
A Stochastic Approach for Fine Grain QoS Control

Jacques Combaz, Loı̈c Strus
Verimag, Centre Equation - 2 avenue de Vignate F38610 Gières, France

Abstract

We present a method for fine grain QoS control of multi-
media applications. This method takes as input an applica-
tion software composed of actions parameterized by quality
levels. Our method allows the construction of a Quality
Manager which computes adequate action quality levels, so
as to meet QoS requirements (action deadlines are met and
quality levels are maximal) for a given platform.

We have developed a stochastic approach based on prob-
ability distribution functions for the execution time of the
actions. Our method is parameterized according to the im-
portance attributed to deadline misses. This means that the
user is given the possibility to express how hard the real-
time constraints are. Besides, given a value of the parame-
ter, we can compute the expected deadline miss ratio for the
controlled application.

We present experimental results including the implemen-
tation of the method and benchmarks for an MPEG4 video
encoder.

1. Introduction
Designing systems meeting both hard and soft real-time

requirements is a challenging problem. There exist well-
established design methodologies for hard real-time sys-
tems, that is, systems that do not violate critical properties
such as deadlines. These methodologies are based on worst-
case analysis using conservative approximations of the sys-
tem dynamics and static resource reservation. This implies
high predictability but a non optimal use of resources.

In contrast, design methodologies for soft real-time are
based on average-case analysis and seek more efficient use
of resources (e.g. optimization of speed, jitter, memory,
bandwidth, power) without addressing critical behavior is-
sues. They are used for applications where some degra-
dation or even temporal denial of service is tolerated, e.g.,
multimedia and telecommunications.

These two classes of design methodologies are currently
disjoint. Meeting hard real-time properties and making op-
timal use of available resources seem to be two antagonistic
requirements. The existing gap between hard and soft real-
time often leads to costly and unreliable solutions. Develop-

ment of soft real-time approaches that ensure predictability
is a key challenge in the design of modern methodologies
for real-time embedded systems.

Our method targets multimedia applications. It allows
adapting the overall system behavior by adequately setting
quality level parameters for its actions. The objective of
the quality management policy is to meet QoS requirements
including three types of properties: 1) safety (no deadlines
are missed); 2) optimality, (maximization of the utilization
of available time budget); 3) smoothness of quality levels.

The method takes as input an application software with
timing information about its actions. This includes dead-
lines and (platform-dependent) execution times. It produces
a controlled application software meeting the QoS require-
ments for the target platform. This is obtained by apply-
ing to the application software a Controller consisting of
a Scheduler and a Quality Manager. Depending on the
progress of the computation, the Scheduler chooses the next
action to be executed and the Quality Manager computes the
associated quality level parameter.

In [5], we explained how to build quality management
policies meeting QoS requirements. We also provided low
overhead implementations of the controller in [6].

In this paper, we present a stochastic approach for com-
puting quality management policies. It uses probability
distribution functions representing varying execution times.
The proposed quality management policies are parame-
terized according to the importance attributed to deadline
misses. This means that the user is given the possibility
to express how hard the real-time constraints are. Besides,
given a value of the parameter, we provide tools for com-
puting the expected deadline miss ratio for the controlled
application.

We consider the following simplified version of the gen-
eral problem by assuming that the application software is
already scheduled:
• The application software cyclically performs input/output
transformations of data streams. It is described as a finite
sequence of actions. Its execution during a cycle can be
controlled by choosing quality level parameters.
• We consider single-thread implementations of the appli-
cation software on a platform for which it is possible, by

using timing analysis and/or profiling techniques, to com-
pute probability distributions of execution times of actions
for different quality levels. Action execution is atomic.

The controlled software can be considered as the com-
position of the initial application software with a Quality
Manager (see figure 1). The latter monitors the progress of
the computation within a cycle of the application software.
At any state of the cycle, it chooses the quality level for the
next action to be executed, guided by a quality management
policy. This is a constraint guaranteeing safety and embody-
ing an optimality criterion. The Quality Manager chooses
the maximal quality satisfying this constraint.

