et al 2013).

Implicit Path Enumeration Technique. The Implicit Path Enumeration Technique
(IPET) is applied once the micro-architectural analysis has found (local) timing infor-
mation for each block and/or edge of the binary control flow graph. A simple example
of annotated graph is presented in the left-hand side of Figure 2. For the sake of sim-
plicity, the timing information, expressed in processor cycles, is attached to the edges
only (the costs of the basic blocks are shifted to their outgoing edges).

The key idea of IPET is to encode the WCET problem into a numerical optimiza-
tion problem, more precisely an integer linear programming problem (referred as ILP
in the sequel). For this purpose, an integer variable is introduced for each edge of the
graph (Ei, j denotes the edge between block i and block j). The value of a variable
Ei, j represents the number of traversals of the node during a complete execution of
the program, that is, along a path from the entry to the exit. Note that, for this simple
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– Linear constraints:
E0,1 = 1
E0,1 = E1,2 +E1,3
E1,2 = E2,3
E1,3 +E2,3 = E3,4
E3,4 = E4,6 +E4,5
E5,7 +E6,7 = E7,8
E7,8 = 1

– Objective function, maximize:
ExecTime = ∑ ti, j ∗Ei, j =
3∗E0,1 +3∗E1,2 +7∗E1,3 +12∗E2,3 +3∗E3,4 +
3∗E4,5 +7∗E4,6 +20∗E5,7 +15∗E6,7 +8∗E7,8

– Solution found: ExecTime = 52 with
E0,1 = E1,2 = E2,3 = E3,4 = E4,5 = E5,7 = E7,8 = 1
E1,3 = E4,6 = E6,7 = 0

Fig. 2 CFG + timing information of a small program, and the corresponding ILP problem.

example, the value of these variables can only be 1 or 0, but this is not the case for
programs with loops.

The core of the ILP problem (Figure 2, right) is a set of linear constraints that
literally translate the structure of the graph according to the principle that “what enters
is what exits”, and that the main entry and exit are traversed once. The linear objective
function to maximize is the sum of the edge variables (Ei, j) weighted by their local
time (noted ti, j). For this example, an ILP solver will find the solution shown in
Figure 2, which corresponds to an execution path passing by the blocks 0, 1, 2, 3, 4,
5, 7, 8, for a total execution time of 52 processor cycles.

Note that, in the case of programs with loops, extra linear constraints are nec-
essary to bound the number of executions of the back-edges (otherwise, the worst
case will trivially correspond to a non-terminating execution path). This information
is provided by the Loop Bound Analyis (Figure 1).

In this paper we use the tool OTAWA1. Given a binary executable code, this tool
provides the CFG, all the local timing information (ti, j), and the corresponding ILP
problem (constraints + objective function). The initial set of constraints, also called
structural constraints, is noted ilpcfg in the sequel.

1 http://www.otawa.fr
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2.2 Synchronous programming

The synchronous paradigm was proposed in the early 80’s with the aim of making
easier the development of safety critical control systems. The main idea is to propose
an idealized vision of time and concurrency that helps the programmer to focus on
functional concerns (does the program compute right?), while abstracting away real-
time concerns (does the system compute fast enough?). The goal of this section is
to list the characteristics of synchronous languages that are of interest for timing
analysis. For a more general presentation see Halbwachs (1993); Caspi et al (2007).

Semantically, a synchronous program is a reactive state machine: it reacts to its
inputs by updating its internal state (internal variables) and producing the correspond-
ing outputs. The sequence of reactions defines a global notion of (discrete) time, often
called the basic clock of the program. Reactions are deterministic, which means that
the semantics can be captured by a transition function (sk+1,ok) = F(sk, ik), meaning
that at the reaction number k, both the current outputs ok and the next state sk+1 are
completely determined by the current inputs ik and state sk. Moreover, the program
must be well initialized: the initial state (s0) is also completely determined.

Practically, synchronous languages are providing features for designing com-
plex programs in a concise and structured way. There are mainly two programming
paradigms. In data-flow languages like Lustre, Scade2 or Signal (Gauthier et al 1987),
programs are designed as networks of operators communicating through explicit
wires. In control-flow languages, programs are designed as sets of automata com-
municating via special variables, generally called signals. Examples of control-flow
languages are Esterel (Berry and Gonthier 1992), SynchCharts3, Scade V62. The style
may vary, but the synchronous languages are all based on the same principles:

Synchronous concurrency: all the components of a program communicate and re-
act simultaneously;

Causality checking: since all communications occur at the same “logical instant”,
a causality analysis is necessary to check whether the whole behavior is deter-
ministic or not, in which case the program is rejected. This analysis is based on
data-dependency analysis and may be more or less sophisticated depending on
the language/compiler;

Compilation into sequential code: the basic compilation scheme for all syn-
chronous languages consists in producing purely sequential code from the par-
allel source design; this generation relies on the causality analysis, which, if it
succeeds, guarantees that there exists a computation order compatible with the
data dependencies (this principle is often referred as static scheduling).

To summarize, the compilation of synchronous programs implements the seman-
tics of the program as defined before: it identifies and generates the memory and the
transition function of the program. Figure 3 illustrates this principle for a data-flow
design: the hierarchic concurrent design (a) is compiled into a simple state machine
code (b); according to the data dependencies (arrows), a possible sequential code for
the function F is H();G(), where H() = H1();H3();H2().

2 http://www.esterel-technologies.com/products/scade-suite/
3 http://www.i3s.unice.fr/ map/WEBSPORTS/SyncCharts/



6 Pascal Raymond et al.

i o

s s′

F

H

H2

H1

H3

F

oi
G

mem

(a) hierarchical concurrent design (b) state machine code

Fig. 3 Synchronous compilation.

