
Meeting Deadlines Cheaply
Julien Legriel, Oded Maler

CNRS-Verimag
2, av. de Vignate

38610 Gieres, France
Email: {legriel,maler}@imag.fr

Abstract—We develop a computational framework for solving
the problem of finding the cheapest configuration (in terms
of the number of processors and their respective speeds) of
a multiprocessor architecture on which a task graph can be
scheduled within a given deadline. We then extend the problem in
three orthogonal directions: taking communication volume into
account, considering the case where a stream of instances of the
task graph arrives periodically and reformulating the problem as
a bi-criteria optimization for which we approximate the Pareto
front.

I. INTRODUCTION

This paper is motivated by several recent developments in
computer technology, computer applications and algorithmics:
1) The shift toward multi-core computer architectures renewed
the interest in efficient parallel execution of programs; 2)
Mobile platforms such as tablets and phones are becoming
central and consequently the problem of reducing power
consumption has become crucial (also for data centers). One
way of reducing the power consumption of a processor is to
reduce its voltage and frequency to the minimal level in which
it can still meet performance constraints; 3) New classes of
applications characterized by ongoing streams of structured
computational tasks that come from the outside environment
(unlike the classical problems of loop parallelization) and
where significant amounts of data are exchanged among tasks;
4) The recent progress in Boolean SAT solving, and in SAT
Modulo Theories (SMT) has led to a new generation of
powerful tools for solving mixed combinatorial and numerical
constrained optimization problems.

This work is part of the French MINALOGIC ATHOLE
project, and inspired by the multi-core architecture XSTREAM
designed by STMICROELECTRONICS as a potential next-
generation platform targeting mainly mobile and multi-media
applications. This architecture is designed around a “stream-
ing fabric” consisting of a set of processors or specialized
hardware blocks connected via flow-control mechanisms on
top of a network-on-chip (NoC) [21]. To facilitate power
saving, the system has means to manage several power modes,
for example, to change the state of the different computing
nodes: on/off, idle, low-voltage/lower clock rates, etc. Energy-
efficient scheduling of applications on this architecture is one
of the primary goals of the ATHOLE project: let the system
work at the least energy-consuming configuration which can
still meet the computational demands of the application.

In this work we formalize this problem as an extension
of the well-known task-graph scheduling problem [23], [31],

[29], where with each task we associate a quantity of work
whose translation into duration depends on the speed of
the processor on which it executes. A configuration of the
architecture is characterized by the number of processors
running in each of the frequencies, from which a cost function
is derived, reflecting the (static) energy consumption of the
configuration. Given such a task graph and an upper bound on
its acceptable execution time (deadline) we ask the following
question: what is the cheapest configuration on which the
task graph can be scheduled for execution while meeting
the deadline? We formulate the question as a mixed logical-
numerical constrained optimization problem and solve it using
the SMT solver Yices [30]. We develop a binary search
algorithm over the cost space which uses the solver to provide
solutions with guaranteed distance from the optimum. We
manage to handle randomly-generated task-graph problems
having around 40-50 tasks on execution platforms consisting
of machines with 3 different speeds.

We then extend the problem in three directions. First, we
annotate the task graph with quantities of data that have to be
communicated among tasks and refine the model of the exe-
cution platform to include communication network topology.
We then pose the same problem where the communication
channels are considered as additional resources occupied for
durations proportional to the amount of transmitted data, thus
incorporating data locality considerations into the model. In
this setting we can solve problems with 15-20 tasks on a
spidergon topology [24] with up to 8 processors. Secondly
we formulate a periodic extension of the problem where task
instances arrive every ω time units and must be finished within
a relative deadline δ > ω. Efficient resource utilization for this
problem involves pipelined execution, which may increase the
number of decision variables and complicate the constraints.
We solve this infinite problem by reducing it to finding a
schedule for a sufficiently-long finite unfolding. Preliminary
experiments show that we can treat the periodic case where
the number of unfolded tasks is up to 100. Finally, rather
than keeping the deadline fixed as a constraint and optimize
the platform cost, we reformulate the problem as a bi-criteria
optimization problem and compute efficient trade-offs between
these two conflicting goals.

The rest of the paper is organized as follows. In Section II
we give the basic definitions of execution platforms, task
graphs and feasible schedules. In Section III we discuss
briefly several approaches for handling mixed constraints in



optimization and describe our encoding of the problem using
a Boolean combination of linear constraints. We then present
our search procedure along with experimental results obtained
using the Yices solver. The extension of the model to treat
communication is sketched in Section IV, Section V is devoted
to the definition and encoding of a periodic version of the
problem and Section VI to the multi-criteria reformulation.
All these sections are accompanied with experimental results.
Finally in Section VII we mention some related work, discuss
the limitations of our models and suggest future research
directions.

II. PROBLEM FORMULATION

A. Execution Platforms

We formalize here the notion of an execution platform,
which represents a possible configuration of a multiprocessor
system, characterized by the number of active “machines”
and their respective speeds. We assume a fixed set of speeds
V = {v0, v1, . . . , vm} with v0 = 0 and vk < vk+1, each
representing an amount of work (for example, number of
instructions) that can be provided per unit of time. We do
not bound a priori the number of machines.

Definition 1 (Execution Platform): An execution platform
is a non-increasing function R : N+ → V assigning a speed
to each machine, with R(j) = 0 indicating that machine j is
turned off (or does not exist). A platform is finite if R(j) = 0
for every j > j∗ for some j∗.
It is sometimes convenient to view R as a vector R =
(r1, . . . , rm) with rk being the number of machines working
at speed vk. To compare different platforms we use a static
cost model that depends only on the membership of machines
of various speeds in the platform and not on their actual
utilization during execution.

