A framework for the timing analysis of
dynamic branch predictors

Claire Maiza
INP Grenoble, Verimag
Grenoble, France
claire.maiza@imag.fr

Abstract

Real-time systems require predictable processor be-
havior such that tight upper bounds on the worst-case
execution times (WCETs) of their critical tasks can be
derived. Methods for estimating these upper bounds re-
ceived much attention in the last fifteen years. How-
ever, the use of high-performance processors to meet ever
growing performance requirements demands the develop-
ment of more and more complex models. This is also the
case for dynamic branch prediction schemes that are im-
plemented in processors used in embedded systems. In this
paper we focus on the static timing analysis of dynamic
branch prediction based on the implicit path enumeration
technique. The goal of this paper is to introduce a frame-
work that allow to generate the IPET model of dynamic
branch prediction mechanisms. With this framework we
generated the models of some branch predictors and com-
pare them.

1. Introduction

Real-time systems differ from other computer systems
by the fact that respecting timing constraints is as impor-
tant as providing correct results. In other words, the sys-
tem not only has to deliver correct results, but must also
deliver them in time. This must be proved by timing anal-
ysis. The objective is to assess that the longest execution
time of each task makes it possible to build a task sched-
ule that meets the constraints. When time-critical appli-
cations are considered, the timing analysis is expected to
produce safe upper bounds of the execution times, also
called upper bounds of the WCETs, for Worst-Case Exe-
cution Times.

Techniques for WCET analysis have been investigated
for more than twenty years but they always need im-
provement and extensions to support increasingly com-
plex hardware (needed to fulfill ever growing performance
requirements). For example, recent embedded processors
like ARM 11 and Cortex-A8 or PowerPC 750 implement
dynamic branch prediction schemes. Their behavior is to
be taken into account when computing WCETSs. Several

Christine Rochange
IRIT - CNRS
Université de Toulouse, France
rochange @irit.fr

solutions have been proposed in the literature and will be
described below. Our contribution in this paper is a gen-
eral framework to derive models for dynamic branch pre-
dictors the most frequently available in embedded cores.

The static analysis of dynamic branch prediction can
be local, i.e., each branch is considered in isolation and
its behavior is determined by the algorithmic structure it
implements , or global, i.e., all branches are analyzed con-
junctly so that their possible interactions can be accounted
for.

Local approaches [5, 3, 2] aim at computing the num-
ber of mispredictions for each branch by only considering
its previous executions. Then, they are limited to sim-
ple dynamic branch predictors such as bimodal predic-
tors (see Section 2) that do not rely on a global history
of branches. Furthermore, except for [5] that is based on
the source code, the local approach is only used under the
very optimistic assumption that the entries of the predic-
tion table are not shared: The effect of sharing needs to
be analysed separately, in a similar way of cache analysis,
and in the case of conflicts, the branches are considered as
mispredicted.

Global approaches describe the behavior of the branch
predictor as a set of constraints [7, 4] that extend the ILP
formulation used to estimate the WCET of the program
with the IPET method [8]. The solution of the ILP prob-
lem includes the execution count of each branch and its
number of mispredictions along both directions. Previous
work using the global approach introduce a system of con-
straints to model one specific branch predictor: one based
on local histories and 1-bit counters [7] and one based on
a global history and 2-bit counters [4].

In this paper, we consider the global approach. The
main contribution of the paper is a framework to model
branch predictors in a generic way, which extends previ-
ous solutions [7, 4]. This framework allows modeling any
branch predictor that uses a branch history table (BHT),
1-bit or 2-bit counters to compute the prediction and var-
ious ways to index the BHT (address of the branch, local
or global history, or any combination). It is structured in
three parts, each one being related to a view of the BHT
behavior: computation of the BHT index, computation of

the interdependencies between branches sharing the same
BHT entry, and computation of the prediction by predic-
tion counters.

The framework allows to model a large number of BHT
configurations. It is generic on:

- the size of the BHT,

- the branch history (local or global),

- the size of the branch history,

- the matching function used to index the BHT (for in-

stance: exclusive-or),
- the size of prediction counters (1 bit or 2 bits).

Varying these parameters, we generate some models of
branch predictors. The second contribution of the paper is
an evaluation of the global approach based on the gener-
ated models. We use the modeling complexity notion [4]
to compare the size of the models. From this compari-
son we conclude about the global approach and the branch
predictors that fit better to be modeled by this approach.
Note that the timing analyses of branch prediction using
these two approaches are limited to architectures that do
not exhibit timing anomalies [?], i.e., a misprediction is
the worst case and can be accounted for by a fixed con-
stant penalty.

The paper is organized as follows. Section 2 gives a
short overview of dynamic branch prediction and lists the
schemes that are implemented in some embedded proces-
sors. In Section 4 we introduce our framework and show
how it can be used to generate the models of some dy-
namic branch predictors. The approach is evaluated in
Section 5 and we give some concluding remarks in sec-
tion 6.

