
UNIVERSITE DE GRENOBLE

No◦ attribué par la bibliothèque

THESE

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DE GRENOBLE

Spécialité : Informatique

préparée au Laboratoire Verimag

dans le cadre de l’École Doctorale Mathématiques,
Sciences et Technologies de l’Information, Informatique

présentée et soutenue publiquement

par

Tayeb Sofiane BOUHADIBA

le 15 Septembre 2010

42, Une Approche à Composants pour le Prototypage

Virtuel des Systèmes Embarqués Hétérogènes

42, A Component-Based Approach to Virtual Prototyping of Heterogeneous Embedded Systems

Directrice de thèse : Florence MARANINCHI

jury:

Marc Pouzet Pr. ENS Paris Rapporteur et Président
Lionel Seinturier Pr. Université de Lille Rapporteur
Jean-Bernard Stefani D.R INRIA Rhône-Alpes Examinateur
Florence Maraninchi Pr. Grenoble INP Directrice de thèse

2/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Remerciements

Les travaux qui sont présentés dans cette thèse n’auraient pu être possible sans l’aide de plusieurs
personnes. Ne pouvant citer tout le monde, je tiens à remercier tous ceux qui ont contribué, de
près ou de loin à l’aboutissement de cette thèse.

Je tiens en particulier à remercier ma directrice de thèse Florence Maraninchi pour son en-
cadrement, ses précieux conseils, pour tout ce que j’ai pu apprendre au travers des 42∞ discus-
sions et pour m’avoir permis de développer mes idées.

C’est un honneur pour moi que Marc Pouzet, Lionel Seinturier et Jean-Bernard Stefani
aient accepté de faire partie de mon jury de thèse. Un grand merci à eux pour avoir sacrifié un
moment précieux de leur temps afin de lire et juger ma thèse.

Je remercie aussi les membres de l’équipe Synchrone du laboratoire Verimag. Leur disponibilité
pour répondre à mes multiples questions m’ont beaucoup aidé à approfondir ma culture dans
divers domaines. Une mention spéciale pour les membres du Bureau N◦9, les anciens et les
nouveaux.

Je reste reconnaissant à tout ceux qui ont pris le temps de relire (un bout de) ma thèse pour me
rapporter des erreurs ou des correctifs. 42milles merci à Florence, David, Stéphane, Giovanni,
Thomas, Kevin, Matthieu, Nicolas, Julien, Selma, Sophie, Laurie et tous ceux que j’ai pu oublié.

Il ne faut pas oublier l’ensemble du personnel administratif, merci à toute l’équipe qui entoure
Christine pour leur travail remarquable. Aussi, un grand merci pour notre administrateur
système Jean-Nöel (alias root) qui veille à maintenir le système au point, et qui m’a souvent
rattrapé le paralysant rm -rf *.

Je remercie encore les membres du laboratoire Verimag avec qui j’ai eu le plaisir de partager
beaucoup d’activités extra-scientifiques, que ce soit pour prendre un café, faire ski, jouer au
foot,...

Je ne peux pas oublier mes amis et cousins Ahmed, Amine(s), Chicho, Farah, Farid, Hichem,
Kader, Khaled, Tamtam,... pour le temps d’un petit coup de fil, d’une discussion, d’une escapade
ou d’une partie de PES. Les moments que j’ai partagé avec eux sont inoubliables et m’ont
beaucoup aidé a tenir le coup.

Enfin, je pense que je ne serais pas arrivé là sans l’aide précieuse de ma famille côté Bouhadiba,
Boukbir et Benbernou. Un grand merci à mes parents pour m’avoir toujours soutenu durant
mes études et m’avoir offert la possibilité de continuer et d’aller aussi loin. Merci à vous Sosso,
Radia et Imène, les coups de fil et visites de mes sœurs m’ont toujours apporté un énorme
réconfort.

Enfin, je terminerai mes remerciements par celle qui partage ma vie. Merci à toi Ismahène pour
le soutien que tu m’a apporté durant cette thèse et pour avoir partagé les moments difficiles
par lesquels j’ai pu passé.

3

4/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Contents

1’ Introduction (In French) 9

1 Introduction 15

1.1 Embedded Systems and Their Development Cycle 15

1.2 Component-based Virtual Prototyping and Challenges 16

1.3 Summary of the Contributions . 17

1.4 Outline . 17

2 Background 19

2.1 Models of Computation for Discrete Concurrent Systems 20

2.1.1 Synchronous Models and Languages . 20

2.1.2 Asynchronous Models . 25

2.2 Virtual Prototypes of HW Platforms for SW Development 27

2.2.1 Modeling Hardware Platforms . 27

2.2.2 Executing Embedded SW on a Virtual Prototype of the HW 30

2.3 Components and Contracts . 32

2.3.1 Components . 32

2.3.2 Specifying Components . 33

2.3.3 Design By Contract . 34

2.4 Validation . 35

2.4.1 Formal Specification of Properties . 35

2.4.2 Validation by Simulation . 36

2.4.3 Runtime Verification . 36

2.4.4 Static Verification . 36

3 Overview of the 42 Model 39

3.1 Basic Elements of the 42 Model . 40

3.1.1 Basic Components . 40

3.1.2 Composed Components . 42

5

Contents

3.1.3 Discussion on the Memory Associated with the 42 Model 45

3.2 Specifying Components . 46

3.2.1 Implicit Specifications . 47

3.2.2 Explicit Specifications: Rich Control Contracts for 42 47

3.2.3 Components Introspection . 50

3.3 Consistency Issues . 51

3.4 Using the 42 Modeling Approach . 52

3.4.1 Reasoning on Components with the 42 Model 52

3.4.2 Main Usage of 42 Control Contracts . 53

3.5 Implementation . 55

4 Modeling Examples with 42 Components 57

4.1 Examples with Implicit Specifications . 58

4.1.1 Mono-Clock Synchronous Programs or Circuits 58

4.1.2 Simulation of Asynchronous Systems . 64

4.1.3 Hardware/Software Modeling . 67

4.1.4 Kahn Process Networks . 70

4.1.5 Globally Asynchronous Locally Synchronous Systems 72

4.2 Examples with Explicit Contracts . 75

4.2.1 Mono-Clock Synchronous Programs or Circuits 75

4.2.2 Multi-Cycle Synchronous Programs or Circuits 79

4.2.3 Using Contracts to Describe Asynchronous Systems 85

5 Formal Definition of 42 91

5.1 Components and Composing Components . 92

5.1.1 Components and the Architecture Description Language 92

5.1.2 Controllers . 93

5.1.3 Combining Components . 93

5.2 42 Control Contracts . 95

5.2.1 Original Form of Control Contracts . 95

5.2.2 Expanded Form of Control Contracts . 96

5.2.3 The Master/Slave Relation . 97

5.3 Formal Definition of Consistency . 98

5.3.1 Contracts Vs Basic Components . 98

5.3.2 Contracts Vs Controllers . 99

6 Exploiting 42 Control Contracts 103

6/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Contents

6.1 Contracts and Consistency Checking . 103

6.1.1 Checking Component Implementation . 104

6.1.2 Checking Controller Micro-steps . 105

6.2 Deducing the Controller from the Contracts . 105

6.2.1 Static Code Generation for Synchronous Controllers 106

6.2.2 Asynchronous Simulation Controllers as Contracts Interpreters 107

7 Hardware Simulation and Software Execution 119

7.1 Prototyping Hardware Using 42 . 120

7.1.1 An Example System-on-a-Chip . 120

7.1.2 Modeling the Hardware Architecture with 42 122

7.1.3 Contract-Based Simulation . 125

7.2 Software Execution . 126

7.2.1 Using Wrappers for Hardware/Software Simulation 126

7.2.2 Checking Software Implementation . 129

7.3 Formalizing SystemC-TLM with 42 Components 130

7.3.1 Structural Correspondence Between 42 and SystemC 132

7.3.2 Executable Contracts For SystemC-TLM Components 133

7.3.3 Typical Uses of the Approach . 135

7.3.4 Comments . 141

8 Related Work 143

8.1 Component Models and MoCCs . 144

8.1.1 Ptolemy . 144

8.1.2 General Discussions on Design and Expressiveness of Models 147

8.1.3 Reactive Modules . 148

8.1.4 An Academic Approach to Software Components: Fractal 150

8.1.5 Coordination of Component Activities with Reo 152

8.2 Specification Languages and Contracts . 153

8.2.1 Formal Specification of Behaviors . 153

8.2.2 Contracts for Hardware Components . 155

9 A Tool for the 42 Component Model 157

9.1 Writing Components and Architectures . 158

9.1.1 Basic Components . 158

9.1.2 Composed Components . 160

9.1.3 Controllers . 160

Tayeb BOUHADIBA Ph.D Thesis 7/186

Contents

9.1.4 Contracts . 161

9.2 An Execution Engine to Perform Simulations . 161

9.2.1 Instantiation of Systems . 162

9.2.2 Simulation . 163

9.2.3 A Graphical Interface . 163

10 Conclusion & Prospects 165

10.1 Summary . 165

10.1.1 Contributions . 165

10.2 Prospects . 166

10.2.1 Semantical Aspects . 166

10.2.2 The Language of Control Contracts . 167

10.2.3 Towards Non-Functional Properties . 167

10.3 Publications Related to 42 . 168

10’Conclusion & Perspectives (In French) 169

8/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 1’

Introduction (In French)

1’.1 Les Systèmes Embarqués et leur Cycle de Développement

Les systèmes embarqués sont des systèmes informatiques omniprésents dans notre vie quo-
tidienne. Les domaines où ils sont utilisés varient des systèmes critiques (avionique, centrales
nucléaires, transport, etc.) à l’électronique grand publique (appareils photo, smartphones, etc.).

Comparés aux ordinateurs personnels, la particularité des systèmes embarqués réside dans leur
architecture matérielle. En effet, l’architecture matérielle d’un système embarqué est souvent
dédiée à celui-ci, et change d’une application à une autre. Les choix de conception du matériel
sont guidés par la fonctionnalité du système, ainsi que par des propriétés non-fonctionnelles
telle que la consommation en énergie.

Dans un système embarqué, les parties matérielles et logicielles sont fortement couplées. De ce
fait, il est indispensable de les concevoir ensemble. Cependant, trouver une solution optimale
pour de tels systèmes est difficile à cause des différents paramètres qui doivent être pris en
compte (vitesse de calcul, consommation d’énergie, taille de la mémoire, surface disponible,
etc.). Un autre paramètre à prendre en compte est la fabrication de la partie matérielle, qui
est souvent disponible très tard dans le cycle de développement. En conséquence, la conception
des système embarqués repose sur des techniques de prototypage virtuel.

Un prototype virtuel est un modèle exécutable d’un système. La modélisation nous permet
d’étudier un système, très tôt, avant que le système ne soit disponible. En plus : 1) si le
langage de spécification utilisé pour écrire les modèles est exécutable, nous pouvons observer le
comportement du système réel en faisant des simulations ; 2) si les modèles sont formellement
définis, nous avons la possibilité de vérifier quelques propriétés du système en appliquant les
méthodes de validation formelle ; 3) le système final peut être généré automatiquement depuis
son modèle ; cette technique est souvent appelée développement (conception, etc.) dirigés par
les modèles.

Ecrire des modèles pour systèmes embarqués est parfois difficile. Une des causes de cette
difficulté est l’hétérogénéité des systèmes embarqués : Ils sont composés de matériel et de logiciel
; le matériel peut contenir des composants analogiques et numériques ; les composants d’un
système sont extrêmement concurrents, le modèle de concurrence peut varier du pure synchrone
au pure asynchrone ; etc. En plus de l’hétérogénéité inhérente aux systèmes embarqués eux-
même, une autre forme d’hétérogénéité apparâıt dans le flot de conception : la conception de ces
systèmes implique une expertise dans plusieurs domaines de l’ingénierie incluant l’électronique,
l’automatique, l’informatique, etc. Dans chaque domaine, il existe une multitude d’outils et de
formalismes pour répondre aux questions cruciales relatives à ce domaine. Chaque formalisme
ou outil a ses propres notions pour modéliser les aspects relatifs à la concurrence, et le temps.

9

1’.2. Le Prototypage par Composants et ses Challenges

Pour palier à l’hétérogénéité des systèmes embarqués, un environnement de modélisation doit
permettre la modélisation des composants hétérogènes du système. De plus, il doit permettre
de décrire différents types de concurrence, de communication, de temps, de synchronisation, etc.
Ces notions, sont définies par la notion de MoCC (Model of Computation and Communication).

Une autre notion relative aux travaux effectués dans cette thèse est celle des composants pour
les systèmes embarqués. Les approches basées sur les composants ont fait leur apparition en
réponse à la complexité croissante des systèmes embarqués et aux contraintes de temps de mise
sur la marché. Dans l’industrie électronique (la partie matérielle), la notion de composants
existe depuis bien longtemps. En effet, les IPs (Intellectual Properties) sont des composants
électroniques prêts à l’usage. Ils sont vendus sous forme de composants physiques (prêts à être
intégrés dans une plateforme matérielle), ou sous forme de spécifications synthétisables (doivent
être intégrées durant le flot de conception). La notion de composant pour le matériel est assez
générique grâce à l’adoption du MoCC universel pour les circuits synchrone.

Dans l’industrie du logiciel, les approches à composants sont nombreuses. Cependant, la no-
tion de composant pour le logiciel n’est pas aussi générique que celle des composants pour le
matériel. Ceci est dû à la multitude de MoCCs où ils peuvent être utilisés (threads, processus,
programmes, programmation par événements, etc.)

1’.2 Le Prototypage par Composants et ses Challenges

Les questions qui ont motivées la définition du modèle 42 sont relatives à la notion de composants
pour la modélisation et la simulation des systèmes embarqués hétérogènes, incluant les parties
matérielles et logicielles. Les modèles pour le matériel sont intrinsèquement composants, du fait
que le matériel est déjà partitionné en blocs. Pour le logiciel, plusieurs approches à composants
ont été proposées. Cependant, un des challenges pour la modélisation des systèmes embarqués
est de modéliser à la fois les composants matériels, les composants logiciels, ainsi que l’interaction
entre eux, dans le même environnement.

Comme mentionné plus haut, une des utilisations possibles des modèles est de fournir un support
pour la simulation. Plusieurs outils, qu’ils soient à usage académique ou industriel, ont été
développés pour la simulation des systèmes embarqués. Ces outils ont montré leur efficacité à
fournir des modèles de simulation de systèmes complexes comme les systèmes-sur-puce [Ghe06],
réseaux-sur-puce [CCG+04], réseaux de capteurs [LFLL06], etc. De part notre expérience avec
ces outils, nous somme arrivés à l’observation suivante : dans la plupart des outils, il existe une
sorte de modèle à composants. Dans Ptolemy [EJL+03] par exemple, la notion de composants
est claire et bien définie. Cependant, ce n’est pas le cas pour toutes les approches. Dans
SystemC/TLM [Ghe06] par exemple, l’approche de modélisation est clairement modulaire, mais
elle ne repose que sur des directives de conception de modèles. De plus, la plupart des outils
ne proposent pas de moyens pour réfléchir sur les modèles préalablement ; leur intérêt est de
fournir des modèles de simulation. Un axe de recherche serait de définir un environnement
de modélisation rigoureux, indépendant de tout langage ou formalisme existant, qui peut être
utilisé conjointement avec les outils existants.

Cet environnement de modélisation doit adopter une approche par composants à cause de la
complexité des systèmes à modéliser. Pour cela, il doit fournir une définition claire de ce
qu’est un composant pour les systèmes embarqués, et doit appliquer le principe du FAMAPSAP
(Forget As Much As Possible As Soon As Possible). Ce que nous entendons par FAMAPSAP
est l’analyse systématique des détails qui peuvent être encapsulés et les détails qui doivent être
exposé par un composant.

Pour récapituler, les challenges suivants ont motivé la définition de 42:

10/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 1’. Introduction (In French)

• fournir un environnement, indépendant de tout langage ou formalisme, pour la modélisation
par composants de systèmes matériels/logiciels.
• fournir un support pour une définition claire de la notion de composants, et aider à

appliquer le FAMAPSAP.
• fournir un support pour l’intégration de modèles existants, issus d’outils hétérogènes, dans

un environnement de prototypage virtuel ouvert.

1’.3 Résumé des Contributions

L’approche 42 est inspirée par Ptolemy : les système sont composés d’agents connectés entre eux
pour échanger des données et un contrôleur pour déterminer ce qui se passe dans les connections,
et comment les composants/agents sont activés. La grande différence avec Ptolemy est que les
contrôleurs 42 sont décrits par des programmes utilisant un petit ensemble de primitives de
base.

Nos contributions sont les suivantes :

• La définition (partiellement publiée dans [MB07]) d’une approche de modélisation basée
sur les composants, ayant les propriétés suivantes : hiérarchie, indépendante de tout
langage, spécification de composants en utilisant des contrats, exécutabilité des contrats,
séparation du contrôle des données pour appliquer le principe du FAMAPASAP.
• Un ensemble assez riche d’exemples de modélisation pour montrer l’expressivité du modèle

42 pour la modélisation de différents MoCCs (voir chapitre 4).
• Un exemple de modélisation d’un système matériel/logiciel pour montrer l’utilisation

des contrats 42 pour fournir des modèles de simulation de plateformes matérielles afin
d’exécuter le logiciel embarqué (publié dans [BM09]).
• Un cas d’étude complet (publié dans [BMF09]) de l’utilisation de 42 avec des approches

à composants existantes ; SystemC/TLM [Ghe06] dans notre exemple. L’exemple montre
: l’intérêt de décrire des composants SystemC/TLM par des interfaces et contrats 42 ; la
possibilité de générer de composants 42 depuis des langages existants ; la possibilité de
simuler des systèmes décrits par des composants 42 et de composants SystemC/TLM.
• Un outil pour la conception est la simulation de modèles écrits en 42. Cet outil permet

d’importer des composant existants issus d’autres approches, comme ça a été fait pour le
cas de SystemC/TLM.

1’.4 Plan de la Thèse

Le contenu de cette thèse est inspiré des publication autour de 42 [MB07, BM09, BMF09]. Il
est organisé comme suit :

Le Chapitre 2 “Background” est un ensemble de notions de base et de pratiques existantes
dans divers domaines, qu’ils soient relatifs aux systèmes embarqués en particulier ou au génie
logiciel en général. La plupart des idées présentes dans 42 sont inspirées des ces notions et
pratiques. Ce chapitre sert de référence pour détailler l’ensemble de ces idées. Dans le reste de
thèse, à chaque fois où nous rencontrons une de ces notions, nous mettons un pointeurs vers la
section qui la détaille dans ce chapitre.

Le Chapitre 3 “Overview” est un aperçu des éléments de base de 42. Ce chapitre introduit
la notion de composants et les moyens de spécifications que nous proposons pour les décrire.
Ces spécifications peuvent être implicites, explicites (i.e., les contrats de contrôle), ou un mixe

Tayeb BOUHADIBA Ph.D Thesis 11/186

1’.4. Plan de la Thèse

entre les deux. Ce chapitre inclut aussi une brève présentation de quelques points adressés par
42 qui seront détaillés dans les chapitres suivants.

Le Chapitre 4 “Modeling Examples with 42 Components” est composé d’une série
d’exemples de modélisation. Il décrit des guidelines pour l’écriture des composants pour quelques
MoCCs et comment ces MoCCs peuvent être décrits par des contrôleurs 42. Le chapitre est
partagé en deux grandes sections : la première section regroupe les exemples où les composants
sont associés à des spécifications implicites. Dans la deuxième section, nous montrons comment
utiliser les contrats de contrôle pour donner des informations explicites sur le comportement
des composants 42.

Le Chapitre 5 “Formal Definition of 42” présente une définition formelle de 42. Nous y
décrivons formellement les composants 42, l’assemblage de composants, les contrats, etc. Dans
ce chapitre, nous décrivons aussi les programmes des contrôleurs au travers d’une sémantique
opérationnelle, qui nous permettra par la suite de déduire le comportement de composants
composites du comportement de leurs sous-composants et les programmes associés au contrôleur.
Ce chapitre traite aussi les différentes notions de compatibilités entre composants, contrats, et
contrôleurs.

Le Chapitre 6 “Exploiting 42 Control Contracts” est un chapitre dédié à l’utilisation des
contrats de contrôle pour décrire le comportement des composants 42. En particulier, il donne
des exemples de MoCCs où les contrôleurs peuvent être déduits directement des informations
fournies par les contrats des composants et les dépendances de données entre les composants.

