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1 Introduction

The fields of Systems Biology, Synthetic Biology, and Medicine produce and use a variety of formalisms for
modeling the dynamics of biological systems. Regardless of its mathematical form, a model is an invaluable
tool for thoroughly examining how the behavior of a system changes when the initial conditions are altered.
Such studies can be used to generate verifiable predictions, and/or to address the uncertainty associated with
experimental measurements obtained from real systems.

In this paper, we consider the parameter synthesis problem which is to identify sets of parameters for
which the system does (or does not) reach a given set of states. Here, the term “parameter” refers to both
the initial conditions of the model (e.g., bacterial load at time t = 0) and dynamical parameters (e.g., the
bacterium’s doubling rate). For example, in the context of medicine, we might be interested in partitioning
the parameter space into two regions — those that, without medical intervention, deterministically lead to
the patient’s recovery, and those that lead to the patient’s death. The parameter synthesis problem is relatively
easy to solve when the system has linear dynamics, and there are a variety of methods for doing so (e.g.,
[6–8]). Our algorithm, in contrast, solves the parameter synthesis problem for nonlinear dynamical systems.
That is, for systems of nonlinear ordinary differential equations (ODEs). Moreover, our approach can also be
extended to nonlinear hybrid systems (i.e., those containing mixtures of discrete and continuous variables,
see [13] for details). Nonlinear ODE and hybrid models are very common in the Systems Biology, Synthetic
Biology, and in Medical literature but there are very few techniques for solving the parameter synthesis
problem in such systems. This paper’s primary contribution is a practical algorithm that can handle systems
of this complexity.

Our algorithm combines sensitivity analysis with an efficient search over parameters. The method is
exact if the model has affine dynamics. For nonlinear dynamical systems, we can guarantee an arbitrarily
high degree of accuracy with respect to identifying the boundary delineating reachable and non-reachable
sets. Moreover, our method runs in minutes, even on high-dimensional models. We demonstrate the method
by examining two models of the inflammatory response to bacterial infection [20, 26]. In each case, we
identify sets of initial conditions that lead to each of 3 biologically relevant outcomes.

The contributions of this paper are as follows:

– An algorithm for computing parameter synthesis in nonlinear dynamical systems. This work builds on
and extends formal verification techniques that were first introduced in the context of continuous and
hybrid nonlinear dynamical systems [12].

– The results of two studies on two different models of the inflammatory response to bacterial infection.
The first model is a 4-equation model, the second is a 17-equation model.

This paper is organized as follows: We outline previous work in reachability for biological systems
in Sec. 2. Next, we present our algorithm in Sec. 3. We demonstrate our method on two models of acute
inflammation in Sec. 4. We finish by discussing our results and ideas for future work in Sec. 5.

2 Background

Our work falls under the category of formal verification, a large area of research which focus on techniques
for computing provable guarantees that a system satisfies a given property. Formal verification methods can
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be characterized by the kind of system they consider (e.g., discrete-time vs continuous-time, finite-state vs
continuous-state, linear vs non-linear dynamics, etc), and by the kind of properties they can verify (e.g,
reachability – the system can be in a given state, liveness – the system will be in a given set of state infinetly
often, etc). The algorithm presented in this paper is intended for verifying reachability properties under pa-
rameter uncertainty in nonlinear hybrid systems. The most closely related work in this area uses symbolic
methods for restricted class of models (e.g., timed automata [4], linear hybrid systems [1, 19, 17]). Symbolic
methods for hybrid systems have the advantage that they are exhaustive, but in general only scale to sys-
tems of small size (< 10 continuous state variables). Another class of techniques invokes abstractions of
the model [2]. Such methods have been applied to biological systems whose dynamics can be described by
multi-affine functions. Here, examples include applications to genetic regulatory networks (e.g., [6–8]). Batt
and co-workers proposed an approach to verify reachability and liveness properties written in the linear tem-
poral logic (LTL) [24] (LTL can be used to check assumptions about the future such as equilibrium points)
of genetic regulatory networks under parameter uncertainty. In that work, the authors show that one can
reduce the verification of qualitative properties of genetic regulatory networks to the application of Model
Checking techniques [10] on a conservative discrete abstraction. Our method is more general in the sense
that we can handle arbitrary nonlinear systems but a limitation is that we cannot handle liveness properties.
However, we believe that our algorithm can be extended to handle liveness properties by combining it with
a recent technique proposed by Fainekos [15]. We note that there is also work in the area of analyzing piece-
wise (stochastic) hybrid systems (e.g., [14, 16, 18, 9]). Our method does not handle stochastic models at the
present time.