2. Dynamic branch prediction

Branch prediction enhances the pipeline performance
by allowing the speculative fetching of instructions along
the predicted path after a conditional branch has been en-
countered and until it is resolved. If the branch was mis-
predicted, the pipeline is flushed and the correct path is
fetched and executed.

The BTB (Branch Target Buffer) is used to (i) detect
the presence of a branch instruction in the flow of fetched
instructions before it has been decoded and (ii) to provide
the branch target address in case the branch is predicted
as taken. The BTB is indexed by the lower bits of the
program counter (PC) and each entry is tagged with the
branch address (PC) for verification.

Possible directions of a branch instructions are faken
(usually coded by ”1”) or not taken (coded by ”0”). The
dynamic prediction of a branch direction is generally
based on a counter that reflects the branch history. A 1-
bit counter stores the last outcome of the branch. More
often, a 2-bit saturating counter is used. Its four pos-
sible states are show in Figure 1: strongly taken (T),
weakly taken (t), weakly not taken (nt) and strongly not
taken (NT). The counter is incremented when the branch

SOES6

0 1

0

006

Figure 1. Behavior of a 2-bit branch predic-
tion counter

is taken and decremented otherwise. The next instance
of the branch is predicted as taken whenever the upper
bit is set [11] and not taken when it it cleared. Several
prediction counters(to be used by different branches) are
maintained in a BHT (Branch History Table).

Dynamic branch predictors differ by the way they
index the BHT: the bimodal branch predictor uses the
branch instruction address (PC) [11], while global branch
predictors use an n-bit register that stores the outcomes of
the n last executed branches [12]. For these schemes, the
BHT can be directly indexed by the global history regis-
ter (see Figure 2) or by a function (generally an exclusive-
OR) of the history and the branch PC. This last scheme is
known under the name gshare. A local history, private to
each branch, can also be used.

Note that more complex schemes exist but we have
not found them implemented in any embedded processor.
Therefore, we do not consider them in this paper.

Unlike the Branch Target Buffer, the Branch History
Table is usually not tagged to reduce costs. Two branches
reaching the same entry of the BHT use the same predic-
tion counter. Shared entries are more frequent when the
BHT is indexed by a global history, even when this phe-
nomenon — known as aliasing — is reduced by XOR-ing
the history with the branch PC. Sharing can be advanta-
geous (i.e. a branch takes advantage from the fact that its
2-bit counter has been updated by another branch) but it is
more often destructive.

Table 1 shows the branch prediction schemes imple-
mented in four embedded processors. The BHT is indexed
by the branch PC in most of the cases. However, one pro-
cessor implements a global-history branch predictor.

Core BHT size BHT Index Prediction
ARM-CortexA8 4096 history and PC* 2-bit
ARM-11° 128 PC 2-bit
PowerPC-750 512 PC 2-bit
MIPS-34K 512 PC 2-bit

410 bits of history and 4 bits of PC used to compute the index
bunified BTB and BHT

Table 1. Branch predictors implemented in
five embedded processors

index

history register

[of1] .. J1]o

BHT

if predicted

2-bit counter taken
\ BTB

branch target

Figure 2. A global-history dynamic branch predictor

In this paper, we focus on these types of dynamic pre-
dictors. The prediction is based on 2-bits counters, and
the BHT is indexed by a function of the branch instruc-
tion address and the global history. In the remainder of
this paper, we focus on the analysis of the BHT behavior.
Modeling the BTB (that contains the target addresses for
branches that are predicted taken) is out of the scope of
this work. For this reason, we assume that each branch al-
ways hits in the BTB. As future work, we plan to combine
our analysis to a BTB analysis such as [5, 6].

3. Modeling dynamic branch prediction by
IPET

Throughout this paper, we use the following no-
tation. A control flow graph is given by: CFG =
(X,E,entry,exit) where X = {bo, ..., b, } denotes the set of
basic blocks b; of the program and E C X x X the corre-
sponding set of edges connecting them. The entry node is
denoted by entry and the exit node by exit. Furthermore,
we denote the set of basic blocks containing a conditional
branch by: B C X.

B ={b e X|x,x €X,(b,x1),(b,x2) €Eand x| #x2}
We also use the set of predecessors of a block and the set
of successors:

VieX,S; = {seX|(i,s) €E}

Vie X,P;={peX|(p,i) €E}

Finally, we use a partial function label on the edges to
mark the direction of the conditional branches:

Vb € B,label((b,sy)) # label((b,s2))

where sjand s, are the successors of b (S, = {s1,s2}) and
the direction of a conditional branch is taken (1) or not-
taken (0): D = {0, 1} (Vs € Sp,label((b,s)) € D)

Figure 3 shows a CFG that is used as an example
in this paper. For this CFG, we have X = {by..bg},
entry = by, exit =by, B = {b],b3,b5}, S3; = {b4,b5},
label((b3,bs)) = 1, label((b3,bs)) = 0.