Le Chapitre 7 “Hardware Simulation and Software Execution” regroupe deux cas
d’étude complets de l’usage de 42 dans le contexte du prototypage virtuel des systèmes-sur-
puce. Dans un premier temps, nous montrons comment utiliser 42 pour écrire des prototypes
virtuels de plateformes matérielles. Ces prototypes serviront par la suite de support pour le
développement et l’exécution du logiciel embarqué. Le deuxième cas d’étude montre l’intérêt
d’utiliser 42 conjointement avec des approches existantes. Nous avons choisi d’utiliser 42 avec
SystemC/TLM vu que SystemC/TLM est l’un des standards dans l’industrie pour le prototy-
page virtuel des systèmes-sur-puce. L’intérêt de notre approche est de donner une description
claire des composants TLM, ainsi que de fournir des modèles de simulation légers pour observer
les synchronisations des composants TLM.

Le Chapitre 8 “Related Work” discute les choix que nous avons proposé pour 42 en
comparaison aux approches qui existent déjà. Les approches décrites ne sont pas toutes dédiés
aux systèmes embarqués. Pour chaque approche, nous donnons une brève présentation et nous
discutons les similitudes et différences avec 42.

Le Chapitre 9 “A Tool for the 42 Component Model” décrit un outil que nous avons
développé autour de 42. Cet outil implémente les éléments de base du modèle 42 et a permis
de simuler l’intégralité des exemples qui sont présentés dans cette thèse.

Le Chapitre 10’ “Conclusion & Prospects” conclut la thèse et présente quelques remar-
ques et directions pour les travaux futurs autour de 42.

12/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 1’. Introduction (In French)

Suggestions pour le lecteur

• Le Chapitre 2, Background, décrit quelques notions et pratiques que le lecteur peut ne
pas connâıtre. Vous pouvez ignorer ce chapitre dans le cas où vous connaissez déjà son
contenu. Dan les autres chapitres, à chaque fois que nous avons besoin de détailler une
des notions contenues dans le chapitre Background, un pointeur est mis vers la section
concernées.

• Le Chapitre 3, Overview, doit être lu entièrement. Il donne un aperçu du modèle 42 et
les éléments de base à retenir pour comprendre les exemples présentés dans la thèse.

• Si vous êtes intéressé, plus particulièrement par le MoCC synchrone, nous vous suggérons
de lire la section 4.1.1 pour comprendre l’approche de modélisation des systèmes syn-
chrones en 42. Ensuite, la section 4.2.1 pour comprendre comment les contrats sont
utilisés pour décrire des composants synchrones. La section 4.2.2 présente la modélisation
des systèmes synchrone multi-cycle. Enfin, la section 6.2.1 décrit comment générer des
contrôleurs implémentant le MoCC synchrone depuis les contrats des composants.

• Si vous êtes intéressé, plus particulièrement par le MoCCs asynchrone, nous vous suggérons
de lire la section 4.1.2 pour comprendre le principe de modélisation des MoCCs asyn-
chrones en 42. Ensuite, la section 4.2.3 pour voir l’intérêt des contrats pour décrire
les composants asynchrones. Enfin, la section 6.2.2 décrit la génération de contrôleurs
implémentant des MoCCs asynchrones depuis les contrats des composants.

Tayeb BOUHADIBA Ph.D Thesis 13/186

1’.4. Plan de la Thèse

14/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 1

Introduction

1.1 Embedded Systems and Their Development Cycle

Embedded systems are computer systems that are omnipresent in our everyday life. The do-
mains where they may be used range from safety critical systems (avionics, nuclear plants,
transportation, etc.) to consumer electronics (digital cameras, smartphones, etc.).

Compared to personal computer systems, the particularity of embedded systems lies in their
hardware architecture. The hardware platform of embedded systems is often dedicated and
differs from an application to another. The design choices of the hardware are guided by the
functionality of the system and its required non-functional properties like energy consumption.

As hardware and software are tightly coupled, it is often unavoidable to design them together.
However, finding an optimal solution is hard, because of the various parameters that should be
taken into account, including computation speed, energy consumption, memory size, available
surface, etc. Moreover, the hardware part may be available very late in the design cycle.
Therefore, the design approach of embedded systems relies on virtual prototyping.

A virtual prototype is nothing more than an executable model of the embedded system. The use
of models has numerous advantages: 1) When the specification language used for writing models
is executable, one may predict the behavior of the future product by means of simulations; 2)
When models are formally defined, there may be a possibility of asserting properties of the
system by means of formal validation; 3) The final product may also be derived from the
information provided by its model. This set of techniques is often referred to as model-based
development (design, etc.).

The difficulty of writing models comes from the intrinsic heterogeneity of embedded systems:
they are composed of hardware and software, the hardware part may contain analog and digi-
tal circuits, the objects composing the systems are extremely concurrent and the concurrency
model varies from pure synchrony to pure asynchrony, etc. In addition, heterogeneity appears
during the design phase: the design of embedded systems involves some expertise from various
domains including hardware engineering, control engineering, software engineering, etc. In each
domain, there are several formalisms that answer crucial questions relevant to that domain.
Each formalism has a proper understanding of the notions related to concurrency and timing
aspects.

Hence, to cope with the heterogeneity of embedded systems, a modeling framework should
encompass the modeling of the heterogeneous parts of a system. Moreover, it should be able
to describe various types of concurrency models, communication mechanisms, timing aspects,
synchronizations, etc. These notions are defined by the so-called Model of Computation and
Communication (MoCC).

15

1.2. Component-based Virtual Prototyping and Challenges

Another important notion is that of components for the design of embedded systems. Because of
the complexity of the systems and the increasing time-to-market constraints, component-based
approaches have seen their emergence. In the hardware industry, the notion of component is
relatively old. Intellectual Properties (IPs) are off-the-shelf hardware components bought as
physical blocks (to be plugged directly in the hardware platform), or as synthesizable specifi-
cations (to be integrated during the design phase). The notion of component in the hardware
domain benefits a lot from the universal MoCC of synchronous circuits.

On the other hand, component-based approaches in the software industry are numerous. How-
ever, the notion of components for software is less generic than that for hardware because of
the variety of MoCCs in which they may be used (threads, processes, event-driven, programs,
etc.).

1.2 Component-based Virtual Prototyping and Challenges

The questions that motivated the design of the 42 approach are related to the notion of compo-
nents in the modeling and simulation of heterogeneous embedded systems, including hardware
and software parts. The models of hardware are intrinsically component-based, they benefit a
lot from the hardware partitioning as blocks. For software, numerous component-based model-
ing approaches were proposed. However, one of the challenges for modeling embedded systems
lies in modeling hardware and software as well as their interactions in the same framework.

As already mentioned, one of the uses of models is to perform simulations. For that purpose,
plenty of academic and industrial tools were designed. They showed their effectiveness in
simulating complex systems such as systems-on-a-chip [Ghe06], networks-on-a-chip [CCG+04],
sensor networks [LFLL06], etc. Our experience with these tools raised the following observation:
in most the tools, there exist (some sort of) a component model. In Ptolemy [EJL+03] for
instance, the notion of components is clear and well-defined. However, this is not the case for
other approaches like SystemC/TLM [Ghe06], where the modeling approach is clearly modular
but relies on guidelines. Moreover, the only purpose of these tools is simulation. They do not
propose a means for reasoning on models beforehand. For that purpose, some work has to
be done in order to define a rigorous modeling framework independent from any language and
usable jointly with the existing tools.

Such a modeling framework should be component-based because of the complexity of the systems
to be modeled. For that purpose, it should have a clear definition of the notion of components
for embedded systems and should enforce the FAMAPASAP (Forget As Much As Possible As
Soon As Possible) principle. It should provide tools for the systematic analysis of the details
that can be hidden vs the details that must be exposed by a component.

To summarize, the following challenges motivated the design of 42:

• provide a language-independent component-based framework for modeling hardware/soft-
ware systems.
• provide support for a clean definition of components, and help enforcing the FAMAPASAP

principle.
• provide support for integration of existing modeling and simulation tools in open virtual

prototyping environments.

16/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 1. Introduction

1.3 Summary of the Contributions

42 is inspired by Ptolemy: systems are made of agents connected to each other for exchanging
data, and a controller determines what happens on the connections, and how the components/a-
gents are activated. The essential difference with Ptolemy is that the controller is described as
little programs in terms of more basic primitives.

The main contributions are the following:

• The complete definition (partially published in [MB07]) of a component-based modeling
approach with the following properties: hierarchy, language-independent, explicit specifi-
cations with contracts, executability of contracts, separation of control and data to enforce
the FAMAPASAP principle.
• A rich suite of examples, which demonstrate the expressiveness of 42 for modeling various

MoCCs (see chapter 4).
• A simple hardware/software model to demonstrate the combined use of 42 contracts to-

gether with the embedded software for simulation (published in [BM09]).
• A complete case-study (published in [BMF09]) on the use of 42 together with an existing

component-based approach, namely SystemC/TLM [Ghe06] for systems-on-a-chip. It
demonstrates: the interest of the 42 interfaces and contracts; the possibility of generating
42 objects from an existing language; the possibility of simulating a system made of 42
components and SystemC/TLM components.
• A toolset for the design and simulation of 42 models. It is capable of importing existing

components from other approaches. This has been applied to SystemC/TLM and Lustre.

1.4 Outline

The content of the thesis is inspired from the publications [MB07, BM09, BMF09] of the work
dedicated to 42. The thesis is organized as follows:

Chapter 2 “Background” is a collection of basic notions. The reader may notice that most
of the ideas presented in 42 are borrowed from the current practices of some approaches from
distinct domains. We refer to these ideas during the presentation of 42.

Chapter 3 “Overview” is an overview of the basic elements of 42. It introduces the notion
of components, and how they may be described by means of specifications. These specifications
may be implicit, explicit (i.e., control contracts), or a mixture of both. It also includes brief
presentations of some points tackled by 42.

Chapter 4 “Modeling Examples with 42 Components” is a suite of modeling examples.
It illustrates some guidelines for modeling components and describing MoCCs. The examples
are grouped into two sections. In the first section, we describe modeling examples based on
implicit specifications of components. In the second one, we show how control contracts may
be used in order to give explicit information about components.

Chapter 5 “Formal Definition of 42” presents the formal definitions of 42 elements.
Namely, we define the notion of components, assemblies, the controllers implementing MoCCs,
compositions, contracts, etc.

Tayeb BOUHADIBA Ph.D Thesis 17/186

1.4. Outline

Chapter 6 “Exploiting 42 Control Contracts” illustrates the benefits of having control
contracts associated with the components. In particular, it illustrates how some controllers may
be deduced from the contracts of the components, and how the contracts may be executed.

Chapter 7 “Hardware Simulation and Software Execution” tackles two interesting
uses of 42 in the context of systems-on-a-chip. First, we describe how 42 may be used in order
to model virtual and executable prototypes of hardware platforms for the development of the
embedded software. Second, we present first steps towards the formalization of SystemC/TLM
with 42. SystemC/TLM being the de-facto standard in the industry for modeling systems-on-
a-chip. However, it lacks in semantics.

Chapter 8 “Related Work” discusses the choices we made for 42 compared to various
approaches, not all of them dedicated to embedded systems. We present each of them and
discuss the differences/similarities with 42.

Chapter 9 “A Tool for the 42 Component Model” describes a prototype implementing
the basic elements of 42. All the examples presented in this thesis were simulated with this
prototype.

Chapter 10’ “Conclusion & Prospects” is dedicated to concluding remarks and some
directions for future work.

Suggestions for Readers

• Chapter 2, Background, is a collection of ideas that you may or may not know about. If
you already know, you may skip it, we refer to the sections of this chapter when needed.

• Chapter 3, Overview, has to be read entirely. It provides an overview of all the aspects to
be understood before reading the examples.

• If you are interested, in particular, in the synchronous MoCC, we suggest you read Sec-
tion 4.1.1 for a global understanding of the modeling approach of synchronous systems
with 42; then Section 4.2.1 to see how contracts may be useful for describing synchronous
components; Section 4.2.2 presents the modeling of multi-cycle programs; finally, Sec-
tion 6.2.1 describes how controllers implementing the synchronous MoCC are generated
from the contracts.

• If you are interested, in particular, in the asynchronous MoCC, we suggest you read
Section 4.1.2 for a global understanding of the approach; Section 4.2.3 to see how contracts
may be useful for describing asynchronous components; finally, Section 6.2.2 describes how
controllers implementing the asynchronous MoCC are generated from the contracts.

18/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2

Background

Introduction (En) This chapter is presented as a collection of basic notions one
should know about when reading the presentation of 42. We first introduce the
most important discrete MoCCs for modeling concurrent systems. Then, we present
virtual prototyping of the hardware in order to develop the software of systems-on-a-
chip. 42 is a component based-approach, hence, we recall some aspects of components
and their specification in software and hardware industry. At the end we give a brief
presentation of the validation techniques used during the design of systems.

Contents

2.1 Models of Computation for Discrete Concurrent Systems 20
2.1.1 Synchronous Models and Languages . 20
2.1.2 Asynchronous Models . 25

2.2 Virtual Prototypes of HW Platforms for SW Development 27
2.2.1 Modeling Hardware Platforms . 27
2.2.2 Executing Embedded SW on a Virtual Prototype of the HW 30

2.3 Components and Contracts . 32
2.3.1 Components . 32
2.3.2 Specifying Components . 33
2.3.3 Design By Contract . 34

2.4 Validation . 35
2.4.1 Formal Specification of Properties . 35
2.4.2 Validation by Simulation . 36
2.4.3 Runtime Verification . 36
2.4.4 Static Verification . 36

Introduction (Fr) La définition du modèle à composant 42 est inspirée de plusieurs
notions existantes, que ce soit dans le domaine des systèmes embarqués, ou en génie
logiciel en général. Dans ce chapitre, nous présentons les notions à connâıtre avant
d’aborder la description de 42. Dans un premier temps, nous allons introduire
des modèles de calcul discrets pour la modélisation des systèmes concurrents. En-
suite, nous présentons les techniques de prototypage virtuel de systèmes matériels,
pour le développement de logiciel embarqué. Nous décrirons ensuite les notions de
composants et de spécifications pour les composants logiciels et matériels. Nous ter-
minerons par une description des techniques de validation de systèmes complexes.

19

2.1. Models of Computation for Discrete Concurrent Systems

2.1 Models of Computation for Discrete Concurrent Systems

The design of embedded systems is subject to several constraints. The size of an embedded
system is small compared to the size of a general purpose computer system. It often has
limited resources in terms of computation speed, memory, energy, etc. The context in which an
embedded system may be used varies from consumer electronics (phones, PDA, etc.), to safety
critical systems (air plains, nuclear plants, etc.) in which bugs may cause considerable damage.
All of these constraints make embedded systems complex, and impose careful decisions on their
design.

2.1.0.1 The Design of Embedded Systems Requires Models

Due to their complexity, the design of embedded systems requires a modeling phase to under-
stand the interaction between its various components, and the interaction of the system with
its environment. Modeling may be used for:

• simulating the behavior of the future system.
• validating the system (testing, formal verification, etc.).
• analyzing the system with respect to timing, energy consumption, etc.
• designing a starting point of a Model-Based Development approach.

A model is a simplification of another entity, which can be a physical thing or an-
other model. The model contains exactly those characteristics and properties of the
modeled entity which are relevant for a given task. A model is minimal with respect
to a task if it does not contain any other characteristics than those relevant for the
task [Jan03].

A model is an abstraction of the entity being modeled, it exposes the relevant information we
want to observe. Hence, an entity may be represented with various models depending on the
use of the model. For instance, a model dedicated to performance analysis may be completely
distinct from a model dedicated to functional validation.

2.1.0.2 Models of Computation and Communication

An embedded system is made of concurrent components that interact to expose the behavior
of the whole system. The concurrency model varies from pure Synchrony (e.g., digital circuits)
to pure Asynchrony (e.g., distributed systems).

To associate a complete system with its model, one has to define a model of each component
of the system and define the concurrency model. That is, defining how components evolve
together, and how they communicate. This amounts to providing the semantics of the MoCC
(Model of Computation and Communication) governing the system.

The notion of time is relevant to the semantics of a MoCC. Time may be considered as continuous
(where components are described with models based on differential equations), or discrete. In
Hybrid systems the MoCC deals with the two notions. What follows will describe the main
discrete MoCCs.

2.1.1 Synchronous Models and Languages

Synchronous languages [BCE+03] are well suited to design reactive systems [Hal92, HLR92]; that
is, systems with permanent interaction with their environment. A reactive system repeatedly

20/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

gets its inputs (reading sensors for instance) from the environment and produces the outputs
(controlling an actuator for instance). A reactive system should compute fast enough in order
not to miss relevant events (inputs).

The Notion of Clocks In synchronous systems, there is a notion of logical clock that indicates
when the system should read the inputs to compute the outputs. At each clock tick, the
computation of the outputs involve the parallel reaction of all the components of the system.
Each of them computes its outputs based on the inputs it is provided with. In a real system,
the clock would be associated with the arrival of some event (from the environment) that may,
or may not, be related to physical time. For instance, the timer signal in a computer system
(time), a train reaching a beacon (distance), etc., may define a clock for a synchronous system.

Communication The communication mechanism between synchronous components is the
synchronous broadcast. At each clock tick, a component sends some values through it outputs
and does not need to know whether one or several components are waiting for these values.
Sending is non-blocking.

Instantaneous Computation Synchronous components are supposed to read inputs and
compute outputs instantaneously (i.e., during the same clock cycle). In practice, instantaneous
computation of the outputs is not feasible. However, the requirement for reactive systems is
that the reaction is sufficiently fast in order not to miss incoming events. The code produced
by synchronous languages compilers is quite simple, it may be used for Worst Case Execution
Time analysis [Rin00]. Hence, it is possible to check that the system reacts to all incoming
events if we have some knowledge about their arrival frequency.

Interesting Uses Besides the design of reactive systems, several techniques were developed
around the synchronous languages for the purpose of modeling, simulation and validation of
safety critical systems.

The modeling of embedded systems often requires asynchrony and non-determinism. It is well
known that synchronous formalisms can be used to model asynchronous parallelism [Mil83].
In fact, the synchronous paradigm may be used to model all kinds of intermediate behaviors,
between pure synchrony and pure asynchrony.

Synchronous languages propose some operators to prevent a component from reacting (e.g.,
Clocks in Lustre and Signal, the suspend statement in Esterel, activation conditions in Scade,
etc.). Thanks to such operators, one can decide that components do not execute at the same
clock cycles, hence, they are asynchronous (see 4.2.2.8 for illustration). The most interesting
instance of this principle is the so-called quasi-synchronous approach [CMP01], to describe
systems made of several processors that are not explicitly synchronized. Their respective clocks
may differ, but not in a completely unknown way. These systems are modeled by a quite liberal
constraint on the clocks, namely: there are never more than two ticks of one clock between two
ticks of the other one.

The purpose of modeling asynchrony by means of a synchronous formalism is to benefit from
the validation approaches developed around synchronous languages [HM06]. Such an approach
has been applied to several case studies from the industry [JHR+07, GG03]. Moreover, recent
work have been devoted to the use of synchronous formalisms for the analysis of non-functional
properties such as energy consumption [LFLL06], and performance analysis in stream process-
ing systems [AM10, ALM10].

In the sequel we present some languages for the design of synchronous systems.

Tayeb BOUHADIBA Ph.D Thesis 21/186

2.1. Models of Computation for Discrete Concurrent Systems

a

a0

a/b

a1

a a

Fig. 2.1: A Boolean Mealy machines

b0

a

a0

a/b

a1 A

b

b/end

b1 B

Fig. 2.2: The modeling of a modulo-4 a-counter with Boolean Mealy machines

2.1.1.1 Automata-Based Models

We present in this section an example of modeling synchronous systems by means of Mealy
machines. Mealy machines are automata (precisely transducers) in which the computation of
the outputs depends on the state of the automaton, and the current values of the inputs. In the
rest of the section, we borrow the syntax from the synchronous language Argos to describe the
example. In the category of automata-based languages, one may refer to SyncCharts [And04]
also.

Figure 2.1 illustrates a Boolean Mealy machine: a Mealy machine where the inputs (a in the
figure) and the outputs (b in the figure) are of Boolean type. Each transition of the automaton
is labeled with inputs/outputs. The behavior of the machine is as follows:

• At state a0, if it receives a then it does not emit b, and moves to state a1. Otherwise, if
it receives a (which stand for he negation of a), it does not emit b and does not change
state.
• At state a1, if it receives a then it emits b, and moves to state a0. Otherwise, if it receives
a, it does not emit b and does not change state.

The loops over the states that does not emit some outputs are often omitted (see Figure 2.2).

A Modeling Example Figure 2.2 illustrates the modeling of a modulo-4 a-counter1 with two
Boolean Mealy machines. A was described previously in Figure 2.1. Notice that the loops over
the states are made implicit. B exposes the same behavior, but it has b as input and end as
output. As b is the output of A, there exists a communication between A and B.