Several techniques relying on numerical computations of the reachable set apply to systems with general
nonlinear dynamics ([5, 28, 22]). In [5], the authors presents an hybridization technique, which consists in
approximating the system with a piecewise-affine approximation to take advantage of the wider family of
methods existing for this class of systems. In [21], the authors reduce the reachability problem to a partial
differential equation which they solve numerically. As far as we know, none of these techniques have been
applied successfully to nonlinear systems of more than a few variables. By contrast, our method builds on
techniques proposed in [11, 12] which can be applied to significantly larger models.

A more “traditional” tool used for the analysis of nonlinear ODEs is bifurcation analysis, which was
applied to the biological models used in our experiments ([26, 20]). Our approach deviates from bifurcation
analysis in several ways. First, it is simpler to apply since it only relies on the capacity to compute numerical
simulations for the system, avoiding the need of computing equilibrium points or limit cycles. Second, it
provides the capacity of analyzing transient behaviors. Finally, when it encounters an ambiguous behavior
(e.g., bi-stability) for a given parameter set, it reports that the parameter has uncertain dynamics and can
refine the result to make such uncertain sets as small as desired.

3 Algorithm

In this section, we give a mathematical description of the main algorithm used in this work.
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3.1 Preliminaries

The set Rn and the set of n × n matrices are equipped with the infinite norm, noted ‖ · ‖. We define the
diameter of a compact set R to be ‖R‖ = sup(x,x′)∈R2 ‖x − x′‖. The distance from x to R is d(x,R) =
infy∈R ‖x− y‖. The Haussdorf distance between two sets R1 and R2 is:

dH(R1,R2) = max( sup
x1∈R1

d(x1,R2), sup
x2∈R2

d(x2,R1)).

Given a matrix S and a set P , SP represents the set {Sp, p ∈ P}. Given two sets R1 and R2, R1 ⊕R2 is
the Minkowski sum of R1 and R2, i.e., R1 ⊕R2 = {x1 + x2, x1 ∈ R1, x2 ∈ R2}.

3.2 Simulation and Sensitivity Analysis

We consider a dynamical system Sys = (f,P) of the form:

ẋ = f(t, x, p), p ∈ P, (1)

where x ∈ Rn, p is a parameter vector and P is a compact subset of Rnp . We assume that f is continuously
differentiable. Let T ⊂ R+ be a time set. For a given p, a trajectory ξp is a function of T which satisfies the
ODE (Eq. 1), i.e., for all t in T , ξ̇p(t) = f(t, ξp(t), p). For convenience, we include the initial state in the
parameter vector by assuming that if p = (p1, p2, . . . , pnp) then ξp(0) = (p1(0), p2(0), . . . , pn(0)). Under
these conditions, we know by the Cauchy-Lipshitz theorem that the trajectory ξp is uniquely defined.

The purpose of sensitivity analysis techniques is to predict the influence on a trajectory of a perturbation
of its parameter vector. A first order approximation of this influence can be obtained by a Taylor expansion
of ξp(t) around p. Let δp ∈ Rnp . We have:

ξp+δp(t) = ξp(t) +
∂ξp

∂p
(t) δp +O

(
‖δp‖2

)
. (2)

The second term in the right hand side of Eq. (2) is the derivative of the trajectory with respect to p. Since
p is a vector, this derivative is a matrix, which is called the sensitivity matrix. We denote it as: Sp(t) = ∂ξp

∂p (t)

The sensitivity matrix can be computed as the solution of a system of ODEs. Let si = ∂ξp

∂pi
(t) be the ith

column of Sp. If we apply the chain rule to its time derivative, we get:{
ṡi(t) = ∂f

∂x (t, x(t), p)si(t) + ∂f
∂pi

(t, x(t), p),

si(0) = ∂x(0)
∂pi

.
(3)

Here ∂f
∂x (t, x(t), p) is the Jacobian matrix of f at time t. The equation above is thus an affine, time-varying

ODE. In the core of our implementation, we compute ξp and the sensitivity matrix Sp using the CVODES
numerical solver [27], which is designed to solve efficiently and accurately ODEs (like Eq. 1) and sensitivity
equations (like Eq. 3).
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3.3 Reachable Set Estimation Using Sensitivity

The reachability problem is the problem of computing the set of all the states visited by the trajectories
starting from all the possible initial parameters in P at a given time t.