3.1. WCET analysis with the IPET

The IPET method [8] aims at determining the longest
execution path and computing an upper bound on the
WCET. It considers the control-flow graph of the task un-
der analysis. A set of integer variables stands for the exe-
cution counts of the nodes (basic blocks) and edges. The

Figure 3. Example CFG

execution time of the task can be expressed by T = ¥ x;t;,
ieX
where x; and #; are the execution count and the worst-case

execution time of basic block b;, respectively. Estimat-
ing an upper bound on the WCET consists of maximiz-
ing this expression under a set of linear constraints. Flow
constraints express the control flow structure of the task,
i.e., the relations that must exist between the execution
counts of nodes (x; for basic block b;) and edges (xi ry for

the edge from b; to b; labeled with direction d — in some

equations, we will use the equivalent notation x. 4). The
14

flow constraints are:

VieXxi= Y x , +init
pep; P

VieX,xi= Y x, +end;
ses; s

Y end; =1

iex

Y init; =1

ieX

Note that end,,;; = 1 and Vi € X,i # exit = end; = 0.
Similarly, inite,ry = 1 and Vi € X, i # entry = init; = 0.
From the CFG illustrated in Figure 3, the flow con-
straints for block b3 are:
X3 =X o +xgu,+ init3

X3=x X end
3TN0 X 0, Tends

0
=

To bound the execution counts, the system needs some
additional constraints which we call semantic constraints.
They express loop bounds, infeasible paths, etc [?]. For
our example CFG, the system should least include the fol-
lowing semantic constraints:

X0, < MAX; X Xo

0. < MAX3 XX, 0
355 1=3
where MAX,, is a loop bound, i.e. the maximum number
of iterations of a loop, that depends on the semantic of the
program.

An upper bound on the WCET can be obtained us-
ing Integer Linear Program solvers like 1p_solve!. The
solution is returned as the set of values of the execution
counts that maximize the task execution time and satisfy
all constraints.

X

3.2. Integrated analysis of dynamic branch prediction

The IPET method computes the overall execution time
of a program by adding the execution times (costs) of
the basics blocks weighted by their respective execution
count. To take the impact of branch prediction into ac-
count, the expression of the execution time is extended
with an additional cost for each block that is the target of
a conditional branch whenever it is mispredicted.

This cost includes all the effects of branch prediction
on the pipeline state. In this paper, we ignore the impact
of branch prediction on cache memories (considered as
perfect?).

Note that a conditional branch is always the last in-
struction of a basic block. In the rest of the paper, for the
sake of simplicity, b € B is used to denote both a basic
block and the conditional branch it ends with (if any).

Variables m o and m denote the number of mis-
predictions for branch b € B when it follows direction
d €40, 1} (0is for not-taken, 1 for taken) while v, is the
related cost. The overall execution-time can be expressed

by:
T = Zx,-tH—Z Z md"j.g}

iex jeBacfo.y 1

Besides the addition of branch misprediction penal-
ties to the objective function, additional linear constraints
should express the behavior of the branch predictor. These
constraints can be generated in a methodical way through
the generic framework we introduce in the next section.
They bound the worst-case number of mispredictions for
both directions of each branch b € B.

4. A framework to model dynamic branch
predictor using IPET

In this section, we describe our framework. We show
how the behaviour of any branch predictor is modeled by
the IPET using the global approach.

Thttp://psolve.sourceforge.net/5.5/
Zperfect cache means that each access to the cache is a hit.

When the behaviour of the branch predictor at a given
point in the program is to be determined, three questions
should be answered.

The first one is: Which entry of the BHT is indexed
to predict the branch? Formally, the set of all indexes is
denoted by A = [0,2"] where n is the size of the BHT.
For each branch b € B, A, is the set of possible in-
dexes of the BHT that may be used to predict this branch.
The index A, € A, may depend on the state 7, of the
global history and on the branch instruction address @:
Ap = {A|3m, € Ty, Ay = f(@,m,)} where T, C IT is
the set of possible values of the global history at b (I1
is the set of all values of the global history). Note that
@ is usually not the whole branch instruction address
but only a significant part of it. For a bimodal predic-
tor, the index is computed directly from the branch in-
struction address: A, = f(@,m,) = {@}. In the case
of gshare, the mapping function f is an exclusive-OR:
Ap = { |3, € T, A, = @ ® 1 }. The set of equations
related to this first question is given in Section 4.1. Note
that these equations are not derived for predictors that do
not use a history register (e.g. bimodal).

The second question is: Which other branches may ac-
cess the same BHT entry? Remember that the capacity
of the BHT is limited and it is not tagged with branch
addresses: some branches may share the same BHT en-
try. Such branches may update the 2-bit counter according
to their own behaviour and thus influence the prediction.
Equations that express the aliasing to the BHT and the
order in which competing branches access to the shared
BHT entry are given in Section 4.2.

The third question is: What may be the 2-bit counter’s
state and thus the predicted direction? Some equations
are required to express the possible behaviours of the 2-bit
counter stored in the indexed BHT entry. They are derived
in Section 4.3.

Finally, all these equations must be related to build
the whole dynamic branch prediction model. This is ex-
plained in Section 4.4 The framework being generic, the
size of the BHT, the size of the history, and the index func-
tion are formally described.