The synchronous compiler only produces the transition function, that is, the func-
tion that performs a single step of the logical clock. The design of the main program,
responsible of iterating the steps, is left to the user. This loop strongly depends on
architectural choices and on the underlying operating system. A typical choice con-
sists in embedding the transition function into a periodic task activated on a real-time
system clock.

Note that the principles presented in this section are valid for a large class of
Model Based Design methods. As soon as a modeling language is equipped with
an automatic code generator following the principles of Figure 3, it becomes a
“de facto synchronous language”. For instance, it is the case for the well-known
Simulink/Stateflow4 environment, which was originally designed for simulation pur-
pose, and has been completed with code generators.

2.3 Timing analysis of Synchronous programs

The synchronous approach permits an orthogonal separation of concerns between
functional design and timing analysis. The design and compilation method produces
a code (transition function) which is intrinsically real-time, in the sense that it guaran-
tees the existence of a WCET bound whatever be the actual execution platform. This
property is achieved because the languages are voluntary restricted in order to forbid
any source of unboundedness: no dynamic allocation, no recursion, no “while” loops.
The characteristics of a transition function generated from a synchronous design are
the following:

– the control flow graph is structurally simple, mainly made of basic statements and
nested conditionals (if, switch);

– synchronous languages allow to declare and manipulate statically bounded arrays,
that are naturally implemented using statically bounded for loops;

– the code generation may be modular, in which case it contains function calls: the
main transition function calls the transition functions of its sub-programs and so
on; however this calling tree is bounded and statically known.

Note that, besides these clean and appealing principles, synchronous languages also
allow the user to import external code, in which case it becomes his/her responsibility
to guarantee the validity of the real-time property.

4 http://www.mathworks.fr/products/stateflow/
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Fig. 4 Typical 2-stage code generation in Model Based Design

The role of timing analysis is then to estimate an actual WCET for a particular
platform. Synchronous generated code is particularly favorable for WCET estima-
tion, since it is free of complex features (no heap, complex aliasing, loops, nor re-
cursion). The goal of this paper is to try to go further, by exploiting not only generic
properties of synchronous programs, but also functional properties. We start from the
statement that static analysis of high-level synchronous programs has made important
progress during the last decades: there exist verification tools (Model-checking, Ab-
stract interpretation) able to discover or verify non-trivial functional properties, in
particular invariants on the state-space of the program. This statement raises the fol-
lowing question: can such properties be exploited to enhance the timing analysis?
Another statement is that such properties are hard or even impossible to discover at
the binary level, and thus cannot be handled by existing timing analysis tools.

More precisely, the binary code is obtained via a two-stage compilation. Figure 4
illustrates this typical scheme, which is valid for all synchronous languages, and more
generally for most Model-Based Design methods: high-level design is compiled into
an “agnostic” general purpose language (C, most of the time), and then compiled for
a specific binary platform. We give as example the languages and compilers that are
actually used in this work (Lustre and its compiler, C and gcc, and ARM7 as the
target platform).

WCET estimation is performed at the binary level, and enhancing the estimation
mainly consists in rejecting (pruning) execution paths on the binary. This process
raises several problems:

Control structure. There must exist conditional branches in the binary, otherwise
there is nothing to prune. It supposes that the synchronous compiler actually gener-
ates a control structure, that will later be compiled into conditional branches. This fact
strongly depends on the high-level language and its compiler. Control flow languages
(Esterel, Scade 6) provide explicit control structures that are likely to be mapped into
C, and then binary control structures. In data-flow languages, the control structure is
implicit: conditional computation is expressed in terms of clock-enable conditions,
similarly to what happens in circuit design. The compiler must generate conditional
statements, but the whole structure is likely to be less detailed than the one produced
from a high level control-flow language. In this paper, we first focus on this less
favorable case, by considering an example written in Lustre. We then complete the
experiment with a program designed with the more control-flow oriented language
Scade 6.
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Non trivial functional properties. At the high level, we must be able to discover
and/or check properties that are hard to find at the binary level. For this purpose, state
invariants are clearly good candidates: they are related to the fact that the program
state is initialized with a known value, and that it is only modified by successive calls
to the transition function. All this information is indeed not available for the WCET
analyser.

Traceability. Supposing that the compilation produces a suitable control structure,
and that we can find interesting functional properties, there remains the technical
problem of relating the properties with the binary code branches. This traceability
problem is made more complex because of the two stage compilation: if we can ex-
pect a relatively simple traceability between Lustre and C, this is not the case between
C and the binary code, in particular because of the code optimizations that may be
rather intrusive.

All these problems and the proposed solutions are detailed in section 4.

3 Related work

Our proposed approach, which exploits high-level semantic information to improve
the results of the WCET analysis, is novel with respect to several points. First, to the
best of our knowledge, there is no previous work specifically targeting timing analy-
sis enhancements for data-flow languages (SCADE/Lustre). Second, our approach is
agnostic to the level of compiler optimizations, and could be applied without modifi-
cations, to both unoptimized and optimized code (with the potential loss of precision,
in this latter case). Third, our approach is a high-level infeasible analysis: we discover
potential sources of infeasibility in the high-level design. Next, we elaborate on how
our work compares, on each of these points, with the current state-of-the-art WCET
analyses.

As explained in Section 2.3 and in Ringler (2000), Esterel is a control-flow lan-
guage and for such languages, the timing analysis is easier than for data-flow lan-
guages. The main reason lays in how the control structure is transferred between
the high-level and the programming level (in general C code). For control-flow lan-
guages, the high-level control-flow graph (CFG) and the C level CFG are in an almost
one-to-one relationship. Thus, the analysis (which exploits the semantics of the high-
level program) may be based on the high-level CFG through some graph traversal
analysis and pattern matching (Ringler 2000; Ju et al 2008; Boldt et al 2008).