At each step, each component (i.e., A and B) takes one transition depending on its inputs.
The outputs of the transition are broadcasted to all the components running in parallel. The
behavior of the parallel reaction of the two automata is as follows:

Initially, the global state is a0b0 which encodes 0. The first occurrence of a moves the global
1The example is inspired by the presentation of Argos in [MR01]

22/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

a1b0

a0b1

a0b0

a1b1

a.b

a.b

a.b a.b

a.b/b a.b/end

a.b

a.b/end

a.b

a.b/b

a.b/b.end
a.b

a.b
a.b/b

a.b/enda.b

Fig. 2.3: The synchronous product of the Mealy machines A and B of Figure 2.2

a0b0

a1b0

a0b1

a1b1

a0b0

a1b0

a0b1

a1b1

a.b

a.b

a.ba.b

a.b/b.end a.b

a.b/ba.b

a

a

aa

a/end a

aa

(1) (2)

Fig. 2.4: (1): Encapsulating and (2): hiding the signal b in the product of Figure 2.3

state to a1b0 which encodes 1: A takes a transition and changes state; B takes the implicit
transition and does not change its state. The second occurrence of a moves the global state to
a0b1 encoding 2: A changes its state and emits b. At the same step, B takes its transition and
changes its state because its input b is emitted.

The Synchronous Product Figure 2.3 describes the synchronous product of the Boolean
Mealy machines of Figure 2.2. It is also a Boolean Mealy machine, where the inputs (resp.,
outputs) are the union of the inputs (resp., outputs) of the two components. Each transition of
the product corresponds to exactly one transition of each of the components. Notice that the
synchronous product does not make any synchronization between components.

Encapsulation The encapsulation is parameterized by a set of signal names. It is used to
restrict the scope of a signal, and to force synchronization between components. For instance,
the signal b of Figure 2.2 which is the output of A and the input of B may be used to synchronize
A and B. In this case, b becomes a local signal.

Tayeb BOUHADIBA Ph.D Thesis 23/186

2.1. Models of Computation for Discrete Concurrent Systems

Figure 2.4 illustrates the steps of encapsulating the synchronous product of Figure 2.3. Firstly,
we remove some transitions (illustrated by (1) in Figure 2.4). Secondly, as the encapsulated
signals are local, we hide their names in the labels (illustrated by (2) in Figure 2.4).

The transition that are removed during the encapsulation are those that do not fit in the two
following rules:

• A local signal which is supposed to be present has to be emitted in the same reaction.
Transitions like a.b, a.b, etc., are removed.
• A local signal that is supposed to be absent should not be emitted in the same reaction.

Transitions like a.b/b are removed.

2.1.1.2 Synchronous Programming Languages

Among the languages designed for synchronous programming, one would refer to the impera-
tive style language Esterel [BG92], and the declarative languages Lustre [HCRP91], and Sig-
nal [GG87].

In this section, we present the synchronous language Lustre, to which a lot of work has been
devoted, in order to develop techniques for program verification [RHR91, GH06, Gon07], se-
quential and distributed code generation [Gir94], etc.

node i n t e g r a t o r (i : int)
returns (o : int) ;
l et
o = i −> pre (o) + i ;

te l .

+

pre

oi

0

Fig. 2.5: An integrator written in textual Lustre and its graphical representation

Figure 2.5 is an example of a program written in Lustre, and its graphical representation as it
would be described in the commercial tool Scade2.

A program written in Lustre is called a node. The interface of a node exposes the set of its
inputs and outputs (i and o in the example). Lustre is a data-flow declarative language; this
means that the internal variables, the inputs and the outputs are flows of values.

When there is only the global clock (mono-clock synchronous programs), at each instant of the
global clock, each flow is given a value. The value of a flow is defined as a function of other
flows. The function may be a basic operator (i.e., +, -, *, etc) or a node; which means that a
node may be used to design a new node in Lustre.

Cyclic Dependencies and the Delay Operator Because of the dependencies of the flows,
at each instant, there is an order in which the values of the flows are computed. The architecture
of a Lustre program as it would be described by its graphical representation, defines a partial
order on the dependencies of the flows. Programs containing cyclic dependencies are rejected
by the Lustre compiler as there is no way to compute an order of computation. Figure 2.6
illustrates the case where there exists a cycle between the flow o and itself. Such a program is
rejected.

The pre operator introduces a delay. In Figure 2.5, the statement o = i -> i + pre(o) means
that o takes the value of i at the first instant (-> is the initialization operator), and for all the
instants nk such that k > 0 the value of o is the value of the input i plus the previous value
of o (i.e., the value of o at instant nk−1). This statement exposes a cycle (o depends on itself),

2Scade is a commercial tool for the design of safety critical systems; it is based on Lustre

24/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

node c y c l e (i : int) returns (o : int) ;
l et
o = i −> o + i ;

te l .

Fig. 2.6: A cyclic dependency in a Lustre program: the flow o depends on itself

but is still correct because of the delay. The value of o depends on its previous value. In Lustre,
every cycle must be cut with a pre operator.

Clocks and Clock Manipulation Operators Lustre may be used to describe systems with
several clocks in addition to the global clock. Clocks are associated with flows (i.e., the variables
of a Lustre program) to define the presence or the absence of a value of the flow at a given
instant. In Lustre any Boolean flow may define a clock for another flow.

X 0 1 2 3 4 5 6 7
CLK true false true false false false true true
Y = X when CLK 0 2 6 7
Z = current Y 0 0 2 2 2 2 6 7

Fig. 2.7: The when/current operators in Lustre

Lustre provides some primitives to manipulate clocks. The operator when is a sampling operator.
It is used to define a slower flow from a faster one. In Figure 2.7, the declaration Y = X when
CLK says that the flow Y takes the value of the flow X each time the flow CLK has the value true.
Hence, CLK is the clock associated with the flow Y.

The operator current is a projection operator. The operator is used to get a faster flow from a
slower one. For instance Z = current Y says that the flow Z takes the value of the flow Y if Y
is present, otherwise it takes the value of Y the last time it was present.

2.1.2 Asynchronous Models

When modeling embedded systems, there is often a need for describing systems where compo-
nents evolve asynchronously. Contrary to synchronous ones, asynchronous systems are systems
where there is no common clock that may be shared between components. Asynchronous sys-
tems range from threads on a mono-processor systems to large scale multi-computer systems.

On a mono-processor system, several processes or threads may run (in parallel) thanks to time-
sharing schedulers, and may access a shared memory. On multi-computer systems, processes
run in real parallelism, and may synchronize by message-passing.

2.1.2.1 Modeling Asynchronous Behaviors without Communication

The general modeling of asynchronous systems relies on interleaving semantics. That is, for a
whole system, an execution step corresponds to one execution step of one of its components.

Figure 2.8 describes two automata (A) and (B) that may model the behavior of processes
for instance. The states of the automata model the state of the processes. Each transition
corresponds to an action (or a set of actions) of the process and is considered to be atomic. In
other words, nobody running in parallel can observe the internal states of (A) during action a.

On the figure, (A×B) describes the asynchronous product of (A) and (B). The asynchronous
product produces the states that are potentially reachable when the two automata are run in

Tayeb BOUHADIBA Ph.D Thesis 25/186

2.1. Models of Computation for Discrete Concurrent Systems

a b
a

a

b

b

(A × B)(A) (B)

Fig. 2.8: Asynchronous models without communication

parallel.

A Note on Granularity Figure 2.9 recalls the importance of atomicity in such asynchronous
models, based on interleaving semantics. Suppose we replace the automaton (B) of Figure 2.8
with the automaton (B’), where the transition b is no longer atomic, it is split into to atomic
actions b’ and b’’.

Now, the global behaviors are those of automaton (A×B’), in which new states appear. The
a transition from state X means that in (B’), the intermediate state between b’ and b’’ is
observable by (A).

a
b’

b”

(A) (B’)

a

a

X

b’a

b’
b”

(A × B’)

b”

Fig. 2.9: Fine granularity of atomic executions exposes more states

Choosing the granularity of atomic transitions is an intrinsic modeling problem. When modeling
the behaviors of two threads on a mono-processor with a preemptive scheduler, the only possible
choice is to consider the atomicity as given by the execution platform: instructions in the
processor are atomic (non interruptible by the scheduler). Hence a thread is described by a
detailed automaton, with explicit states between machine instructions. The model is appropriate
for checking parallel programs that use low-level synchronization mechanisms like semaphores
of atomic read-write machine instructions.

However, in high-level models, the notion of atomicity may be of a coarser granularity. In
transaction-level models (see Section 2.2.1.1), typically, the granularity reflects the fact that we
do not need to observe the precise interleavings of the component behaviors. We only need to
observe the interleavings at a granularity given by the explicit synchronizations between the
components.

2.1.2.2 Modeling Asynchronous Behaviors with Shared Memory

Figure 2.10 illustrates the modeling of communicating asynchronous processes. As the processes
may not be alive at the same time, they communicate through a shared Boolean variable x
initialized to false.

The process A assigns true to the variable x. The process B may not execute its transition until
x has the value true.

26/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

The states of the asynchronous product include the state of the memory location relevant for
the two processes. Here, the variable x.

Due to the communication between the processes, the left path of the product (dashed lines) is
not possible. Notice that we still rely on interleaving semantics, but some of the states in the
asynchronous product are no longer reachable.

x=false

x=truex=falsex:=true x=true ?

(A × B)(A) (B)

x:=true

x=true ?
x=true

Fig. 2.10: Asynchronous models with shared memory

2.2 Virtual Prototypes of Hardware Platforms for Software De-
velopment

The development of embedded systems has to take into account the design of the hardware
part, and the software that may run on the hardware platform.

Modeling the hardware platform is an important phase in the design of an embedded system.
There are plenty of tools that allow for the design of virtual prototypes of the hardware at
various levels of abstraction.

Beside the fact that virtual prototypes of the hardware may be used for accurate simulation,
design verification, and automatic generation of the hardware platform, software developers
need virtual prototypes of the hardware to start developing the embedded software. The fact
is that the hardware part of embedded systems is often changing from a system to another.
Hence, software developers may not rely on programming models to write the software, they
need executable prototypes of the real hardware on which the software would run.

In this section we discuss some tools for the modeling of the hardware and how such models
would be used as a virtual execution platform for software development.

2.2.1 Modeling Hardware Platforms

The behavior of the hardware may be modeled at several abstraction levels. At each abstraction
level, timing aspects are defined precisely, approximately, or even inexistent. An abstraction
level also defines the notion of granularity in the observable simulation states and the data
exchanges.

Low Level of Abstraction Models HDLs (Hardware Description Languages), allow for the
modeling of the hardware at RT-Level (Register Transfer Level). Tools like Verilog [ver] and
VHDL [vhd92] propose a textual language to specify hardware. Programs written in such
languages may be simulated with a precise notion of time; they are also used as input to
automatic generation of the hardware layer. The synchronous languages Lustre [RH92] and
Esterel [Ber92] together with SystemC [sysa] may also be used to describe hardware at the RTL
level.

Tayeb BOUHADIBA Ph.D Thesis 27/186

2.2. Virtual Prototypes of HW Platforms for SW Development

High Level of Abstraction Models Other approaches target the modeling of hardware
at higher levels of abstraction. They may abstract away from the details that do not matter
with regards to the modeling purposes. For instance, AADL (Architecture Analysis and Design
Language) [FLVC05] is a component-based approach for modeling (not only) hardware archi-
tectures. The details exposed by the models written in AADL allow to perform architecture
exploration and some timing analysis related to data flows.

SysML [Wei08], an extension of UML, has also been proposed to tackle specific modeling prob-
lems. It may be used for modeling of hardware at a high level of abstraction. For the moment
it is not executable, and the semantics is not formalized, so it is of limited use.

Metropolis [BWH+03] is a formally defined methodology for the development of embedded
systems. Abstract hardware models may be designed with Metropolis; they provide an API for
the software development.

In the same category one can refer to approaches like SystemC/TLM [Ghe06], SystemVer-
ilog [SYSb], SpecC [GZD+00], etc.

What Kind of Models do Software Developers Need Instead of waiting for the hardware
platform to be manufactured, software developers use a virtual and executable prototype of the
hardware to start developing the software. The main motivation is to decrease time-to-market.

It is possible to use the RTL model as an executable model of the hardware. However, in
addition to the late availability of the RTL model, the hardware/software co-simulation is too
slow to allow for effective development of the software. The low co-simulation speed is due to
the quantity of details exposed by the RTL model.

To cope with the slow simulation speed, new abstraction levels have emerged. For instance,
Transaction Level Modeling (TLM) [Ghe06] uses a component-based approach, in which hard-
ware blocks are described by modules; the communication between the hardware blocks over
the real bus is abstracted by the so-called transactions.

TLM allows several abstraction levels, from cycle-accurate to pure functional models. They are
better suited than RTL models for early development of the embedded software, because the
high level of abstraction allows a faster simulation.

In the sequel we present the Programmer’s View (PV) abstraction level of TLM by means of
an example written in SystemC/TLM.

2.2.1.1 TLM Programmer’s View with SystemC

SystemC [sys06] is a C++ library used for the description of SoCs at different levels of abstrac-
tion, from cycle accurate to purely functional models. It comes with a simulation environment,
and has become a de-facto standard. SystemC offers a set of primitives for the description of
parallel activities representing the physical parallelism of the hardware blocks. The TLM/PV
level of abstraction is implemented in SystemC by defining specific TLM libraries and templates.
TLM 2.0 has been standardized by the Open SystemC Initiative (OSCI).

The success of SystemC comes from its C/C++ part: it is widely known, it is a general-
purpose programming language, so there are no restrictions on what the designer can write,
and it makes it possible to build tools for the co-simulation of SystemC code with C, assembly
code, RTL models, etc. The dark side of the picture is that SystemC models are quite hard
to analyze formally (SystemC, being based on C++, has no formal semantics, and SystemC
models may implement relatively simple things by complex integer manipulations, which make
simple properties undecidable in the general case). Therefore the main activity with a SystemC
model is simulation.

28/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

T1 R1 T2

p1

module2module1

p2 p1 p2

f1 f2

Fig. 2.11: Example of SystemC/TLM (architecture)

SystemC Modules A TL-Model is based on an architecture, i.e., a set of components that
expose ports, and connections between them, as shown on Figure 2.11. The components, also
called modules, represent some physical entities that behave in parallel in the real system to be
modeled (typically: a bus, a CPU, a memory, etc.).

Components communicate through the ports by means of transactions. The direction of the
arrow shown on a port determines the role of the port during transactions. On Figure 2.11, p2
in module1, and p1 in module2, are initiator ports of the transactions; p1 in module1, and p2
in module2, are target ports.

A Module is Composed of Threads and Functions The behavior of a component is given
by a set of threads (represented by circles with steps on Figure 2.11), and a set of functions
(represented by straight lines with steps), both programmed in full C++ (see Figure 2.13).
module1 has two threads T1 and R1, and one function f1, while module2 has a single thread
T2 and a function f2. The threads are active code, to be scheduled by the global scheduler;
the functions are passive code, offered to the other components, and that will be called from
a thread or function of another component; the functions are attached to the target ports of
the module (f1 is attached to p1 in module1). Inside such a module, the processes and the
functions may share events in order to synchronize with each other. Events can be notified, or
waited for. In module1 (Figure 2.13) there are three events e1, e2, e3.

The SystemC Scheduler All the threads are managed globally by a non-deterministic sched-
uler. The SystemC scheduler is non-preemptive: a running thread has to yield, by performing a
wait on an event or on time. For instance, for the thread T1 of module1, the only point where
the thread yields is wait(e1). The execution of a++; e2.notify(); a++; e3.notify(); is
therefore atomic.

Figure 2.12 3 is a sketch of the algorithm of the SystemC scheduler. After the elaboration phase,
where the set of modules and communication channels are instantiated, the scheduler executes
the phases presented below; a more concise description would be found in [sys06, Cor08]:

EV Is the evaluation phase. The scheduler executes the eligible processes in a non-deterministic
order. Processes yield back control by waiting for an event or time to elapse. Notified
events may render some processes eligible. These processes are executed during the same
phase. When there is no eligible process, the scheduler enters the update phase (UP).

UP During the evaluation phase, SystemC objects may request to be activated at the update
phase. For instance, some communication channels may request the scheduler to call their
update function to update their values. Some events may be notified during this phase.
Then the scheduler re-executes the EV phase.

3The figure is taken from [Bou07]

Tayeb BOUHADIBA Ph.D Thesis 29/186

2.2. Virtual Prototypes of HW Platforms for SW Development

∃ elligible process

∃ elligible process

∃ elligible process

Elaboration Phase

EV: Execution of elligible processes

UP: Update of event values

TE: Time elapse

no elligible process

no elligible process

no elligible process

End

Fig. 2.12: The SystemC scheduler

TE When no process still eligible after the update phase, the scheduler lets time elapse until
reaching the earliest delay waited for by processes. The corresponding processes are made
eligible, and the scheduler enters a new evaluation phase.

Some TLM Guidelines According to the TLM-PV guidelines, communications between
modules cannot use the event mechanism, because this would be meaningless w.r.t. the phys-
ical parallelism to be modeled. The only possible communications are called transactions,
implemented by blocking function calls; the link between a caller and the callee is established
through the architecture. On Figure 2.13, the thread T2 of module2 initiates a transaction on
its port p1 (written p1.f1(c)). This is a call to the function f1 in module1 (which is attached
to the target port p1 of module1), because the initiator port p1 of module2 is connected to the
target port p1 of module1. When the call is executed (T2 being running), the control flow is
transferred to module1, until f1 terminates; then the control flow returns to module2, and the
execution continues until the next yielding point (wait(e4) in the example). Since function f1
in module1 waits for the event e3, it yields if e3 is not present; this means that thread T2 in
module2 may yield because of a wait statement in the function it has called in another module.

An example atomic sequence is the following: the scheduler elects thread R1, which is at line
12; it executes b++ and then calls f2 via the port p2; the body of f2 in module2 is executed
entirely, and the control returns to module1; the thread R1 loops, executes b++ at line 11, and
stops on wait(e2) at line 11.

2.2.2 Executing Embedded Software on a Virtual Prototype of the Hardware

As explained previously, hardware virtual prototypes are used by software developers to write
the embedded software. The virtual prototype provides an execution platform for the software.
This means that the software should execute together with the model of the hardware.

Suppose we (as software developers) are provided with the virtual prototype of the hardware
platform described by Figure 2.14. The virtual prototype contains a model of the memory, the

30/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

1 void module1 : : T1(){
2 int a = 0 ;
3 while (true){
4 wait (e1) ;
5 a++; e2 . n o t i f y () ;
6 a++; e3 . n o t i f y () ;
7 }}
8 void module1 : : R1(){
9 int b = 0 ;

10 while (true){
11 b++; wait (e2) ;
12 b++; p2 . f 2 (b) ;
13 }}
14 void module1 : : f 1 (int x){
15 cout << x ;
16 e1 . n o t i f y () ;
17 wait (e3) ;
18 }// ** module1 **

19 void module2 : : T2(){
20 int c ;
21 while (true){
22 c++; p1 . f 1 (c) ;
23 c++; wait (e4) ;
24 }
25 }
26

27 void module2 : : f 2 (int x){
28 cout<< x ;
29 e4 . n o t i f y () ;
30 }// ** module2 **

Fig. 2.13: Example of SystemC/TLM (code)

LCD (Liquid Crystal Display), the BUS, and the CPU. Once the software is written, we need
to execute it for simulation and debugging.

To make the software execute with the hardware model, engineers in the industry rely on two
approaches. In what follows we describe the two approaches.

cpu

lcd

mem

B
U

S

r/w
status
data

address

r/w
status
data

address

r/w
status
data

address

interrupt

Fig. 2.14: Example of hardware platform

2.2.2.1 Native Wrappers

Using a native wrapper, the embedded software is wrapped into a piece of code. The goal of
the wrapper is to intercept the decisions of the software. The software decisions we want to
intercept are those related to the communication of the software with the hardware components.
For instance, we need to know when the software writes into the memory, what data to be
written, and to which address.

The wrapper is provided by the designer of the virtual prototype; it is part of the model of the
processor. The wrapper offers to the software developer primitives related to the communication
with the hardware. For instance, it may provide primitives like write mem(int address, int
data) to write into the memory, read mem(int address, int* data) to read from it, etc.

Tayeb BOUHADIBA Ph.D Thesis 31/186

2.3. Components and Contracts

The wrapper primitives are implemented so that to reflect the decisions of the software on
the virtual prototype of the hardware components. For instance, when the software calls
write mem(a,d), the wrapper engages in a set of actions in order to write the data d at the
address a of the component modeling the memory.

To simulate the whole system, the wrapped software code together with the hardware virtual
prototype are compiled into a binary code. The binary code is directly executed by the processor
of the host machine on which the simulation will run.