Definition 1 (Reachable Set). The reachable set induced by the set of parameters P at time t is:

Rt(P) =
⋃
p∈P

ξp(t).

The set Rt(P) can be approximated by using sensitivity analysis. Assume that for a given parameter p in P
we computed a trajectory ξp and the sensitivity matrix Sp associated with it. Given another parameter vector
p′ in P , we can use this matrix to get an estimate ξ̂p

p′(t) of ξp′(t). This is done by dropping higher order
terms in the Taylor expansion given in Equation 2. We have:

ξ̂p
p′(t) = ξp(t) + Sp(t)(p′ − p). (4)

If we extend this estimation to all parameters p′ in P , we get the following estimate of the reachable set
Rt(P):

R̂p
t (P) =

⋃
p′∈P

ξ̂p′(t) = {ξp(t)− Sp(t)p} ⊕ Sp(t)P. (5)

Thus R̂p
t is an affine mapping of the initial set P into Rn (see Figure 1).

It can be shown that if the dynamics are affine, i.e., if f(t, x, p) = A(t, p)x+ b(t, p), then the estimation
is exact. However, in the general case, R̂p

t (P) is different from Rt(P). Since the estimation is based on a
first order approximation around parameter p, it is local in the parameter space and its quality depends on
how “big” P is. In order to improve the estimation, we can partition P into smaller subsets P1,P2, . . . ,Pl

and compute trajectories using new initial parameters p1, p2, . . . , pl to get more precise local estimates. As
a practical matter, we need to be able to estimate the benefit of such a refinement. To do so, we compare
R̂p

t (Pj) — the estimate we get when using the “global” center, p; to R̂pj

t (Pj) — the estimate we get when
using the “local” center, pj , and p′i ∈ Pj . We do this for each Pj . Figure 1 illustrates the essential features
of the algorithm.

Proposition 1. We have
dH(R̂p

t (Pj), R̂
pj

t (Pj)) ≤ Err(P,Pj), (6)

where
Err(P,Pj) = ‖ξpj (t)− ξ̂p

pj
(t)‖+ ‖Spj (t)− Sp(t)‖‖Pj‖. (7)

In other words, the difference between the global and the local estimate can be decomposed into the
error introduced in the estimation ξp

pj (t) of the state reached at time t using pj (first term on RHS of Eq.
7), and another term involving the difference between the local and the global sensitivity matrices and the
distance from local center (second term on RHS of Eq. 7).
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Fig. 1. Comparison between a “global” and a “local” estimate of the reachable set. The large square on the left hand side represent a
region of parameter space, P . The oval-shaped region on the right hand side corresponds to the true reachable set, Rt(P), induced
by parameters P at time t. The large parallelogram on the right hand side corresponds to the estimated reachable set, R̂p

t (P), using
a sensitivity analysis based on trajectory labeled ξp which starts at point p ∈ P . The point labeled ξ̂p

pj
, for example, is an estimate

of where a trajectory starting at point pj would reach at time t. If we partition P and consider some particular partition, Pj , we
can then compare the estimated reachable sets R̂p

t (Pj) and R̂pj
t (Pj), which correspond to the small light-gray and small dark

gray parallelograms, respectively. We continue to refine until the distance between R̂p
t (Pj) and R̂pj

t (Pj) (Eq. 7) falls below some
user-specified tolerance.

Proof. let y be in R̂p
t (Pj). There exists py in Pj such that y = ξ̂p

py(t). We need to compare

ξ̂p
py

(t) = ξp(t) + Sp(t)(py − p) (8)

with
ξ̂
pj
py(t) = ξpj (t) + Spj (t)(py − pj). (9)

By introducing
ξ̂p
pj

(t) = ξp(t) + Sp(t)(pj − p) (10)

and after some algebraic manipulations of (8), (9), and (10), we get

ξ̂p
py

(t)− ξ̂
pj
py(t) = ξpj (t)− ξ̂p

pj
(t) + (Spj (t)− Sp(t))(py − pj)

≤ ‖ξpj (t)− ξ̂p
pj

(t)‖+ ‖Spj (t)− Sp(t)‖‖Pj‖ = Err(P,Pj). (11)

Let x = ξ̂
pj
py(t) which is in R̂pj

t (Pj), then it can be shown that ‖y − x‖ ≤ Err(P,Pj) and so
d(y, R̂pj

t (Pj)) ≤ Err(P,Pj). This is true for any y ∈ Pj , thus

sup
y∈R̂p

t (Pj)

d(y, R̂pj

t (Pj)) ≤ Err(P,Pj).