Andalam et al (2011) and Wang et al (2013) are focusing on a synchronous
language, Pret-c, very similar to Esterel. Their approach is specifically dedicated
to multi-thread implementations, where concurrency is not solved at compile time.
Therefore, the approach is suitable mainly for imperative languages with explicit
”fork-like” statements, like Esterel, Reactive-C or Pret-c. In this paper we consider
data-flow languages together with the more classical compilation scheme where con-
currency is fully solved at compile time (static scheduling). Besides this difference,
the kind of properties that are considered to prune infeasible paths is very similar to
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the ones considered in this paper: exclusions or implications between the ”clocks”
that are controlling the executions of (sub) modules.

The existing analyses of Matlab/Simulink programs are also mainly based on the
“control-flow” features of this language with some annotations about the execution
modes (Tan et al 2009; Kirner et al 2002). All these compute WCET bounds for
one tick (as it is the case with our method). However, the analysis of synchronous
programs may gain some semantic information by considering in the context of a step
the state of the memory at the end of the previous step (Ju et al 2009), the so-called
multi-tick analysis. This work is orthogonal to our approach, but as future work, we
could extend ours with this “memory” consideration.

Several approaches (Ferdinand et al 2008; Tan et al 2009; Kirner et al 2002)
focus on embedding a WCET analyzer into a synchronous design tools. In Ferdinand
et al (2008) the AiT WCET tool5 is integrated in the SCADE suite for analyzing the
binary programs generated from SCADE. This work focuses on traceability but does
not check the feasibility of estimated worst-case paths according to the high-level
semantics.

Our approach applies to both optimized and unoptimized code, as it relies on
the debugging information of a standard C compiler - gcc. None of the cited works
considers optimizations from the C level to binary level. They suppose that there
is no optimization and limit their path analysis at the C level while we start from
binary level. In general, preserving the predictability of a WCET analysis, through
compiler optimizations, is done on a case-by-case basis (Engblom et al 1998; Kirner
et al 2010). Recent research leads to WCET-aware compilation (Falk et al 2006) in a
certified environment (Blazy et al 2013). Because of its systematic way of generating
C code, the synchronous programming paradigm in general, and in our particular case
- the Lustre compiler (Halbwachs et al 1991) - are good candidates for the WCET-
aware compilation.

Finally, our approach combines a high-level infeasible path detection using model
checking, and a path analysis using the usual IPET method. Ju et al (2008, 2009)
also rely on the translation of high level properties into classical ILP constraints, but
differ on the kind of properties that are handled: they consider particular properties
pattern (conflicting pairs) strongly related to the control-flow nature of the consid-
ered language (Esterel). Other existing solutions for the infeasible path detection are
based on symbolic execution (Knoop et al 2013), abstract interpretation (Gustafsson
et al 2006), or model checking (Andalam et al 2011). In several works (Andalam
et al 2011; Metzner 2004; Dalsgaard et al 2010; Andalam et al 2011; Béchennec
and Cassez 2011) model checking is used both for infeasible path detection and path
analysis: the WCET is computed by the model checker itself.

In our framework, we use a model checker dedicated to the Lustre language:
Lesar (Raymond 2008). The infeasibility properties discovered by Lesar are encoded
as additional ILP constraints, similarly to what is proposed in (Gustafsson et al 2006;
Knoop et al 2013). In our combined path analysis, a main novelty concerns the refu-
tation path algorithm: we show that refuting paths one by one, as in (Knoop et al
2013), is not efficient and we introduce a more efficient algorithm.

5 http://www.absint.com/
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4 Proof-of-concept on a realistic example

This section details the methods developed for this study, through the treatment of
a typical example. We do not claim to propose a complete “turnkey” solution, but
rather a proof of concept that illustrates how, and how much, WCET can be enhanced
by exploiting high-level functional properties.

Figure 5 shows the general workflow of the experiment presented in this sec-
tion. From the source high-level code, the generated C code, and the corresponding
binary code, the Traceability Analysis tool extracts information relating high-level
expressions to binary branches (§ 4.2). In the meanwhile, the external tool OTAWA
analyses the binary code and builds the initial WCET problem (expressed as an In-
teger Linear Programming optimization System). Using the high-level code and the
traceability information, the Infeasible Path Removal tool tries to refine the initial ILP
system in order to obtain an enhanced WCET estimation. This tools provides several
algorithms/heuristics and uses the external tools lp solve to solve ILP systems and
Lesar to model-check properties of the high-level code (§ 4.6).

4.1 Example

The example studied in this section is a simplified version of a typical control engi-
neering application. The overall organization is shown in Figure 6. The program is
designed as a hierarchy of concurrent sub-programs dedicated to a particular “task”.
The example is made of two concurrent tasks, A and B, performing treatments on
data according to input commands (onoff, toggle). Tasks are in general not inde-
pendent: in the example, B depends on the value outA produced by A in order to
produce the global output out. One role of the high-level compiler is to correctly
schedule the code according to these dependencies (§2.2).
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More precisely, the sub-program A performs different treatment on its input data
depending on different operating modes. The data part is kept abstracted, but we
gave meaningful names to the control part in order to make their role clearer. The
small arrow on the top of a block behaves as a clock-enable: the block is activated
(i.e., executed) if and only if the clock is true. In the example, idle (resp. low and
high), enables the computation of A0 (resp. A1 and A2). The clocks are themselves
computed by a control logic, according to the input commands onoff and toggle.
We don’t detail the code corresponding to control, but roughly, the command onoff
switches between idle or not, and, when not idle, toggle switches between low

and high mode. What is really important for the sequel, is that the controller satisfies
the following high-level requirement:

Property 1 (intra-exclusion A) If the inputs onoff and toggle are assumed ex-
clusive, then the program guarantees that idle, low and high are also (pairwise)
exclusive.