Definition 2 (Platform Cost): The cost associated with a
platform R = (r1, . . . , rm) is C(R) =

∑m
k=1 ck · rk where

ck < ck+1 are technology-dependent positive constants.
Below we define some useful measures on platforms related
to their work capacity.
• Number of active machines: N (R) =

∑m
k=1 rk;

• Speed of fastest machine: F(R) = R(1);
• Work capacity: S(R) =

∑m
k=1 rk · vk =

∑
iR(i).

The last measure gives an upper bound on the quantity of
work that the platform may produce over time when it is fully
utilized.

B. Work Specification

The work to be done on a platform is specified by a variant
of a task graph, where the size of a task is expressed in terms
of work rather than duration.

Definition 3 (Task Graph): A task graph is a triple G =
(P,≺, w) where P = {p1, . . . pn} is a set of tasks, ≺ is a
partial order relation on P with a unique1 minimal element p1

and a unique maximal element pn. The function w : P → N

1This can always be achieved by adding fictitious minimal and maximal
tasks with zero work.

assigns a quantity of work to each task. When a task p is
executed on a machine working in speed v, its execution time
is w(p)/v.

The following measures give an approximate characteriza-
tions of what is needed in terms of time and work capacity in
order to execute G.
• The width W(G) which is the maximal number of ≺-

incomparable tasks, indicates the maximal parallelism
that can be useful;

• The length L(G) of the longest (critical) path in terms of
work, which gives a lower bound on execution time;

• The total amount of work T (G) =
∑
i w(pi) which

together with the number of machines gives another lower
bound on execution time.

A schedule for the pair (G,R) is a function s : P → N×R+

where s(p) = (j, t) indicates that task p starts executing at
time t on machine j. We will sometimes decompose s into
s1 and s2, the former indicating the machine and the latter,
the start time. The duration of task p under schedule s is
ds(p) = w(p)/R(s1(p)). Its execution interval (we assume no
preemption) is [s2(p), s2(p) + ds(p)]. A schedule is feasible
if the execution intervals of tasks satisfy their respective
precedence constraints and if they do not violate the resource
constraints which means that they are disjoint for all tasks that
use the same machine.

Definition 4 (Feasible Schedule): A schedule s is feasible
for G on platform R if it satisfies the following conditions:

1) Precedence: If p ≺ p′ then s2(p) + ds(p) ≤ s2(p′);
2) Mutual exclusion: If s1(p) = s1(p′) then [s2(p), s2(p)+

ds(p)] ∩ [s2(p′), s2(p′) + ds(p′)] = ∅.
The total duration of a schedule is the termination time of the
last task `(s) = s2(pn) + ds(pn).
The singular2 deadline scheduling predicate SDS(G,R, δ)
holds if there is a feasible schedule s for G on R such that
`(s) ≤ δ. The problem of finding the cheapest architecture R
where this holds is then the constrained optimization problem

minC(R) s.t. SDS(G,R, δ).

The harder part of the problem is to check whether, for a
given architecture R, SDS(G,R, δ) is satisfied when δ is close
to the duration of the optimal schedule for G on R. Since we
will be interested in approaching the cheapest platform we will
often have to practically solve the optimal scheduling problem
which is NP-hard.

Let us mention some observations that reduce the space
of platforms that need to be considered. First, note that if
SDS(G,R, δ) is solvable, then there is a solution on a platform
R satisfying N (R) ≤ W(G), because adding processors
beyond the potential parallelism in G does not help. Secondly,
a feasible solution imposes two lower bounds on the capacity
of the platform: 1) the speed of the fastest machine should
satisfy F(R) ≥ L(G)/δ, otherwise there is no way to execute
the critical path before the deadline. 2) The total work capacity

2To distinguish it from the periodic problem defined in Section V.



should satisfy S(R) ≥ T (G)/δ, otherwise even if we manage
to keep the machines busy all the time we cannot finish the
work before the deadline.

III. CONSTRAINED OPTIMIZATION FORMULATION

A. Background

The problem of optimizing a linear function subject to
linear constraints, also known as linear programming [37],
is one of the most studied optimization problems. When the
set of feasible solutions is convex, that is, it is defined as a
conjunction of linear inequalities, the problem is easy: there
are polynomial algorithms and, even better, there is a simple
worst-case exponential algorithm (simplex) that works well in
practice. However, all these nice facts are not of much help in
the case of scheduling under resource constraints. The mutual
exclusion constraint, an instance of which appears in the prob-
lem formulation for every pair of unrelated tasks executing on
the same machine, is of the form [x, x′] ∩ [y, y′] = ∅, that
is, a disjunction (x′ ≤ y) ∨ (y′ ≤ x) where each disjunct
represents a distinct way to solve the potential resource conflict
between the two tasks. As a result, the set of feasible solutions
is decomposed into an exponential number of disjoint convex
sets, a fact which renders the nature of the problem more
combinatorial than numerical. Consequently, large scheduling
problems do not benefit from progress in relaxation-based
methods for mixed integer-linear programming (MILP).

Techniques that are typically applied to scheduling problems
[19] are those originating from the field known as constraint
logic programming (CLP) [35]. These techniques are based
on heuristic search (guessing variable valuations), constraint
propagation (deducing the consequences of guessed assign-
ments and reducing the domain of the remaining variables)
and backtracking (when a contradiction is found). A great
leap in performance has been achieved during the last decade
for search-based methods for the generic discrete constraint
satisfaction problem, the satisfiability of Boolean formulae
given in CNF form (SAT). Modern SAT solvers [40] based
on improvements of the DPLL procedures [26] can now solve
problems comprising of hundreds of thousands of variables
and clauses and are used extensively to solve design and
verification problems in hardware and software.