4.1. BHT index

In this Section, we show how the evolution of the
global history can be modeled by a system of constraints.
A global history is a n-bit register. The global history is
updated when the branch issue is known (“1” for taken,
“0” for not-taken). The update consists of a left shift of
the n — 1 rightmost bits and an insertion of the issue of
the last executed branch to the rightmost position. For
instance 7 = 0100 is the new value of the global history
when 71/ = 1010 was the previous value and the last branch
is solved as “not-taken”. The update of the history is de-
noted by T = 7’.d : the state 7 is the successor of the state
7’ (left shift and insert d to the rightmost position). The
value of the global history at a given point p in a program
depends on the initial value of the global history and on

the issue of each executed branch along the path from the
entry node to p.

We introduce a graph to model the evolution of the
global history. It depicts the value of the global history
depending on the initial value and the issue of previous
branches.

Figure 4. Example: BHG.

The Branch History Graph (BHG) expresses the over-
all evolution of the global history for a program. Each
node of the BHG fits with a pair (b;, r) where b; is a basic
block of the CFG containing a conditional branch and 7
is one possible value of the global history at this branch.
The nodes labelled “init” target the branches that may be
the first branch executed. For the sake of simplicity, end
nodes are not shown on this graph and on the following
ones. The BHG can be automatically built from the CFG.
Figure 4 shows the BHG built for the CFG of Figure 3.

From the BHG, we derive a set of equations that will be
included in the IPET formulation. The value of the global
history depends on the issue of the last executed branches:

we use p “ b to denote that p € B is the last branch to be
executed before b € B and d was the direction of branch p
(used to update the global history).

One execution of the program under analysis consists
of one path in the BHG from a node (b,7), where b is
the first executed branch and 7 the initial value of the
branch history, to a node (b’, ') where b’ is the last ex-
ecuted branch and 7’ the last value of the history. Flow
constraints are derived for each node of the BHG: they
link the executions counts of blocks with a given history
register value (x7}) to the execution counts of their in- and
out-edges (x" 4)- Furthermore, if b is the first executed

branch and ﬂ?he initial value of the global history then
inity = 1. Similarly, end]] = 1 if b is the last executed
branch. The set of predecessors of a node (b,7) in the
BHG is denoted by Py.

Vb € B,V € 11,

/ . .
xp= Y ¥ X*, +init]
pePy 'ell P~

where © = 7'.d and pib
Vb € B,V €11,

v T T T
xF=x" +x" +end

b TR0 T b
Y endf <1
beB
Y init] <1
beB

In [7] the value of global history is computed for each
basic block of the CFG. As this history may only evolve
after a conditional branch, we have enhanced this part of
the global approach by only taking into account the basic
blocks that contain a conditional branch.

4.2. Execution context

The BHT is a |A|-entry table. Each branch b may ac-
cess |Ap| 2-bit counters during the execution of the pro-
gram. For a given A € A, the prediction of the branch
depends on all branches sharing this entry. B* denotes
the set of branches that may access entry A of the BHT:
B* = {b € B|A € A}}. The prediction counter at A is up-
dated at each execution of one branch accessing it. Then,
the prediction depends on the access sequence to the en-
try A. In other words, the prediction of a branch access-
ing the entry A depends on the execution sequence of
branches in B*. To model the sharing, we introduce a
new graph. It depicts the possible execution sequences
between branches in B2,

A Branch Conflict Graph (BCG*) can automatically be
derived for each BHT entry and contains as many blocks
as the number of branches sharing this entry (|B*|). Fig-
ure 5 shows BCG*= for the example program (BA=00 —
{B1,B3,Bs}). The edge from bs to b3 states that there is
a path in the BHG from (bs,00) to (b3,00) and b3 is the
first block with history 00 along this path. Note that the
label on this edge represents the direction of branch 5: 0
or 1”7 is used when both directions may lead to the target
block.

Each BCG is described by IPET: One execution of the
program under analysis may consist of at most one path in
a BCG from an initial node to a final node. The init edges
of a BCG* target the possible initial nodes: Branches that
may be the first executed with the index value A (initél =1
if b is the first executed branch with A). Similarly, the end
edges (not shown) start on the final nodes: Branches that
may be the last executed with this history value (endl’}:l
if b is the last executed branch with A). The set of con-
straints corresponding to BCG” links the execution order
between branches sharing the A-th entry of the BHT. P[%
(resp. Sé) denote the set of predecessors (resp. succes-
sors) of b in BCG*.

Vb € B, x,’}: (ot +at,)—l—endgL
sesé b—s b—s

VbeB, i} = (t, +xt,)+ init}
pePiL p=b p

Y endt <1

beB?

Y init} <1

beB*

4.3. Prediction computation

All branches in B* may be predicted by the counter in
the A-th entry of the BHT. The prediction is given by the
state ¢ of the counter (¢ € C and C = {00,01,10,11}) and
the update of the counter is done according to the update
of a saturating 2-bit counter. We introduce a new graph
representing the evolution of the 2-bit counter depending
on the initial state and the possible transitions.