Once we are happy with the software implementation, we integrate it into the real hardware
platform. To do so, the wrapper primitives are re-implemented as accesses to the registers of
the target processor with additional information on memory-mapping; the software together
with the wrapper are cross-compiled into the target processor binary code; then, the binary
code may be integrated in the hardware platform.

2.2.2.2 ISS-Based Software Execution

An Instruction Set Simulator emulates the behavior of a specific processor when executing a
binary code. The ISS is able to interpret the complete instruction set of the processor, and
maintains a set of variables that corresponds to the registers of the processor.

Contrary to native wrapper simulation, ISS-based simulation requires the software to be cross-
compiled into the binary code of processor of the hardware platform. The resulting binary code,
is given as input to the model of the CPU in the virtual prototype. The CPU model is in fact
the ISS.

During the simulation, the model of the hardware (including the ISS) is executed by the host
machine; the ISS interprets the binary code of the software and reflects its behavior on the
hardware model.

When the simulation gives good results, the binary code executed by the ISS, is integrated
directly into the real hardware platform. The embedded system would expose the same behavior
as the simulation model if the virtual prototype is faithful to the hardware platform.

2.3 Components and Contracts

The notion of a component for embedded systems has been discussed for some years now,
and there are a lot of proposals. The main motivations are the following: as time-to-market
decreases, it becomes unavoidable to reuse a lot of previous work when designing new systems.

Reusing parts of a previous system requires that these parts be properly defined as components,
equipped with some form of a specification (informal or formal). The specification groups all
information needed for using the component, without knowing in details how it is built.

2.3.1 Components

A typical embedded system is built from hardware and software. Component-based design of
embedded systems should take into account the hardware part and the software part. Even if
there is clear definition of what a software (resp., hardware) component is, mixing software and
hardware components may not be an easy task.

Components for Hardware The notion of components in hardware is very old. There is a
very clear definition of a component in the hardware industry, at the RTL level. For instance,

32/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

IPs (for intellectual properties) are off-the-shelf hardware components. An IP may be used as a
physical hardware block or integrated during the modeling phase as a specification written in
any HDL (Hardware Description Language). The synchronous semantics of the RTL description
for circuits is what makes the definition of components widely portable.

Components for Software The notion of components for software is less generic than the
notion of hardware components, because the semantics of software compositions are more diverse
than the semantics of hardware compositions (at least at the RTL level, where there is a single
semantics).

Several approaches for component-based software development have been proposed, not all
dedicated to embedded systems. From one approach to another, there are a lot of distinctions;
the interface of a component differs, the execution model may be distinct, etc.

An interesting property of component-based models is the notion of hierarchy. A model is
hierarchic if a composed component (made of an assembly of other components) is not dis-
tinguishable from a basic one. Fractal [BCL+06a] and SOFA [PBJ98] component models are
hierarchic. Other approaches are not hierarchic. For instance, CORBA, a software archi-
tecture for the deployment of heterogeneous components (distinct programming language and
execution platforms), EJB (Enterprise Java Beens) [EJB03] and CCM (CORBA Component
Model) [CCM]. These approaches are not hierarchic in the sense that they do not offer means
to encapsulate an assembly of components in order to build one component exposing the same
interface as a basic component.

2.3.2 Specifying Components

Component-based approaches facilitate the design of systems by reusing parts of previous de-
signs. Moreover, the idea behind using components, is to be able to connect components to
form the system. Even if individual components are validated by intensive use and testing,
putting them together may raise some problems. Specifying components may help detecting
such problems.

The specification of a component may group all the information we need, including both func-
tional and non-functional aspects, like timing performances, or energy consumption. The CBSE
Component-Based Software Engineering community identifies four classes of specifications (or
contracts) [BJPW99]:

Basic or syntactic contracts describe the set of possible operations the component may per-
form. IDLs (Interface Description Languages) define basic contracts. IDLs are adopted
by almost all component-based approaches to allow communication between components.
The following code is an example of specifying a Java application with Java IDL. The
module keyword corresponds to a package in Java. The description of the interface fifo
declares its syntactic contract. The contract declares the operations provided by fifo
together with their signature.

module b u f f e r s
{

interface f i f o
{

string get () ;
void put (string) ;

} ;
} ;

Tayeb BOUHADIBA Ph.D Thesis 33/186

2.3. Components and Contracts

Behavioral contracts enable the description of the behavior of component when it is asked
to perform an operation. Behavioral contracts deal with the pre and post conditions,
and invariants. First introduced in the Eiffel programming language [Mey97], behavioral
contracts have gained much interest and were introduced in other approaches like iCon-
tract [Kra98] (a design-by-contract tool for Java developers), and OCL [WK03] (Object
Constraint Language), which is part of UML (Unified Modeling Language).

Synchronization contracts deal with some dependencies between service calls of a compo-
nent. They enable the description of the correct sequences of service calls, concurrency,
mutual exclusion, etc. The notion of protocols in the object programming language PRO-
COL [VDBL89] is an example of synchronization contracts.

Quality of service contracts are used to describe non functional behaviors. They provide
information related to the quantification of some parameters of the service like the response
time, energy consumption, quality of an image, etc. This information may be used by the
interacting components for negotiation purposes as it would be done in Qinna [TBO05].
Qinna is a component-based QoS architecture designed to manage QoS issues.

Specification Languages for Software Components Component-based approaches insist
on the fact that the implementation details of a component should be invisible. Components
are considered as black boxes. Hence, an abstract description of components is required.

A lot of work has been advocated to the design of specification languages for various component-
based approaches. Behavior protocols [PV02] for instance, were designed to specify the behavior
of a component by defining the sequence of method calls emitted and accepted by a component.
Initially, behavior protocols were designed for the component model SOFA, but they were also
ported to the component model FRACTAL.

Interface automata [dAH01] were designed in the same sense. They equip components with
an automata-based description that defines how components react to their environment. The
transitions in the automata are labeled with inputs, outputs, and internal actions.

Approaches like session types [VVR06] express multiple protocols for one component, each
protocol being related to a specific component interface. The protocols are considered as types.

The specifications described as behaviors are usually exploited to determine some properties over
a set of components. Based on the specifications, one can check whether composing components
exposes a correct behavior or not (i.e., compatibility) or whether a component may be replaced
by another one in an assembly without changing the global behavior (i.e., substitutability).

2.3.3 Design By Contract

Design-by-Contract is a design approach first introduced by Bertrand Meyer in the Eiffel pro-
gramming language [Mey97, Mey92]. It insists on the fact that the design of software modules
should imperatively include the specification phase. The specification consists in documenting
the methods of the module with contracts before writing them.

If we rely on the classification given above, the contracts should describe behavioral aspects:

• pre-conditions of a method call: A property that should hold when the corresponding
method is called.
• post-conditions of a method call: A property that the component guarantees, after

being called and having executed successfully.
• class invariant: A global property on the state of the module, that should hold before

and after a call to one of its methods.

34/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

In addition, the contract declares the exceptions that may be thrown when a contract is violated.

Design-by-Contract Vs Defensive Programming Design-by-contract aims at making a
clean separation between the specification of a module and its functional behavior. Once the
contracts are established, the designer of a module should concentrate on the implementation
part, not on checking the consistency of the contracts.

Writing additional code to check whether the contract of a method is violated is a practice
often referred to as defensive programming. This practice negatively affects the readability of
the code and its performance during execution.

In design-by-contract, checking the consistency of the contracts is performed by the underlying
execution platform. Once the systems are validated, notice that the contracts may be removed
to gain in efficiency without affecting the functional behavior of the system.

2.4 Validation

Validation is the process of ensuring that a system meets the requirements of the designer. The
designer requires that the implementation of a system conforms to some properties. Usually,
these properties are established before the implementation phase. For instance, a component
may be validated individually by checking whether its implementation meets its specification.

Validation techniques are grouped into two categories: approaches that rely on the execution of
a system to validate (simulation and runtime verification), and approaches that do not require
the execution of the system (static verification).

2.4.1 Formal Specification of Properties

The properties of a system one would verify are mainly grouped into two classes:

Safety properties stipulate that something wrong will never happen. For example, a property
expressing that a variable X will never take the value 0 during the execution of a program.

Liveness properties stipulate that Something good will eventually happen. For example, a
property expressing that when a message is sent, it will be received.

Such properties may be expressed formally in terms of temporal logics. Temporal logics are
formalisms in which complicated expressions may be built to describe states of a system, and
the transitions between them. They are often classified according to whether time is assumed
to have a linear or a branching structure [CGP99]. For those two classes, one may refer to LTL
(Linear Temporal Logic) [Pnu77] and CTL (Computational Tree Logic) [CES86].

The properties may also be encoded as observers. An observer is a transducer that outputs and
alarm when a particular input sequence is recognized. In the context of embedded systems,
most of the desired properties are safety or bounded-liveness properties, and may be effectively
encoded into observers. Observers were intensively used in the synchronous approach [HLR93].
A components acting as an observer runs in parallel with the other components of the system.
Because of the synchronous broadcast communication mechanism, the observer does not affect
the functional behavior of the system.

Tayeb BOUHADIBA Ph.D Thesis 35/186

2.4. Validation

2.4.2 Validation by Simulation

Validation by simulation consists in running the system to observe its behavior. It usually
consists in providing the system with inputs and observing its outputs. The outputs are then
compared to the expectation of the designer. Also, the simulation permits the observations
of the state of the system under execution, for instance by choosing relevant break-points to
observe some internal variables.

2.4.3 Runtime Verification

Runtime verification consist in checking some safety properties that the system must satisfy.
Runtime verification requires the execution of the system. The properties are expressed in terms
of logical properties, temporal logics, or automata (observers).

Usually, verifying properties at runtime requires the extraction of execution traces as a sequence
of relevant events (function calls, assignment, etc.). The execution trace is given as input to a
monitor that checks if the desired properties are indeed satisfied or not.

Several tools were designed for the purpose of runtime verification. Some of them allows for
expressing various properties, possibly written in distinct logics (e.g., Java-MOP [CR05], j-
VETO [Fal09], etc.). Others are dedicated to particular issues such as race condition detection
in multi-threaded programs (e.g., FastTrack [FF09], Eraser [SBN+97], etc.), deadlock de-
tection [JPSN09], etc.

Runtime verification requires intensive execution of the system in order to observe its potential
behavior. As we cannot deal with infinite executions, one may say the property has never been
violated, but we cannot state that the property is never violated.

2.4.4 Static Verification

Static verification analyzes a formal model of the system without executing it. The concrete
semantics of a language may be used to define a formal model of a program written in that
language. Such a model may expose infinite behaviors which makes most of the problems
undecidable. In static verification techniques, the decidability problem is solved by using some
form of abstractions.

The methods used for static verification differ in the way to perform abstractions. In the sequel
we present model-checking and abstract interpretation techniques.

2.4.4.1 Model Checking

Model-checking [CGP99, QS82] allows for verifying finite state systems. This means that even
if a system exposes an infinite number of states, its abstract model should be finite.

The abstract model is given manually by the user, or may be computed with techniques relevant
to static analysis of programs. The abstract model is given as input to a model checker,
together with the property to verify (expressed in temporal logic or as an observer). The
model checker performs exhaustive exploration of the set of possible states. It is able to state
whether a property is satisfied or not. In case it is not satisfied, the model checker provides a
counterexample that violates the property.

Model-checking faces the state explosion problem. Elaborate techniques try to minimize the
state space of the abstract models. For instance, symbolic model-checking consists in represent-
ing sets of states by formulas, and to encode formulas by BBDs (Binary Decision Diagrams) as

36/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 2. Background

in the SMV model-checker [McM92b]. Other approaches apply partial order reduction in order
to reduce the set of states to be searched (e.g., SPIN [Hol97, HP96]).

2.4.4.2 Abstract Interpretation

Abstract interpretation takes a program in its original form (i.e., not a model of it) and tries to
compute its possible behaviors. However, the formal representation of a program as it is given
by its concrete semantics may expose infinite behaviors.

Abstract interpretation [CC77, CC76] aims at associating an abstract semantics with the pro-
gram that over-approximates its concrete semantics. Over-approximation means representing
the set of possible behaviors by an abstraction containing at least these behaviors. Abstract
interpretation associates abstract values (e.g., intervals, signs, etc.) with the variables of a pro-
gram instead of their concrete values (e.g., numerical values). Interpreting the program through
its abstract semantics computes an over-approximation of the possible values of the variables
in terms of their abstract representation.

Abstract interpretation is applied to static analysis of programs [CC77, HP08], program opti-
mization [CGS94], typing [Cou97], etc. A lot of tools were designed for the verification of pro-
grams by abstract interpretation such as ASTRÉE [BCC+03], TVLA [LAS00], Polyspace [plo],
SLAM [BR02], etc.

Tayeb BOUHADIBA Ph.D Thesis 37/186

2.4. Validation

38/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3

Overview of the 42 Model

Introduction (En) This chapter presents an overview of the thesis. The basic
elements of the 42 component model are introduced and illustrated by an example.
We describe 42 components and how they are assembled in order to form other
components. Components are viewed as black boxes which impose some kind of
specification. 42 components may be described by means of explicit or implicit spec-
ifications. We study the difference between the two and describe a mixed type of
specification. The 42 model is not meant to be a new language for the design of
embedded systems. Instead, it is a tool for reasoning on components from various
domains. The benefits of using 42 as a modeling tool are listed in this chapter. We
present a tool developed for 42 to enable execution and simulation of components.

Contents

3.1 Basic Elements of the 42 Model . 40
3.1.1 Basic Components . 40
3.1.2 Composed Components . 42
3.1.3 Discussion on the Memory Associated with the 42 Model 45

3.2 Specifying Components . 46
3.2.1 Implicit Specifications . 47
3.2.2 Explicit Specifications: Rich Control Contracts for 42 47
3.2.3 Components Introspection . 50

3.3 Consistency Issues . 51
3.4 Using the 42 Modeling Approach . 52

3.4.1 Reasoning on Components with the 42 Model 52
3.4.2 Main Usage of 42 Control Contracts . 53

3.5 Implementation . 55

Introduction (Fr) Ce chapitre donne un aperçu du contenu de la thèse. A travers
d’un petit exemple, nous décrivons la notion de composant 42, et comment assem-
bler des composants pour en créer des nouveaux. Les composants 42 peuvent être
décrits par des spécifications implicites ou explicites. Nous présenterons ces deux
types de spécifications, ainsi qu’une forme de spécification mixte. 42 n’est pas un
nouveau langage pour la conception des systèmes embarqués ; c’est un outil pour
la réflection sur la notion de composants dans le domaine des systèmes embarqués.
Nous montrerons l’intérêt d’utiliser 42 comme un outil de modélisation. Enfin, nous
présenterons un outil qui à été développé autour de 42 qui permet d’exécuter des
assemblages de composants 42 pour observer leur comportement.

39

3.1. Basic Elements of the 42 Model

oc1:{a, b}
oc2:{ok, ko}
oc3:{x}

ic1ic2

Output Control Ports

Input Control Ports

internal memory

atomic
step

id1

id2

id3

od1

od2

od3

Input Data Ports Output Data Ports

oc2 oc3oc1

a

Types of the control outputs:

Fig. 3.1: External view of the 42 component a

3.1 Basic Elements of the 42 Model

42 is a component-based model designed for formal modeling of heterogeneous embedded sys-
tems. The basic elements of the model will be presented in this section: the notion of compo-
nents, their interface, how to assemble components, etc. 42 is given as a formal specification
(see Chapter 5) and is not associated with a particular language. For simulation purposes, one
may use any language to implement a tool and any language to program components.

3.1.1 Basic Components

Figure 3.1 shows a 42 component named a. A component is a black box that has input and
output data ports, and input and output control ports. The input control ports are used to ask
it to perform one finite-execution. Since there may be several input control ports, there may
be several entry-points that toggle an execution. An execution corresponds to a terminating
(non-necessarily deterministic) piece of code. Allowing non-deterministic components means
that 42 allows to mix code with specifications. A component may have some internal memory.
The input and output data ports are used to communicate data between the components. The
output control ports will be used by the components to send information to the controller (see
below).

3.1.1.1 Components Interface

The set of input/output control and data ports constitutes the interface of a component. The
interface is the only visible part of a component. The ports of a component are typed. Input
control ports are used to activate it (they are of Boolean type). The type of the data ports may
range from simple Boolean to complicated data-structures (e.g., arrays of integers or records,
. . .). The output control ports are used to communicate with the controller. They are of some
enumerated type. On the right of Figure 3.1, the types of the output control ports are indicated.
For example, oc1 may take its values in the set {a, b}.

3.1.1.2 Implementation of Basic Components

Besides its interface, a component has an implementation that defines its behavior. Basic com-
ponents are written in some programming language. Figure 3.2 is an example code for the
component in Figure 3.1, written in some imperative style. For each control input, the compo-
nent executes a program that corresponds to its activation. It should terminate in bounded time.
The memory (all the global variables: m, v) is initialized when the component is instantiated
somewhere, it is persistent across the successive activations of the component.

40/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

Component A (
control input i c1 , i c 2 : bool ;
control output oc1 :{ a , b } ; oc2 :{ ok , ko } ; oc3 :{ x}
data input id1 , id2 , id3 : int ; data output od1 , od2 : int ; od3 : bool ;)
var m : int := s o m e i n i t v a l u e ;
v : int ;

for i c 1 do : {
int cpt := id1 . read () ;
i f (m < 0) m := − m;
while (m > 0){

m := m − cpt ;
cpt ++;

}
od1 . wr i t e (cpt) ;
i f (cpt >42){

oc1 . wr i t e (a) ;
} e l s e {

oc1 . wr i t e (b) ;
}
m := m + cpt ;

}

for i c 2 do : {
i f (id2 . hasValue ())
. . .
i f (m . . .) {

. . .
v := id1 . read () ;
oc3 . wr i t e (x) ;

} e l s e {
m := v ∗ 42 ;
. . .
i f (. . .)

. . .
od3 . wr i t e (t rue) ;
. . .

} }}

Fig. 3.2: Internal view of the component a in Figure 3.1

The ports of a component are unidirectional. That is, a component cannot write on an input
port, and cannot read from an output port. The way components access the ports depends on
the implemented tool. For instance, in the code of Figure 3.2, id1.read() allows for reading the
port id1; od1.write(cpt) assigns the value of the variable cpt to the output port od1. We also
allow components to test which of the inputs are made available. For instance, id2.hasValue()
checks whether a value is available on the input id2.

42 does not impose a particular language for the individual components. When importing exist-
ing components (for instance the C code produced by the compiler of a synchronous language),
they have to be wrapped so that the input control ports correspond to the activation of a piece
of code (methods in an object-oriented language, functions in C, ...), and the data ports cor-
respond to some of the parameters of the activations. For hardware components, the 42 data
ports usually correspond to wires of the real hardware component.

Figure 3.3 for instance, illustrates the correspondence between a piece of C code and a 42
component. The control inputs of the component correspond to the functions in the code; the
input/output data ports correspond to the parameters of the functions. Global variables (e.g.,
m) correspond to the internal memory of the component.

3.1.1.3 Partial Access to the Ports of the Interface

The activation of a component corresponds to one of its computation steps. It has the general
effect of reading inputs, updating the internal memory, computing control and data outputs.
However, as illustrated by the example code above (Figure 3.2), an activation may not use all
the inputs, nor compute all the outputs. For example, the activation with ic1 uses only the
input id1, updates the global variables, computes the outputs od1 and oc1. Moreover, two
activations with the same input control port may access distinct ports of the interface.

When a component has such a complex behavior, there is often a need for a precise description
of it. 42 components may be associated with explicit specifications (see Section 3.2.2) to expose
relevant information about its behavior.

Tayeb BOUHADIBA Ph.D Thesis 41/186

3.1. Basic Elements of the 42 Model

#include . . .
. . .
int m=0;
void fun1 (const int i , int∗ o){
∗o = (m + i)∗4 2 ;
. . .

m ++;
}

void fun2 (int∗ o){
∗o = m ∗ 42 ;
. . .

}
. . .

i oc

fun1fun2

Fig. 3.3: Wrapping a piece of C code into a 42 component

3.1.2 Composed Components

Components are assembled to form the architecture of a system; they are connected
by point-to-point directed wires (see Figure 3.4). A wire relates two data ports of the same
type (we will assume this is always true in the sequel). A system may have global data ports,
in which case it is considered as an open system. Otherwise, in the absence of global data ports
it is a closed system.

The wires are used to describe the architecture of the system. A wire may relate an output
data port of a component to the input data port of another (potentially the same); a global
input data port to the input data port of a component; an output data port of a component to
a global output data port of the system. Wires do not mean a priori any synchronization, nor
memorization. They indicate that some data may flow from a data port to another.

A system made of components connected by wires has no semantics until it is equipped with a
controller (the box labeled with ctrl in Figure 3.4) to which the control ports of the components
are connected implicitly. The controller activates the components, reads their control outputs
and decides what happens on the wires.