Our method significantly differs from existing ones. The
main difference is fine granularity of quality management,
which allows combination of hard and soft real-time tech-
niques. Most existing techniques are applied at system or
task level, focus on average scenario and do not provide
predictability. Taking into account worst-case scenario is
useful in applications where quality should remain above
some minimal level [2], e.g., home TVs. Buttazzo et al.’s
elastic tasks model [3], as well as slack scheduling [7], [10]
and gain time techniques [1] are based only on worst-case
execution times and do not deal with quality smoothness.
Lu et al. [11] propose a feedback scheduling based on PID
controllers. Steffens et al. [13] minimize deadline misses
of an MPEG decoder by applying a Markov decision pro-
cess and reinforcement learning techniques, combined with
structural load analysis. A few papers have studied perfor-
mance estimation for tasks with varying computation times
[9],[8],[12],[14]. Kalavade and Mogh [9] studied the tim-
ing performance of networked embedded systems, which
may have precedence constraints. The authors proposed an
algorithm which aim at finding a probability of each task
meeting its timing constraints. Their algorithm is based on
a Markovian stochastic processes.

The paper is organized as follows. In section 2 we
present the quality management problem. A stochastic
quality manager and performance analysis tools are pre-
sented in section 3. Section 4 presents experimental results
for a non trivial MPEG4 video encoder.

2. Quality Management
2.1. Definition of the Problem

We provide a formalization of the quality management
problem by considering that the application software is al-
ready scheduled. It is characterized by an execution se-
quence { si−1

ai−→ si }1≤i≤n, where S = { s0, . . . , sn }
is a set of states and for all i we have ai ∈ A where A is a
finite set of actions. Actions correspond to blocks of code,
their execution is atomic.

Execution times for actions may considerably vary over
time as they depend on the contents of data. Furthermore,
non predictability of the underlying platform is an addi-

tional factor of uncertainty. We consider that they are not
known in advance, but are characterized by discrete proba-
bility distributions. These can be obtained by profiling tech-
niques. To cope with the inherent uncertainty of execution
times, we assume that actions are parameterized by quality
levels. This leads to the following model.

Definition 1. A parameterized system PS is an applica-
tion software (A,S) with
• a finite set of integer quality levels Q
• a set of independent and discrete random variables
{ C(ai, q) ∈ N }ai∈A,q∈Q, representing the actual execu-
tion times of the actions
• for each action ai ∈ A and quality level q ∈ Q, we
assume that dq

ai
: N → [0, 1] is the probability distribu-

tion function of C(ai, q), that is, dq
ai

(k) = P
[
C(ai, q) =

k
]

where P
[
C(ai, q) = k

]
denotes the probability of

C(ai, q) = k, and it satisfies
∑
k≥0

dq
ai

(k) = 1.

The execution of a parameterized system is charac-
terized by the family of sequences { (si−1, ti−1)

ai,qi−→
(si, ti) }1≤i≤n,qi∈Q such that t0 = 0 and ti − ti−1 =
C(ai, qi).

Quality Managers are used to restrict the behavior of a
parameterized system so as to meet given properties.

Definition 2. Given a parameterized system PS a Quality
Manager is a function Γ : S × N → Q giving, for a state
(si−1, ti−1) of PS, the quality level qi for executing the next
action ai.

PS||Γ denotes a controlled system obtained as the com-
position of the parameterized system PS and the Quality
Manager Γ. For given values of execution times C(ai, q),
it has a single execution sequence { (si−1, ti−1)

ai,qi−→
(si, ti) }1≤i≤n such that qi = Γ(si−1, ti−1).

Given a deadline D ∈ N, we denote by µ(Γ) the dead-
line miss ratio for the Quality Manager Γ. It is defined by
the probability for missing the deadline in PS||Γ, that is
µ(Γ) = P

[
tn > D

]
where tn is the completion time of the

last action in PS||Γ.

The quality management problem for a given parame-
terized system PS consists in finding a Quality Manager Γ
meeting the QoS requirements. That is, deadline is met with
a minimal probability and the overall quality is maximal. It
is formalized as follows.

Definition 3 (quality management problem). Given a pa-
rameterized system PS, a deadline D and a target deadline
miss ratio λ ∈ [0, 1], find a Quality Manager Γ such that:
• Γ has a maximal deadline miss ratio of λ: µ(Γ) ≤ λ.
• The overall execution time is maximal, that is for any
Quality Manager Γ′ with a maximal deadline miss ratio of
λ we have tn ≥ t′n, where tn (resp. t′n) is the completion
time of the last action in PS||Γ (resp. PS||Γ′).