A Prediction Graph (PG?) is built for each prediction
counter (each entry of the BHT) and expresses the pos-
sible evolution of this counter. Figure 6 shows PG*=%
for the example program in case the BHT is indexed by
the global history. As in the previous steps, this graph is
described by a system of constraints. Note that the set of
possible transitions to reach (resp. leave) a state depends
on the set of possible successors (resp. predecessors) in
the related BCG*. One execution of the program under
analysis consists of at most one path in a PG: from the
initial state to the final state.

Vb € B*,
x}))L,()O _ (2,00 _i_xl (())1) + li’lll}? ,00
pep? pb - pS
x)L,OO _ Z (A, 00 —|—)CA 00) +end7t,00
b SES}‘ bbs -
2,01 2,00 |, 4,10 2,01
o= (" A o)—Hnltb
pEPZl p—>b P
VXU v (x)L,Ol 101)+ dx 01
b seSl b(—)m
4,10 A.01 Al 2,10
X =L (" A o)—Hmt
peP’1 p_ﬂ’ P
LR T y 10 Al())Jr d}” 10
b seSé b %s bls
N y (le,lo S)+mzt’l 11
b pep} pio T phb b
A1 A, 11 211 2,11
X' = L b +x iN)+end
sES}b HS
Y Y oend <1
beBA ceC
Y Y ininc <1
beBA ceC

A misprediction occurs each time a fired transition
does not match to the prediction given by its source state,
e.g., leaving the state 00 by a transition labeled 1.

2,00 2,01

mil =X (xh7l i b)
— SES% —S —>S

,1 J11

mhy = ¥ ()
b— seS% b—>s b—rs

Figure 5. Example: Execution order be-
tween branches sharing the entry 00 of the
BHT (Branch Conflict Graph)

In [7] Li et al. consider a 1-bit counter. In this case,
the evolution does not need to be modeled by additional
constraints because the counter state is the issue of the last
executed branch. The number of mispredictions is given
by:

m* =Y 1
1
b— seSl bhs
mlo =Y x!
b— A b%s
sESH

In the remainder of this paper, we only focus on 2-bit
counters which are the most frequently used due to their
highest accuracy.

4.4. Model of branch predictor

In this subsection we describe the whole framework.
First, we focus on the generation of the graphs: branch
history graph, branch conflict graphs and prediction
graphs. Then, we show how to build the whole system of
constraints: it is based on the three subsets of constraints
described in previous subsections and on some additional
constraints that are necessary to create a link between the
three subsets and the IPET from the CFG. Finally, we
summarize how to use the framework: what are the pa-
rameters and an example of configuration.

Graph generation All the graphs on which the genera-
tion of constraints is based on are generated from the CFG.
The BHG is given by a partition of the CFG block: The
BHG contains only the basic blocks with two outgoing
edges (conditional branch).
Each BCG is a partition of the BHG or of the CFG.
BCG? is built from:
- all BHG blocks (b,) with A = f(7), in case a global
history is used,

- all CFG blocks ending by a conditional branch which
BHT index is @, = A for the bimodal predictor.
From each BCGA, one PG* is built: for each edge in
BCG? the corresponding transitions are generated in the

related PG*.

Figure 6. Example: 2-bit counter evolution for 1 = 00 (PG", history-indexed BHT)

Xp CFG
xf | BHG
x} | BCG*
xé < | PG*

Table 2. Variable used for the number of oc-
curences of a block in the different graphs.

The whole framework In the rest of this section, we
explain how to build the whole system of constraints and
list the additional constraints generated for that purpose.
Table 2 reminds the notation for the number of occurences
of a block depending on the corresponding graph.

A BHG is needed when a history is used to index the
BHT. If the histories are local, then a BHG is built for each
history register>. In case of a global history, one BHG
is generated. In a BHG, more than one block (b,) may
refer to the same block b in the CFG. The set of constraints
generated to link the subsystems related to the CFG and
the BHG is:

VbeB, xp= Y x

nelly,
VbeBVd € {0,1}, x,= ¥ x7, +end

T
rnell, b— bi

VbeBVrcIl,, end] = end;ro —|—enle

Note that accounting for the last branch in the BHG
does not include the last issue of this branch. However,
in the CFG this last issue is needed to obtain the correct
number of occurences of the related edge in the CFG.

One BCG” is generated for each A € A. The |A| subsets
of constraints derived from those BCGs are linked to the
whole system of constraints by:

3Note that in case of pattern history table (PHT) containing local his-
tories, some branches may share a PHT entry: A BHG is derived for
each entry of the PHT.

Vb € B,VA € A,

x}=xF where A=f(n,@)
Vb € B,Vd € {0,1},

Yy Y xld —|—endld
lGAbseS% b—s b—
Vb € B,VA € Ap, end} = end;g +end*,

b—

X =
PN

Note that in case of a bimodal branch predictor, x;f =X
and f(n,@) = @.
For each BCG* one PG* is generated.

