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ABSTRACT
This paper is concerned with the reachability computation
for non-linear systems using hybridization. The main idea of
hybridization is to approximate a non-linear vector field by a
piecewise-affine one. The piecewise-affine vector field is de-
fined by building around the set of current states of the sys-
tem a simplicial domain and using linear interpolation over
its vertices. To achieve a good time-efficiency and accuracy
of the reachability computation on the approximate system,
it is important to find a simplicial domain which, on one
hand, is as large as possible and, on the other hand, guaran-
tees a small interpolation error. In our previous work [8], we
proposed a method for constructing hybridization domains
based on the curvature of the dynamics and showed how the
method can be applied to quadratic systems. In this paper
we pursue this work further and present two main results.
First, we prove an optimality property of the domain con-
struction method for a class of quadratic systems. Second,
we propose an algorithm of curvature estimation for more
general non-linear systems with non-constant Hessian matri-
ces. This estimation can then be used to determine efficient
hybridization domains. We also describe some experimental
results to illustrate the main ideas of the algorithm as well
as its performance.

1. INTRODUCTION
Hybrid systems are systems that combine continuous and

discrete dynamics and can be used as a mathematical model
as well as a computation methodology for many important
application domains, such as embedded and cyber-physical
systems. Reachability analysis is a central problem in verifi-
cation and synthesis. For these reasons, numerous reachabil-
ity computation techniques for hybrid systems have been de-
veloped (for example, [12, 2, 17, 5, 20, 16, 7, 15, 14, 11]). In
particular, the recently-developed techniques specialized for
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linear dynamical systems [10, 15, 1, 11] can handle high di-
mensional systems. Nevertheless, reachability computation
for non-linear systems is still a challenging problem. Hy-
bridization is an approach to analyze non-linear systems by
approximating it by a system with simpler dynamics, such as
piecewise-constant or piecewise-affine, which can be handled
more efficiently. This idea was first proposed in [9] for nu-
merical simulation of large non-linear systems. It was later
adapted to reachability computation in [3, 4, 6]. The prin-
ciple of hybridization is rather simple: in order to analyze
the behavior of a system from some states, one constructs a
domain, which we call “hybridization domain”, around these
states, and in this domain the original non-linear deriva-
tive function f is approximated by a simpler, such as affine,
function l and an error set U which accounts for the approx-
imation error, that is

∀x ∈ ∆ ∃u ∈ U s.t. f(x) = l(x) + u. (1)

Then, the system

ẋ = Ax+ u

where u is the uncertain input taking values in U can be
used as a conservative approximation of the original non-
linear system inside ∆. By “conservative approximation”,
we mean that any trajectory of the original system is also
a trajectory of the approximate system. Other properties
of this approximation, such as convergence and qualitative
behavior preservation, are described in [4]. Various imple-
mentations of hybridization have been developed and used
for interesting examples, such as biological systems [6, 8].
While affine dynamics can be handled by relatively efficient
methods, the application of the hybridization approach to
non-linear systems is still limited by the difficulty in deter-
mining good hybridization domains so that the error in the
approximate dynamics is not too large. Indeed, large errors
in the dynamics approximation might reduce significantly
the computation speed since this requires small time steps
or a large number of small hyrbidization domains. In our
previous work [8] we proposed a method for constructing
efficient hybridization domains using the curvature of the
dynamics and showed how the method can be applied to
quadratic systems. In this paper we pursue this work further
and present two main results. First, we prove an optimality
property of the domain construction method for a class of
quadratic systems. Second, we propose an algorithm of cur-
vature estimation for more general non-linear systems with
non-constant Hessian matrices. This estimation can then be
used to determine efficient hybridization domains.



Before presenting our results, we summarize the basic prin-
ciples of hybridization and its use in the computation of
reachable sets of non-linear systems. We also emphasize
that although this paper addresses only continuous systems,
its extension to hybrid systems is direct. Indeed, the under-
lying techniques we use to handle approximate piecewise-
affine systems generated by hybridization are based on the
techniques for hybrid systems [2].

2. HYBRIDIZATION: BASIC IDEAS
In this section, we describe affine hybridization where the

approximate vector field in each domain is affine. The use
of piecewise-affine systems is motivated by a large choice of
available methods for their verification (see for instance [2,
5, 16, 15, 11]). However, other classes of functions can be
used, such as constant or multi-affine.

2.1 Principle
We consider a non-linear system:

ẋ(t) = f(x(t)), x ∈ X ⊆ Rn. (2)

where the function f is Lipschitz over the state space X .