Similarly, we can show that
sup

x∈R̂
pj
t (Pj)

d(x, R̂p
t (Pj)) ≤ Err(P,Pj)

which proves the result. ut
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The quantity Err(P,Pj) can be easily computed from trajectories ξp and ξpj , their corresponding sen-
sitivity matrices, and ‖Pj‖. It has the following properties:

– If the dynamics is affine, then Err(P,Pj) = 0. Indeed, in this case, we have ξ̂p
pj = ξpj so the first term

vanishes and Sp = Spj so the second term vanishes as well;
– If limit ‖P‖ is 0, then limit Err(P,Pj) is also 0. Indeed, as ‖P‖ decreases, so does ‖p− pj‖, and thus
‖ξpj (t)− ξ̂p

pj (t)‖ and ‖Pj‖, since Pj is a subset of P . We can show that the convergence is quadratic.

The computation of reachable sets at a given time t can be extended to time intervals. Assume that T is
a time interval of the form T = [t0, tf ]. The set reachable from P during T is RT (P) = ∪t∈TRt(P). It
can be approximated by simple interpolation between Rt0(P) and Rtf (P). Of course, it may be necessary
to subdivide T into smaller intervals to improve the precision of the interpolation. A reasonable choice for
this subdivision is to use the time steps taken by the numerical solver to compute the solution of the ODE
and the sensitivity matrices.

3.4 Parameter Synthesis Algorithm

In this section, we state a parameter synthesis problem and propose an algorithm that provides an approxi-
mate solution. Let F be a set of ”bad” states. Our goal is to partition the set P into safe and bad parameters.
That is, we want to partition the parameters into those that induce trajectories that intersect F during some
time interval T , and those that do not.

Definition 2. A solution of the parameter synthesis problem (Sys = (f,P),F , T ) where F is a set states
and T a subset of R≥0, is a partitionPbad∪Psaf ofP such that for all p ∈ Pbad (resp. p ∈ Psaf), ξp(t)∩F 6= ∅
(resp. ξp(t) ∩ F = ∅) for all t ∈ T . An approximate solution is a partition P = Psaf ∪ Punc ∪ Pbad where
Psaf and Pbad are defined as before and Punc (i.e., uncertain) may contain both safe and bad parameters.

Exact solutions cannot be obtained in general, but we can try to compute an approximate solution with
the uncertain subset being as small as possible. The idea is to iteratively refine P and to classify the subsets
into the three categories. A subset Pj qualifies as safe (resp. bad) if:

1. R̂pj

T (Pj) is a reliable estimation of RT (Pj) based on the Err function;
2. R̂pj

T (Pj) does not (resp. does) intersect with F .

To guarantee that the process ends, we need to ensure that each refinement introduces only subsets that
are strictly smaller than the refined set.

Definition 3 (Refining Partition). A refining partition of a set P is a finite set of sets {P1, P2, . . . ,Pl}
such that

– P =
l⋃

j=1

Pj;

– There exists γ < 1 such that max
j∈{1,...,l}

‖Pj‖ ≤ γ‖P‖.
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Algorithm 1 Parameter Synthesis Algorithm
procedure SAFE(P , F , t, δp, Tol)

Psaf = Pbad = ∅, Punc = {P}
repeat

Pick and remove Q from Punc and let q ∈ Q
for each (qj ,Qj) ∈ ρ(Q) do

if Err(Q,Qj) ≤ Tol then . Reach set estimation is reliable
if R̂q

T (Qj) ∩ F = ∅ then . Reach set away from F
Psaf = Psaf ∪ Qj

else if R̂q
T (Qj) ⊂ F then . Reach set inside F

Pbad = Pbad ∪ Qj

else
Punc = Punc ∪ {(qj ,Qj)} . Some intersection with the bad set

end if
else

Punc = Punc ∪ {(qj ,Qj)} . Reach set estimation not enough precise
end if

end for
until Punc = ∅ or maxPj∈Punc ‖Pj‖ ≤ δp
return Psaf, Punc, Pbad

end procedure

Let ρ be a function that maps a set to one of its refining partitions. Our algorithm stops whenever the
uncertain partition is empty, or it contains only subsets with a diameter smaller than some user-specified
value, δp. The complete algorithm is given by Algorithm 1 below.

The algorithm has been implemented within the Matlab toolbox Breach [11], which combines Matlab
routines to manipulate partitions with the CVODES numerical solver, which can efficiently compute ODEs
solutions with sensitivity matrices.