Recently, efforts have been made to leverage this success
to solve satisfiability problems for Boolean combinations of
predicates, such as numerical inequalities, belonging to various
“theories” (in the logical sense), hence the name satisfiability
modulo theories (SMT) [32], [16]. SMT solvers combines
techniques developed in the SAT context (search mechanism,
unit resolution, non-chronological backtracking, learning, and
more) with a theory-specific solver that checks the consistency
of truth assignments to theory predicates and infers additional
assignments. The relevant theory for standard scheduling prob-
lems is the theory of difference constraints, a sub theory of
the theory of linear inequalities, but in order to cover costs
and speeds we use the latter theory. To this end we use the
powerful solver Yices [30] which excels on SMT problems

that involves linear constraints. In the sequel we describe the
problem encoding.

B. Problem Encoding

Solutions to the problem are assignments to decision vari-
ables {uj}, {ei} and {xi} where variable uj ranging over V ,
indicates the speed of machine j, integer variables ei indicates
the machine on which task pi executes and variable xi is its
start time. Constants {vk} indicates the possible speeds, {wi}
stand for the work in tasks and {ck} is the cost contributed
by a machine running at speed vk. We use auxiliary (derived)
variables {di} for the durations of tasks based on the speed
of the machine on which they execute and Cj for the cost of
machine j in a given configuration. The following constraints
define the problem.
• The speed of a machine determines its cost:∧

j

∧
k

(uj = vk ⇒ Cj = ck)

• Every task runs on a machine with a positive speed and
this defines its duration:∧

i

∧
j

((ei = j)⇒ (uj > 0 ∧ di = wi/uj))

• Precedence:
∧
i

∧
i′:pi≺pi′

xi + di ≤ xi′

• Mutual exclusion:∧
i

∧
i′ 6=i

((ei = ei′)⇒ ((xi + di ≤ xi′)∨ (xi′ + di′ ≤ xi))

• Deadline: xn + dn ≤ δ
• Total architecture cost: C =

∑
j Cj .

We use additional constraints that do not change the satisfia-
bility of the problem but may reduce the space of the feasible
solutions. They include the above mentioned lower bounds on
architecture size and a “symmetry breaking” constraint which
orders the machines according to speeds, avoiding searching
among equivalent solutions that can be transformed into each
other by permuting the indices of the machines.

C. Implementation and Experimental Results

We have implemented a prototype tool that takes a task
graph as an input, performs preliminary preprocessing to
compute width, critical path and quantity of work and then
generates the constraint satisfaction problem in the solver input
language. The solver has no built-in optimization capabilities
and we can pose only queries of the form SDS(G,R, δ) ∧
C(R) ≤ c for some cost c. We use ψ(c) as a shorthand
for this query. The quest for a cheap architecture is realized
as a sequence of calls to the solver with various values of
c. Performing a search with an NP-hard problem in the inner
loop is very tricky since, the closer we get to the optimum, the
computation time becomes huge, both for finding a satisfying
solution and for proving unsatisfiability (from our experience,
the procedure may sometimes get stuck for hours near the
optimum while it takes few seconds for slightly larger or



$ cc $ c∗

Fig. 1. Searching for the optimum. The dashed line indicate the interval
toward which the algorithm will converge, the best estimation of the optimum
for time budget θ.

smaller costs). We have implemented the following search
algorithm. We fix a time budget θ beyond which we do not
wait for an answer (currently 5 minutes on a modest laptop).
The outcome of the query ψ(c) can be either

(1, c) : There is a solution with cost c ≤ c
0 : There is no solution
$ : The computation is too costly

At every stage of the search we maintain 4 variables: c
is the maximal value for which the query is not satisfiable,
$ is the minimal value for which the answer is $, $ is the
maximal value for which the answer is $, and c is the minimal
solution found (see Figure 1). Assuming that computation time
grows monotonically as one approaches the optimum from
both sides, we are sure not to get answers if we ask ψ(c)
with c ∈ [$, $]. So we ask further queries in the intervals [c, $]
and [$, c] and each outcome reduces one of these intervals by
finding a larger value of c, a smaller value of $, a larger value
of $ or a smaller value of c. Whenever we stop we have a
solution c whose distance from the real optimum is bounded
by c−c. This scheme allows us to benefit from the advantages
of binary search (logarithmic number of calls) with a bounded
computation time.

We did experiments with this algorithm on a family of plat-
forms with 3 available speeds {1, 2, 3}. The costs associated
with the speeds are, respectively, 1, 8 and 27, reflecting the
approximate cubic dependence of energy on speed. We have
experimented with numerous graphs generated by TGFF tool
[28] and could easily find solutions for problems with 40-
50 tasks. Figure 2 illustrates the influence of the deadline
constraints on the platform and the schedule for a 10-task
problem of width 4. With deadline 100 the problem can be
scheduled on the platform R = (0, 0, 3), that is, 3 slow
processors, while when the deadline is reduced to 99, the more
expensive platform R = (0, 1, 1) is needed.

IV. ADDING COMMUNICATION

The model described in the preceding section neglects
communication costs. While this may be appropriate for some
traditional applications of program parallelization, it is less
so for modern streaming applications that have to pass large
amounts of data among tasks and there is a significant variation
in communication time depending on the distance between the
processors on which two communicating tasks execute. To this
end we extend the models as follows.