Given a set of all current states of the system, the trajec-
tories from which we want to explore, we construct a domain
which is a neighborhood of this set and then assign an affine
vector field to that domain. When the trajectories of the sys-
tem leave the domain, a new domain is created. This way
the non-linear system is approximated by a piecewise-affine
system.

In this work, to define approximate affine vector fields, we
use linear interpolation over simplicial domains. An impor-
tant advantage of this approximation method is that using
the vertices of a simplex, the affine interpolant is uniquely
determined, since each simplex has exactly (n+ 1) vertices.

We denote by ∆ ⊆ Rn a simplex1 which is used as a hy-
bridization domain. The approximate affine system associ-
ated with ∆ is defined as follows:

ẋ(t) = s(x(t), u(t)) = l(x(t)) + u(t) (3)

where x ∈ ∆, u(·) ∈ Uµ; l is an affine map of the form:

l(x) = Ax+ b

where A is a matrix of size n × n and b ∈ Rn such that l
interpolates the function f at the vertices of ∆, that is for
each vertex v of ∆ we have l(v) = f(v). The input u is
introduced in order to account for the approximation error.
More concretely, let µ be the bound of ||f − l||, i.e. for all
x ∈ ∆

||f(x)− l(x)|| ≤ µ

where ||·|| is some norm on Rn. In this work we will consider
the norm || · ||∞ which is defined as

||x||∞ = max(|x1|, . . . , |xn|).

Thus, the error set U contains all the points u ∈ Rn such
that ||u|| ≤ µ. The set Uµ is the set of piecewise-continuous
input functions of the form u : R+ → U .

To determine the error set U , one needs to estimate the
error bound µ which depends on the domain geometry and

1We recall that a simplex in Rn is the convex hull of (n+ 1)
affinely independent points in Rn.

size. It is however important to note that determining the
exact maximal error µ is difficult. Suppose that we can find
an upper bound of µ, denoted by µ. Then, we can choose
the error set U to be the ball (thats is a hypercube for the
infinity norm) centered at the origin and has radius µ. This
will be discussed in detail later.

To define the reachable set of the system (3), let Φs(t, x, u(·))
be the trajectory starting from a state x under input u(·) ∈
U . The reachable sets of the system (3) from a set of initial
states X0 ⊆ X during the interval [0, t] is defined as:

Reachs(t,X0) =

{ y = Φs(τ, x, u(·)) | τ ∈ [0, t], x ∈ X0, u(·) ∈ Uµ }.

The reachable set of the original system can be defined sim-
ilarly.

It is easy to see that the size of the error set directly im-
pacts the distance between the trajectories of the original
and the approximate systems. It is therefore of great inter-
est to construct hybridization domains with a small error
bound. An intuitive observation is that to one can achieve
a better interpolation accuracy by using smaller hybridiza-
tion domains. This makes the staying time within this do-
main shorter, which results in a higher frequency of domain
construction and more computation effort. However, when
computing the reachable set of a hybrid system, accuracy be-
comes important since the error accumulation can be drasti-
cally aggravated by discrete dynamics in such systems, which
induces spurious trajectories the exploration of which might
be expensive and lead to erroneous results. In other words,
for highly “sensitive” systems, requiring high accuracy can
indeed be a way of reducing computation time in the long
run. It is also crucial to exploit the structure of the dynam-
ics in order to improve accuracy without causing too much
additional computation time. In our previous work [8] we
showed that this can be done by considering the relation
between the interpolation error and the curvature of the dy-
namics. This enabled us to construct larger hybridization
domains while maintaining the same accuracy. This result
was applied to the class of quadratic functions. In this paper
we continue this work by extending its application to more
general non-linear systems. In addition, the error bound
we used in [8] is valid for rather general systems, for more
specific systems optimal bounds and domain construction
can be considered. This is another problem we address in
this paper. Before describing our new contributions, we first
recap the result presented in the previous paper [8].

2.2 Hybridization error bound
It is possible to show an error bound that depends on the

radius of the smallest containment ball of the simplex. The
smallest containment ball of a simplex is the smallest ball
that contains the simplex (which should not be confused
with its circumcirle). In addition, using the curvature of
the functions f one can map the original space (where the
functions f are defined) to an “isotropic” space by shrinking
the domain along the direction with small curvature. As a
result, in the isotropic space, the new domain becomes more
“regular” and smaller. It is then possible to derive a tighter
error bound depending on the radius of the smallest con-
tainment ball of the new domain. In the opposite direction,
using the inverse of this transformation, we can extend a
domain along the direction with small curvature while pre-
serving the same error bound.



In order to explain this more formally, we first introduce
some notation. From now on we write f i with i ∈ {1, 2, . . . , n}
to indicate the ith component of f .