It uses rectangular partitions of the form

P(p, ε) = {p′ : p− ε ≤ p′ ≤ p + ε}

The refinement operator ρ is such that

ρ(P(p, ε)) = {P(p1, ε1),P(p2, ε2), . . . ,P(pl, εl)},

with εk = ε/2 and pk = p + (± ε1
2 ,± ε2

2 , . . . ,± εn
2 ). This opera-

tion is illustrated in the Figure on the right.

4 Application to Models of Acute Inflammation

We applied our method to two models of the acute inflammatory response to infection. The first is the 4-
equation, 22-parameter model presented in [26], and the second is the 17-equation, 79-parameter model
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presented in [20]. The primary difference between these models is one of detail, and the first model can be
thought of as a reduced dimensional version of the second.

The acute inflammatory response to infection has evolved to promote healing by ridding the organism
of the pathogen. The actual response is a complex and carefully regulated combination of molecular and
cellular cascades that exhibit both pro and anti-inflammatory behaviors. The pro-inflammatory elements are
primarily responsible for eliminating the pathogen, but bacterial killing can cause collateral tissue damage.
Tissue damage, in turn, triggers an escalation in the pro-inflammatory response creating a positive feedback
cycle (Figure 2). The anti-inflammatory elements counteract this cycle, thereby minimizing tissue damage
and promoting healing. However, in cases of extreme infection, the delicate balance between pro and anti-
inflammatory elements is destroyed, resulting in a potentially lethal amount of tissue damage.

Initiating Event
(P)

Inflammation
(NA)

Anti-Inflammation
(CA)

Damage
(D)

Fig. 2. Cartoon representation of the 4-equation model of the acute immune response. Arrows represent up-regulation, bars represent
down-regulation. Figurere is adapted from Figure 1 in [26].

The 4-equation model is as follows:

dP

dt
= kpgP

(
1− P

p∞

)
− kpmsmP

µm + kmpP
− kpmf(NA)P,

dNA

dt
=

snrR

µnr + R
− µnNA,

dD

dt
= kdnfs(f(NA))− µdD,

dCA

dt
= sc +

kcnf(NA + kcmdD)
1 + f(NA + kcmdD

− µcCA,

where

R = f(knnNA + knpP + kndD), f(V ) =
V

(1 + (CA/c∞)2)
and fs(V ) =

V 6

x6
dn + V 6

.

Here, k∗, µ∗, s∗, p∗ are parameters, as defined in [26]. The state variables P , NA, D, and CA, correspond to
the amounts of pathogen, pro-inflammatory mediators (e.g., activated neutrophils), tissue damage, and anti-
inflammatory mediators (e.g., cortisol and interleukin-10), respectively. The 17-equation model, naturally,
is far more detailed in terms of which mediators are modeled.
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Fig. 3. (A) Examples trace from the 4-equation model. There are three different traces corresponding to septic death, aseptic death
and health. (B) Example traces from the 17-equation model; 5 of the 17 variables are shown. There are also three traces, illustrating
the richer dynamics of the model. Two traces corresponds to aseptic death and the third to health with a periodic small resurgence
of the pathogen. Time is measured in hours.

In each model, there are 3 clinically relevant outcomes: (i) a return to health, (ii) aseptic death, and
(iii) septic death. Death is defined as a sustained amount of tissue damage (D) above a specified threshold
value and constitutes the undesirable or “bad” outcome we wish to avoid. Aseptic and septic death are
distinguished by whether the pathogen (P ) is cleared below a specified threshold value. Let Falive (resp.
Fdead) refer to the set of states such that D is below (resp. above) some threshold Ddeath, and let Fseptic

(resp. Faseptic) refer to the set of states such that P is above (resp. below) some threshold Pseptic. We
can now define three sets of states corresponding to the three clinically relevant outcomes as follows: (i)
Health = Falive∩Faseptic; (ii) Aseptic death = Fdead∩Faseptic; and (iii) Septic death = Fdead∩Fseptic.
In Figure 3 we present sample traces for both the 4 and 17 equation models.