-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

p0

p1

p2p3 p4p5

p6

p7 p8

p9

p10

(a)

-

-

processor 0
speed 2

processor 1
speed 1

p0 p1 p2

p3

p4p5

p6

p7 p8p9 p10

(b)

Fig. 2. The effect of deadline: (a) a schedule on a cheap architecture with
deadline 100; (b) a more expensive architecture needed for deadline 99.

On the application side we annotate any edge p ≺ p′ in
the precedence graph with a number indicating the quantity
of data that p transmits to p′. We assume that the data
items sent by a task to each of its successors are disjoint.
Furthermore, we assume that a task waits for the arrival of
all its data before execution and that it transmits them after
termination. On the architecture side we assume a network
topology defined by a strongly-connected connectivity graph,
a subgraph of the full directed graph whose nodes are the
processors existing in the configuration (those with positive
speed). We assume all these channels have the same speed
normalized to 1, hence transmitting data of quantity Q on
such a channel will occupy it for Q time. The contribution
of an existing channel to the (static) cost of the architecture
is a positive constant. Clearly, the model can be extended to
admit channels with different speeds and hence different costs
as we did with processors. We assume a routing function that
maps any pair (m,m′) of distinct processors to a loop-free
path on the connectivity graph leading from m to m′. Hence
when a task p and its successor p′ are mapped to m and m′

respectively, the termination of p should be followed by the
execution of additional communication tasks that have to be
scheduled successively on the channels on the path from m to
m′ before p′ may be executed.3 We assume the communication
time between two tasks running on the same machine to be
negligible. We spare the reader from the formal definitions of
the extended task-data graph, the connectivity graph and the
routing function and just illustrate them in Figure 3.

We have coded this problem and ran experiments with
TGFF-generated graphs to find cheap and deadline-satisfying
configurations of an architecture with up to 8 processors,
{0, 1, . . . , 7} equipped with a Spidergon network topology
developed in ST [24] which is used in the XSTREAM archi-

3Here too, the model can be refined to have task-dependent routing.



(a) (b)

p12

p1

p2
p2

m2

m1

m13

m12

m3

p12

p12

p1

m13

m12

m1

m3

(c)

Fig. 3. (a) a part of a task-data graph with data transmission from p1 to
p2 denoted by p12; (b) a part of an architecture where communication from
m1 to m3 is routed via channels m12 and m23; (c) a part of a schedule,
including communication, where p1 executes on m1 and p2 on m3.

tecture. A spidergon network has links of the form (i, i +
1 mod 8), (i, i − 1 mod 8) and (i, i + 4 mod 8) for every i
and there is a path of length at most 2 between any pair of
processors. In this setting we could solve easily problems with
15-20 tasks. Figures 4 shows the effect of the deadline on the
architecture for a task-data graph with 16 tasks. For a deadline
of 25 the task graph can be scheduled on an architecture with 3
machines while for deadline 24, 4 machines are needed. Note
that the schedule for the first case is very tight and is unlikely
to be found by heuristics such as list scheduling.

One important parameter that partly determines the shape
of optimal solutions for task-data graph scheduling problems
is the computation/communication to ratio [33]. Computation
and communication are antagonist in nature: while compu-
tation calls for parallelism, communication is reduced by
sequential execution of two communicating tasks on the same
processor. This is illustrated in the schedules of Figure 5 for
two task-data graphs which are identical except for the fact
that all quantities of communication in second are doubled and
this increases the amount of communication to the point that
parallel execution becomes infeasible and a sequential solution
on a faster machine is the only possibility.

V. PERIODIC SCHEDULING

In this section we extend the problem to deal with a stream
of instances of G that arrive periodically.

Definition 5 (Periodic Scheduling Problem): Let ω (arrival
period) and δ be positive integers. The periodic deadline
scheduling problem PDS(G,R, ω, δ) refers to scheduling an
infinite stream G[0], G[1], . . . of instances of G such that each
G[h] becomes available for execution at hω and has to be
completed within a (relative) deadline of δ, that is, not later
than hω + δ.
Let us make some simple observations concerning the relation
between SDS and PDS for fixed G and R.

1) PDS(ω, δ) ⇒ SDS(δ). This is trivial because if you
cannot schedule one instance of G in isolation you
cannot schedule it when it may need to share resources
with tasks of other instances.

2) If δ ≤ ω then PDS(ω, δ) ⇔ SDS(δ) because in this
case each instance should terminate before the arrival of
the next instance and hence in any interval [hω, (h +
1)ω] one has to solve one instance of SDS(δ). Thus we
consider from now on that ω < δ.

-

-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

processor 3
speed 1

-

-

-

-

-

link 1-0

link 0-1

link 1-2

link 4-3

link 0-4

p0 p1

p2

p3

p4

p5 p6

p7p8 p9

p10

p11

p12

p13

p14

p15

p16

C0−3

C0−3

C2−4

C2−7

C1−11

C11−12

C11−13

(a)

-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

-

-

-

-

link 1-0

link 0-1

link 2-1

link 1-2

p0 p1

p2

p3 p4

p5

p6

p7

p8

p9

p10

p11

p12

p13p14

p15

p16

C0−3

C2−4 C2−5

C2−5

C2−7

C1−8

C1−8

C1−11

C11−12

C11−13

(b)

Fig. 4. Scheduling with communication: (a) δ = 24; (b) δ = 25.

3) Problem PDS(ω, δ) is solvable only if W (G) ≤ ωS(R).
The quantity of work demanded by an instance should
not exceed the amount of work that the platform can
supply within a period. Otherwise, backlog will be
accumulated indefinitely and no finite deadline can be
met.

4) When SDS(ω) is not solvable, PDS(ω, δ) can only be
solved via pipelined execution, that is, executing tasks
belonging to successive instances simultaneously.