For a vector d ∈ Rn, the first-order directional derivative
of f i with i ∈ {1, . . . , n} along the vector d is

∂f i(x, d) =

nX
j=1

∂f i

∂xj
(x)dj

The Hessian matrix associated with each function f i for
i ∈ {1, . . . , n} is:

Hi(x) =

0BBBB@
∂2f i

∂x2
1

. . .
∂2f i

∂x1xn
. . .

∂2f i

∂x1xn
. . .

∂2f i

∂x2
n

1CCCCA . (4)

Then, the second-order directional derivative of f i along d
is defined as:

∂2f i(x, d) = dTHi(x)d.

Given a set X ⊆ X , let γX ∈ R be the smallest real
number such that f satisfies the following condition for all
unit vector d ∈ Rn and for all x ∈ X:

∀i ∈ {1, . . . , n} : max
x∈X, ||d||=1

|∂2f i(x, d)| ≤ γX . (5)

The value γX is called the maximal curvature of f in X.

Intuitively, we are interested in finding an “isotropic” coor-
dinate transformation so that when mapping a domain back
to the original space, we obtain a larger domain while pre-
serving the same interpolation error bound. To this end, we
assume the boundedness of the directional curvature of f as
follows. Given a set X ⊆ X , we assume that there exists a
positive-definite matrix C such that

∀i ∈ {1, . . . , n} ∀x ∈ X ∀d ∈ Rn :

||d|| = 1 ∧ |∂2f i(x, d)| ≤ dTCd. (6)

The matrix C corresponds to a bound on the directional
curvature of f in the set X, and we call C a curvature tensor
matrix of f in X. Geometrically speaking, for each x ∈ X
the ellipsoid defined by dTCd = 1 is included in the level set
defined by |∂2f i(x, d)| = 1 for all i ∈ {1, . . . , n}.

We now derive from C a isotropic transformation as fol-
lows. Since C is a symmetric matrix with real entries, we
can write its eigen-decomposition:

C = SΞST = S

0BB@
ξ1 0 . . . 0
0 ξ2 . . . 0

. . .
0 0 . . . ξn

1CCAST

where ξj with j ∈ {1, . . . , n} are the eigenvalues of C, and S
is an orthonormal square matrix containing the eigenvectors
of C, that is

S = [v1v2 . . . vn].

Let ξmax(C) and ξmin(C) be the largest and smallest eigen-
values of the matrix C. Then, we consider the linear trans-

formation defined by the matrix

T = SWsS
T = S

0BBBBBB@

s
ξ1

ξmax(C)
. . . 0

. . .

0 . . .

s
ξn

ξmax(C)

1CCCCCCAST

(7)
and denote bx = Tx. We call this an “isotropic” transforma-
tion. Indeed, the linear transfomation associated with the
matrix T transform an ellipsoid in to a sphere, as shown in

Figure 1. This can be seen later in Section 3. Let bX denote
the set resulting from applying the above linear transforma-
tion to X, that is, bX = {Tx | x ∈ X}.

Figure 1: Illustration of the transformation to an
isotropic space: The ellipse is a level set of the di-
rectional curvature and the curvature is small along
its semimajor axis. The isotropic transformation T
“shortens” the triangle on the left along the direc-
tions in which f has small curvature

The following theorem [19] shows an error bound which
depends on the radius of the smallest containement ball in
the isotropic space.

Theorem 1. Let l be the affine function that interpolates
the functions f over the simplex ∆. Then, for all x ∈ ∆

||f(x)− l(x)|| ≤ γ∆
r2
c( b∆)

2
.

where γ∆ is the maximal curvature of f in ∆ and rc( b∆)
is the radius of the smallest containement ball of the trans-

formed simplex b∆.

The transformation of ∆ to b∆ can shorten an edge of ∆ by

a factor of up to

s
ξmax(C)

ξmin(C)
if this edge is aligned with the

eigenvector corresponding to ξmin. In the worst case, its
length remains unchanged if it is aligned with the eigenvec-
tor corresponding to ξmax.

Using this theorem we can determine a simplicial domain
that guarantees a desired error bound ε. Let P be the set of

current states of the system, and bP be the polytope resulting
from applying the transformation T to P . The hybridiza-
tion domain construction using an isotropic transformation
is summarized in Algorithm 1.

Indeed, in this algorithm, the shape of the simplex is fixed
while its orientation can be freely chosen. This offers a posi-



Algorithm 1 Hybridization domain construction using
isotropic transformation

Compute the transformation matrix T .

Determine the maximal radius rc of the smallest containe-
ment ball corresponding to the desired error bound ε.

Let B be the ball of radius rc the centroid of which coin-
cides with that of the polytope bP .