Parameterized System PS
current state (si−1, ti−1)

qi

Quality Manager Γ

(si−1, ti−1)

qi := max { q | tD(si−1, q) ≥ ti−1 }

Figure 1. Quality Manager

In [5], we require in addition smoothness for the chosen
quality levels.

2.2. Quality Manager Design

Figure 1 shows interaction between the Quality Manager
Γ, applying a quality management policy, and the applica-
tion software, i.e. the parameterized system PS. The Qual-
ity Manager observes the current state (si−1, ti−1) of PS
and computes the next quality level qi for the next action
ai. The Quality Manager is defined by:

Γ(si−1, ti−1) = qi = maxq∈Q tD(si−1, q) ≥ ti−1.

The function tD : S × Q → N defines the quality man-
agement policy of the Quality Manager. It gives for a
state of the application software si−1 and a quality level q
the estimated elapsed time tD(si−1, q) if the remaining ac-
tions are executed with constant quality q. If the inequality
tD(si−1, q) ≥ ti−1 is satisfied, then it is possible to com-
plete execution with the quality level q. The chosen quality
level qi at state (si−1, ti−1) is maximal amongst the qual-
ity levels q meeting the inequality tD(si−1, q) ≥ ti−1. The
function tD is defined by tD(si−1, q) = D−CD(ai..an, q),
where CD(ai..an, q) denotes an estimation of the total exe-
cution time for the sequence of actions ai, ai+1, . . . , an.

Choosing an adequate quality management policy, i.e.
meeting QoS requirements, is a non trivial problem dis-
cussed in [4] and [5]. In [5] we proposed the mixed
quality management policy based on average and worst-
case estimates of execution times. To cope with overesti-
mated worst-case execution times, the next section propose
a stochastic adaptation of the mixed quality management
policy by using probabilistic worst-case execution times.

3. Stochastic Quality Manager
The quality management policy proposed in this section

is a stochastic adaptation of the mixed quality management
policy defined in [5]. It is obtained from the latter by replac-
ing worst-case estimates of execution times with probabilis-
tic worst-case estimates. We introduce the safety threshold
that is a parameter for building these estimates.

As actual execution times may exceed probabilistic
worst-case estimates, using stochastic quality management
policy may lead to deadline misses. For that reason we pro-
vide an algorithm for computing the expected deadline miss
ratio of the controlled application.

Parameterized System

Mixed Quality Management
Policy Generator

Performance Analysis
Tools

Estimates of Execution
Times Generator

Probabilistic Worst-Case
Execution Times Execution Times

Average

Expected Deadline
Miss Ratio

Expected Time
Budget Utilization

parameter
safety threshold

Figure 2. Quality management tool chain

3.1. Estimates of Execution Times
Given an action ai and a quality level q, we define the

average execution time as the mean value E(dq
ai

) of the cor-
responding probability distribution function dq

ai
.

Definition 4. Given a parameterized system PS, we define
the average execution time function Cav : A × Q → N by
Cav(ai, q) = E(dq

ai
) =

∑
k≥0

kdq
ai

(k).

The computation of probabilistic worst-case execution
times is parameterized by the safety threshold τ ∈ [0, 1].
These worst-case estimates are computed so that the proba-
bility of exceeding them is lower than τ .

Definition 5. Given a parameterized system PS and a
safety threshold τ , we define the probabilistic worst-case
execution time function Cwc

τ : A × Q → N such that
P
[
C(ai, q) > Cwc

τ (ai, q)
]
≤ τ , that is:

Cwc
τ (ai, q) = mink≥0

∑
l>k

dq
ai

(l) ≤ τ.

3.2. Stochastic Quality Management Policy
The stochastic quality management policy Cmx

τ con-
sidered in this paper is obtained from mixed quality
management policy [5] by replacing worst-case execution
times with probabilistic worst-case execution times, that is,
Cmx

τ = Cav + δmax
τ , where δmax

τ (ai..an) = max { 0 } ∪
{ Csf

τ (aj ..an, q) − Cav(aj ..an, q) | i ≤ j ≤ n } and
Csf

τ (aj ..an, q) = Cwc
τ (ai, q) + Cwc

τ (ai+1, qmin) + .. +
Cwc

τ (an, qmin).
As actual execution times may exceed probabilistic

worst-case estimates, using stochastic quality management
policy may lead to deadline misses. Setting τ to 0 implies
that the probability for exceeding probabilistic worst-case
execution times Cwc

0 is null. In other words, Cwc
0 are ex-

act worst-case execution times (i.e. actual execution times

never exceed them), with the assumption that probability
distribution functions dq

ai
are an exact model of execution

times of actions. For τ = 0 the stochastic quality man-
agement policy is equivalent to the standard mixed quality
management policy. It ensures that no deadline is missed.