4.1 Experiments

We performed several experiments. In the first experiment, we validated our method by reproducing results
previously obtained in [26] using bifurcation analysis. Figure 4-A contrasts the initial amount of pathogen,
P0, and the initial amount of anti-inflammatory mediators, CA0. The growth rate of pathogen, kpg, was
set to 0.3 and other parameters to their nominal values. The region Fdeath given by D ≥ 5 was used in our
algorithm and we checked the intersection with reachable set at time 300 hours. Crosses correspond to initial
values leading to death while circles lead to an healthy outcome. We can see that the resulting partition is
quantitatively consistent with Figure 8 in [26]. In our second experiment, we varied growth rate of pathogen,
kpg, and NA. Figure 4-(B) shows that there are three distinct regions in the kpg-NA plane, corresponding to
the three clinical outcomes.
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Fig. 4. Results obtained for the 4-equation model. Figure (A) reproduces results presented in Figure 8 of [26] with kpg = 0.3,
which was obtained using classical bifurcation analysis. Circles are parameter values leading to Health while crosses represent
values leading to Death. Figure (B) illustrates how a pair of parameters (NA and kpg) can be partitioned into the three possible
outcomes. Circles alone lead to Health, crosses and circles lead to Aseptic Death and crosses alone lead to Septic Death. The
separation between regions is induced from small uncertain regions computed by the algorithm.

(A) (B)

Fig. 5. Results for the 17-equation model. Figure (A) illustrates the kpg-NA plane, partitioned into regions leading to death (here
aseptic death, represented by crosses) and regions leading to health (represented by circles). Figure (B) illustrates the kpg-CAI

plane. Interestingly, the separation is not monotone with the growth of pathogen kpg .
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We then performed several experimentations with the 17-equation model. Figures 5 (A) and (B) depict
the kpg-NA and kpg-CAI planes, respectively. CAI is a generic anti-inflammatory mediator. We partitioned
the region using Fdeath = D > 1.5 and checked after time 300 hours. The 17-equation model exhibits
an interesting behavior in the kpg-CAI plane. Namely, that the separation between health and death is not
monotone in the growth rate of the pathogen.

As previously mentioned, our algorithm is implemented in Matlab and uses the CVODES numerical
solver. Figures 4 (A) and (B) were generated in a few seconds, and Figures 5 (A) and (B) were generated
in about an hour on a standard laptop (Intel Dual Core 1.8GHz with 2 Gb of memory). We note that the
algorithm could easily be parallelized.

5 Discussion and Conclusions

Complex models are increasingly being used to make predictions about complex phenomena in biology and
medicine (e.g., [3, 25]). Such models can be potentially very useful in guiding early decisions regarding
intervention, but it is often impossible to obtain accurate estimates for every parameter. Thus, it is important
to have tools for explicitly examining a range of possible parameters to determine whether the behavior of the
model is sensitive to those parameters that are poorly estimated. Performing this task for nonlinear models
is especially challenging. We have presented an algorithm for solving the parameter synthesis problem for
nonlinear dynamical models and applied it on two models of acute inflammation from the literature. The
larger of the two has 17 equations and 79 parameters, demonstrating the scalability of our approach.

Our approach has several limitations. First, our refinement process implies that the number of partitions
increases exponentially with the number of varying parameters. Thus, in practice, some variables must be
held fixed while analyzing the behavior of the model. On the other hand, the number of state variables is
not a limiting factor, as illustrated in our experiments on the 17-equation model. Second, our method re-
lies on numerical simulations. Numerical methods are fundamentally limited in the context of verification
since numerical image computation is not semi-decidable for nonlinear differential equations [23]. More-
over, there are no known methods capable of providing provable bounds on numerical errors for general
nonlinear differential equations. Thus, we cannot claim to provide formal guarantees on the correctness of
the results computed by our method. However asymptotic guarantees exist, meaning that results can always
be improved by decreasing tolerance factors in the numerical computations. A nice feature of our approach
is that it enables one to obtain qualitative results using a few simulations (e.g. a coarse partition between
regions leading to qualitatively different behaviors). These qualitative results can then be made as precise as
desired by focusing on smaller partitions.

There are several areas for future research. Our first order error control mechanism can be improved
to make the refinements more efficient and more adaptive when nonlinear (i.e. higher order) behaviors
dominate any linear dependance on parameter variations. We are also interested in developing techniques for
verifying properties that are more complex than the reachability predicates we considered in this paper. For
instance, temporal properties could easily be introduced in our framework. The extended system could then
be used, for example, verify the possible outcomes associated with a particular medical intervention. Finally,
we believe that the method could easily be used in the context of personalized medicine. In particular, given
individual or longitudinal measurements from a specific patient, we could define a reachable set, Fobs, that
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includes these observations (possibly convolved with a model of the measurement errors). We could then use
our method to identify the set of parameters that are consistent with the observations. The refined parameters
can then be used to make patient-specific predictions.
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