VbeBVAEA, x=Y x°
ceC
Vb EB,VA €Ay Vs€SH, x*, = ¥ &M

s cec bSs

Vb €B,VA €Ay, end} =Y endg’c

ceC
Vb EB,YA €Ay, init} = ¥ init)
ceC
Vb e B,Vd € {0,1}, = A
{ } mbi> Ag\bmh$

Note that if b € B* is the first (resp. last) executed with A

then init} = ¥ init}* =1 (resp. end} = ¥, end} = 1).
ceC ceC

Configuration of the framework The global approach
was introduced by Li et al. [7]. The first model was for a
1-bit global predictor whose BHT is indexed by the branch
history. Their model accounts for interferences due to
BHT entries sharing. This model corresponds to the fol-
lowing configuration of our framework:

- branch history: global

- index of the BHT: A = f(7,@) =7

- size of the prediction counter: 1 bit

In [4], a model of a branch predictor based on 2-bit
counters was introduced and we used it to build the models
of two 2-bit branch predictors: a bimodal predictor (PC-
based indexing) and a global 2-bit predictor whose BHT

is indexed by a global branch history. This model corre-
sponds to the following configuration of our framework:

- branch history: global

- index of the BHT:

A=f(r,@)=morA=f(n,@)=@

- size of the prediction counter: 2 bits

In this paper, we present the model in a generic way
that eases the understanding of the set of constraints. Fur-
thermore, this framework allows to model any branch pre-
dictor which would use the BHT. The configuration of the
framework depends on:

- size of the BHT

- size of the history

- branch history: global or local

- index of the BHT: A = f(n, @)

- size of the prediction counter: 2 bits or 1 bit
Note that the index may be any index that could be gen-
erated from the branch instruction address and a branch
history. Furthermore, they may be more than one history
if a PHT is used.

The framework is implemented in OTAWA: a WCET
computation tool [1]. For a given branch predictor, this
tool may compute the WCET by integrating the con-
straints in the whole ILP system of constraints. It may
also generate separately the system of constraints for the
branch predictor model that could be added in any other
WCET tool. This only requires to use the same variables
for the CFG nodes.

5. Experimental results

Remember the models built by our framework are to be
included in the IPET formulation of WCET computation
to take into account the modeled branch predictor.

In this section, our goal is to give an insight into how
complex the generated models can be. In other words, we
evaluate the global approach by comparing some models
generated by our framework. With this information the
end-user may retain or reject a possible target core with
dynamic branch prediction, depending on the resources
(including time) he is ready to allocate to timing analy-
sis. This may be useful when the development processes
rely on very short steps for new code generation and anal-
ysis between two test phases. Before this, we report some
bounds on the WCET that we evaluated for some bench-
mark codes. They show that taking dynamic branch pre-
diction into account when performing WCET analysis is
really needed to avoid the overestimation of considering
every conditional branch as mispredicted.

Using the framework, we have generated models for
three branch predictors based on 2-bit counters. They dif-
fer in how the BHT is indexed. The first one (BPg) is
the so-called bimodal predictor that selects a BHT entry
from the branch address (direct-mapping scheme: A =
f(m,@) = @). The second one (BPy) uses the global
history (built from the outcomes of the last executed
branches) as an index to the BHT (A = f(7, @) = 7). The

[BPa | BPy | BPacu |

fibcall 277% | -25.0% | -27.7%
insertsort -10.9% | -10.1% 9.1%
jfdctint -4.5% -3.7% -3.5%
matmul -8.1% -7.8% -6.9%
qurt -11.2% -5.4% -9.8%

Table 4. Impact on the estimated WCET

third one (BPesp), known as gshare, computes the index
to the BHT by XOR-ing some bits of the global history
and some bits of the branch PC (A = f(n,@) = 7® @).
For the three of them, we assume a 16-entry Branch His-
tory Table (choosing such a small size was dictated by the
small size of our benchmarks). For the two last ones, we
consider a 4-bit global history. Bits 4 to 7 of the branch
instrction address are used to index the BHT when the
branch predictor is bimodal or gshare.

Our experiments consider a processor with a 2-way
superscalar 4-stage pipeline that implements out-of-order
execution. We assume that the system includes SRAM
memories for instructions and data, with a short (1-cycle)
latency. The models for dynamic branch predictors have
been implemented in OTAWA, our WCET computation
tool [1]. Implementing a branch predictor model consists
in adding specific constraints to the basic IPET formula-
tion. We consider a set of benchmarks that belong to the
SNU-RT collection* and are frequently considered for the
evaluation of WCET analysis techniques. They are listed
in Table 3.

5.1. Impact of branch prediction modeling on the
WCET

Table 4 shows how modeling dynamic branch predic-
tion improves the accuracy of WCET estimates: taking
into account the behavior of the branch predictor instead
of considering each branch as mispredicted. Results are
provided for each of the three predictors considered in
this paper. For most of the benchmarks, taking dynamic
branch prediction into account improves the estimated
WCET by 5% to 10%, and the improvement even reaches
more than 25% for the fibcall program. The weakest
results are for the jfdctint program that contains only
three branches executed in sequence.