Sub-program B is similar to A except that it has only two operating modes: when
nom (nominal mode) it computes the function B0, and when degr (degraded mode)
it computes B1. Just like for the module A, the control logic guarantees the intra-
exclusion between the modes of B:

Property 2 (intra-exclusion B) If the inputs onoff and toggle are assumed exclu-
sive, then the program guarantees that nom and degr are also exclusive.

Moreover, the control guarantees another important high-level property that re-
lates the modes of A and the modes of B:

Property 3 (inter-exclusion) B is necessarily in mode degr whenever A is not in
mode idle.

Finally, this example, while relatively simple, is a good candidate for experiment-
ing since it satisfies high-level properties that are likely to enhance the WCET esti-
mation:
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– whatever be the details of the compilation (from Lustre to C, and C to binary),
high-level control variables (clock-enables) will certainly be implemented by
means of conditional statements,

– high-level relations between clock-enables (exclusivity) are likely to make some
execution paths infeasible, and then, the WCET estimation should be enhanced.

For this experiment, the example has been developed in Lustre, in order to use
the associated tool chain, mainly the Lustre to C compiler lus2c6 and the Lustre
model-checker Lesar (Raymond 2008). For generating the executable code, we use
a state of the art C compiler, arm-elf-gcc 4.4.2, a widely used cross compiler for
the ARM7 platform.

Before considering the whole program, we analyse the WCET of the different
modes, in order to foresee which combination of modes is likely to be the most costly.
This analysis is made for a non optimized version of the code (option -O0 of gcc) and
a strongly optimized one (option -O2 of gcc). The worst cases obtained are:

optim. A0 A1 A2 B0 B1
-O0 408 730 1226 1130 380
-O2 64 83 128 123 48

From properties 1 and 2 we know that exactly one mode of A and one mode
of B must be executed at each step. Moreover, from property 3 we know that cer-
tain combinations of modes are forbidden. The table below summarizes the possible
combinations:

A0 A1 A2
B0 yes no no
B1 yes yes yes

For both optimization levels, it appears that the costs of the combinations A2+B1
(1606 or 176) and A0+B0 (1538 or 187) are very close and much higher than any
other possible combination. Thus, the worst case is expected for one of these cases.

The rest of this section details the different steps necessary to treat the example.
The first problem is to relate high-level variables to the branches in the binary code,
referred as the traceability problem in the following. Once this traceability problem
is solved, the next step consists in developing an automated method for enhancing
the WCET estimation (§ 4.6).

4.2 Traceability

First of all, we have to define precisely what the traceability problem is: for a given
edge in the binary control flow graph (e.g., basic block i to basic block j, noted Ei, j),
find, if possible, a Boolean Lustre expression (e.g. toggle and not onoff), such
that the binary branch is taken iff the Lustre expression is true. We have developed a
prototype tool to solve this problem, for which we only present here the main princi-
ples. Because of the two-stage compilation, the problem requires to trace information
at two levels: from Lustre to C, and from C to binary.

6 http://www-verimag.imag.fr/The-Lustre-Toolbox.html
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From Lustre to C. This problem is easily solved since we control the development of
the lus2c compiler. The compiler has been adapted in such a way that all if state-
ments in the generated C code get the form if(Lk) where Lk is a local C variable;
moreover, a pragma is generated in order to associate this variable to the source ex-
pression it comes from. We denote by E (Lk) this Lustre expression. The semantics of
such a pragma is: the value of the C variable at this particular point of the C program
is exactly the value of the Lustre expression. For the sake of simplicity, we no longer
make a difference between the C variable and the corresponding expression: we talk
about the Lustre condition controlling the C statement.

From C to binary. The problem, while mainly technical, can hardly been addressed
here in a completely satisfactory way: patching the gcc compiler to exactly add the
information we need would require an amount of work which is out of the scope
of this academic study. We have therefore chosen to rely on the existing debugging
features to relate binary code to the C code. Indeed, code optimization may dramati-
cally obfuscate the C control structure within the binary. The retained solution is then
not complete but safe: whenever a binary choice can be related, via the debugging
information, to a corresponding if statement in the C code, we keep this informa-
tion. Otherwise the choice is simply ignored. While naive, this solution gives good
results, despite the relatively intrusive optimizations performed by gcc on the control
structure.

4.2.1 Traceability without optimization

Without optimization (-O0 option of gcc), as expected, the binary control flow graph
strictly maps the C control flow graph.

Figure 7 shows the C CFG (left) and the binary CFG (right) of the example. Both
graphs have been simplified in order to outline parts of interest (the actual graphs
have more than 70 nodes). Only the branches concerning the calls of interest (A0,
A1, etc) are depicted. Unsurprisingly, a one-to-one correspondence is automatically
found by our tool, based on the gcc debugging information.

4.2.2 Traceability with optimization

Using optimizations raises problems in critical domains submitted to certification
process. For instance in avionics, the highest safety levels of the DO-178B document7

specify that traceability is mandatory from requirements to all source or executable
code. Discussing whether some optimization is reasonable in critical domains is out
of scope of this paper: we only aim at experimenting how optimizations may affect
traceability, and thus, be an obstacle for enhancing WCET estimation.

Figure 8 shows the C CFG and the binary CFG obtained with gcc -O2. The
most remarkable effect of the optimization concerns the first part (computation of A):
the source sequence of 3 conditionals is implemented by a structure of interleaved
jumps. In this graph, some branches of binary code get no debugging information at

7 http://www.rtca.org/store list.asp
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C code binary code

Fig. 7 CFG traceability with -O0

all and thus, cannot be related to the source code (BB1 and BB10). Conversely some
source tests have been duplicated in the target code (e.g. BB4 and BB5 are attached
to the same source test). Even relatively intrusive, this transformation does not affect
traceability: the binary choice is related to its source C condition, but, indeed, several
branches may refer to the same source.