We first encode the problem using infinitely many copies
of the task related decision variables where xi[h] and ei[h],
denotes, respectively, the start time of instance h of task pi
and the machine on which it executes, which together with
the speed of that machine determines its duration di[h]. The
major constraints that need to be added or modified are:



-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

-

-

link 1-0

link 2-1

p0 p1

p2 p3

p4

p5

p6

p7 p8

C0−2 C0−3C0−4

C0−4

C1−5C1−6

C1−6

(a)

- processor 0
speed 2

p0 p1 p2p3 p4 p5 p6p7 p8

(b)
Fig. 5. The effect of changing the computation to communication ratio: (a)
a schedule for a task graph G with parallelism; (b) A sequential schedule for
G′ constructed from G by doubling the amount of all communications.

• The whole task graph has to be executed between its
arrival and its relative deadline:∧

h∈N
x1[h] ≥ hω ∧ xn[h] + dn[h] ≤ h+ δ

• Precedence:∧
h∈N

∧
i

∧
i′:pi≺pi′

xi[h] + di[h] ≤ xi′ [h]

• Mutual exclusion: execution intervals of two distinct task
instances that run on the same machine do not intersect.∧

j

∧
i,i′

∧
h,h′

(i 6= i′ ∨ h 6= h′) ∧ ei[h] = ei′ [h′]⇒

(xi[h] + di[h] < xi′ [h′]) ∨ (xi′ [h′] + di′ [h′] < xi[h])

Note that the first two constraints treat every instance sepa-
rately while the third is machine centered and may involve
several instances due to pipelining.

While any satisfying assignment to the infinitely-many
decision variables is a solution to the problem, we are of course
interested in solutions that can be expressed with a finite (and
small) number of variables, solutions which are periodic in
some sense or another, that is, there is an integer constant β
such that for every h, the solution for instance h + β is the
solution for instance h shifted in time by βω.

Definition 6 (Periodic Schedules):
• A schedule is β-machine-periodic if for every h and i,
ei[h+ β] = ei[h];

• A schedule is β-time-periodic if for every h and i, xi[h+
β] = xi[h] + βω;

• A schedule is (β1, β2)-periodic if it is β1-machine-
periodic and β2-time-periodic.

We say that β-periodic solutions are dominant for a class of
problems if the existence of a solution implies the existence of

a β-periodic solution. It is not hard to see that there is some β
for which β-periodic solutions are dominant: the deadlines are
bounded, all the constants are integers (or can be normalized
into integers), hence we can focus on solutions with integer
start times. Combining with the fact that overtaking (executing
an instance of a task before an older instance of the same
task) can be avoided, we end up with a finite-state system
where any infinite behavior admits a cycle which can be
repeated indefinitely. However, the upper bound on dominant
periodicity derived via this argument is too big to be useful.

It is straightforward to build counter-examples to dominance
of β-machine-periodic schedules for any β by admitting a task
of duration d > βω and letting δ = d. Each instance of this
task has to be scheduled immediately upon arrival and since
each of the preceding β instances will occupy a machine, the
new instance will need a different machine. However, from a
practical standpoint, for reasons such as code size which are
not captured in the current model, it might be preferable to
execute all instances of the same task on the same processor
and restrict the solutions to be 1-machine-periodic. For time
periodicity there are no such constraints unless one wants to
use a very primitive runtime environment.

We encode the restriction to (β1, β2)-periodic schedules as
an additional constraint.

• Schedule periodicity:∧
h∈N

∧
i

ei[h+ β1] = ei[h] ∧ xi[h+ β2] = xi[h] + β2ω

We denote the infinite formula combining feasibility and
(β1, β2)-periodicity by Φ(β1, β2) and show that it is equi-
satisfiable with a finite formula Φ(β1, β2, γ) in which h ranges
over the finite set {0, 1, . . . γ − 1}. In other words, we show
that it is sufficient to find a feasible schedule to the finite
problem involving the first γ instances of G.

Claim 1 (Finite Prefix):
Problems Φ(β1, β2) and Φ(β1, β2, γ) are equivalent when γ ≥
β +

⌈
δ
ω

⌉
− 1. where β = lcm(β1, β2).

Proof : Intuitively, the prefix should be sufficiently long to
demonstrate repeatability of a segment where β instances
are scheduled, and sufficiently late to demonstrate steady-
state behavior where resource constraints are satisfied by
the maximal number of instances whose tasks may co-exist
simultaneously without violating the deadline.

Suppose we scheduled γ = β + d δω e − 1 instances success-
fully. Since γ ≥ β we can extract a pattern that can be repeated
to obtain an infinite schedule that clearly satisfies β-periodicity
and precedence constraints. We now prove that this periodic
schedule satisfies resource constraints. Suppose on the contrary
that instance h of a task i is in conflict with instance h′ of
a task i′, h ≤ h′ and let h = (kβ + k′), k′ ∈ {0 . . . β − 1}.
The deadline constraint, together with the fact that task i and
i′ overlap in time, limits the set of possible values for h′ to
be of the form

h′ = h+ ∆ = kβ + k′ + ∆



-

-

-

-

-

-

-

processor 0
speed 2

processor 1
speed 1

processor 2
speed 1

processor 3
speed 1

processor 4
speed 1

processor 5
speed 1

processor 6
speed 1

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

6 6 6 6 6

Fig. 6. A (2, 1)-periodic schedule for a task graph with 16 tasks.