Construct in the isotropic space an equilateral simplex b∆
that is circumscribed by the ball B. Such simplices have
the largest volume for the given radius rc of the smallest
containement ball.

Use the inverse transformation T−1 to map the simplex b∆
back to the original space. This results in a larger simplex
∆ while guaranteeing the desired error bound.

bility of further optimization, such as reducing the frequency
of domain constructions by orienting the simplex according
to the dynamics of the system so that its trajectories stay
in the domain for a longer time.

In the previous work [8], we also showed an effective ap-
plication of this approach to quadratic systems where the
Hessian matrices are constant and hence the maximal curva-
ture γ∆ can be straightforwardly computed. As mentioned
earlier, in this paper we pursue this work and describe two
new results.

The remainder of the paper is organized as follows. We
first present the optimality property of the domain construc-
tion with isotropic transformation for quadratic systems.
We then consider more general non-linear systems with non-
constant Hessian matrices and describe an algorithm for con-
structing domains using a curvature estimation. We also
demonstrate the interest of the algorithm by means of some
examples and report preliminary experimental results on the
computational efficiency of the algorithm.

3. OPTIMAL DOMAINS FOR QUADRATIC
FUNCTIONS

We show a class of quadratic functions f for which the
domain construction based on equilateral simplices in an
isotropic space is optimal. This optimality property is stated
as follows: given an error tolerance ε, the computed simplex
∆ has the largest volume and, in addition, the error between
f and its linear interpolation over ∆ is not greater than ε.

Let each quadratic function f i be written as

f i(x) = xTHix+ (mi)Tx+ pi

where Hi is a real-valued matrix of size n × n, mi ∈ Rn
and pi ∈ R. Note that we use the same notation Hi here
because the Hessian matrix of f i is exactly Hi. For every
i ∈ {1, . . . , n}, we define the interpolation error function as

ei(x) = f i(x)− li(x)

which is also a quadratic function. We now study this error
function and seek its maxima.

The error function can be expressed as:

ei(x) = (wi)Tx+ qi + xTHix

where wi ∈ Rn and qi ∈ R. Note that the level sets of
this function form a family of conics with a common center,
denoted by ci. Indeed, they are ellipsoids if det(Hi) > 0
and hyperboloids if det(Hi) < 0. We now derive the error
in a neighborhood of this common center. Let δx ∈ Rn
be a deviation from the common center ci, then for every
i ∈ {1, . . . , n}

ei(ci + δx) = (wi)T (ci + δx) + qi − (ci + δx)THi(ci + δx)

= [(wi)T c+ qi − (ci)THic
i] +

(wi)T δx − 2δTxH
ici − δTxHiδx

= ei(ci) + (wi)T δx − 2(ci)THiδx − δTxHiδx.

Since c is the common center of the family of conics corre-
sponding to the error function, c satisfies the following

wi − 2Hici = 0.

Then,

(wj)T δx = 2(Hici)T δx

= 2(ci)THiδx.

It then follows from the above that

ei(ci + δx) = ei(ci)− δTxHiδx.

We also observe that, the symmetric matrix Hi can be
decomposed as

Hi = SWTDWST

where D is a diagonal matrix with entries σj ∈ {−1, 0,+1};
W is a diagonal matrix whose entries on the diagonal are the
square roots of the absolute values of the eigenvalues ξj of
Hi; S is an orthonormal matrix containing the eigenvectors
of Hi. We define a linear transformation

T i = WTST .

Lemma 1. Using the transformation bδx = T iδx, the term
δTxH

iδx in the error ei(ci + δx) can be transformed into a
quadratic form

δTxH
iδx =

nX
j=1

σi1 bδx2

j

where for all j ∈ {1, . . . , n} σij ∈ {−1, 0,+1}.

Proof. Using δx = T−1 bδx and Hi = SWTDWST , we
obtain after some straightforward calculation:

δTxH
iδx = (T−1 bδx)T SW DWTSTT−1 bδx

= ( bδx)TD bδx.
Therefore,

δTxH
iδx = bδxT

0BB@
σ1 0 . . . 0
0 σ2 . . . 0

. . .
0 0 . . . σn

1CCA bδx
= (σ1

bδx2

1 + σ2
bδx2

2 + . . .+ σn bδx2

n).



where ∀j ∈ {1, . . . , n} : σj ∈ {−1, 0,+1}. In other words,
using the linear transformation T i we transforms the matrix
Hi into a diagonal matrix D which has only entries 0, +1
and −1 on the diagonal.

Again, we can see that the interpolation error in the new
space (resulting from the transformation T ) is isotropic, that

is it does not depend on the direction of bδx.