4.3 From paths to predicates

At this point, we suppose that traceability analysis has been achieved. The result is a
partial function from CFG edges to C literals (either Lk or not Lk), and then, to the
corresponding Lustre conditions (either E (Lk) or ¬E (Lk)).

We denote by condi, j the Lustre condition corresponding to edgei, j (if it exists).
Note that, if edgei, j and edgei,k are the two edges of a binary choice, if condi, j exists,
then condi,k exists too, and condi, j = ¬condi,k. Here are, for instance, some of the 16
traceability “facts” found on the optimized code of the example (see Figure 8):
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C code binary code

Fig. 8 CFG traceability with -O2

cond4,7 = cond5,7 = E (L5)

cond4,6 = cond5,6 = ¬E (L5)

· · ·
cond16,20 = E (L43)

cond16,19 = ¬E (L43)

In the sequel, for the sake of simplicity, we extend the traceability function by
assigning the condition “true” to any edge that is not related to a Lustre condition.
For instance, in the example: condentry,1 = cond1,4 = cond1,5 = · · ·= true.

4.4 Checking paths feasibility

A path (or more generally a set of paths) in the CFG can be described by a set
of edges. Consider the binary CFG in the case -O2 (Fig. 8); the set of edges
{edge1,4,edge4,7,edge8,12} corresponds to the set of the complete paths that pass by
those 3 edges. In particular, for this set of paths, basic blocks 7 (A0) and 12 (A1) are
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both executed. For such a set {edgeik, jk}, one can build a Lustre logical expression
expressing the feasibility of the paths:

∧
k condik, jk .

The idea is then to check whether this Boolean expression is satisfiable accord-
ing to the knowledge we have on the program. In some cases the answer is trivial:
when the expression syntactically contains both a condition Lk and its negation ¬Lk,
the corresponding edges are trivially exclusive. Some of these trivial exclusions are
already taken into account as structural constraints: this is obviously the case for
conditions guarding the two outcoming branches of a same node (e.g. edgei, j and
edgei,k). However, this is not always the case: in the C code, the same condition may
be tested several times along the control graph, in which case the logical exclusion is
not “hard-coded” in the structure.

When infeasibility is not trivial, it is necessary to use a decision tool. More pre-
cisely, we build the predicate infeasible=¬(

∧
k condik, jk), and ask the model-checker

(Lesar) to prove that infeasible is an invariant of the program. The model-checker
(just like any another automatic desision tool) is partial; it may answer:

“yes”: in which case we know that infeasible remains true for any execution of the
program, and, thus the corresponding paths can be pruned out.

“inconclusive”: in which case infeasible may or may not be an invariant.

In the example, the model-checker answers “yes” for the infeasibility predicate
¬(cond4,7 ∧ cond8,12). As expected from the program specification, it means that
blocks 7 (call of A0) and 12 (call of A1) are never both executed (Property 1, page 11).

One of the main arguments for the proposed method is that such a property is
almost impossible to discover at the binary or C level: this property (intra-exclusion
of A modes) is a relatively complex consequence of both assumptions on inputs and
dynamics of the underlying state machine:

– inputs onoff and toggle are assumed exclusive,
– idle and low are initially exclusive (resp. true and false),
– whatever be an execution of the program satisfying the assumption, the computa-

tion of idle and low ensures that they remain exclusive in any reachable state.

Note that any other decision tool can be used instead of Lesar. As mentioned be-
fore, Lesar belongs to the family of model-checkers, which means that it is based on
the exploration of the program’s state space. This kind of method is rather power-
ful, but indeed also very expensive or even intractable in practice if the state space
”explodes”. Less expensive methods can be used, that typically ignore the infinite
behavior of the program by only considering the execution of a single step. But in
our case such methods are unlikely to discover the expected properties (clocks exclu-
sions) because they are actually a consequence of the infinite behavior.

4.5 From infeasibility to linear constraints

In this case study, we limit the use of the discovered properties to the pruning of
infeasible paths in the last stage of the WCET estimation, that is, at the ILP level. For
ILP solving, we use the tool lp solve8.

8 http://lpsolve.sourceforge.net/
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Suppose that we have proved ¬(
∧

k condik, jk); it means that there exists no path
passing by all the corresponding edges {edgeik, jk}.

In the ILP system, each edge is associated to a numerical variable representing
the number of times the edge is traversed during an execution; the same notation
edgeik, jk is used for these numerical variables (context avoids misleading). This sec-
tion presents how to translate the logical expression into a numerical constraint.

In the general case (programs with loops), translating the exclusivity of a set of
edges {edgeik, jk} in terms of ILP constraints is not trivial (see Raymond (2014) for a
general presentation). For instance, when the edges belong to the sequential core of
a loop executed at most µ time, the exclusivity can be expressed with the following
linear constraint:

∑
n
k=1 edgeik, jk < n×µ

In the case of loop-free programs (which is the case for our example and, more
generally, for any transition function not using arrays), each edge is traversed at most
once, and therefore, the translation into ILP constraint is trivial:

∑
n
k=1 edgeik, jk < n

For instance, the proven invariant ¬(cond4,7∧ cond8,12) is translated into:

edge4,7 + edge8,12 < 2

4.6 Algorithms and strategies

We have seen so far: how to use a model-checker to check infeasibility properties,
and how to translate such properties into numerical constraints for the ILP solver.
The problem is now to define a complete algorithm for the WCET estimation, that
decides which properties to check and when to check them.