����
����
����

��
��
��

����

����

Output data ports
Input data ports

ma
mb
mc

md
me
mf

mg
mh

ctrl

b

ai

i’

hc

Control ports
yy

xx

d

e

f

g
o

abcd

ic1 ic2

oc1 oc3
oc2

y

kl

b

a

d

c

fun1fun2

vu

x

Fig. 3.4: Composing components and the ADL

42/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

A system is encapsulated to form a component. The interface of the composed compo-
nent exposes new input and output control ports, and new input and output data ports (the
global data ports of the system).

Figure 3.4 is an example of a composed component: the component abcd is made of the set
of components a,b,c, and d, the set of wires, and the controller ctrl to activate them. The
encapsulation of components into a new one, hides the details of the implementation of the new
component, and exposes its interface. Hence, a composed component is not distinguishable from
a basic one.

The components used to design a new component may be basic components as it is the case
for the components a and c. a (resp., c) is an instance of the component in Figure 3.1 (resp.,
Figure 3.3). Only the interface of the components b and d is known. They may be imple-
mented as an assembly of other components. Composed components are also used to design new
components which make the model hierarchic.

The semantics of an assembly is defined by a controller. The controller defines how
components behave together, and the resulting behavior of the composed component. Hence,
the controller implements the MoCC (Model of Computation and Communication) associated
with the assembly.

The controller is in charge of translating an activation request on one input control port of the
composed component (e.g., abcd.xx, also referred to as a macro-step in the sequel), into a
sequence of activations of the subcomponents, and data exchanges between them (also called
micro-steps); it also reports on the activity of the subcomponents, through global output control
ports like abcd.yy. To manage the communication between components, the controller may
use some temporary variables explicitly associated with the wires.

The memory associated with the wires serves only as temporary storage, to build a macro-step
(i.e., the activation of the component abcd with xx). Its lifetime is limited to the macro-step.
If there is a need for storing information (produced by a component) between two macro-steps,
we can use the memory associated with the ports of the components (see Section 3.1.3 for a
discussion on the memory). However, when the memory plays an important role in the system,
or may have complex behavior, then there should be an explicit component behaving as a
memory (see examples in Section 4.2.2).

Figure 3.5 is an example code for the controller ctrl written in a simple imperative style. It is
used within the assembly of Figure 3.4 and implements a fictive MoCC.

In this example, within the activation with xx, the controller ctrl associates a bounded FIFO
with each wire. The wires a, b, c of Figure 3.4 are associated with the one-place int FIFOs
ma, mb, mc of Figure. 3.5, the wires d, e, m are associated with the 4-places int FIFOs md,
me, mm, and the wires f, h are associated with the 2-places Boolean FIFOs mf, mh.

A FIFO M offers three methods: M.get gets a value in M and puts it into the consumer port
connected to the wire; M.put gets a value in the producer port connected to the wire and puts it
into M; M.init initializes M to an empty FIFO. It is the responsibility of the controller to avoid
writing in a FIFO when it is full, or reading from an empty FIFO.

In response to the global activation xx of the global component abcd, the controller of Figure 3.5
executes the micro-steps defined by the program associated with the global control input xx.
First, the controller initializes the memory associated with the wires. Depending on the value
of the variable m, it may copy the value of the global input port i into the memory associated
with the wire a with ma.put. The micro-step ma.get moves the content of the wire to the input
of the component a. The controller activates the components a and d through their control

Tayeb BOUHADIBA Ph.D Thesis 43/186

3.1. Basic Elements of the 42 Model

Controller c t r l i s
var m : bool := true ;
for xx do {

ma , mb , mc : f i f o (1 , int) ;
md , me , mm : f i f o (4 , int) ;
mf , mh : f i f o (2 , bool) ;
i f (m) {

ma . put ; ma . get ; // reads i
A. i c 1 ; // a c t i v a t e s A
D. l ; mc . put ; mc . get ;
mb . get ; mb . get ; A. i c 2 ;
md . put ; md . get ;
me . put ; me . get ; B. u ;
mg . put ; mg . get ; // d e f i n e s o
m := B. x ;
mf . put ; A. i c 2 ; mf . put ;
mf . get ; C. fun1 ; mf . get ; C. fun1 ;

} else { . . . }
yy := true ; // d e f i n e s yy

}

Fig. 3.5: Code for the controller in Figure 3.4

input ports with a.ic1, d.l respectively. The value produced by the component d is copied
from the output port of d to the input port of a with mc.put; mc.get, etc.

The program of the controller may also copy the control outputs of the individual components,
into some memory local to the controller (e.g., m:=b.x), and whose life span may exceed the
reaction to xx (inter-macro-step memorization). Finally, it may set a value for the global output
ports (e.g., yy := true).

In the example code, the controller executes d.l without providing it with an input. This is
because a component does not necessarily need all of its inputs (resp. produce all of its outputs)
at all times (see below).

The memory mf receives 2 values before they are consumed by c. For a given macro-step, there
is no general rule for the components to activate. A component may be activated twice as it is
the case for the component c or never activated during the macro-step. This depends on the
MoCC implemented by the controller.

3.1.2.1 From Data to Control and Vice-Versa

The restrictive constraints on the connections for the data and control ports are meant to enforce
the identification of such a data/control classification for the components. Notice that, if the
controller has to take decisions that depend on a data output od of some component c, the od
port can be connected to the input data port din of some special component cond (Figure 3.6-
(a)) that produces a control output for the controller. For instance, such components are used
for the modeling of multi-cycle programs in Section 4.2.2.3.

Similarly, if a global data output is in fact produced by the controller (and so cannot be
connected to a data output of some component), we can just add a special component gen
(Figure 3.6-(b)) activated by the controller, and producing the desired data output.

44/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

dout

ov1 ov2

gen

obs

din
cond

cout
(a) (b)

Fig. 3.6: From data to control values (a) and vice-versa (b)

3.1.3 Discussion on the Memory Associated with the 42 Model

The description of the 42 model involves some memory associated with the various elements
of 42. Part of the memory may be actually associated with the final system and needs to be
modeled explicitly, the rest of it is used for the purpose of modeling and simulation.

This section is meant to describe the various classes of memories in terms of their type, location,
persistence, scope, etc.

3.1.3.1 Basic Components may Have Memory

The memory corresponds to the set of the global variables of the component. This memory
may be shared between the various activations of the component. The global variables m and v
of the component a (Figure 3.2) correspond to its memory. The memory of the component is
not used for modeling purpose, it is indeed part of the system being modeled.

3.1.3.2 The Controllers may Have Memory

The memory corresponds to the set of global variables of the controller. It may be used by
the controller to store the control outputs of the components as it is the case for the variable
m of the controller ctrl of Figure 3.5. Also, the controller may use this memory to remember
some choices it did during the previous activations, and to decide on the next activations of
components. An example of such usage of memory will be illustrated in Section 6.2.2.

3.1.3.3 The Memory Associated with the Wires is Non-persistent

Such a memory is used for modeling purposes only, it is in fact part of the memory of the
controller. It is a FIFO whose size is defined by the controller. At the beginning of each macro-
step, the memory of the wires is initialized to empty FIFOs, losing any information from the
previous macro-step. Hence, it is non-persistent.

3.1.3.4 Modeling Requires Persistent Memory

The various MoCCs we studied with 42 (see Chapter 4) demonstrated that there is indeed
a need for some persistent memory in addition to the memory that is already present in the
component themselves, and in the controller. Such a memory would be used by the controller
to manage the communication between components; it is required for the purpose of modeling.

For instance, synchronous circuits do not require a shared memory to communicate, because
components are alive at the same time. But, for the purpose of modeling synchrony, we need
some implicit and persistent memory. To implement a synchronous MoCC, the controller should
be able to activate components at least twice with the same inputs. These inputs have to

Tayeb BOUHADIBA Ph.D Thesis 45/186

3.2. Specifying Components

be stored somewhere. The modeling examples of synchronous systems (see Sections 4.1.1,
and 4.2.1) give more details.

On the opposite, asynchronous components require explicit memory in order to communicate.
There are two choices: either we model the required memory explicitly as a component, or we
can abstract it; instead we would use the implicit memory.

Associating additional memory with the 42 model may be done in several manners. Our point
of view is that:

• Associating the memory with the controller implies repetition, this would reproduce the
architecture of the system.
• The additional memory cannot be associated with the components or the wires, because

this would be meaningless w.r.t. the system being modeled. Moreover, in case a value
is stored inside the component, the controller needs to activate the component each time
the value is required.
• A better choice is to associate such a memory with the data ports of the components. The

controller may access to the memorized value whenever it is required. However, it is not
useful to have the persistent memory associated with the inputs and outputs together;
one of them is enough.

3.1.3.5 Output Data Ports are Associated with Persistent Memory

For the rest of the thesis, we associate persistent memory with the output ports of the compo-
nents. The lifetime of the memory associated with the input ports is limited. We will insist on
the use of the memory associated with the inputs and outputs together with the description of
the examples. Briefly, associating the implicit memory with the outputs imposes the following:

• If an input data port i is required by a component, the controller must put a value on
that data port before activating the component to perform a computation step. During
its computation step, the component may use i as a read-only temporary variable. At the
end of the computation step, the value of i is lost.
• When a component is activated during a macro-step, it may put some values on some of

its outputs. These values may be used by the controller to provide other components with
their inputs:

– during the same macro-step when component communication is synchronous (e.g.,
the examples of Sections 4.1.1, 4.1.2, 4.1.4, etc.),

– during another macro-step when the communication is asynchronous (e.g., Sec-
tion 6.2.2).

– more than once, as it is the case for the synchronous controllers (e.g., Section 4.1.1,
Section 4.2.2, etc.)

3.2 Specifying Components

In the context of 42, the example described above has shown that there is some need for a
precise specification of the components, in particular for declaring which of the data inputs
are needed for each control input, and which of the data and control outputs are produced.
For a designer to be able to use components correctly (i.e., writing a correct controller), this
information is crucial.

If the components expose simple behaviors, one may rely on implicit specifications (see Sec-
tion 3.2.1); i.e., a way to associate an abstract description with a class of components. But
if the behavior of components is complex and we need to express fine details about individual

46/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

components, we have to associate an explicit specification (see Section 3.2.2) with each of them.
The designer of a component is in charge of providing such a specification. Also, we can con-
sider components embedding their specifications (see Section 3.2.3). The component should be
interrogated to know about its behavior. This supposes that the components are designed so
as to provide introspection mechanisms.

3.2.1 Implicit Specifications

For some MoCCs, there is a possibility to describe components (or classes of components) that
behave in the same way. When using a component from a specific class, we know how it should
be used within an assembly of other components. Once the assembly is encapsulated in a new
component, the designer makes the choice of the class to which the new component would
belong. Typically, the examples in Section 4.1 are based on implicit specifications.

An example of implicit declaration is to say that the activation of any component requires all
inputs and provides all outputs (one class of behaviors). We then know when a component
may be activated, and when data is made available on its outputs. The general modeling
of synchronous programs described in Section 4.1.1 uses implicit specifications, as well as the
modeling of Kahn Process Networks in Section 4.1.4. We will discuss the limitations of implicit
specifications together with these examples.

3.2.2 Explicit Specifications: Rich Control Contracts for 42

Implicit specifications are not general enough. In 42 we want to express fine details on the
behavior of each component. As described by the example in Section 3.1.1, a component
activation may not require all the inputs, nor provide all the outputs. Moreover, the data
dependencies may be distinct between two activations with the same input control port.

With 42 we adopt the notion of control contracts as opposed to data contracts for this purpose.
By data contracts, we mean some assumptions on the values of the inputs and outputs of a
component. Basically, control contracts describe how the component should be activated, and
what the required inputs/provided outputs are for each activation. Some of the values of the
data ports may be specified because they are involved in the control, but in general, the contract
expresses their availability only.

Figure 3.7 shows a contract for the component a of Figure 3.1. Each transition has a label of
the form: [condition] {data req} control input / control outputs {data prod}

n1

n4

n3

n2

{id1}ic1/α=oc1{od1}

{i
d1
}i
c1
/α
=o
c1
{o
d1
}

[α=a]{id1}ic2/oc3 {}

{id2; if (β=ok) then id3}ic2/α=oc1{od2; od3=false}

[α = b]{id1}ic2/β=oc2 {od2}
{}ic2/oc2=ok{od2}

{id1}ic2/β=oc2{od3=true}
n0

Fig. 3.7: Example contract for the component in Figure 3.1

Tayeb BOUHADIBA Ph.D Thesis 47/186

3.2. Specifying Components

The [condition] part of the label describes some conditions on the activation of the component
with the input control port designated by the control input part. The {data req} part
describes the required inputs, {data prod} describes the provided output data ports, and the
control outputs part describes the provided control outputs.

We give more details on 42 control contracts in the sequel. Modeling examples with explicit
contracts will be seen in Section 4.2. Section 5.2 formalizes the notion of 42 control contracts.

3.2.2.1 Sequence of Correct Activations of the Component

The structure of 42 control contracts is a finite-state automaton. This structure is used to
specify the correct activation sequences of the component. Figure 3.8 illustrates an automaton
describing the correct activations of the component a of Figure 3.1. The automaton is extracted
from the contract of Figure 3.7 where we removed all details in the labels but the control input
part.

Initially, the contract is in its initial state (n0), and then it evolves according to the sequence of
activations produced by the controller in response to a sequence of macro-steps. Each macro-
step is considered to start in the state where the contract was, at the end of the previous
macro-step.

The outgoing transitions from a state correspond to the possible activations of the component.
At a given state, the activation of the component with a control input not specified by the
automaton is a violation of the contract. For instance, the component a should not be activated
with ic1 at state n4.

ic1

ic2

ic2

ic2

ic2 ic1ic2

n0 n1

n2

n3

n4

Fig. 3.8: Specifying the correct activation sequences

3.2.2.2 Data Dependencies

The activation of a component has the general effect of reading inputs, modifying the internal
state, and producing outputs. For a given activation, not all inputs must be used nor all
outputs must be produced. 42 contracts allow for a clear description of which inputs are needed
for a given activation and which of the outputs will be given a value. When we look at the
implementation of the component in Figure 3.2, we see that each time the component is activated
with ic1, it requires id1 to provide od1. This information appears in the contract in the form
of the following expression {id1}ic1/...{od1}.

The same control input may have distinct data dependencies depending on the state of the
contract. This is the case for the input control port ic2. In Figure 3.7, the transition from state
n1 to n3 (i.e., ...{id1}ic2/...{}) requires id1 and provides no outputs, while the transition
n4 to n0 (i.e., ...{}ic2/...{id2}) requires no inputs and provides id2.

During an activation, a component is expected to read no more than the inputs declared by the
transition of its contract. As the memory of the input ports is not persistent (see Section 3.1.3),
the controller is responsible for providing the inputs to the component before the activation. On

48/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

the other hand, the component guarantees to the controller that at least the output declared
will be overwritten. This means that the controller has no guarantees that some outputs will
be unchanged.

Associating Values with Data Ports Data dependencies are expressed in terms of require-
ments/productions. In the general case, data dependencies deal with the availability of inputs
(resp., the produced outputs) not with their assigned values. However, the value carried by
some of the inputs/outputs may affect the behavior of a component. For instance, an interrupt
wire may trigger the execution of an interrupt handler. This depends only on the value carried
through the wire (high/low) not on its availability (an interrupt wire always carries a value).
Such values should appear in the control contract of a component.

42 contracts allow to explicitly declare the values required/produced for some of the data ports.
However, we require these ports to be of an enumerated type. For example, the transition
labeled with {id1}ic2/β=oc2{od3=true} in the contract of Figure 3.7 declares that the output
data port od3 is provided after the activation and is assigned the value true. Some examples
where the values of some data ports are described in the contracts may be found in Sections 4.2.3
and 4.2.2.

3.2.2.3 Control Outputs

Control ports are used to communicate with the controller. When activated, a component may
compute some of the output control ports that may be read by the controller. The moment (the
activation) when a control port value is computed is declared in the contract. In the contract
of Figure 3.7, the control output oc1 is given a new value in {a, b}. It is computed each time
the component is activated with ic1. Moreover, the contracts allow to explicitly declare the
value assigned to the control output (e.g., {}ic2/oc2=ok{}).

3.2.2.4 Using Extra Variables to Enhance the Readability of Contracts

The variables denoted by Greek letters are used in the contracts in order to refer to the values of
control outputs. The variables may be used later on in the contract itself to express conditional
activations, and conditional data dependencies. Let us note V the set of such variables.

• Referring to control outputs values: The transition from n0 to n1 labeled with
{...}ic1/α=oc1{...} expresses that after the activation of the component with ic1, the
component produces a value on the control output oc1. The value produced is referred
to by the variable α.

• Expressing conditional activations The [condition] part of a transition label is
built from the variables in V. For instance, the variable α is used to express the activation
condition in the transition [α=b]{...}ic2/...{...} (from n1 to n2). The component
may take this transition if and only if the value referred to by α is equal to b.

• Expressing conditional dependencies The {data req} (resp., {data prod}) part
may include conditional data dependencies; the conditions are built on V. For instance,
the variable β is used to express conditional data dependencies in the transition {id2;
if (β==ok) then id3}ic2/...{...} (from n2 to n4). The transition means that the
activation requires id2 and, if the value referred to by the variable β is equal to ok, then
it also requires id3.

The variables from V do not add to the expressiveness of the control contracts. They are used
to enhance their readability. It is possible to expand a contract (see Section 5.2.2) in order to

Tayeb BOUHADIBA Ph.D Thesis 49/186

3.2. Specifying Components

ic1 ic2

oc1 oc2

od

enq

resp

id function

spec

Fig. 3.9: A component embedding its specification

remove the variables from V. The expansion yield an equivalent contract having a bigger set of
states but the transition labels are simpler.

3.2.3 Components Introspection

We presented previously two kinds of specifications. Implicit specifications group components
into classes, each class exposing a common behavior. Explicit specifications associate a control
contract with each component. The contract describes precisely the behavior of the component.
Here we introduce a kind of specification which may be considered as a mix of implicit and
explicit specifications.

Instead of designing a component and providing its specification separately, one may decide
to couple the functional behavior of a component with its specification. For each activation,
the component knows the required inputs, and the provided outputs. It can be asked for
its specification whenever it is needed. An example usage of introspection is described in
Section 6.2.2.4. In this example, the introspection mechanism is used to compute, at runtime,
the contract of a component depending on the contracts of its sub-components.

Typical Implementation we equip components with additional control inputs/outputs. The
additional control ports are used for modeling purposes. They are not part of the functionality
of the component. This resembles the introspection mechanism provided by some program-
ming languages (e.g., Java, Objective-C, etc.) or some component-based models (e.g., Fractal).
Introspection allows for getting some information from a component about itself.

Figure 3.9 illustrates a component in which the specification is part of the implementation. Its
interface exposes the control ports ic1, ic2, oc1, oc2 which are part of the functionality of
a 42 component; and the control ports enq (for enquire) and resp (for response) which are used
for introspection. As illustrated by the figure, the implementation of the component is split
into two distinct parts (parts are not components).

The function part corresponds to the part of the implementation which is in charge of im-
plementing the control inputs ic1, ic2, reading the data input id, computing the data output
od, and updating the control outputs oc1, oc2. The spec part is in charge of implementing
the control input enq and giving a value to the control output resp. When the component
is activated with enq, it is supposed to provide some information through resp (i.e., possible
activations, required data inputs, updated outputs). Notice that the spec part may need some
information from the function part.

The spec part of the component may be seen as an implementation of a 42 control contract.
The states of the contract correspond to the state of some internal variables of spec. Each

50/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

Controller i n t r o i s
. . .
for xx do {

. . .
C. enq ;
l et t=(req , i c , ocs , prod) ∈ C. resp ;
f o ra l l id ∈ req

wire id . get ; // wire id i s connected to i d
C. i c ;
. . .

}

Fig. 3.10: Sketch of a controller using the component in Figure 3.9

time the component is activated with enq, spec computes a set of tuples. Each tuple is of the
form (req,ic,ocs,prod) where req is the set of required input ports for the activation of the
component with ic. ocs, and prod are the set of control outputs and data outputs that will be
produced after the activation of the component with ic.

Typical Usage To use a component as the one of Figure 3.9, we know implicitly that it should
be activated with enq. The component responds through its output control port resp with an
explicit description of its possible activations. Hence, the kind of specifications we are dealing
with is a mix of implicit and explicit specifications we described previously.

Figure 3.10 illustrates part of the code of a controller interrogating a component before activating
it. First the controller ask the component for its possible activations: It activates the component
with enq. The controller then reads the set of tuples provided by the component through resp.
From this set, it selects only one tuple t. The set req associated with t contains the required
inputs. For each input from this set, the controller moves a value from the wire connected to
it. After the component has been provided with the required inputs, the controller activates it
with the control input ic specified by the tuple t.