We identify a class of quadratic systems such that for ev-
ery function f i, σij are all equal to either +1 or −1. In the
isotropic space the level sets of the error are spheres with a

common center. The circumsphere of b∆ is the level set of
value zero (due to interpolation over the vertices). Hence,
the maximal value of |ei(x)| is achieved at ci and is directly

related to the square of the radius of the circumsphere of b∆.

Using the above reasoning, we can determine the maximal
value of every error function |ei(x)| (i ∈ {1, . . . , n}). Let f i

be the function that corresponds to the largest value. We
then take the associated matrix T i to be the isotropic trans-
formation T for domain construction purposes. Note that in
this case, the circumsphere radius is also the radius of the
smallest containement ball of ∆ in the Theorem 1. For a
given fixed circumsphere radius (corresponding to an error
tolerance), an equilateral simplex has the optimal shape be-
cause it has the largest volume.

The number of entries +1 of D is called the positive index
of inertia of Hi, and the number of entry 1 is called the
negative index of inertia. According to Sylvester’s law of
inertia, the positive and negative indices of Hi are also the
number of positive and negative eigenvalues of Hi.

Theorem 2. For a class of quadratic functions f such
that all the Hessian matrices have either only positive eigen-
values or only negative eigenvalues, the domain construction
method based on equilateral simplices in the isotropic space
is optimal.

When this condition on the eigenvalues is not satisfied,
the theorem no longer holds, that is starting from equilat-
eral simplices in the isotropic space does not yield an op-
timal construction. For example, in 2 dimensions, in the
case where the number of σj equal to +1 is equal to that of
σj equal to −1 (which implies that the error is a harmonic

function of bδx), the maximal error is not achieved at the
common center but on the boundary of the simplex. Inves-
tigating the optimality conditions for the remaining cases is
part of our undergoing work.

4. ESTIMATING CURVATURE TENSORS
We now present the second contribution of this paper,

which involves an effective application of the domain con-
struction algorithm to more general functions with non-constant
Hessian matrices.

It can be seen from Theorem 1 that to obtain a good inter-
polation error bound, we need to know an accurate curvature
tensor of f as defined in (6). We observe that, given a sim-
plex ∆, by definition, for each i ∈ {1, . . . , n} the eigenvalues
of the Hessian matrix Hi are inside the interval [−γX , γX ]

where γX is the maximal curvature of f inside X. Hence,
the error bound is determined by the maximal eigenvalue

ξmax(C) of the matrix C. Note additonally that rc( b∆) de-

pends on |det(T )|1/n where det(T ) is the determinant of the
transformation matrix defined in (7).

Therefore, we want to find a positive-definite matrix C
that satisfies the condition (6) in the definition of curvature

tensor and, in addition, makes |ξmax(C)||det(T )|2/n as small
as possible. To do so, we formulate this problem as solving
the following constrained optimization problem:

min |ξmax(C)||det(T )|2/n

s.t. ∀i ∈ {1, . . . , n} ∀x ∈ X ∀d ∈ Rn :

||d|| = 1 ∧ |∂2f i(x, d)| ≤ |dTCid|.

Again, we express C in its eigen-decomposition form. Let
ξ1, ξ2, . . . , ξn be the eigenvalues in increasing order of C, that
is 0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξn, and v1, v2, . . . , vn be the corre-
sponding eigenvectors. From now on we use superscripts to
denote eigenvectors since subscripts will be used to denote
their coordinates. Thus,

C = SΞST

where

Ξ = diag(ξ1, ξ2, . . . , ξn)

Therefore, mimimizing over all possible matrices C satisfy-
ing (6) is equivalent to minimizing over all possible ξi and
all possible orthogonal matrices S.

Notice that, by the definition of the matrix T ,

|det(T )| = |det(C)|1/2 = |(Πn
j=1ξj)|1/2

The objective function can therefore be written as:

|ξmax(C)||det(T )|2/n = |ξn| |(Πn
j=1ξj)|1/n.

On the other hand, the constraint (6) can be written as:

∀i ∈ {1, . . . , n} ∀x ∈ X ∀d ∈ Rn :

||d|| = 1 ∧ |∂2f i(x, d)| ≤ |dTS ΞST d|.

This problem might not have a solution or it might have
a solution with some eigenvalue equal to 0, which makes
C singular. In the following we consider another approach,
which involves approximating C by making the error bound
as small as possible while respecting the constraint (6).

Since the error bound depends on the maximal eigenvalue
of C and the product of the eigenvalues of C, we estimate C
by determining successively its eigenvalues ξj and eigenvec-
tors vj such that each ξj is made as small as possible while
satisfying the condition (6).