In the sequel, we use the following notations:

– “BinaryAnalysis(bprg)→ ilpcfg” is the abstraction for the main OTAWA pro-
cedure that analyses a binary program and returns a whole initial integer linear
program (i.e., linear constraints + objective function), a linear constraint is noted
ilc,

– “CheckInv(l prg, lexp)→ yes/no” represents the call of the Lesar model-checker;
it takes a Lustre program and a Lustre predicate, and returns yes if the predicate
is a proven invariant of the program, no otherwise,

– “LPSolve(il p)→ wcep” represents the call of the ILP solver; it returns the worst-
case execution path,

– “ConditionOfPath(wcep)→ lexp” is the procedure that traces back a binary path
to the corresponding conjunction of Lustre literals, as explained in Section 4.4,

– “ConstraintOfPath(wcep)→ ilc” is the procedure that takes a binary path and
produces the integer linear constraint that will be used to express the infeasibility
of the path, as explained in 4.5.
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4.6.1 Removing trivial exclusions

A first step, whose computation cost is almost null once the traceability step has been
done, consists in taking into account trivial exclusions of the form Ln and ¬Ln. As
explained in Section 4.4, some of these trivial exclusions are also structural, and thus
the constraint is already taken into account in the ilpcfg system. However other trivial
exclusions are not structural: they are due to the Lustre compilation that may open
and close the same test several times along the execution paths.

For all pairs of edges with opposite conditions, that are not structurally exclusive,
we generate the ILP constraint edgei, j + edgek,l < 2. The effect of this first enhance-
ment strongly depends on the optimization level:

– In -O0 case, traceability identifies 9 conditions: the 5 depicted on the simpli-
fied CFG (Fig. 7) plus 4 more. Some conditions are tested several times along
the execution path. For instance, one of the extra condition (named M7), and that
intuitively controls the initialization, is tested not less than 7 times. Other con-
ditions are tested 4 times (L5, L15 etc). Finally, 102 trivial (but not structural)
exclusions are automatically discovered and translated into ILP constraints. The
WCET estimation is slightly enhanced: 4718 to 4693 cycles. The enhancement
is not impressive, but the number of possible paths is once and for all dramati-
cally reduced: by studying precisely the code, a simple reasoning shows that the
number of feasible paths is divided by more than 2 million9 .

– In -O2, traceability only identifies 6 conditions, the ones outlined on Figure 8,
plus the M7 presented above. The fact that 3 conditions from the C code have
disappeared in the binary code is due to an optimization related to the target pro-
cessor capabilities: ARM7 provides a conditional version for most of its basic
instructions, and the gcc compiler can then replace simple conditional statements
with (even simpler) conditional instructions. Since the resulting binary CFG is
much simpler than the one obtained with -O0, the result is less impressive: no
trivial exclusion is discovered which is not already a structural exclusion. This
first step gives a non-enhanced WCET estimation (758 cycles, which is OTAWA
initial estimation).

4.6.2 Iterative refutation algorithm

First, we experiment a refinement algorithm which iterates LPSolve, to find a candi-
date worst-case, and CheckInv to try to refute it. The pseudo-code of the algorithm is
the following:

9 In the binary code, 27 “if then else” patterns appearing in sequence are controlled by only 6 high-level
conditions ; the impact in the number of paths is 26 when taking into account the trivial exclusions, while
it was 227 without this information: the gain is a factor of 221 = 2.097.152.
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Algorithm 4.1: RefineWCET(l prg,bprg)

il p← BinaryAnalysis(bprg)
while true

do



wcep← LPSolve(il p)
lexp← ConditionOfPath(wcep)
infeasible← CheckInv(l prg,¬lexp)
if infeasible

then il p← il p∪ ConstraintOfPath(wcep)
else return (il p)

The result of this algorithm is optimal modulo the decision procedure: it con-
verges to a worst-case path which is actually feasible according to the decision pro-
cedure.

The obvious drawback of the method is the number of necessary iterations, which
can grow in a combinatorial way. Our example clearly illustrates this problem. Let us
consider the -O0, and focus only on the interesting branches (binary CFG in Figure 7).
Unsurprisingly, the initial worst-case path found by LPSolve corresponds to a case
where all modes are executed:

{edge7,8,edge21,22,edge29,30,edge49,50,edge57,58}
This path is refuted by the model checker, and a new numerical constraint is added

to the ILP problem:
edge7,8 + edge21,22 + edge29,30 + edge49,50 + edge57,58 < 5

In return, LPSolve finds another worst case where edge7,8 is replaced by edge7,9.
In other terms, all but the least costly mode are executed (A0). This path is refuted
and a new constraint is added:

edge7,9 + edge21,22 + edge29,30 + edge49,50 + edge57,58 < 5

The new ILP system leads to another false worst case where all modes but A1 are
executed (the second in the cost order), and so on. To summarize: the algorithm first
enumerates all the cases where all modes but one are executed, then where all modes
but two are executed, and finally all but three. It finally reaches the real worst case
where exactly 2 modes (actually A2 and B1) are executed.

In the example, the algorithm behaves slightly differently depending on the code
optimization level:

– With -O0, the algorithm converges in 298 steps, from a first estimation of 4693
(after the trivial exclusion removal §4.6.1) to a final optimal estimation of 2371.
The worst case path corresponds to one of the expected cases, where modes A2
and B1 are both executed.

– With -O2, the algorithm converges after 116 steps, from an estimation of 758 to
an estimation of 457 cycles. Here again, the worst case path corresponds to an
expected one, but interestingly, not the same than with -O0: here, the modes A0
and B0 are both executed.

This experiment outlines the combinational cost of the method. This problem
arises because the iterative constraints are not precise enough: for instance, a con-
straint states that at most 4 of 5 edges can be taken, where the “right” information is
that they are all pairwise exclusive.
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4.6.3 Searching properties before WCET estimation

In this section, rather than refuting an already obtained worst-case path, we study the
possibility of inferring, a priori, a set of high-level properties that are likely to help
the forthcoming search of the worst-case path.

More precisely, we consider that a set of relevant high-level conditions has been
selected. This selection may be greedy (all the identified conditions), or more sophis-
ticated (conditions controlling “big” pieces of code). In our simple example, both
heuristics lead to select the same set of interesting conditions: those that control the
modes {L5,L15,L26,L40,L43} (Fig. 7 and 8), plus some others depending on the
code optimization (4 more in case -O0, 1 more in case -O2).