with ∆ ∈ {0 . . .
⌈
δ
ω

⌉
− 1}. Because of β-periodicity we can

conclude that task i and i′ also experience a conflict in the
respective instances k′ and k′ + ∆. Since k′ < β and ∆ ≤⌈
δ
ω

⌉
− 1 we have

k′ + ∆ < β +
⌈
δ

ω

⌉
− 1

which contradicts our assumption.
Hence the problem can be reduced to Φ(β1, β2, γ) with γ

copies of the task-related decision variables. Note however that
in fact there are only β “free” copies of these variables and
the values of the other variables are tightly implied by those.
The unfolding is required only to add additional resource
constraints, not decision variables. Table I shows performance
results on several graphs with different values of δ/ω, β1 and
β2. In general we can treat problems where the number of
unfolded tasks is around 100. Figure 6 shows a (2, 1)-periodic
schedule for a task graph 1 of Table I with 17 tasks and
δ/ω = 4 which requires 5 unfoldings. Although there are
85 tasks the problem is solved quickly in 3 minutes as there
are only 34 decision variables. Figure 7 shows an example
where making β2 larger improves the solution. We consider
a task-graph of 5 tasks, ω = 7 and δ = 12 with machine
periodicity β1 = 2. When we impose 1-time-periodicity we
get a solution with 5 machines and cost 45, while when we
move to 2-time-periodicity we can do with 3 machines and
cost 43.

VI. BI-CRITERIA OPTIMIZATION

We presented a method for optimizing the cost of a tunable
multi-processor platform when scheduling an application un-
der a strict deadline constraint. However rather than keeping
the deadline fixed and optimizing the cost, we can adapt the
search algorithm to provide a good approximation of the trade-
off curve between cost and deadline, a valuable information in
the process of design-space exploration. To this end the prob-
lem is viewed as a bi-objective optimization problem involving
two conflicting criteria to be minimized: schedule duration and
platform cost. In that case we do not seek a unique optimum
but rather a set of optimal trade-offs, also known as Pareto
solutions [1], characterized by the fact that their cost cannot be

-

-

-

-

-

processor 0
speed 3

processor 1
speed 2

processor 2
speed 2

processor 3
speed 1

processor 4
speed 1

p0

p1

p2 p3

p4

p5 p6

p0

p1

p2 p3

p4

p5 p6

p0

p1

p2 p3

p4

p5 p6

6 6 6

(a)

-

-

-

processor 0
speed 3

processor 1
speed 2

processor 2
speed 2

p0

p1

p2 p3

p4

p5

p6p0 p1

p2

p3

p4

p5

p6p0

p1

p2 p3

p4

p5

p6

6 6 6

(b)

Fig. 7. The effect of time periodicity: (a) A (2, 1)-periodic solution; (b)
A cheaper (2, 2)-periodic schedule. Tasks p1 and p3 are not executed 1-
periodically.

improved in one dimension without being worsened in another.
In our context a solution to the scheduling problem would
be Pareto optimal if one cannot decrease the platform cost
without increasing the duration of the schedule. The purpose of
a multi-criteria optimization algorithms is generally to provide
a good approximation of the Pareto front (the set of all Pareto
solutions) to help the designer in choosing among the trade-
offs, a choice that may vary at different contexts, for example,
depending on the battery level. For this reason, multi-objective
optimization problems have been studied since the early days
of modern optimization using diverse techniques, depending
on the nature of the underlying optimization problems (linear,
nonlinear, combinatorial) [11], [9], [10], [8]. In particular,
there is a huge effort in developing efficient meta-heuristics
such as evolutionary algorithms [2], [3] and local search [6]
to handle complex engineering problems.

Recently we proposed an alternative methodology which
approximates the Pareto front of a multi-criteria optimization
problem using queries to a constraint solver [7]. This method
can be viewed as multi-dimensional generalization of the
binary search method described in Section III and it has
the same appealing property: it provides a bound on the
quality of the obtained solution. In the context of multi-criteria
optimization the algorithm returns a set of Pareto solutions
which is provably an ε-approximation of the Pareto front, that
is, a set of points whose Hausdorff distance from the actual
Pareto front is smaller than ε (see [14] for a discussion on
quality measures for multi-criteria optimization).

We have implemented an algorithm solving the bi-objective
formulation of the singular deadline scheduling problem using



tasks work cp ω δ δ
ω

β2 β1 platform/cost time
0 10 78 49 8 24 3 1 2 (1,2,5)/48 1’

2 2 (1,2,4)/47 2’
1 3 (1,2,4)/47 2’

32 4 1 2 (0,3,5)/29 1’
32 4 2 2 (0,3,4)/28 4’

1 17 77 48 10 30 3 1 2 (0,2,4)/20 4’
2 2 (0,2,4)/20 5’

40 4 1 2 (0,1,6)/14 3’
2 21 136 65 20 40 2 1 1 (0,2,3)/19 3’

60 3 (0,1,5)/13 5’
2 (0,1,5)/13 6’

3 29 199 89 25 50 2 1 1 (1,2,2)/45 4’
2 (1,2,2)/45 8’

4 35 187 63 40 80 2 1 1 (0,0,5)/5 6’
30 60 2 (0,1,5)/13 5’

2 ? ⊥
5 40 210 56 35 70 2 1 1 (0,4,4)/(34,36) 11’
6 45 230 45 70 140 2 1 1 (0,0,4)/4 18’

TABLE I
RESULTS FOR THE PERIODIC DEADLINE SCHEDULING PROBLEM. THE COLUMNS STAND FOR: NUMBER OF TASKS IN G, THE QUANTITY OF WORK, THE