3.3 Consistency Issues

Mixing general controllers, rich control contracts, and the hierarchy of controllers, raises some
consistency problems. The various notions of consistency between controllers/components and
contracts are formalized in Section 5.3. Here we give an overview of such properties. In short,
consistency answers the questions:

• Is a basic component a correct implementation of a contract? Typically a con-
tract is an abstract description of the behavior of a component. If the component is used
according to its contract, there should be no instance where it behaves unexpectedly, ex-
cept if its implementation is wrong. The implementation of the component a (Figure 3.1)
illustrated in Figure 3.2 must respect the contract illustrated in Figure 3.7. Respect-
ing the contract means that for any possible transition in the contract, the activation of
the component with the corresponding control input must not read an input data port
not declared by the contract and must produce at least all the outputs declared by the
contract.

Section 5.3.1 formalizes in general the consistency of a (basic or composed) component
implementation with its contract.

Tayeb BOUHADIBA Ph.D Thesis 51/186

3.4. Using the 42 Modeling Approach

• Is a controller using the component correctly? 42 does not impose any particular
language for the design of the controllers as long as they use the pre-defined primitives
to activate components (i.e., the micro-steps). Moreover, any control structure provided
by the language used to write the controllers is allowed. This renders the controllers
very liberal, and allows them to do whatever the designer needs. Control contracts are
used as safe-guards to prevent the controllers from any incorrect usage of components.
In Figure 3.4, the controller ctrl must activate the component a with a sequence of
activations recognized by the contract of a (Figure 3.7). Moreover, if an activation requires
some inputs, the controller must provide the component with the required inputs. This
kind of consistency will be formalized in Section 5.3.2.

• Is a composed component a good implementation of a contract? When a compo-
nent is made as an assembly of other components (e.g., the component abcd of Figure 3.4),
the controller is in charge of defining the behavior associated with each control input. The
controller is also in charge of reading the global input data ports (the micro-step put on
the wire connected to that port) and producing the global control outputs and global
output data ports (the micro-step get on the wire connected to that port). Hence, it is
the responsibility of the controller to respect the contract of the composed component.
For instance, if we associate a control contract with the component abcd, the controller
ctrl must not read a data input when it is not specified by the contract of abcd, and
must produce the values of the data and control outputs as declared by the contract.

Formalizing the consistency of the controller (e.g., ctrl) with the contract of the encapsu-
lating component (e.g., abcd) amounts to formalize the consistency of the encapsulating
component with its contract. It is presented in Section 5.3.1.

3.4 Using the 42 Modeling Approach

42 is essentially a tool for reasoning on components for heterogeneous embedded systems. We do
not claim that it is a new language for the design of embedded systems. However, the design
choices we made for 42 make it possible to use 42 jointly with existing approaches.

We list the benefits we can get when using 42. This gives an overview of what is described
in the rest of the thesis. In the sequel, Section 3.4.1 deals with the benefits we gain when
considering 42 as a modeling tool to describe the structure of a system. Section 3.4.2 describes
how contracts may add to the expressiveness of the models, and to what extent they may be
used in the modeling approach adopted for 42.

3.4.1 Reasoning on Components with the 42 Model

3.4.1.1 Describing the Interface of Components

42 may be used jointly with other component-based formalisms as a tool for reasoning on
components. That is, given an entity from other approaches we try to define the corresponding
42 component. The 42-ization of components is a good exercise; it helps identify the parts
associated with control and those associated with data. Moreover, applying the FAMAPASAP
principle yields a rich description of the interface of a component. The interface contains the
necessary details of the component to be used in an assembly.

In Section 7.3.1 for example, we describe first steps formalizing SystemC-TLM components with
42. We address the correspondence of SystemC-TLM components with 42 ones. Moreover, we
will be able to import existing software or hardware components from SystemC, and to wrap

52/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

a
b

c

d

ectrlE

ctrlC ctrlD

Fig. 3.11: Modeling heterogeneous systems with 42

them into 42 components.

The 42-ization of components exposes all the details about the control flow through the ports
of the components. Sometimes the resulting interface contains a lot of details, as it is the
case for the 42-ization of SystemC-TLM. However, 42 should not be blamed for that. The 42
interface exposes the required information about SystemC-TLM components when assembling
them. This information is hidden in the simulation mechanics of SystemC, but the designer
has to be aware of. The 42-ization of SystemC-TLM has at least the benefit of exposing all the
control dependencies.

3.4.1.2 Expressing Various MoCCs

The behavior of an assembly is managed by the controller which describes various types of
concurrency and structured interactions by means of basic primitives (i.e., the micro-steps). The
controller organizes the micro-steps in a sequence according to the concurrency model described
by the implemented MoCC. The power of the 42 controllers is their ability to describe several
MoCCs with a small set of primitives.

Chapter 4 is a suite of examples for describing several MoCCs. The examples model systems
ranging from pure synchrony (Sections 4.1.1 and 4.2.1) to pure asynchrony (Sections 4.1.2 and
4.2.3). They expose the interaction between components for each MoCC.

3.4.1.3 Modeling Heterogeneous Systems

Modeling heterogeneity requires the use of several MoCCs within the same system. Since 42
(as Ptolemy) does not allow for the use of several MoCCs at the same level, heterogeneity is
dealt with by putting several controllers (implementing distinct MoCCs) in a hierarchy.

Figure 3.11 illustrates such a hierarchy of controllers. The components c and d encapsulate
distinct MoCCs (i.e., ctrlC and ctrlD). The controller of the component e (ctrlE) knows how
to make the components c and d evolve together. A GALS (Globally Asynchronous Locally
Synchronous) system is a good example of an heterogeneous system. The modeling of such a
system with 42 is described in Section 4.1.5.

3.4.2 Main Usage of 42 Control Contracts

3.4.2.1 Checking Consistency

Besides the fact that contracts constitute a rich description of a component, they may be used
to check the consistency properties introduced in Section 3.3.

Tayeb BOUHADIBA Ph.D Thesis 53/186

3.4. Using the 42 Modeling Approach

The consistency property between a component and its contract may be checked dynamically
using the contracts. Whenever the component performs an execution step, we check whether
it behaves as expected, i.e., if it didn’t read more than the required inputs expressed by the
contract, and did produce the expected outputs. Dynamic checking of such a consistency
property is described technically in Section 6.1.1.

The consistency of the controller with the contract of a component was introduced in Section 3.3.
The contract may be used as a monitor to check if the controller uses the component correctly.
Whenever the controller is about to activate the component with a sequence of micro-steps not
consistent with the contract, a consistency error is raised. Checking the controller consistency
with the contracts is presented in Section 6.1.2.

The feasibility of a static check of consistency depends on the expressive power of the language
used to implement components/controllers. In the context of 42, we favor expressiveness, not
the possibility of static verification.

3.4.2.2 Automatic Generation of Controllers

Writing a controller to manage the execution of components may be a complicated task, espe-
cially when components have complex behaviors. This has to take into account the details given
by each contract, and the architecture of the system to ensure that the resulting controller is
consistent with the contracts of the components.

Instead of designing the controller and checking its correctness later, one can generate it. Au-
tomatic generation of controllers depends on the MoCC and guarantees the controller to be
consistent with the contracts of components. It relies on the information provided by the data
dependencies defined by the architecture, and the contract of each component.

Automatic generation of controllers is possible for some MoCCs. Sometimes, the architecture of
the assembly, together with some implicit specifications of the components, is sufficient to deduce
the controller; this applies to the mono-clock synchronous MoCC example of Section 4.1.1. For
other MoCCs, automatic generation requires also the details provided by the contracts of the
components (e.g., Section 6.2.2). The information provided by the contracts may be enforced
with some explicit constraints, so that the resulting controller exposes some behaviors we are
interested in (see the master/slave relation below).

The controllers may be generated statically or dynamically. Static generation yields a controller
where the sequence of activations of components is known at compile-time (i.e., controllers as
the one described in Figure 3.5). Section 6.2.1 describes such a type of automatic generation
for the synchronous MoCC.

Controllers resulting from the second category compute the set of micro-steps associated with
a macro-step at runtime. They need the contracts of the components to get the information on
the state of the components and their possible activations. Section 6.2.2 describes such type of
controllers which are based on contract interpretation.

When the components are equipped with introspection mechanisms, it is also possible to deduce
the controller dynamically. Instead of relying on the explicit contracts, the controller should
ask the components for their specifications at each macro-step. Hierarchic contract interpreters
describe these controllers (see Section 6.2.2.4).

The Master/Slave Relation is an abstract means to express more constraints on the be-
havior of an assembly of components. It imposes the activation of some components to be in
the same macro-step. It is therefore related to the atomicity of a macro-step. A master/slave
relation relates a control output of a component to the control input of another. It may be used

54/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 3. Overview of the 42 Model

to describe situations where a component requires the activation of another one (e.g., function
calls).

ctrl

p

op

callstore

buf
data

store

main

The master/slave relation:
p.callstore =⇒ buf.store

op

Fig. 3.12: The master/slave relation between components

Figure 3.12 illustrates a model of a producer (p) which requires its produced data to be stored
immediately in the buffer (buf). That is, each time p computes some value, buf should be
activated. The activation of components is the responsibility of the controller, because the
control ports of the components are implicitly connected to the controller, not directly to each
other.

The implication on the right of the figure describes the master/slave relation; it tells that: if
the activation of the component p produces the control port callstore, the controller should
activate the component buf with its input control store within the same macro-step. We will
see some examples of the use of the master/slave relation in Sections 6.2.2.7 and 7.3.1.

3.4.2.3 Executing Non-Deterministic Components

42 contracts are abstract and non-deterministic descriptions of the behavior of components. For
some MoCCs a contract may be used as a possible and abstract implementation of a component;
that is, the contracts are executable. Hence, if we require to execute a system early in the
design flow, one may rely on the contracts describing the components. If we are happy with
the execution of the contracts, we start writing the detailed implementation of the components.
Contract execution will be presented in Section 6.2.2.

Section 7.3 is a complete example of reasoning about components in 42, and includes contracts-
based simulation. It tackles the 42-ization of SystemC-TLM components. The contracts of these
components may be extracted automatically from existing C++ code, or written by hand. We
are able to execute such contracts, which yields a lightweight simulation model. With such
an abstract view, one can reason on the synchronization of components without looking at
the implementation details. Moreover, we are able to check some properties on assemblies of
components.

3.5 Implementation

Based on the specification of 42, we developed a tool for experimentation purposes. The tool
is written in Java. It is presented as a package and defines the classes required for describing
the notions we have seen so far (i.e., components, ports, controllers, etc.). The tool includes
features to instantiate components and execute them to allow for simulations.

3.5.0.4 Basic Components

Basic components are typically written as Java classes. The class implementing the behavior of
a component should provide a set of methods. Each method corresponds to a control input of
the component.

Tayeb BOUHADIBA Ph.D Thesis 55/186

3.5. Implementation

The code imported from other frameworks is wrapped in order to comply with the interface of
42 components. Sometimes this requires the use of interfacing frameworks between Java and
the language of the imported code. In Section 7.2.1 we use JNI (Java Native Interface) to make
C-code execute in a 42 component. Section 7.3.3.3 deals with wrapping C++ implementations
of SystemC-TLM components into a 42 component.

3.5.0.5 Controllers

The controller ctrl (Figure 3.5) used with the example of this chapter is described with an
imperative-style language. The tool enables the execution of the code of such controllers in order
to expose the behavior of the assembly of components. Moreover, the tool may be extended
easily to accept controllers written in distinct styles and programming languages. For instance,
we introduced controllers acting as contract interpreters for the simulation of asynchronous
systems. This kind of controllers will be described in Section 6.2.2.

3.5.0.6 Describing Components and Architectures

Each component is associated with two description files: an interface description file, and an
implementation description file. Both of the description files are encoded into XML.

The interface description file describes the set of input/output control/data ports of the com-
ponent, it will be describe in Section 9.1.1.

The implementation description file is used to describe the internals of the components. For
a basic component, the implementation file refers to the Java class implementing the behavior
of the component. For a composed component, the implementation file uses a simple ADL
(Architecture Description Language) to described the architecture (see Section 9.1.2).

The tool includes a graphical editor to assemble components. It is based on GMF (Graphical
Modeling Framework) provided by Eclipse. The graphical editor includes features to generate
the XML files for describing the interface and the implementation of the components, and the
Java code skeleton of basic components.

3.5.0.7 The Execution Engine

Once we define the architecture of a system, we can instantiate the components and start
simulating the system. There is an XML parser that parses the architecture of the component
at the top of the hierarchy. The parser goes in depth through the levels of hierarchy, to perform
a bottom up instantiation; i.e., the tool starts instantiating basic components which are the
Java classes at the leaves of the hierarchy, binds them with the wires, and instantiates the
controller. This ends up the instantiation of the encapsulating component. The instantiation
continues recursively until instantiating the component at the top.

At the time being, the implementation of 42 in Java is used as a prototype. It is not yet available
for downloads, because of the incompleteness of the prototype. In particular, some work has
to be done for enhancing debugging facilities. Moreover, the connexion between the graphical
interface and the execution engine is not established.

Besides the experiments presented in the thesis, the tool serves for other experimentations. For
instance, it is used to experiment the use of 42 to describe web-service architectures and BPEL
(Business Process Execution Language) orchestration.

56/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4

Modeling Examples with 42
Components

Introduction (En) This chapter is presented as a suite of modeling examples with
42. It deals with the modeling of several MoCCs and how are they combined to
model heterogeneity of embedded systems. We illustrate some guidelines for de-
signing components for some MoCCs, and how expressive the controllers are to
implement various MoCCs. Within the examples, components are described with
implicit or explicit specifications (i.e., the control contracts). We also demonstrate
the expressiveness of control contracts for describing components.

Contents

4.1 Examples with Implicit Specifications 58

4.1.1 Mono-Clock Synchronous Programs or Circuits 58

4.1.2 Simulation of Asynchronous Systems . 64

4.1.3 Hardware/Software Modeling . 67

4.1.4 Kahn Process Networks . 70

4.1.5 Globally Asynchronous Locally Synchronous Systems 72

4.2 Examples with Explicit Contracts . 75

4.2.1 Mono-Clock Synchronous Programs or Circuits 75

4.2.2 Multi-Cycle Synchronous Programs or Circuits 79

4.2.3 Using Contracts to Describe Asynchronous Systems 85

Introduction (Fr) Dans ce chapitre, nous présentons une suite d’exemples de
modélisation en 42. Nous nous intéressons à la modélisation de différents MoCCs
en 42 et à leur combinaison pour modéliser l’hétérogénéité des systèmes embarqués.
Nous décrivons aussi quelques directive pour la modélisation de composants pour cer-
tains MoCCs, ainsi que les programmes associés aux contrôleurs qui implémentent
ces MoCCs. Les exemples sont regroupés en deux grande sections. Dans la première
section, nous décrirons des composants associés à des spécifications implicites. Nous
montrerons dans la deuxième section, l’expressivité des contrats de contrôle pour
décrire des composants ayant un comportement complexe.

57

4.1. Examples with Implicit Specifications

4.1 Examples with Implicit Specifications

The purpose of this section is to provide some examples of modeling several MoCCs with 42. The
examples focus on the basic notions of 42 described in Chapter 3. We consider components with
implicit specifications only. Through the examples, we describe some guidelines for modeling
components for some MoCCs, and how to write the corresponding controllers to implement the
MoCCs.

4.1.1 Mono-Clock Synchronous Programs or Circuits

In a pure synchronous model of computation (for describing synchronous circuits for instance),
the controller should be able to express the fact that, at each instant of a global clock, all
the components of the circuit take their inputs, and compute their outputs (see Section 2.1.1
for more details). It may take some physical time to stabilize, but for non-cyclic circuits, it
does stabilize. In the context of a component model like 42, with components and interactions
between them, being able to express pure synchrony means that we should be able to describe
the steps of the stabilization phase; it is not a simple interaction.

node dintg (i : int)
returns (o : int) ;
var x , y : int ;
l et
x = intg (i + (0−>pre y)) ;
y = intg (x) ;
o = y ;

te l .
node intg(i : int)
returns (o : int) ;
l et
o = i −> pre (o) + i ;

te l .

pre

+

pre

i
o yx

+
i

+

pre

i
o

o

0

0

0

Fig. 4.1: An Example synchronous program (in
textual Lustre)

Fig. 4.2: The same program in a
graphical form

4.1.1.1 Example

Figures 4.1, 4.2 and 4.3 illustrate the componentization of a Lustre program. We chose Lustre
because its graphical form (as used in the commercial tool Scade) is very close to the diagram-
matic view used in synchronous hardware design. The program of Figure 4.1 is made of two
instances of a basic integrator intg. “o = i -> pre(o) + i” means: the output o is equal to
the input i at the first instant, and then, forever, it is equal to i plus its previous value pre(o).
The two copies are connected in the node dintg, with another addition operator. Figure 4.2 is
a flat and graphical view of the node dintg, where the two copies of intg have been expanded.

4.1.1.2 Individual Components

Figure 4.3 is the component view of the program in 42. The level of the controller sync1 is the
level of dintg. The components intg1 and intg2 are instances of the same component. The
details of the instance intg1 are hidden, intg1 is considered as a basic component, as plus,
pre (a flip-flop, or elementary memory point) or the duplicator dup. For illustration purposes,
the instance intg2 is described as a 42 assembly of more primitive components.

58/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

i

o

w

xa
u

t
c

b

e

d

z

y v

sync2

gogeto

intg2

dup

pre

dintg

gogeto

gogeto

dup

gogeto

sync1

gogeto

gogeto

gogeto

pre

intg1
plus

plus

gogeto
gogeto

Fig. 4.3: A 42 component view of the program in Figure 4.1

Controller sync1 i s {

for geto do : {
var u , v , . . . , z , t : f i f o (1 , int) ;
pre.geto ; z . put ; z . get ;
u . put ; // reads i
u . get ; plus.geto ;
t . put ; t . get ; intg 2.geto ;
x . put ; x . get ; intg 1.geto ;
y . put ; y . get ; dup.geto ;
v . put ; v . get ; // d e f i n e s o

}

for go do : {
var u , v , . . . , z , t : f i f o (1 , int) ;
w. put ; w. get ;
pre.go ;
x . put ; x . get ; intg 1.go ;
y . put ; y . get ; dup.go ;
t . put ; t . get ; intg 2.go ;
u . put ; u . get ;
z . put ; z . get ; plus.go ;

}}

Fig. 4.4: The programs of the controller ’sync1’

Controller sync2 {

for geto do : {
var a , b , c , d , e : f i f o (1 , int) ;
pre.geto ; b . put ; b . get ;
a . put ; // reads t
a . get ; plus.geto ;
c . put ; c . get ; dup.geto ;
d . put ; d . get ; // d e f i n e s x
}

for go do : {
var a , b , c , d , e : f i f o (1 , int) ;
e . put ; e . get ;
pre.go ;
a . put ; a . get ;
b . put ; b . get ; plus.go ;
e . put ; e . get ; dup.go ;

}}

Fig. 4.5: The programs of the controller ’sync2’

Tayeb BOUHADIBA Ph.D Thesis 59/186

4.1. Examples with Implicit Specifications

Component pre (
control input geto , go : bool ;
data input id : int ;
data output od : int)

{
var m : int := 0 ;
for geto do :
{ od := m; }
for go do :
{ m := id ; }

}

Fig. 4.6: Code of the pre component

i n i t i a l i z a t i o n s ;
while t rue {

// read input
int v = read () ;
i . put (v) ;
// w r i t e the v a l u e produced
dintg . geto ;
wr i t e (o . get) ;
i . put (v) ;
dintg . go ;

}

Fig. 4.7: Structure of a program using the
main component dintg

In order to obtain the normal behavior of a Lustre program (or a synchronous circuit) with such
a component view, the components should be designed so that they offer two control inputs
geto and go. When asked with geto, the component delivers its outputs, depending on the
internal memory and its data inputs, but without changing internal state; go asks it to change
its internal state. In this simple case, there is no need for control outputs. The combinational
components (the plus, and the duplicator) have an empty go function.

4.1.1.3 Implicit Specification of Components

The black box view of components requires the components to be equipped with a specification.
In this simple example we consider two classes of implicit specifications:

• A first class includes the components that require all their inputs to compute all their
outputs. This class comprises the components like plus, dup, intg, etc. To update the
internal state, the activation with go requires all the inputs. The components of this class
are Mealy-style components.

• The second class describes Moore-style components; i.e., components in which the com-
putation of the outputs depends on the internal memory of the component only. That is,
geto requires no inputs and provides all the outputs. The component pre in our example,
is the unique element of such a class. Figure 4.6 is the code of the pre component (for
integers). Notice that the activation with go (to change internal state) requires all the
inputs of the component.