Useful information on these variables are disjunctive relations (or clauses): if one
can prove that a disjunction is an invariant (e.g. ¬L15∨¬L26∨¬L43), its negation
(conjunction) is proved impossible and the corresponding paths can be pruned. We
detail now two strategies for discovering properties about the selected conditions.

A virtual complete method. Using a model checker, it is theoretically possible to find
an “optimal set of invariant clauses” over a set of conditions Lk (optimality is relative
to the decision procedure capabilities). The sketch of the algorithm is the following:

– let l prg be the considered Lustre program, and s be its state variables; a model-
checker can compute a formula Reach(s) denoting a superset of the reachable
states of the program; in some cases (e.g. finite-state programs) the formula
is exact, but in general (e.g. numerical values) the formula is a strict over-
approximation;

– let Lk be the conditions of interest, and ek(s) = E (Lk) the corresponding Lustre
expressions; these expressions are functions of the program state variables;

– consider the following formula over the state variables and the conditions:

Reach(s)
∧

k∈K(Lk = ek(s))

Quantifying existentially the state variables projects the formula on the Lk vari-
ables only, giving the set of all possible configurations for the Lk variables:

Φ(Lk) = ∃s · Reach(s)
∧

k∈K(Lk = ek(s))

– formula Φ(Lk) can be written in conjunctive normal form (i.e conjunction of
clauses):

φ(Lk) =
∧

i∈I Di(Lk)

involving a minimal number of minimal clauses (this is the dual problem of find-
ing a minimal prime implicants cover for disjunctive normal forms);

– each minimal clause can be translated into a minimal infeasibility constraint as
explained in Section 4.5.

This algorithm combines several well-known intractable problems (reachability
analysis, minimal clause cover) and remains largely virtual.
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A pragmatic pairwise approach. We now focus on non-complete methods that
may/may not find relevant relations.

From a pragmatic point of view, two-variable clauses (i.e., pairwise disjunctive
relations) are good candidates: the number of pairs remains relatively reasonable
(quadratic), and their analysis is likely to remain reasonable (since they only involve
a small part of the whole program).

We detail the algorithm on the example, in the case -O2 (cf. Fig. 8). All the con-
ditions identified by the traceability process are selected: the 5 emphasized in Fig. 8
(L5, L15, L26, L40, L43), plus an extra one (M7). Intuitively, this variable controls
some initializations; it has a strong influence on functionality, but its influence on the
WCET is not expected to be important.

We build and check all the possible pairwise disjunctive relations between these 6
conditions, that is, 4×(6×5)/2 = 60 predicates. The proof succeeds for 14 relations.
Most of them are reflecting the properties we know from the program specification
(see Properties page 11): exclusion between B0 and B1, pairwise exclusion for A0,
A1 and A2, exclusion between B0 and either A1 and A2. Some others are unexpected,
but may be useful for the WCET analysis: intuitively, they relate the initialization and
the computing modes.

Finally, the 14 properties are translated into 47 ILP constraints (remember that
the same condition may control several branches). With this additional constraints,
LPSolve directly gives the same worst-case path and time obtained with the iterative
algorithm.

To summarize, this pragmatic method gives the same result with only 60 relatively
cheap calls to Lesar, and a single call to LPSolve, where the a priori smarter refutation
method requires 116 relatively costly calls to the model-checker and as many calls to
LPSolve.

In case -O0, 9 atomic conditions are identified, leading to 144 binary disjunctions
to check; 21 are proved invariant by Lesar, and translated into 396 ILP constraints.
The final estimation is 2372, and misses the optimal estimation for 1 cycle. This
is due to the fact that the path obtained is still not feasible: this is the drawback
of the method which only consider pairwise properties and may miss more complex
relations. However, if and when optimality is the goal, the algorithm can be completed
with one (or more) steps of the iterative method.

4.7 Results

This section summarizes some relevant quantitative information on the case study.
The results presented here, for a single program, have obviously no ”statistical”
meaning, and they are not intended to illustrate the efficiency of the method. They
mainly give information on how the method behaves, in particular in terms of over-
head computation cost.

Size and complexity of the example. Table 1 give some quantitative results on the
experiment that do not depend on the method (iterative/pairwise). They are given for
the two versions of the binary code (non optimized and optimized). The complexity
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Bin Code WCET estimation ILP constraints (# / arity) OTAWA cost
opt. # BB / edg. initial first structural trivial (cpu seconds)
-O0 83 / 119 4718 4693 178 / 2 102 / 2 64s
-O2 24 / 42 758 758 60 / 3 6 / 2 1s

Table 1 Results that do not depend on the pruning method

of the program can be figured out from its CFG size (in number of blocks and edges).
The initial WCET estimation comes from the (unique) call to OTAWA, and corre-
sponds to the initial (structural) ILP system. For ILP constraints, the complexity can
be figured out with both their number and their arity (maximal size of one constraint,
given in number of variables).

The first WCET estimation is the one obtained by removing the trivial exclusions:
it corresponds to an ILP system where the constraints referred as trivial are added to
the structural ones. The overhead due to the trivial exclusion removal is neglectable
and not represented in the Table (less than 0.1 cpu seconds).