LENGTH OF THE CRITICAL PATH, THE GRAPH INPUT PERIOD, THE DEADLINE, THE MAXIMUM PIPELINING DEGREE, THE TIME AND MACHINE
PERIODICITIES, THE PLATFORM FOUND AND ITS COST AND EXECUTION TIME. PLATFORMS ARE WRITTEN AS (R(1), R(2), . . .). A PAIR (c1, c2) STANDS

FOR A SOLUTION WITH COST c2 WHOSE OPTIMALITY HAS NOT BEEN PROVED, BUT FOR WHICH THE STRICT LOWER BOUND c1 WAS FOUND. THE
SYMBOL ⊥ MEANS THAT NO SOLUTION WAS EVER FOUND, I.E. A TIMEOUT OCCURRED AT THE FIRST CALL TO THE SOLVER NEAR THE UPPER BOUND.

a variant of the technique proposed in [7]4. The program
returns a set of duration/platform cost trade-offs and the
associated platform-configurations and schedules. The periodic
version which was not modeled in this context, is left as future
work.In our experiments we were capable of approximating
the Pareto front of up to 25-tasks graphs on an 8-spidergon
architecture with reasonably small error (less than 5% for each
objective) in a total computational time of a few minutes.
Interestingly there was not a big overhead involved in moving
to a bi-ojective version of the problem. This may be due to the
learning capability of modern satisfiability solvers which allow
them to keep information about the problem through succes-
sive calls. Figure 8 shows as an example the approximation
obtained for a 20-tasks tgff-generated graph on the 8-spidergon
architecture. As one can see, the unsatisfiability information
gives a good guarantee on the quality of the approximation
returned.

VII. DISCUSSION

We have formulated several design questions, involving
cost optimization, scheduling, communication and pipelining,
inspired by real problems. We have demonstrated how modern
solvers for constraint satisfaction problems can handle decent-
size instances of these problems. Of course, in order to be used
in practice, we will need more refined models that will reflect
more closely the reality of applications and architectures. We
list below some related work and then discuss limitations of

4We use the algorithm in combination with the solver Z3[5] which provides
a C API and enables to save the context between different calls.

Fig. 8. A 2% approximation of the Pareto front for a 20-tasks tgff-generated
task-graph.

the current models which are subject to ongoing and future
work.

The problem of mapping and scheduling of real-time ap-
plications on multiprocessor architecture has been subject of
numerous publications. We restrict ourselves to few of those
that deal with closely-related problems. In [34], a list schedul-
ing technique is developed for design space exploration, with
mapping and scheduling of communicating tasks. It also takes
communication resource constraints into account but it is



purely heuristic. An adaptation of the list scheduling heuristic
has been proposed in [38] in the context of DSP processors. In
[39], [20] methods based on ILP/CP decomposition are used
to find accurate solutions to mapping/scheduling problems.
They take more realistic constraints into account but do not
explore pipelining as we do. Concerning the periodic version
of the problem, let us remark that we have not found a similar
problem formulation in the scheduling literature. In real-time
systems [18], [36] one often deals with independent tasks that
arrive periodically, possibly with distinct periods and dead-
lines, but not with structured “jobs” consisting of partially-
ordered sets of tasks. On the other hand, problems associated
with cyclic task graphs as in program loop parallelization
[29] or manufacturing, are typically different since no external
arrival constraints are imposed and a new instance is ready
for execution once the previous instance has terminated. Let
us mention also the recent work [27] which introduces a more
general model where a dynamic scheduler has to cope with a
stream of requests, chosen non-deterministically by a request
generator from a finite sets of task graphs.

The treatment of communication in the present paper suffers
from two related shortcomings. First, the model we use may
not be the most faithful model for certain situations where
the execution of a task is strongly interleaved with commu-
nication. In such situations, refining the granularity of tasks
to a level where the assumption of their separation holds is
not realistic due to the huge number of decision variables. We
are exploring alternative formulations which do not attempt
to fix a precise schedule for these communications but rather
attempt to minimize and balance the load on the channels. The
disadvantage of such approaches is that in the absence of a
well-defined schedule, the evaluation of the mapping solution
is left to stochastic simulation. Our communication model is
useful for situations were predictability is important such as
hard real-time systems [22], for scheduling large volume data
transfers using a DMA and also as a first approximation of
feasibility.

Another simplifying aspect of our model is its being static
in several senses. First, we keep the configuration fixed and do
not apply dynamic voltage scaling. The applications that we
have in mind admit a more or less regular pattern of activity
and the overhead in changing configuration may be too high to
implement at the granularity of tasks and should be delegated
to higher levels. Secondly we use a static cost model which
does not distinguish between periods where a processor is
executing instructions and periods where it idles. We believe
that this is a good first approximation because the energy
consumption of a processor that operates in a given frequency
is significantly larger than that of a processor operating in
lower frequency or a processor which is turned off. Refining
the model in this direction will increase the number of linear
constraints. Finally we assumed full information and determin-
ism in the durations of executions and communications and
in arrival times. Variability in these parameters may benefit
from more adaptive scheduling strategies [15], [27] but the
computational and observational overhead in implementing

such strategies may turn out to be higher than their gains.
The current model does not capture other factors that affect

the feasibility and quality of solutions, most notably those
related to memory constraints due to code size and buffers
[17]. These aspects can be incorporated into the model while
remaining in the domain of linear inequalities. It also restricts
itself to what is called task and pipelined parallelism, not
touching the issue of data parallelism which is very important
for streaming applications. Finally, constraint-based methods
could also be used to automate the process of splitting and
merging data which is often done manually today.
Acknowledgements: This work was done while the first au-
thor was an employee of STMicroelectronics. We thank Bruno
Jego and Gilbert Richard for explaining us the XSTREAM ar-
chitecture, Aldric Degorre for discussions on periodic schedul-
ing and Scott Cotton for his advice on SAT and SMT.