Assembling synchronous components yields a synchronous component. One may wonder to
which class of components this composed one should belong. For a composed component, the
most general case is to consider it as a Mealy-style component, belonging to the first class of
specifications.

4.1.1.4 The Controller

At the two levels of the hierarchy, the controllers associate one-place buffers with all wires.
The programs they play when the global geto or go control inputs are activated are given
in Figures 4.4 and 4.5, in some imperative style. At the beginning of each activation, the
memory associated with the wires is initialized to empty FIFOs.

When a component (dintg or intg2) is activated with geto, the inputs are supposed to be
available (this is implied by the implicit specification). The controller asks each subcomponent

60/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

to produce its outputs, according to the values that are available on its input ports. This is
done in an order compatible with the partial order of data dependencies (see below).

For sync1, the only component that can start is the pre component, because its output does not
depend on its input. Then the plus can play, then intg2, then intg1, then the duplicator dup.
At the end of this sequence, all the wires have a value, the circuit has stabilized. The values
cannot be stored on the wires, but they are persistent in the output ports (see Section 3.1.3 for
the discussion about the memory associated with the output ports).

When the component dintg is activated with go, the controller sync1 asks each subcomponent
to change state. The controller provides the inputs for each component before it activates it.
The go activations of all the subcomponents can be called in any order.

4.1.1.5 Consistency of the Controller with the Data Dependencies

During a clock cycle, the controller should be able to describe the stabilization phase of the cir-
cuit. This corresponds to the situation where all components compute their outputs depending
on the inputs they just received. That is, the sequence of activations with geto. Components
must be activated in an order consistent with the partial order of data dependencies.

In the simple case we presented above, the architecture (the point-to-point directed wires) is
sufficient to describe such a partial order, because of the implicit specification associated with
the components. We know that all components require all their inputs to compute their outputs
(except the pre components). The partial order of the activations of intg2 subcomponents is
describe by the following:

a.put ≺ a.get ≺ plus.geto ≺ c.put ≺ c.get ≺ dup.geto ≺ e.put ≺ e.get
pre.geto ≺ b.put ≺ b.get ≺ plus.geto

This partial order must be respected by the controller sync2 when the component intg2 is
activated with geto. To construct such a partial order, the rules are simple and are implied by
the architecture and the specifications:

• From the architecture: the operation put on a wire always precedes the get operation.
Because if the FIFO associated with a wire is empty the controller may not deliver the
input for the component connected to this wire.

• From the specification: the activation of the first class components (i.e., Mealy-Style
components) with geto requires all the inputs and provides all the outputs. Thus, the
operation put on the wires connected to the data inputs of a component must precede
the activation of the component with geto. Symmetrically, the operation put on a wire
connected to an output data port must be after the activation of the component with
geto. For instance, a.get and b.get both precede plus.geto which in turn precedes
c.put.

The activation of the components of the second class (the pre components) with geto
does not require inputs, thus it has no dependencies (e.g., pre.geto). However, it must
precede the operation put on the wire connected to the output of the component (e.g.,
b.put).

The operation put on a wire connected to a global input data port has also no dependencies
(e.g., a.put). This is because in synchronous modeling with implicit specifications, a
composed component belongs to the first class of specifications. The global inputs are
supposed to be provided before the activation with geto.

Tayeb BOUHADIBA Ph.D Thesis 61/186

4.1. Examples with Implicit Specifications

4.1.1.6 Comments

Modeling synchrony requires additional memory. During a clock cycle, the inputs used
(by geto) to compute the outputs and those used (by go) to change state must be the
same. This requirement is not expressed by the specifications, but it is related to the
synchronous MoCC.

Using the same inputs for distinct activations imposes the memorization of the inputs
provided to the component. This is made possible thanks to the memory associated with
the output ports of the components (see Section 3.1.3). The controller sync1 for instance,
would not be able to provide the component intg2 with the same inputs if the memory
of the output port of plus was not persistent.

The main program requires memory. The code of a main program using the component
dintg is given in Figure 4.7. The function read() may be associated with a primitive
function getting some value from a sensor. The value has to be stored in some variable
(e.g., v), so that the main program may provide the same inputs during the activation
with geto and go. Storing the value is necessary because the memory associated with the
input port of dintg is not persistent (see Section 3.1.3), and a second read() from the
sensor may provide a distinct value.

The controller must be consistent with the specifications. A sequence of micro-steps as-
sociated with a control input of a controller must be consistent with the partial order of
data dependencies. For instance, the geto control input as implemented by the controller
sync2 defines an order of micro-steps consistent with the partial order presented above

Notice that for a partially ordered set, there exists, potentially, several total orders con-
sistent with it. The partial order may be used to generate the controller code. It amounts
to computing a total order consistent with the partial order (using topological sorting al-
gorithms [Kah62]). Automatic generation of controller code is presented in Section 6.2.1.

The example may be extended. One may describe conditional or partial dependencies be-
tween outputs and inputs (see below), and also multi-cycle synchronous programs (in
which a subprogram should be run at speed s1, and another at speed s2 much slower
than s1). The principle of the component view can be used for separate compilation of
Lustre/Scade programs, with some optimizations in memory management. All of these
extensions require accurate specifications associated with each component.

4.1.1.7 Runtime Verification by Means of Observers

The synchronous example we described in 42 is executable. One can use some observers (see
Section 2.4.1) in order to perform runtime verification (see Section 2.4.3). The observers are
encoded into 42 components, and are connected to the outputs of the components to be checked.
Adding observers does not alter the functional behavior of synchronous systems because of the
synchronous broadcast communication mechanism.

4.1.1.8 Limitations of the Implicit Specification in the Synchronous MoCC

We describe in the sequel, some issues with the design of synchronous systems where the implicit
specifications do not give adequate solutions.

Partial Computation of the Outputs. In general, components have more than one input
and one output. There are two choices: either we consider that all the outputs depend on
all the inputs, and in this case we can apply the previous scheme. Or we can accept more
complex designs, in which an output does not necessarily depend on all the inputs. In this

62/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

case, each component has to specify the dependency between its outputs and its inputs,
and each component has to be equipped with a go activation, and one geto activation
per data output.

If we require such expressiveness, implicit specifications are no longer usable. Section 4.2.1
deals with the modeling of synchronous systems with explicit specifications. Each com-
ponent is equipped with its control contract. If the specifications are expressive enough,
the controller can then ask the components to produce specific outputs, not all at a time,
and interleave the computations of the outputs of the subcomponents.

Exposing Potential Moore-style Components. The 42 component view of a synchronous
program requires that there is indeed a possible computation order. Cycles in the data
dependencies do not allow for the computation of partial orders. Thus, we require that
each cycle in the data dependency graph be cut by a Moore-style component (e.g., a
component pre).

Within a synchronous system, composed components may be expanded yielding a system
composed of basic components. This allows to observe all the possible cycles and if they
are indeed cut by a pre Moore-style component. The encapsulation of components into a
composed one has the effect of hiding potential Moore-style components that may break
the cycles. Implicit specifications are not expressive enough to expose that a cycle is
indeed broken inside a component, we should use explicit specifications to gain such an
expressiveness.

4.1.1.9 Consequences of the Limitations

Consider for example the synchronous model in Figure 4.8. The component abc is composed of
two components: ab and c. These two components require all their inputs to produce all their
outputs. At the level of abc, the component ab is considered as a black box. In the figure, we
detail its internal view for illustration.

Because of the cycles in the data dependencies, there is no way to write the programs associated
with the controller sync1:

• First, the wire d creates a cyclic dependency between an output of the component ab and
an input of the same component.

• Second, there is another cyclic data dependency: Between the components ab and c, the
two wires e and f describe this situation.

To be correct, all the cycles described above must be cut with a pre or any Moore-style com-
ponent. On the contrary, if the sub-components are expanded; it will be visible that the wire
d does not create a cycle; and the cycle created by the wires e and f is indeed cut with a pre
component.

Lustre/Scade compilers also face this problem of cutting all the cycles at each level of the
hierarchy. To accept designs as the one described in Figure 4.8, their solution is to expand all
the composed components and check whether cyclic dependencies exist or not.

Another solution is to apply the principle of modular compilation of Lustre programs [Ray88,
PR09]. This approach tries to identify those components that may be grouped together without
restricting possible cyclic dependencies. In the context of a component model like 42, we keep
the FAMAPASAP principle; this forbids access to the internal details of a component. Instead of
expanding components, or imposing particular choices for encapsulation, we equip components
with explicit specifications as we shall see in Section 4.2.1.

Tayeb BOUHADIBA Ph.D Thesis 63/186

4.1. Examples with Implicit Specifications

a

b

gogeto

b

gogeto

pre

gogeto

gogeto

c

gogeto

t

u

v

w

x

z e

f

c

y

a

gogetoab

abcd

sync2

sync1

Fig. 4.8: Implicit specifications do not expose internal details

4.1.2 Simulation of Asynchronous Systems

In asynchronous models of computation, there is no explicit clock to synchronize the execution
of components. Asynchronous systems range from threads on a mono-processor to large-scale
multi-computer systems. Multi-processors systems are an intermediate case, where processors
may run at distinct rates depending on the clock associated with each one. The clocks may
be synchronized, but since they run in a true physical parallelism the most abstract view is to
consider them as asynchronous.

Section 2.1.2 explains how to model asynchrony by interleaving components executions. Con-
trary to the synchronous MoCC, where one computation step of a component corresponds to
one computation step of each of its subcomponents. A computation step in an asynchronous
model corresponds to one computation step of some of its subcomponents.

Figure 4.9 is a simple model of a hardware architecture, very much in the spirit of so-called
transaction-level modeling (see Section 2.2.1 for more details). The hardware platform being
modeled is a simple multi-processor system. The two processors access the same memory via the
bus. At any point in time, only one processor is allowed to access the memory. The connections
between the hardware elements are not given in full detail as it would be the case at the register-
transfer level (RTL). The exchanges between components are transactions1, encapsulating the
synchronizations that are necessary for one data exchange. A transaction is associated with
two components: an initiator component that initiates the transaction and a target component
that responds to it.

The example described in this section also serves as a simulation model. It is some abstraction of
the behavior of the real system. The controller simulates the parallel execution of the processors,
and their communication through the explicit memory. A simulation MoCC controller does not
distinguish between components. This requires the components to expose the same control
ports to such a controller. The controller activates components through their control inputs,
and does not add any particular choice on their activation (e.g., synchronization, scheduling,
etc.).

1The terms transactions, initiators, and targets are borrowed from TLM (see Section 2.2.1.1).

64/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

async

op

cpu2

op op

opG

op

main

resp2

resp1 cpu1

bus
mem

req1

req2

req resp

Fig. 4.9: A hardware simulation model

4.1.2.1 Individual Components and their Implicit Specification

The components communicate by means of transactions. The wires reqx between the com-
ponents are records encapsulating the information needed to initiate a transaction, i.e., the
transaction type (read/write), the target address and the value to be written if applicable.
Symmetrically, the response of a transaction is carried by the wires respx, which encapsulate
the success of the transaction, and the value read in case of a read transaction.

Each component has a single control input op, to be activated by the simulation controller. The
idea is that for each activation, a component representing a piece of hardware performs some
internal computation, until yielding back control to the controller. For modeling such systems
we require three classes of components. Each one with its own specification: Components
initiating transactions, that is the two processors cpu1 and cpu2; components responding to
transaction requests, that is mem; and components carrying transaction requests and responses,
that is the component bus.

The component mem models a memory which has one input data port req, and one out-
put data port resp. It acts as a target component waiting for incoming transactions. When
activated with the input control port op, it responds to an initiated transaction. It needs the
parameters of the transaction on its data input req and delivers the data read and the result
of this memory operation (SUCCESS or ERROR) on its data output resp.

The components cpu1, cpu2 model the behavior of distinct processors and have the same
interface. The processors implement active behaviors, they are in charge of initiating trans-
actions. The information needed for a transaction is sent through the output data port reqx.
The processors receive a transaction response through the input data port respx. The input
control port op is used to activate the component. When activated, a processor performs some
computation until initiating a transaction through reqx. Once the response to the transaction
is made available on its input port respx, the component should be reactivated with op to take
it into account.

The component bus manages the access to the memory, it its an abstraction of a commu-
nication bus as one can find in a typical System-on-a-Chip. It implements a simple behavior
which consists in carrying the parameters of transaction from an initiator component to the
target one, and the response to the transaction from the target to the initiator. It does not

Tayeb BOUHADIBA Ph.D Thesis 65/186

4.1. Examples with Implicit Specifications

bus.op

mem.op

bus.op bus.op

cpu2.op

bus.op

mem.op

at
om

ic
mac

ro
-st

ep

cpu1.op cpu2.op cpu1.op cpu2.op

cpu1.op cpu2.op

cpu1.op

Fig. 4.10: The atomicity of a macro-step as exposed by the controller of Figure 4.11

implement any arbitration mechanism for concurrent accesses to the memory. The interface of
the bus exposes an input data port for each output data port of the other components, and a
data output for each of their data inputs. For one transaction, it has to be activated twice with
op; the first time to carry the parameters of the transaction to the target, the second one to
carry the response from the target to the initiator.

4.1.2.2 The Controller

The 42 controller needed at this level is a hardware transaction-level simulation controller, i.e.,
a controller that simulates the potential physical parallelism between the hardware parts in a
non-deterministic way. The controller exposes the behavior of components by interleaving their
activations.

Figure 4.11 illustrates the code of the controller associated with the assembly of Figure 4.9. An
activation of the component main with opG is translated by the controller into a sequence of
micro-steps to perform a complete transaction: the controller randomly selects a processor to
activate. The selected cpu performs some computation until requesting a transaction. The bus
is then activated to carry the parameters to mem. When activated, mem puts a response on
its output data port which is carried by the bus to the corresponding processor. This requires
another activation of the bus. At the end, the selected cpu is activated in order to take the
transaction response into account.

Figure 4.10 illustrates the atomicity of a macro-step in the simulation model. The black-filled
circles denote the beginning and the end of a macro-step. The controller guarantees an initiated
transaction to be atomic. That is, the activation of the component main corresponds to one
transaction, from its initiation by one of the processors, until its termination.

Successive activations of the component main result in the interleaving of transactions, in
the same spirit of the interleaving of asynchronous systems with shared memory described in
Section 2.1.2.

4.1.2.3 Comments

The example is a model of an asynchronous system with shared memory. It models
the asynchronous execution of the two processors and their synchronous communication
with the explicit memory. That is, each macro-step consists of the activations of a cpu, the
bus and the mem. Hence, what we observe for a sequence of activations of the component
main is an interleaving of transactions. Because of the explicit memory mem, there is
no need for the implicit memory associated with the data ports of the components (see
Section 3.1.3).

66/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

Controller async i s {
type r eque s t = record {rw : bool ; add , va l : int } ;
type re sponse = record { r e s : bool ; va l : int } ;

for opG do : {
var req , req1 , req2 : f i f o (1 , r eque s t) ;
resp , re sp 1 , r e sp 2 : f i f o (1 , r e sponse) ;

int cpu := random(1 , 2) ;

// cpu1 i s s e l e c t e d f o r
// a t r a n s a c t i o n wi th mem

i f (cpu = 1){
cpu1.op ;
req1 . put ; req1 . get ;
bus.op ; req . put ; req . get ;
mem.op ; r e s . put ; re sp . get ;
r e sp 1 . put ; r e sp 1 . get ;
cpu1.op ;

}

// cpu2 i s s e l e c t e d f o r
// a t r a n s a c t i o n wi th mem

i f (cpu = 2){
cpu2.op ;
req2 . put ; req2 . get ;
bus.op ; req . put ; req . get ;
mem.op ; r e s . put ; re sp . get ;
r e sp 2 . put ; r e sp 2 . get ;
cpu2.op ;

}}

Fig. 4.11: Code of the asynchronous controller of Figure 4.9

The controller describes coarse granularity of simulation steps. This prevents some
states from being observed. For example, the state where the two processors request
a transaction at the same time is not observable. To be able to observe such a detail, we
should use a more detailed architecture of the hardware platform which requires a model
of the bus that performs arbitration when needed.

Choosing the best granularity is an intrinsic modeling problem. If the granularity is
too coarse, there are some behaviors that could be missed; if it is too fine-grained, the
simulation is too slow. The great debate is not on how to tune the granularity of a
simulation but how fine-grained it should be.

The example is an abstract model. It does not expose the details one can have in RTL
models of the hardware. Notice that the details we gave in our model of the bus places
it in the same category than the so-called TLM-programmer’s view advocated for SoC
design (see [CMMC08] for a discussion on these levels).

4.1.3 Hardware/Software Modeling

Figure 4.12 gives the details of the processor cpu1 of the previous example. The two processes
running on cpu1 are modeled as sub-components of it. Processes evolve in parallel, indepen-
dently form each other. Irrespective of the hardware platform, there is often a scheduling policy
that allows processor and resources sharing between the processes. Depending on the schedul-
ing policy, the scheduler elects the processes to execute. Non-eligible processes are processes
waiting for an event to occur; e.g., a shared resource to be released, a value to be computed
from another process, etc.

Process synchronization becomes a relevant issue for the design of such systems. There are
many algorithms in the literature to implement synchronization mechanisms such as those used

Tayeb BOUHADIBA Ph.D Thesis 67/186

4.1. Examples with Implicit Specifications

m1 m2

mux

p2

p1

resp req

cpu1

op

async

resp1

resp2

req1

req2

opgetwish

wsh

wsh

getwish op

p.wsh:{in; tra}

demux

d2d1

Fig. 4.12: Processes p1 and p2 running on the processor cpu1 of Figure 4.9

for mutual exclusion and rendez-vous. If synchronization is needed, processes should implement
such algorithms.

4.1.3.1 Individual Components and their Implicit Specification

Each process may read (resp. write) something in memory by means of transactions. As
described in the previous section, this needs a control information, an address, and the data to
be written if applicable. The two processes initiate transactions through the same output data
port of the processor. This implies a mux component. Similarly, the input port of the processor
is connected to the two input ports of the processes, which needs a demux component.

A process component can be written in any imperative-style language, encapsulated so that it
exports the data ports for the communication with the memory, two input control ports, and
one output control port. The input control port getwish is used to ask it what it is willing to do.
The process answers through wsh with a value in if the next execution step does not require
access to the memory; or with the value tra if the process is willing to send a transaction.
The input control op asks the process to execute one of its atomic operations. In the case
of a transaction, it will output transaction parameters on its port req, the process should be
re-activated when the response is available on its input resp in order to take into account the
response of the transaction.

The mux and demux components are used to route data, they are controlled by control inputs
m1, m2, d1, d2 to choose the route.

4.1.3.2 The Controller

At this level, the 42 controller is not a hardware simulation controller. Still, it implements an
asynchronous MoCC. This controller represents two things:

• an abstraction of an operating-system scheduler running on the processor.
• an abstraction of what happens in a real processor when it runs a piece of embedded

software, taking its inputs from the memory, and writing its outputs to it. It shows how
the processor writes to, and reads from the memory; it also transmits the data to and
from the software.

The controller has two states labeled with exec, wait (see Figure 4.13). For each global
activation it executes the code associated with one of these states. The controller implements
the behavior of the encapsulating component (i.e., cpu1). We recall that the processor has to
be activated twice. The first activation performs computation until sending a transaction (this

68/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

Controller async i s {
type r eque s t = record {rw : bool ; add , va l : int } ;
type re sponse = record { r e s : bool ; va l : int } ;
var s t a t e : { exec , wait } := exec ;
pwsh : { in , t ra } ;
p : int // the running pr oces s
for op do : {
var req , req1 , req2 : f i f o (1 , r eque s t) ;
resp , re sp 1 , r e sp 2 : f i f o (1 , r e sponse) ;

switch (s t a t e){

case exec :
t r a n s a c t i o n : bool := f a l s e ;
while (! t r a n s a c t i o n){

p := random(1 , 2) ;
i f (p=1){

p1.getwish ;
pwsh := p1.wsh ;
i f (pwsh = in) {p1.op;}
else { // pwsh = t r a

p1.op ; req1 . put ; req1 . get ;
mux.m1 ;
req . put ; req . get ;
t r a n s a c t i o n := true ;

}
} else // (p = 2){ . . .}
}
s t a t e := wait ; break ;

case wait :
r e sp . put ;
re sp . get ;
i f (p=1){
demux.d1 ;
resp1 . put ;
resp1 . get ;
p1.op ;
} else // (p=2){
demux.d2 ;
resp2 . put ;
resp2 . get ;
p2.op ;
}
s t a t e := exec ; break ;
}

}

Fig. 4.13: Code of the asynchronous controller of Figure 4.9

corresponds to the state exec). The second takes into account the transaction response (this
corresponds to the state wait).