On the contrary, the probabilistic worst-case execution
time function Cwc

τ tends to 0 as τ tends to 1. As a result,
using τ = 1 (i.e. Cwc

1 = 0) leads to stochastic quality man-
agement policies only based on average execution times,
without addressing deadline miss ratio minimization.

The stochastic quality management policy provides flex-
ibility in the combination of the average and worst-case be-
havior. The safety threshold will determine how much the
stochastic quality management policy takes the worst-case
scenario into account. It ranges from no taking into account
the worst-case — which corresponds to pure soft real-time
(τ = 1) — to maximal taking into account — which cor-
responds to hard real-time, that is, no deadline is missed
(τ = 0). In some sense, the parameter τ is used to express
how hard the deadline D is. Our method helps designers to
achieve good compromises between deadline miss ratio and
resource utilization.

3.3. Performance Analysis
In this section we provide a method allowing prediction

of the behavior of the controlled application. We develop an
algorithm that computes probability distribution functions
for the completion time of the actions.

The completion time ti of an action ai in the controlled
system PS||Γ is defined recursively by t0 = 0 and ti =
ti−1 + C(ai, qi), where qi is only determined by the value
of ti−1, that is, qi = Γ(si−1, ti−1). We denote by di : N→
[0, 1] the probability distribution function of ti. It is defined
by di(k) = P

[
ti = k

]
where P

[
ti = k

]
is the probability of

ti = k.
Let k be an integer. As { ti = k ∧ ti−1 = l }l∈N are

mutually exclusive events, we obtain:

P
[
ti = k

]
=

∑
l≥0

P
[
ti = k ∧ ti−1 = l

]
. (1)

As ti = ti−1 + C(ai, qi), we have:

P
[
ti = k ∧ ti−1 = l

]
= P

[
ti−1 = l ∧ C(ai, qi) = k − l

]
.

Since ti = C(a1, q1) + . . . + C(ai−1, qi−1) and execution
times of actions are independent, we obtain:

P
[
ti = k ∧ ti−1 = l

]
= P

[
ti−1 = l

]
P
[
C(ai, qi) = k − l

]
.

The above equation and (1) leads to the following relation-
ship between distribution functions:

di(k) =
∑
l≥0

di−1(l)dqi
ai

(k − l). (2)

Algorithm 1 given below is based this relationship. We
assume that uninitialized values are equal to 0. The order of
computation in the algorithm slightly differs from the one

of (2). Given integers l and t, we increment the value of
di(l + t) by di−1(l)dqi

ai
(t), which is equivalent to (2).

It can be shown that the proposed algorithm is polyno-
mial in the number of actions and in the length of the dis-
tributions of execution times. However, it can easily be ac-
celerated by using Fast Fourier Transform for computing
convolutions.

parametric convolution({ dqi
ai
}1≤i≤n,Γ)

i = 1
d0(0) = 1
for i← 1 to n do

foreach l such that di−1(l) 6= 0 do
qi = Γ(si−1, l)
foreach t such that dqi

ai
(t) 6= 0 do

di(l + t) ← di(l + t) + di−1(l) ∗ dqi
ai

(t)

Algorithm 1: Parametric convolution

Performance evaluation of the Quality Manager is done
by measuring deadline miss ratio, that is, probability of
deadline misses, as well as expected time budget utiliza-
tion, that is, the expected overall execution time tn. The al-
gorithm proposed above allows computing the distribution
dn of tn, depending on the safety threshold parameter τ .

Expected Deadline Miss Ratio. The deadline miss ratio
is defined by P

[
tn > D

]
(see definition 2). Since dn is the

probability distribution function of the random variable tn,
the expected deadline miss ratio for the controlled applica-
tion is defined by

∑
k>D

dn(k).

Expected Time Budget Utilization. The expected time
budget utilization is computed as the mean value of the dis-
tribution dn, that is, E(tn) =

∑
k≥0

kdn(k).

4. Experimental Results
This section provides experimental results for an

MPEG4 video encoder. They confirm the interest of the-
oretical sections.