REFERENCES

[1] V. Pareto. Manuel d’économie politique. Bull. Amer. Math. Soc., 18:462–
474, 1912.

[2] M. Mitchell. An introduction to genetic algorithms. The MIT press,
1998.

[3] K. Deb. Multi-objective optimization using evolutionary algorithms.
Wiley, 2001.

[4] M.W. Moskewicz., C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. IEEE Design Automation
Conference, 2001. Proceedings, 530–535, 2001.

[5] L. De Moura and N. Bjorner. Z3: An efficient SMT solver. In TACAS,
pages 337–340, 2008.

[6] L. Paquete and T. Stützle. Stochastic local search algorithms for
multiobjective combinatorial optimization: A review. Technical Report
TR/IRIDIA/2006-001, IRIDIA, 2006.

[7] J. Legriel, C. Le Guernic, S. Cotton, and O. Maler. Approximating the
Pareto front of multi-criteria optimization problems. In TACAS, pages
69–83, 2010.

[8] M. Ehrgott. Multicriteria optimization. Springer Verlag, 2005.
[9] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography

of multiobjective combinatorial optimization. OR Spectrum, 22(4):425–
460, 2000.

[10] J. Figueira, S. Greco, and M. Ehrgott. Multiple criteria decision analysis:
state of the art surveys. Springer Verlag, 2005.

[11] R.E. Steuer. Multiple criteria optimization: Theory, computation, and
application. John Wiley & Sons, 1986.

[12] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach. IEEE
transactions on Evolutionary Computation, 3(4):257–271, 1999.

[13] X. Fan, W.D. Weber and L.A. Barroso. Power provisioning for a
warehouse-sized computer. ACM Proceedings of the 34th annual
international symposium on Computer architecture, 13–23, 2007.

[14] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca.
Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on Evolutionary Computation, 7(2):117–132,
2003.

[15] Y. Abdeddaim, E. Asarin and O. Maler Scheduling with timed automata
, Theoretical Computer Science 354, 272-300, 2006.

[16] C. Barrett, R. Sebastiani, S.A. Seshia and C. Tinelli, Satisfiability
modulo theories, Handbook of satisfiability, IOS Press, 2009

[17] S.S Battacharyya, P.K Murthy and E.A. Lee, Software synthesis from
dataflow graphs, Kluwer, 1996.

[18] G. Bottazzo. Hard Real-Time Computing Systems: Predictable Scheduld-
ing Algorithms and Applications, Springer, 2005.

[19] Ph. Baptiste , C. Le Pape, W. Nuijten, Constraint-based Scheduling:
Applying Constraint Programming to Scheduling, Springer, 2001.

[20] L. Benini, D. Bertozzi , A. Guerri and M. Milano, Allocation and
scheduling for MPSoCs via decomposition and no-good generation,
CP’05, 107-121, 2005.

[21] L. Benini and G. De Micheli, Networks on chips: A new SoC paradigm,
Computer 35, 70-78, 2002.



[22] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis and P. Niebert,
From Simulink to SCADE/Lustre to TTA: a layered approach for
distributed embedded applications, LCTES’03, 2003.

[23] E.G. Coffman, Computer and job-shop scheduling theory, Wiley, New
York, 1976.

[24] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi and A. Scandurra,
Spidergon: A novel on-chip communication network, System-on-Chip,
2004.

[25] S. Cotton, A study of some problems in satisfiability solving, PhD Thesis,
University of Grenoble, June 2009.

[26] M. Davis, G. Longemann, and D. Loveland. A machine program for
theorem proving, CACM 5, 394-397, 1962.

[27] A. Degorre and O. Maler, On scheduling policies for streams of
structured jobs, FORMATS’08, 141-154, LNCS 5215, 2008.

[28] R.P. Dick, D.L. Rhodes and W. Wolf, TGFF: Task graphs for free,
CODES/CASHE’98, 97-101, 1998.

[29] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic paral-
lelization. Birkhauser Boston, 2000.

[30] B. Dutertre, L.M. de Moura: A fast linear-arithmetic solver for DPLL(T),
CAV’06, 81-94 LNCS 4144, 2006

[31] H. El-Rewini, T.G. Lewis and H.H. Ali Task scheduling in parallel and
distributed systems, Prentice-Hall, 1994

[32] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
DPLL(T) fast decision procedures, CAV04, 175-188, 2004.

[33] M.I. Gordon, W. Thies, and S. Amarasinghe, Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs, ASPLOS, 2006.

[34] J. Hu and R. Marculescu, Energy-aware communication and task
scheduling for network-on-chip architectures under real-time constraints,
DATE’04, 234- 239, 2004.

[35] J. Jaffar and M.J. Maher, Constraint logic programming: a survey, J. of
Logic Programming 19/20, 503-581, 1994

[36] J.W.S Liu, Real-Time Systems, Prentice Hall, 2000.
[37] A. Schrijver Theory of linear and integer programming, Wiley, 1998.
[38] G. Sih and E.A. Lee, List scheduling modifications to account for

interprocessor communication within interconnection-constrained het-
erogeneous processor networks, Int. Conf. on Parallel Processing, 1990.

[39] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti and M. Milano,
Communication-aware allocation and scheduling framework for stream-
oriented multi-processor systems-on-chip, DATE’06, 2006.

[40] L. Zhang and S. Malik: The quest for efficient boolean satisfiability
solvers, CAV’02 17-36, LNCS 2404, 2002.