The cost of the (unique) call to OTAWA is given. One can note that this cost
seems to grows exponentially with the size of the CFG: 1s for -O2 code, 64s for the
-O0 code which is only 3 times bigger.

optim. Wcet estimation # iter. ILP constraints cost (cpu seconds
initial final LPSolve Lesar Over. (Total)

-O0 4718 2371 298 298 / 30 90s 5.2s 99s (163s)
-O2 758 457 116 116 / 6 1.5s 0.7s 3.5s (4.5s)

Table 2 Iterative method: gain is about 50% with -O0 code, 40% with -O2 code

Iterative method. Table 2 give quantitative results for the iterative method. The initial
WCET estimation is recalled, and the final estimation shows an improvement of about
50 % or 40 % depending on the optimization level. The key information is the number
of iterations to reach the optimal WCET: it corresponds to the number of calls of both
LPSolve and Lesar. The computation time overhead is mainly due to the numerous
calls of LPSolve, with ILP systems that are relatively complex: the maximum arity
(e.g. 30 variables in -O0 case) is a good information of the complexity.

optim. Wcet estimation Lesar (# pairs) ILP constr. cost (cpu seconds)
first final checked valid (# / arity) LPSolve Lesar Over. (Total)

-O0 4718 2372 144 21 396 / 2 0.1s 2.2s 3s (67s)
-O2 758 457 60 14 47 / 2 0.1s 1s 1.3s (2.3s)

Table 3 Pairwise method: gain is almost the same, but with a much reasonable computation cost
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Pairwise method. Table 3 summarizes the results for the pairwise exclusion method.
The improvement is similar to the one obtained with the iterative method. Consider
the -O0 line: the main information is the number of pairwise exclusion checked by
Lesar (144), the number of those that are proved valid (21), and the number of con-
straints they imply for the ILP system (396). In this case, a single extra call to LPSolve
is necessary, and then the corresponding overhead is neglectable. The cost of Lesar
is more important, but remains reasonable, comparing to the (unavoidable) cost of
OTAWA.

Conclusion. We can reasonably conclude, by comparing the cases -O2 and -O0, that
the iterative algorithm is unlikely to scale up for bigger codes. From the -O2 code
to the -O0 code, the size grows roughly 3 times; in the same time, both the number
of iterations and the total cost of Lesar seem to grow linearly (factor between 2 and
3), but the total cost of LPSolve dramatically explode (multiplied by 60). More than
the increasing number of constraints, the increasing of their complexity explains this
explosion (298 constraints, each involving 30 variables).

On the contrary, the pairwise exclusion method behaves in a very promising way:
when considering only the overhead due to our method, and not the cost of OTAWA,
the cost seems to grow linearly.

5 Note on the influence of the high-level design and compiler

As mentioned earlier, there are many high-level design tools, with different program-
ming styles and compilation methods. In order to complete the experiment, we illus-
trate here how the high-level design language influences the method. For this purpose,
we switch from the purely data-flow language Lustre to Scade 6, which proposes a
mix of data-flow and control-flow styles.

Contol-flow oriented design. Figure 9 shows a Scade 6 design semantically equiv-
alent to our example program of Figure 6. Instead of implementing the “modes” in
terms of clock enable (which is the only way in data-flow style), we use here the
explicit state machine feature provided by Scade. For instance, module A is designed
as a 3-states machine, each state corresponding to a particular computation mode ;
the control part of A is not necessary: the mode selection is directly encoded in
the transitions. The design of module B is similar, except that we keep an auxiliary
module for computing the local conditions sleep and wake.

Control-flow compilation. The interest of such a design is that the “intra-exclusion”
of modes is made explicit at the high level (exactly one state of each machine is
executed at each step), and we can expect that the compilation will propagate these
exclusions at the C and binary levels. This is actually what happens when using the
Scade compiler (KCG), as depicted in Figure 10. This figure shows a small part of the
control flow graphs of the C code (left) and the corresponding binary code (right), the
whole size is 100 blocks for the C CFG and 127 for the binary CFG. As expected, the
intra-exclusion properties (Properties 1 and 2, page 11) are “built-in” in the structure
of binary CFG:



24 Pascal Raymond et al.
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Fig. 9 Scade 6 design using explicit state machines

– there is no path between the basic blocks 50 (A0), 45 (A1) and 53 (A2) (top of
the CFG),

– similarly for basic blocks 58 (B0) and 60 (B1) (bottom of the CFG).

However, non structural properties (e.g. inter-exclusion, Property 3, page 11) are still
likely to enhance the WCET.

optim #BB WCET estimation Improvement
initial final

-O0 149 2971 2235 24.8 %
-O2 67 432 383 11.4 %

Table 4 Experiment with the Scade design: quantitative results

Quantitative results. Table 4 summarizes some quantitative results. Conversely to
the experiment made with Lustre, this experiment is not fully automatic: because
KCG is a proprietary tool, and because we do not have a model-checker suitable for
Scade, both the traceability and the introduction of semantic properties have been
made by hand. As a consequence, we cannot present here relevant results for the
computation cost, but only for the quality of the result. As expected, the improvement
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C code binary code

Fig. 10 Simplified C and binary CFG’s obtained from the Scade 6 design of Figure 9

is less important than with Lustre. However, the gain, which is mainly due to the inter-
exclusion property, is still interesting: about 25% or 11% depending on the binary
code optimization.

6 Conclusion

In this paper, we propose a method to improve timing analysis of programs generated
from high-level synchronous designs. The main idea is to take benefit from semantic
information that are known at the design level and may be lost by the compilation
steps (high-level to C, C to binary). For that purpose, we use an existing model-
checker for verifying the feasibility of execution paths, according to high-level de-
sign semantics Furthermore, our approach may work on optimized code (from C to
binary). We introduced the approach on a realistic example and showed that there is
a huge possible improvement, with a reasonable overhead compared to the (unavoid-
able) cost of the timing analysis of the binary code.

The possible extensions of this work are numerous: taking into account the fea-
tures provided by a particular high-level language; studying clever heuristics for
discovering relevant high-level properties; taking into account discovered infeasible
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paths in hardware analysis. A long term aim is to study the possibility of a complete
WCET-aware compilation chain, where the tradeoff to find not only concerns the
code size and efficiency, but also the traceability of high-level semantic properties.
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