4.1. Experimental Framework
We applied our results to an MPEG4 video en-

coder written in C (more than 10,000 lines of code).
The encoder cyclically treats frames. Each frame is
split into N macroblocks of 16 × 16 pixels. In
the following, we consider frames of 320 × 144 pix-
els (N = 180). Encoding each macroblock is done
by 5 actions: Grab Macroblock, Motion Estimation,
DCTQuantIQuantIDCT, IntraPredictionCoding and
Reconstruction. The action Motion Estimation is
parameterized by a quality level q ∈ Q = { 0, . . . , 8 }.

The other actions do not depend on the quality level q. As a
result, the action Motion Estimation is said controllable
while the others are said uncontrollable. The probability
distribution functions dq

ai
have been computed by using pro-

filing techniques. Figure 3 gives examples of distributions
for Motion Estimation.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

d3
Motion Estimation

q = 3

p
r
o
b
a
b
i
l
i
t
y

execution time (cycles)

d6
Motion Estimation

q = 6

p
r
o
b
a
b
i
l
i
t
y

execution time (cycles)

Figure 3. Distributions for Motion Estimation

The considered application corresponds to a videophone
application. It captures a sequence of frames with a cam-
era, transmits the sequence, and then displays the frames on
a screen. The target platform is an STm8010 board from
STMicroelectronics. A register that counts the number of
processor cycles elapsed provides a real-time clock with
minimal access overhead.

We developed a prototype tool that allows the generation
of the controlled application software (see figure 2). The
inputs of the tool are an application software, probability
distributions, the deadline, and the safety threshold param-
eter τ . From these inputs, the tool computes C code corre-
sponding to the application software, and tables containing
pre-computed values used by the Quality Manager. We have
considered two different schedules (schedules #1 and #2)
composed of the same actions, and a deadline D = 100 ms
(i.e. 10 frame/s).

4.2. Performance Analysis
We have computed the expected deadline miss ratio

µ(Γmx
τ) and the expected time budget utilization E(tn) for

different values of the safety threshold parameter τ (see
Figure 4). The expected time budget utilization E(tn) are
given in percentage of the deadline D. As explained in sec-
tion 3.3, the computation of µ(Γmx

τ) and E(tn) requires the

computation of the probability distribution dn of the com-
pletion time tn of the last action an.

The deadline miss ratio and the time budget utilization
increase as the safety threshold τ increases, which confirms
theoretical definitions of section 3.2. For values of τ suf-
ficiently high (τ > 0.4), the deadline miss ratio as well
as the time budget utilization are constant. This is due
to the fact that, for these values of τ , the stochastic qual-
ity management policy is equal to the average policy (i.e.
Cmx

τ = Cav). The video encoder behaves then as a pure
soft real-time application.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

schedule #1 (S1, A)

schedule #2 (S2, A)

safety threshold τ
d
e
a
d
l
i
n
e

m
i
s
s

r
a
t
i
o

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

schedule #1 (S1, A)
schedule #2 (S2, A)

safety threshold τt
i
m
e

b
u
d
g
e
t

u
t
i
l
i
z
a
t
i
o
n

(
%
)

Figure 4. Expected time budget utilization
and deadline miss ratio

The difference between the results obtained with sched-
ules #1 and #2 comes from the position of controllable ac-
tions in the schedule. Controllable actions are scattered all
along schedule #2, whereas they are put together at the be-
ginning of schedule #1. Consequently, the Quality Manager
keeps control on the execution times of actions during the
execution of schedule #2. On the contrary, once all control-
lable actions have been executed in schedule #1, the Quality
Manager has no control anymore on the (uncertain) execu-
tion times of the remaining (uncontrollable) actions.

Uncontrollability combined with unpredictability leads
to poor performances when using schedule #1. Figure 4
shows an important amount of time budget lost by the ap-
plication for τ < 0.2. In addition, the deadline miss ratio
reaches 50% for τ > 0.4 (see Figure 4). For such an ap-
plication, our approach can be useful for choosing adequate
compromises between the deadline miss ratio and the time
budget utilization, depending on user requirements.