More precisely, in the first step we determine ξn such that

∀x ∈ X ∀i ∈ {1, . . . , n} d ∈ Rn : ||d|| = 1 ∧ ξn ≥ |∂2f i(x, d)|.

We can find ξn by solving the following n optimization
problems

ξn,i = maxx∈X ∧ ||d||=1|∂2f i(x, d)|, i ∈ {1, . . . , n}

Then we take the largest among the computed maximal val-
ues:

ξn = maxi∈{1,...,n}ξn,i.

In other words, by (5), ξn is exactly the largest curvature
of f in X. The corresponding eigenvector vn is chosen as



the unit vector d along which the second-order directional
derivative of the corresponding f i is the largest.

To determine the remaining (n−1) eigenvalues, let (n−1)
vectors

v1, . . . , vn−1

in Rn form an orthonormal basis for the orthogonal comple-
ment of span{vn} in Rn. Then, any vector d ∈ Rn can be
expressed as:

d =

n−1X
j=1

αjv
j + βvn (8)

where α = (α1, . . . , αn−1) ∈ Rn−1 and β ∈ R.
Let

Sn−1 = [v1v2 . . . vn−1]

and Ξn−1 be the diagonal matrix with ξ1, ξ2, . . . , ξn−1 as its
diagonal elements. Note that the superscripts here indicate
that these matrices are used to compute the eigenvalue ξn−1.
We define then

Cn−1 = Sn−1Ξn−1(Sn−1)T .

Then, it is not hard to see that

dTCd = αTCn−1α+ ξnβ
2.

The condition (6) becomes

∀i ∈ {1, . . . , n}, ∀α ∈ Rn−1, ∀β ∈ R, ∀x ∈ X :

αTCn−1α ≥ |∂2f i(x, d)| − ξnβ2. (9)

We denote the right hand side as a function of α and β:

wi(α, β) = |∂2f i(x, d)| − ξnβ2,

and

ηi(α) = maxβ∈Rw
i(α, β). (10)

The condition (9) is then equivalent to

∀i ∈ {1, . . . , n}, ∀α ∈ Rn−1, ∀x ∈ X :

αTCn−1α ≥ ηi(α) (11)

Lemma 2. If β maximizes wi(α, β) in (10) then β satis-
fies

∂2f i(x, d)

|∂2f i(x, d)|∂g
i(x, d) = ξnβ. (12)

where

gi(x) = ∂f i(x, vn)

Intuitively, ∂gi(x, d) is the first-order directional derivative
of gi with respect to the vector d, and gi(x) = ∂f i(x, vn)
is the first-order directional derivative of f i with respect to
the vector vn.

Proof. To solve (10), we consider the critical points of
wi(α, β) with respect to β. To express the partial deriva-
tive of wi(α, β), we first rewrite the second-order directional
derivative of f i as the following sum:

∂2f i(x, d) =
X
jk

Hi
jk(x)djdk

where Hi
jk is the element of the jth line and the kth column

of the Hessian matrix of the function f i.
Then,

∂

∂β
(∂2f i(x, d)) =

X
jk

Hi
jk(x)(dj

∂dk
∂β

+ dk
∂dj
∂β

)

=
X
jk

Hi
jk(x)(djv

n
k + dkv

n
j ) (from (8))

= 2
X
jk

Hi
jk(x)djv

n
k

= 2∂(∂f i(x, vn), d)

= 2∂gi(x, d) (from (12))

In addition,

∂

∂β
(ξnβ

2) = 2ξnβ.

Note that the critical points that satisfy ∂2f i(x, d) = 0 are
not among the maxima of wi(α, β). It then follows from
the above that the critical points that are candidates to be
among the maxima satisfy:

∂2f i(x, d)

|∂2f i(x, d)|∂g
i(x, d) = ξnβ.

This establishes the proof of the lemma.

To determine β, we consider two cases:

• If ∂2f i(x, d) > 0, the equation (12) can be rewritten
as: X

j,k

Hi
jkv

n
j dk = ξnβ.

It then follows from (8) that

X
j,k

Hi
jkv

n
j (

n−1X
1

αjv
j
k + βvnk ) = ξnβ.

Note that ξn and vn are now known, from the above we
can determine β as a function of α and v1, v2, . . . , vn−1.
From now on, for clarity, we denote by βn the value of
β satisfying the above, since this value corresponds to
the eigenvalue ξn and the eigenvector vn computed in
the first step. Hence, if ∂2f i(x, d) > 0

βn =
(vn)THi(

Pn−1
j=1 αjv

j)

ξn − (vn)THivn
.

• If ∂2f i(x, d) < 0, similarly we obtain

βn =
−(vn)THi(

Pn−1
j=1 αjv

j)

ξn + (vn)THivn
.