These results show how important it is to model dy-
namic branch prediction when the WCET accuracy is crit-
ical. However, modeling branch prediction has a cost in
terms of WCET analysis time. This will be shown below
and should be considered when selecting a processor with
dynamic branch prediction.

5.2. Modeling complexity of dynamic branch predic-
tors

In an earlier paper [4], we argued that the ILP model-

ing complexity of a particular scheme may be quantified

by the number of constraints (C), number of variables (V)

“http://archi.snu.ac.kr/realtime/benchmark/

Benchmark [[#bbs | #bchs [[Function |
fibcall 7 1 Summing the Fibonacci series
insertsort 8 2 Insertion sort for 10 integer numbers
jfdctint 13 3 JPEG slow-but-accurate integer implementation of the forward DCT
(Discrete Cosine Transform)
matmul 19 5 Matrix multiplication
qurt 74 21 Root computation of quadratic equations
Table 3. Benchmarks
Benchmark [#cons. (C) [#vars (V) | arity (4) | [[BPe | BPy | BPach |
fibcall 18 16 3 fibcall 1 0.8 0.9
insertsort 21 19 3 insertsort 1.4 2.6 1.6
jfdctint 32 30 3 jfdctint 1.5 23 1.9
matmul 46 44 3 matmul 1.1 2.7 1.4
qurt 152 170 5 qurt 2.5 6.5 3.8

Table 5. Initial complexity of the ILP formu-
lation

and the arity (A) which is defined as the maximum num-
ber of variables per constraint in the system. In [4], on
a number of benchmarks, we observed that the time to
solve the ILP problem (i.e. to determine an upper bound
of the WCET considering dynamic branch prediction) was
closely related to these three values. The modeling com-
plexity helps in getting information about the complex-
ity of the models independently of the solver that may be
used. In [4], we provided formulas that express the three
complexity values as a function of the program charac-
teristics (e.g. number of conditional branches, number of
possible history values for each branch, etc.). Further de-
tails, including the modeling complexity equations of the
three branch predictors compared in this section, are given
in a technical report [10] which forms an extended version
of this paper.

In the following, we use (C,V,A) triplet to evaluate the
complexity of the model for a given dynamic branch pre-
dictor.

Table 6 shows the the modeling complexity of three
dynamic branch predictors. For all the benchmarks, the
bimodal predictor (BP@) is the one that exhibits the low-
est complexity by far. This is due to the absence of con-
straints that model the changes on the global history (since
this predictor does not use it). On the contrary, the history
indexed predictor (BPy) has the largest complexity due to
the fact that several branches may share the same BHT
entry. This occurs less often with the gshare (BPagy)
predictor that enhances the distribution of branches over
the table entries. As a result, the complexity of BPeay
is generally lower than that of BPy. An exception is for
fibcall that has a very small number of branches. Ta-
ble 7 shows the mean number of branches that share a
BHT entry, which quantifies the so-called phenomenon of
aliasing. The bimodal (BPg) and gshare (BPaq) predic-
tors generally exhibit less conflicts than the pure global
history-based predictor (BPy). It appears that the program

Table 7. Aliasing to the BHT (# branches
sharing an entry)

[[[# constraints (C) [# variables (V) [arity (4) |

fibcall x 1.4 x 1.8 x 1.9
insertsort X 3.2 X 3.6 X 3.4
jfdctint x 2.7 x 3.0 x 3.3
matmul X 3.2 x 4.0 x 4.4
qurt X 2.5 x 3.1 X 6.7

Table 8. Impact of the history length on the
complexity (4-bit vs 2-bit)

with the highest rate of conflicts (qurt) is the one that
exhibit the highest complexity by far. Our measurements
also show that this program is the one that necessitates the
longest time to solve the ILP problem (~ 200 ms while
the other programs needed ~ 0.2 ms for the bimodal pre-
dictor).

Table 8 gives the modeling complexity of a global
branch predictor (BPy) when considering two sizes for the
prediction history register: 2 bits and 4 bits. Whatever
the quantifier (C, V or A), the complexity significantly in-
creases with the history register length.

The results presented above highlight the factors that
influence the modeling complexity: the indexing scheme
to the BHT, the length of the history register, the average
number of branches sharing an entry in the BHT. Indexing
the BHT with the global history register (BPy) generates
a high complexity, and this is expanded by a larger his-
tory register. Using an XOR operator (BPaqpn) to com-
bine the history and the branch PC reduces the aliasing
phenomenon and clearly reduces the complexity.