Results obtained when running the application with

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

τ = 0.3

frame number

t
i
m
e
b
u
d
g
e
t
u
t
i
l
i
z
a
t
i
o
n
(
%
) frame number

τ = 0.1
t
i
m
e
b
u
d
g
e
t
u
t
i
l
i
z
a
t
i
o
n
(
%
)

Figure 5. Actual time budget utilization for
schedule #1

schedule #1 on the target platform confirm expected values
of the deadline miss ratio and the time budget utilization
computed by our performance analysis tool. In Figure 5,
bursts of jumps correspond to frame skips occurring when
deadlines are missed. Notice that no deadline is missed for
an application running with τ = 0.1. The amount of dead-
line misses significantly increases for τ = 0.3. The time
budget utilization is, in average, 85% for τ = 0.1 and 95%
for τ = 0.3.

Results obtained for schedule #2 confirm that (standard)
mixed quality management policy is still useful for some
applications. In fact, schedule #2 allow running the appli-
cation with τ = 0 without significant unused time budget.

5. Conclusion
Our approach reduces the impact of the worst-case es-

timates of system behavior by using quality management
techniques and probabilistic worst-case estimations of exe-
cution times. A parameter is used to determine how much
the stochastic quality management policy takes the worst-
case scenario into account, ranging from no taking into ac-
count the worst-case — which corresponds to pure soft real-
time — to maximal taking it into account — which corre-
sponds to hard real-time, that is, no deadline is missed. In
some sense, the parameter is used to express how hard the
deadlines are.

Our method can considerably help engineers to design
real-time applications that are fitted to QoS requirements.
In addition, it can improve code reuse as well as reliability.

Choices of the Quality Manager would be more accurate

if dependencies between the execution times were consid-
ered. We plan to work on models and quality management
policies that include these dependencies.

References

[1] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms for
enhancing the flexibility and utility of hard real-time sys-
tems. In Real-Time Systems Symposium, pages 12–21. IEEE,
1994.

[2] R. J. Bril, M. Gabrani, C. Hentschel, G. C. van Loo, and
E. F. M. Steffens. QoS for consumer terminals and its sup-
port for product families. In Proceedings of the International
Conference on Media Futures, 2001.

[3] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model
for adaptive rate control. In RTSS, pages 286–295, 1998.

[4] J. Combaz, J. Fernandez, T. Lepley, and J. Sifakis. Fine
grain QoS control for multimedia application software. In
Design, Automation and Test in Europe (DATE’05) Volume
2, pages 1038–1043, 2005.

[5] J. Combaz, J.-C. Fernandez, T. Lepley, and J. Sifakis. QoS
Control for Optimality and Safety. In Proceedings of the 5th

Conference on Embedded Software, September 2005.
[6] J. Combaz, J.-C. Fernandez, J. Sifakis, and L. Strus. Us-

ing speed diagrams for symbolic quality management. In
IPDPS, pages 1–8. IEEE, 2007.

[7] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack
time in fixed priority preemptive systems. In Proceeding
of the IEEE Real-Time Systems Symposium, pages 222–231,
1993.

[8] X. S. Hu, T. Zhou, and E. H.-M. Sha. Estimating proba-
bilistic timing performance for real-time embedded systems.
IEEE Trans. Very Large Scale Integr. Syst., 9(6):833–844,
2001.

[9] A. Kalavade and P. Moghé. A tool for performance estima-
tion of networked embedded end-systems. In DAC ’98: Pro-
ceedings of the 35th annual conference on Design automa-
tion, pages 257–262, New York, NY, USA, 1998. ACM.

[10] J. Lehoczky and S.Thuel. Algorithms for scheduling hard
aperiodic tasks in fixed-priority systems using slack stealing.
In Proceedings of the IEEE Real-Time System Symposium,
1994.

[11] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control
real-time scheduling: Framework, modeling and algorithm.
special issue of RT Systems Journal on Control-Theoric Ap-
proach To Real-TIme Computing, 23(1/2):85–88, 2002.

[12] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis
of applications with stochastic task execution times. Trans.
on Embedded Computing Sys., 3(4):706–735, 2004.

[13] C. C. Wüst, L. Steffens, R. J. Bril, and W. F. Verhaegh.
QoS control strategies for high-quality video processing. In
Euromicro Conference on Real-Time Systems, pages 3–12.
IEEE, 2004.

[14] T. Zhou, X. S. Hu, and E. H.-M. Sha. A probabilistic perfor-
mance metric for real-time system design. In CODES ’99:
Proceedings of the seventh international workshop on Hard-
ware/software codesign, pages 90–94, New York, NY, USA,
1999. ACM.