With the above βn, ηi(α) in (10) can be determined. Hence,
the condition (9) becomes

αTCn−1α ≥ u(α) = |∂2f i(x, d)| − ξn(βn)2 (13)

where d =
Pn−1

1 αjv
j + βnvn.

We now come to the same problem as the initial but with
only (n − 1) eigenvalues to determine. We can repeat this
procedure to determine all the eigenvalues. More precisely,



we determine ξn−1 by solving the following optimization
problem over the variables z =

Pn−1
j=1 αjv

j and x.

ξn−1,i = max(|∂2f i(x, z + βnvn)| − ξn(βn)2)

s.t. x ∈ X ∧
z ∈ Rn ∧

||z + βnvn|| = 1.

Then, ξn−1 is determined as the largest of all ξn−1,i.
To reduce further to the problem with (n−2) eigenvalues,

we write:

dTCd = αTCn−2α+ ξn(βn)2 + ξn−1(βn−1)2.

where α is now a vector in Rn−2.
Then, the sequence of optimization problems can be for-

mulated as follows. For k = n− 1, n− 2, . . . , 1

ξn−k,i = max |∂2f i(x, z +

nX
j=n−k+1

βjvj)| −
nX

j=k+1

ξj(β
j)2

s.t. x ∈ X ∧
z ∈ Rn ∧

||z +
Pn
j=k+1 β

jvj || = 1

(14)

Then, ξn−k is the largest value of all ξn−k,i.

In the above procedure, in order to proceed from the com-
putation of the eigenvector ξn−k to that of ξn−k−1 we need to
compute the corresponding eigenvector vn−k. As an exam-
ple, in the step k = n−1, we obtain the solution d = z+βnvn

of the optimization problem. Let denote this d by dn−1 and
we want to compute the corresponding eigenvector vn−1.
To this end, we use the following scheme. Indeed, at each
step k, vk is made orthogonal to the previous vk+1, . . . , vn

by substracting the projection of dk in the directions of
vk+1, . . . , vn.

uk = dk −
nX

j=k+1

(vj)T dk

(vj)T vj
vj

Then we determine the eigenvector vk as:

vk =
uk

||uk|| .

Such n vectors vk span the same subspace as n vectors dk.

Finally, we construct the matrix C as follows:

C = S

0BB@
ξ1 0 . . . 0
0 ξ2 . . . 0

. . .
0 0 . . . ξn

1CCAST

where ξj with j ∈ {1, . . . , n} are the computed eigenvalues,
and S = [v1v2 . . . vn] is an orthonormal matrix containing
the computed eigenvectors.

5. REACHABILITY COMPUTATION USING
HYBRIDIZATION

Once the curvature tensor matrix is estimated, we can
compute from it an isotropic transformation T . This can
then be used to create hybridization domains for reacha-
bility computation. The reachability computation accuracy

depends on the precision of the curvature tensor approxima-
tion, since the latter is directly related to the error bound
that is used to define the input set U . In the curvature es-
timation described in the previous section, the optimization
problems are solved over all x ∈ X, that is the computed es-
timate is valid for the whole set X. The estimation precision
can be improved by using a dynamical curvature estimation
that is invoked each time a new hybridization domain needs
to be created. In this case, the optimization domains can be
chosen as a neighborhood of the current states of the system.

The reachability computation algorithm using hybridiza-
tion is summarized by Algorithm 2 where P is a polytope
containing all the initial states of the system. In each iter-
ation, we first estimate the curvature tensor within a zone
containing the current set P k. This matrix is then used to
construct the simplicial domain ∆. We perform the reach-
ability computation from P k under the approximate linear
interpolating dynamics defined within ∆. This generates the
polytope P k+1. If this polytope contains points outside the
current domain ∆ we retrieve the previous polytope P k and
construct around P k a new hybridization domain. Note that
when the polytope P k becomes too large to be included in
∆, splitting is required.

Algorithm 2 Reachability computation using hybridization

Input: Initial polytope P , interpolation error tolerance ε

P 0 = P , k = 0
C = CurvatureEstimation(P k)
∆ = DomainConstruct(P k, C, ε)
while k ≤ kmax do
P k+1 = Reachl(P

k,∆)
if P k+1 ∩ ∆̄ 6= ∅ then

/* ∆̄ is the complement of ∆ */
∆ = DomainConstruct(P k, ε)

else
k = k + 1

end if
end while

It is worth mentioning that in this algorithm we use poly-
topes to represent reachable sets. However, the proposed hy-
bridization and domain construction methods can be com-
bined with the algorithms using other set representations
(such as [15, 11]).