We claim that these results should be kept in mind
when selecting a processor with dynamic branch pre-
diction, at least when the computational complexity of
WCET analysis is an issue.

constraints (C) # variables (V) arity (A)

BPe | BPown/BPe | BPy/BPq BPq | BPown/BPa | BPy/BPqg BPe | BPown/BPa | BPy/BPq

fibcall x 2.3 X 6.4 x 44 x 2.6 X 8.6 X 6.5 x 3.0 x 54 x 54

insertsort x 4.0 x 17.2 x 51.2 x 4.8 x 27.1 % 90.2 x 3.0 x 13.5 x 46.8

jfdctint x 3.1 x 10.8 x 28.5 x 3.3 x 14.5 x 42.6 % 3.0 x 10.2 x 40.2

matmul x 3.4 x 1.8 x 24.5 x 4.0 x 9.6 x 40.8 x 3.0 X 6.9 x 56.1

qurt x 4.4 x 10.3 x 28.1 X 5.2 x 13.0 x 45.8 x 3.4 x 10.5 x 81.6
average [[x 34] x 105] x273 [x199] X 146 | x 451 J[x31] x93] x 46.0 |

Table 6. Modeling complexity of 2-bit dynamic branch predictors

6. Conclusion

In hard real-time systems, the execution of programs
must meet deadlines. An upper bound on the worst-case
execution time is computed to check whether timing con-
straints can be guaranteed. Static WCET analysis requires
a detailed modeling of the execution of basic blocks in
the processor, which has long been restricted to very sim-
ple cores. However, performance requirements now lead
to use more complex processors that implement sophisti-
cated schemes, such as dynamic branch predictors which
we focus on in this paper.

Developing a model for a dynamic branch predictor is
a huge work. Several solutions have reported in the liter-
ature as mentioned in Section 1 but each of them is ap-
plicable to a given scheme (i.e. with 1-bit counters and
local history registers) and cannot easily be extended to
other ones. In this paper, we introduced a framework
that accounts for the most common functionalities of dy-
namic branch predictors and makes it possible to generate
a model of a new predictor in an automatic way. We de-
scribed each step of the framework in sufficient details so
that the reader can easily derive its own models.

In the evaluation section, we use our framework to gen-
erate models for three kinds of dynamic branch predictors
based on 2-bit counters (by far the most frequently used)
and, for some of them, on a global history register, which
exacerbates the interactions between branches. We show
that modeling the branch predictor instead of considering
each branch as mispredicted leads to tighter WCET esti-
mates. However, our results also show that the complexity
of the models is high, especially for the most sophisticated
predictors. It generally overcomes the complexity of the
integer linear program used to compute the WCET. Since
taking branch prediction into account when determining
WCETSs may not be affordable, our recommendation is to
take this study into consideration when selecting a proces-
sor to run time-critical software.

As future work, we plan to extend this framework to
complementary solutions that focus on the analysis of the
Branch Target Buffer, such as [5, 6].

References

[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.
OTAWA: An Open Toolbox for Adaptive WCET Analysis.
In S. Min, R. Pettit, P. Puschner, and T. Ungerer, editors,

10

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Software Technologies for Embedded and Ubiquitous Sys-
tems, volume 6399 of Lecture Notes in Computer Science,
pages 35-46. Springer Berlin / Heidelberg, 2011.

L. Bate and R. Reutemann. Efficient integration of bimodal
prediction and pipeline analysis. In 71" international con-
ference on embedded and Real-Time Computing Systems
and Applications (RTCSA’05), pages 39—44, august 2005.
C. Burguiere and C. Rochange. A Case for Static Branch
Prediction Modeling in Real-Time Systems. In Proceed-
ings of the 11'" IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applica-
tions(RTCSA’05), pages 33-38, august 2005.

C. Burguiere and C. Rochange. On the Complexity
of Modeling Dynamic Branch Predictors when Com-
puting Worst-Case Execution Time. In Proceedings of
the ERCIM/DECOS Workshop On Dependable Embedded
Systems, august 2007.

A. Colin and I. Puaut. Worst-case execution time analysis
for a processors with branch prediction. Journal on Real-
Time Systems, 18(2-3):249-274, may 2000.

D. Grund, J. Reineke, and G. Gebhard. Branch tar-
get buffers: WCET analysis framework and timing pre-
dictability. Journal of Systems Architecture, 2010.

X. Li, T. Mitra, and A. Roychoudhury. Modeling Control
Speculation for Timing Analysis. Journal on Real-Time
Systems, 29(1):27-58, january 2005.

Y.-T. Li and S. Malik. Performance analysis of embed-
ded software using implicit path enumeration. In Pro-
ceedings of the ACM/SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems (LCTES’95),
volume 30, pages 88-98, 1995.

T. Lundqvist and P. Stenstrom. A method to improve the
estimated worst-case performance of data caching. In 6"
International Conference on Real-Time Computing Sys-
tems and Applications (RTCSA’99), december 1999.

C. Maiza and C. Rochange. A framework for the timing
analysis of dynamic branch predictors. Technical Report
IRIT/RR-2011-12-FR, IRIT, 2011.

J. Smith. A Study of Branch Prediction Strategies. In Pro-
ceedings of the 8" ACM/IEEE International Symposium
on Computer Architecture (ISCA 1981), pages 135-148,
1981.

T.-Y. Yeh and Y. N. Patt. Alternative Implementation of the
Two-Level Adaptative Branch Prediction. In Proceedings
of the 19" ACM/IEEE International Symposium on Com-
puter Architecture (ISCA 1992), pages 124-134, 1992.