6. EXPERIMENTAL RESULTS
We implemented the domain construction algorithm and

tested in on various examples. For non-linear optimization
we use the publicly available NLopt library [13] which pro-
vides a common interface for a number of different opti-
mization algorithms. For the computation of reachable sets
of the approximate piecewise-affine systems, we used the al-
gorithms implemented in the tool d/dt [2].

We first illustrate the interest of the algorithm by a num-
ber of experiments on a 2-dimensional system, the dynamics
of which is described as follows:

ẋ1 = x2 − x3
1 + x1x

2
2 (15)

ẋ2 = x3
1 (16)

This example is adapted from the one used in the study



of stabilization of systems with uncontrollable linearization
in [18] (page 346). The initial set is a small box [0.5, 0.51]×
[0.5, 0.51]. The error tolerance is equal to 0.5.

Figure 2 shows the reachable set computed using a hy-
bridization without isotropic transformation. The hybridiza-
tion domains are chosen to be equilateral and oriented along
the local evolution direction of the dynamics. We can see
that without using an isotropic transformation, the domains
are small and thus a lot of domains were created.

Figure 2: Domains constructed without isotropic
transformation.

Figure 3 shows the reachable set computed using a hy-
bridization with an isotropic transformation. In this experi-
ment, the curvature estimation was done dynamically when
each domain is created. We can see that the domains are
larger for the same accuracy and less domains are needed.

Figure 3: Domains constructed with the curvature
tensor dynamically estimated over large zones.

The reachability computation can be further improved by
using smaller optimization domains around the reachable
sets. This in general requires some rough approximation of

the reachable set within a number of next iterations. This
is illustrated by the reachable set shown in Figure 4.

Figure 4: Domains constructed with the curvature
tensor dynamically estimated over small zones.

Figure 5: Reachability computation with a large er-
ror bound.

In order to illustrate the effect of error bounds, we fix the
radius of the smallest containment ball in the isotropic space
and perform two experiments: the first one with the curva-
ture tensor estimated over a large zone and the second over
a smaller zone. We observe that the hybridization domains
in the two experiments are the same. However, a high curva-
ture bound was computed in the first experiment and thus
the corresponding error bound is large, which results in a
large input set. This causes the system to expand fast, as
one can see in Figure 6. On the other hand, with a bet-
ter curvature estimate in the second experiment, the error
bound is smaller and the reachable set computation is more
accurate (see Figure 6).

In order to evaluate the performance of the algorithm, we
performed a set of experiments on some polynomial systems
(of degree 4) which are randomly generated. We report in
the following the average computation times of 100 itera-



Figure 6: Reachability computation with a smaller
error bound.

Dimension Total time (s) Optimisation time (s)
2 0.53 0.05
3 0.96 0.63
4 7.87 7.01
5 57.05 48.22
6 90.77 80.78
7 302.5 269.22

Figure 7: Computation times for polynomial sys-
tems.

tions for systems up to 7 dimensions. For each dimension,
we tested 4 systems. In these experiments, for each sys-
tem the curvature tensor matrix was estimated only once.
The reason we did not go beyond 7 dimensions is that the
optimisation took a lot of computation time (while the com-
putation time for treating approximate piecewise affine sys-
tems is much less), as shown in Figure 7. Indeed, for a
n-dimensional system, to estimate the curvature tensor ma-
trix, we need to compute n eigenvalues, each of which re-
quires solving n constrained optimization problems with 2n
variables. Indeed, the curvature tensor estimation can be
done a-priori over a large analysis zone and such a global es-
timate can be used for the whole reachability computation
process. This alone can significantly improve the accuracy
of the reachable set approximation, compared to the domain
construction without isotropic transformation, as shown in
the above 2-dimensional example. In order to include dy-
namic curvature estimation, we need more performant opti-
misation tools, such as those for specific classes of systems.

To sum up, our preliminary experiments demonstrated the
interest of the proposed domain construction algorithm in
terms of accuracy improvements. The practical efficiency
of the algorithm is still limited by the required non-linear
optimization. Beside exploiting more performant optimiza-
tion algorithms, we plan to tackle this problem by explor-
ing other methods for computing isotropic transformations
without estimating the curvature tensor matrix.

7. CONCLUSION
In this paper we extended the curvature-based domain

construction method to non-linear systems with non-constant
Hessian matrices. In addition, we proved an optimality
property of the domain construction for a class of quadratic
systems. We demonstrated the effectiveness, in particular
in terms of accuracy improvement, of the method on var-
ious examples. Future work directions include considering
the optimal domain construction problem for larger classes
of systems. Finding more efficient methods for computing
curvature tensor matrices and isotropic transformations is
also part of our future work.
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