Figure 4.14 illustrates the micro-steps associated with two successive activations of the compo-
nent cpu1. The black-filled circles denote the beginning and the end of the micro-steps. Each
circle is associated with a label to indicate the state of the controller at that circle.

At state exec, the controller acts as a scheduler. It selects a process randomly; the global
variable p identifies the selected process. To activate the selected process, the controller first
asks it whether it is about to perform an internal move, or a read/write. Depending on the
answer wsh, it asks the process to perform a single operation, or asks it to send the transaction
parameters which are routed to the global output thanks to the component mux. Notice that
the activation of the processes is inside a loop. The break condition of the loop is the value of
the Boolean variable transaction. The controller interleaves the activation of the processes
inside the loop until one of them decides to send a transaction. This way the controller complies
with the specification of the component cpu1 describes in Section 4.1.2.1. In Figure 4.14, this
corresponds to the sequence of micro-steps between the state exec and wait.

At state wait the controller is waiting for a response of the pending transaction. When it
is activated with op, a data is supposed to be available on its input resp (implied by the
specification of the component cpu1). This data is routed thanks to the component demux to
the process that initiated the transaction. This process is identified with the global variable p
inside the controller. In Figure 4.14, this corresponds to the sequence of micro-steps between
the state wait and exec.

Tayeb BOUHADIBA Ph.D Thesis 69/186

4.1. Examples with Implicit Specifications

p1.getwish

p1.getwish

p2.op

p2.getwish

p2.getwish

p1.op

p1.op

p2.op

p2.op

p1.op p2.op

mux.m1 mux.m2

demux.d1 demux.d2
cpu1.op

cpu1.op

exec

exec exec

wait wait

Fig. 4.14: The micro-steps associated with two successive activations of cpu1

The execution of the code associated with exec or wait depends on the variable state. When
cpu1 is instantiated somewhere, this variable is initialized to the value exec. After each activa-
tion, the value of the variable state alternates between exec and wait so that the component
cpu1 exposes the cyclic behavior: sending transaction, waiting for response, sending
transaction, etc..

4.1.3.3 Comments

The example models Hardware/Software components. It illustrates how we deal with
heterogeneity in 42, with hierarchic levels, each level using a particular MoCC. It especially
deals with hardware/software heterogeneity.

The controller plays the role of a scheduler. More precisely, it mimics the behavior of a
non-preemptive scheduler. To model preemptive schedulers, the code of the process should
yield after each piece of code which is guaranteed to be atomic (non interruptible) by the
hardware, or by language features like the synchronized keyword in Java.

The scheduling policy is implemented by the controller. The scheduling policy is based
on non-deterministic interleaving of components. When modeling systems with more com-
plex scheduling policies, one may consider the scheduler as a component part of the func-
tional specification of the system. The 42 controller should be here only for simulation.
It interleaves components’ execution taking into account the scheduler decisions to decide
which process to activate.

Modeling asynchronous behaviors is interesting. It can be used to study the behavior
of algorithms used in asynchronous parallel programming, like the Peterson algorithm
for mutual-exclusion. The code of the controller can be used to produce all the possible
interleavings of the two processes, together with their effect on the memory.

4.1.4 Kahn Process Networks

Figure 4.15 shows a simple example of a Kahn Network [Kah74, KB77]. In such a model of
computation, the processes produce outputs depending on the inputs they have. The process P1

70/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

P1

P3

P2

x

zy

o
x1

y2

y1

go

x2

z1

o

r

z2

go
in out test

go

goin out test

in out test

kpnc

p1

z

y p2

x

main

p3

r

r

Fig. 4.15: An example Kahn Process Network
Fig. 4.16: The 42 view of the KPN
example

is a producer, it produces continuously new values on its outputs. The processes are supposed
to execute in pure asynchronous parallelism. They communicate through channels (x,y,z).
Theoretically, the channels are associated with unbounded FIFOs. Writing on a channel is
non-blocking while reading from it is blocking. This means that a process waiting for an input
cannot execute. Moreover, a process cannot test its inputs channels for emptiness.

4.1.4.1 Individual Components and their Implicit Specification

The description of Kahn Networks [Kah74] in 42 is an interesting exercise which shows the
main difference between the potential memory present as a component, and the volatile memory
associated with the wires for a particular MoCC. The memory associated with the wires serves
only as temporary storage to build a macro-step (see Section 3.1.3); it is initialized at the
beginning of each macro-step.

To describe a Kahn Network in 42, we need two types of components: components model-
ing the processes, and components modeling communication channels implemented as explicit
unbounded FIFO queues between the processes.

The processes (p1, p2, p3) have input and output data ports. Each of them is equipped with
an input control port go which means: read the inputs and provide the outputs. The processes
are associated with the implicit specification: each activation needs all the inputs to compute
all the outputs.

The channel components have an explicit control input test that allows to test them for empti-
ness; the answer r is an explicit control output of Boolean type. Writing true on the control
output r means that the channel contains at least one element. The idea is that this information
may be used by the controller (which describes the semantics of KPN) but not by the compo-
nents themselves, because components are not allowed to test the input channels for emptiness.
The channel components also have two control inputs: in (to accept a value) and out (to deliver
a value).

4.1.4.2 The Controller

The controller should be able to expose the potential parallelism of the processes. Following
the definition of the KPN MoCC, it should also describe the fact that a component modeling a

Tayeb BOUHADIBA Ph.D Thesis 71/186

4.1. Examples with Implicit Specifications

Controller kpnc i s {
for go do {
var x1 , x2 , y1 , y2 , z1 , z2 , i , o : f i f o (1 , int)

ex , ey , ez : bool ;

int proce s s := random (1 , 3) ;

switch (p roce s s){
case 1 : p1.go ;

x1 . put ; x1 . get ; x.in ;
y1 . put ; y1 . get ; y.in ;

case 2 : Y. t e s t ;
ey :=y.ry ;
i f (ey) then{

y.out ;
y2 . put ; y2 . get ; p2.go ;
z1 . put ; z1 . get ; z.in ;

}

case 3 : x.test ; z.test ;
ex := x.r ;
ez := z.r ;
i f (ex && ez) then{

x.out ; x2 . put ; x2 . get ;
z.out ; z2 . put ; z2 . get ;
p3.go ; o . put ; o . get ;

}
}

}

Fig. 4.17: The programs of the controller

process is blocked until the values required on its inputs are available.

The code of the controller is illustrated in the Figure 4.17. The variables ex, ey, ez are used
to store the answer of the channels after the test of emptiness (i.e., the activation with test). It
associates a one-place integer FIFO with each wire connecting two components. These FIFOs
are initialized at each global activation.

The controller simulates the true parallelism between processes by interleaving their activations.
For each activation of the component main, it randomly selects a process to be executed. Once
a process is selected, the controller verifies that all its inputs are available, by testing the input
channels. If it is ok, it takes the inputs in the corresponding channels; the process is activated
with go to produce all its outputs, which are stored in the corresponding channels. If one of the
channel components connected to the inputs of the process answers with false on its output
r, the process is not activated with go. This describes the blocking read of the process.

4.1.4.3 Comments

The memory associated with the wires is not persistent. The example insists on the
lifetime of the memory associated with the wires by describing the difference between
it and the components acting as a real memory (i.e., the components modeling the chan-
nels).

4.1.5 Globally Asynchronous Locally Synchronous Systems

Figure 4.18 is an example GALS (Globally Asynchronous Locally Synchronous) modeled with
42. The system involves two different MoCCs (synchronous and asynchronous) organized in a
hierarchy. The example involves two synchronous components syn1 and syn2 (see Section 4.1.1)
which are run asynchronously, i.e., they have no common clock. This requires the use of buffer
components to store the information produced before it is used. For instance, syn1 reads (at
each tick of its own clock) the last value stored in buf2 and produces an output which will be
stored in buf1. Independently, syn2 does the same with respect to its clock.

72/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

sync

main

i2o1

b
getogo

syn2

set get

buf2

dc

syn1 i1

op

async

o2

a getogo

geto
pre

go

plus

go geto

set get

buf1

Fig. 4.18: Globally asynchronous locally synchronous system

4.1.5.1 Individual Components and their Implicit Specification

syn1 and syn2 are synchronous components. The details of the implementation of syn1 are
given for illustration. It is made of a plus and a pre component to form an integrator (slightly
distinct from the one described in Section 4.1.1 but exposing the same behavior). Their spec-
ification complies with what was described in Section 4.1.1. We recall that a clock cycle of a
synchronous component consists of an activation with geto to compute the outputs, followed
by an activation with go to change internal state. The activation with geto requires all inputs
to compute all the outputs.

The components buf1 and buf2 are one-place buffers. Their memory is initialized to some
value when they are instantiated. When activated with set, a buffer stores the value of its
input port in its memory. When activated with get, the buffer delivers the last value stored in
its memory on its output.

4.1.5.2 The Controllers

At the highest level of the hierarchy the controller async implements an asynchronous MoCC.
Each global step op of the component main is translated by the controller into a sequence of
activations of the buffers and one of the synchronous components.

The code of the controller async is given in Figure 4.19. Asynchrony is obtained by random
selection of the component to execute. The variable x is assigned a random value, it defines
whether we consider an occurrence of syn1’s clock or that of syn2. For x=1 the controller
activates buf.get which will deliver the input for syn1, activates the latter with syn1.geto
to produce the output and with syn1.go to change its state. Finally the micro-step buf.set
will store the output in buf2.

The controller sync implements a synchronous MoCC. It is associated with the assembly defin-
ing the architecture of the component syn1. Its code is illustrated in the Figure 4.19. As
described in Section 4.1.1, in response to the activation with geto it activates (with geto) the
subcomponents of syn1 in an order compatible with the data dependencies. The activation of
components syn1 with go is translated into a sequence of activations with go.

4.1.5.3 Comments

Mixing distinct MoCCs is the key of modeling heterogeneity. The example illustrates how
to put in a hierarchy distinct MoCCs in order to model heterogeneity with 42.

The example considers unrelated clocks. There are no constraints on asynchronous
scheduling of synchronous components (periodicity, priority, etc.). There may be loss

Tayeb BOUHADIBA Ph.D Thesis 73/186

4.1. Examples with Implicit Specifications

Controller async i s {
for op do {

var i1 , o1 , i2 , o2 : f i f o (1 , int) ;
int x := rand (1 , 2) ;
i f (x=1)then{

buf2.get ; i 1 . put ; i 1 . get ;
syn1.geto ; o1 . put ; o1 . get ;
i 1 . put ; i 1 . get ; syn1.go ;
buf1.set ;

} else {
buf1.get ; i 2 . put ; i 2 . get ;
syn2.geto ; o2 . put ; o2 . get ;
i 2 . put ; i 2 . get ; syn2.go ;
buf2. set ;

}
}

}

Controller sync i s {
for geto do {
var a , b , c , d : f i f o (1 , int) ;

pre. geto ; d . put ; d . get ;
a . put ; a . get ; plus.geto ;
b . put ; b . get ;

}

for go do {
var a , b , c , d : f i f o (1 , int) ;

c . put ; c . get ;
pre. go ;
a . put ; a . get ;
d . put ; d . get ;
plus.go ;

}
}

(a) (b)

Fig. 4.19: Asynchronous (a) and Synchronous (b) controllers of the GALS system of Figure 4.18

of information (syn1 may write a new value on buf1 before syn2 may read the old one).
The example is intended to demonstrate heterogeneity modeling with 42 components, not
to reason on detailed implementation.

The modeling of the asynchronous execution of several synchronous components (Fig-
ure 4.18) should be faithful to reality, that is, the clocks are not synchronized. This is
why each activation of main with op corresponds to one execution step (a clock cycle) of
one of the two synchronous components only. In this kind of model, there is no relation
between the clocks.

Wrapper controllers may be used to interface distinct MoCCs. When mixing control-
lers, there may be a need for wrapping components into an interface complying with the
specification of components of other MoCCs. For instance, to make the synchronous
components compliant with the asynchronous components described in Section 4.1.2, one
would wrap them into a component having only one control input op.

The controller inside the wrapper is in charge of translating one activation with op into
an activation of the synchronous component with geto followed by an activation with
go. Figure 4.20 illustrates such a wrapping, and the controller wrap associated with the
assembly. For instance, we can replace syn1 and syn2 by their wrapped version in the
system of Figure 4.18 in order to simplify the code of the controller async of Figure 4.19.
In this case, the controller interleaves component executions only. It does not manage
their activation with geto and go in order to perform a clock cycle; this is left to the
controller wrap.

wrap

wrap
getogo

syn
i o

op
Controller wrap i s {

var i , o : f i f o (1 , int) ;
for op do {

i . put ; i . get ; syn. geto;
i . put ; i . get ; syn. go;
o . put ; o . get ;

} }

Fig. 4.20: Wrapping a synchronous component

74/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

4.2 Examples with Explicit Contracts

4.2.1 Mono-Clock Synchronous Programs or Circuits

The example of Figure 4.21 illustrates an assembly of synchronous components. In this example,
instead of considering components with implicit specifications, we associate a control contract
with each component.

plus

gogeto

dup

geto go

pre

gogeto

x

geto go

o1

o2

o3

sync-s

geto1 geto2 geto3

s

i2

i1 a
f

g c

h

d

e

b

go

Fig. 4.21: An example of synchronous program

4.2.1.1 Individual Components and their Contracts

The system of Figure 4.21 is made of an assembly of synchronous components. The interface
of each of them complies with what was described in Section 4.1.1. The encapsulating com-
ponent s has more control inputs; this will be detailed later. To use these components, one
may rely on the implicit specifications described so far. But for this example, we equip each
component with its explicit specification, in order to expose the exact input/output data depen-
dencies. Explicit specifications allows to overcome the limitations of the implicit specifications
(see Section 4.1.1.8), in particular for detecting the absence of cycles.

In the sequel we describe the contract of some of the components. The language of contracts
was described informally in Section 3.2.2. We recall the main aspects of this language along
with the description of each contract.

The Component plus has two data inputs and one data output. Its contract is described in
Figure 4.22; it applies to the combinational synchronous components (e.g., dup) at the difference
of the numbers of inputs/outputs. It says that the activation of plus with geto requires all
the inputs (i.e., a,d) to compute all the outputs (i.e., f). The activation with go has no data
dependencies.

The Component x is assumed to be a sequential synchronous component, i.e., it manages
some internal memory. Its contract (Figure 4.22) complies with the implicit specification we
gave so far for those synchronous components behaving as Mealy machines.

The activation of the component x with geto requires the input e to compute the outputs g
and h. The activation with go will update its internal state; it requires the input e for that
purpose.

The Component pre is a Moore-Style machine. Its contract is described in Figure 4.23.
The activation with geto requires no inputs and provides a value on its output data port c.

Tayeb BOUHADIBA Ph.D Thesis 75/186

4.2. Examples with Explicit Contracts

Contract for plus Contract for x

{e}go{}

s0

{e}geto{g; h}
{}go{}

s0

{a; d}geto{f}

Fig. 4.22: Contracts for Mealy-style components plus, x

s0

{}geto{c}
{g}go{}

Fig. 4.23: Contract for the Moore-style component pre

The activation of the component with go will change its internal state; it requires a value on
its input data port g.

The Component s The components dup, plus, x, and pre are assembled to define the
architecture of the component s. As we will show later, the decision to consider explicit speci-
fications with the components allows for partial computation of the outputs. This is something
that would be complicated (or even impossible) with implicit specifications because of the data
dependencies between inputs and outputs.

Notice that the interface of the component s exposes two input data ports i1, i2; three output
data ports o1, o2, o3; and four input control ports. For each output data port we associate
a geto control input (geto1, geto2, geto3). To change state, we require only one control
input go.

4.2.1.2 The Controller

Figure 4.24 shows the code of the controller sync-s associated with the assembly of components
in Figure 4.21. It implements the control inputs of the component s. For the computation of
each output data port, the controller associates a sequence of micro-steps with the corresponding
input control port. It reads the global inputs required for the computation of the corresponding
output data port, and activates the components involved in the computation of its value. The
activation of the components is done in an order compatible with the data dependencies.

For instance, for the activation with geto1, the controller reads the inputs on i1 and i2 (i.e.,
a.put; b.put;), activates the components dup and plus. Finally, the micro-step f.get defines
the value of the global output data port o1. The computation of the global output o2 requires
no inputs because it depends on the component pre; the component pre requires no inputs to
compute its outputs. The computation of the global output o3 requires the global input i2.

The activation of the component s with go is translated by the controller into a sequence of
activations of the sub-components with go. For the sequential components pre and x, the
controller takes care of providing them with their inputs before the activation. The values are
taken from the output ports of x and dup respectively, because the memory associated with

76/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

Controller sync−s i s {

for geto1 do{
var a , b . . .

a . put ; a . get ;
b . put ; b . get ;
dup.geto ;
d . put ; d . get ;
plus.geto ;
f . put ; f . get ;

}

for geto2 do{
var a , b . . .

pre.geto ;
c . put ; c . get ;

}

for geto3 do{
var a , b . . .

b . put ; b . get ;
dup.geto ;
e . put ; e . get ;
x.geto ;
h . put ; h . get ;

}

for go do{
var a , b . . .

plus.go
dup.go
g . put ; g . get ;
pre.go ;
e . put ; e . get ;
x.go ;

}}

Fig. 4.24: The code of the controller sync-s associated with the assembly of Figure 4.21

s0

{i1; i2}geto1{o1}
{}geto2{o2}
{i2}geto3{o3}
{i2}go{}

Fig. 4.25: An example contract for the component s of Figure 4.21

output data ports is persistent across the global activations (see Section 3.1.3).

4.2.1.3 A Control Contract for the Component s

The contract illustrated in the Figure 4.25 is a possible description of the behavior of the
component s. With each activation getoi is associated a transition labeled with the data
dependencies corresponding to it. For instance, {i1; i2}geto1{o1} describes the dependencies
for the computation of the output o1. Notice that the component may be asked to compute its
outputs in any order.

The component s is sequential; it encapsulates some memory associated with x and pre. The
go transition declares that the computation of the new state of s depends on i2, because the
states of both x and pre depend on i2.

The code of the controller sync-s and the control contract associated with the component s
may be deduced from the architecture and the control contract of the components plus, x, etc.
(see Section 6.2.1).

4.2.1.4 Benefit of Using Explicit Contracts

Figure 4.26 illustrates the architecture of the component xs. The component consists of an
assembly of the component s and the component x (described above).

When we consider implicit specifications for each component, we would say that the computation
of each output requires all the inputs. As commented in Section 4.1.1, one cannot write a
controller for such an assembly because of the cyclic dependencies between the components.

In case we consider explicit specifications, we know that the cycle created by the wire o3 is in
fact not a cycle, because the computation of this output does not depend on the input to which

Tayeb BOUHADIBA Ph.D Thesis 77/186

4.2. Examples with Explicit Contracts

x

geto go

sync-xs

xs

o1

o2
a

o3

i2

geto3 geto1 go geto2

s

x

y

getx gety go

Fig. 4.26: Assembling components described with explicit specifications

Controller sync−xs i s {

for getx do{
var o1 , . . .
S . geto2 ;
o2 . put ; o2 . get ;
X. geto ;
i 2 . put ; i 2 . get ;
S . geto3 ;
o3 . put ; o3 . get ;
S . geto1 ;
o1 . put ; o1 . get ;

}

for gety do{
var o1 , . . .
S . geto2 ;
o2 . put ; o2 . get ;
X. geto ;
a . put ; a . get ;

}

for go do{
var o1 , . . .
i 2 . put ; i 2 . get ;
S . go ;
o2 . put ; o2 . get ;
X. go ;

}}

Fig. 4.27: The code of the controller associated with the assembly of Figure 4.26

it is connected (i.e., i1). Moreover, we know that the cycle created by the wires i2 and o2 is
in fact cut by a pre component inside the component s. In the contract of s (Figure 4.25), the
transition {}geto2{o2} expresses that the computation of the output o2 depends only on the
internal memory of the component s. This is synonym of the presence of a pre component,
which is the elementary memory point in synchronous systems.

One can write a controller (sync-xs) consistent with the contracts of the components s and x
in order to define the behavior of xs. The code of such a controller is illustrated in Figure 4.27.
This controller implements a synchronous MoCC and allows for partial computation of the
outputs of the component xs. For instance, for the computation of the global output x, it
activates the component s with the control input geto2 without providing it with any inputs
(this is specified by the contract of the component s). Then it activates the component x to
provide the input i2 to the component s. Now, s is activated with geto3; this provides the
input to the component s such that it may be activated (with geto1) to compute the output
o1 connected to the global output data port x.

4.2.1.5 Comments

The contracts expose interesting details about components. Writing a control contract
for a synchronous component enables the description of fine details related to its behav-
ior. Essentially, the contract expresses partial input/output data dependencies to avoid
looking at its implementation. Moreover, for a sequential component the contract also
declares the required inputs to change internal state.

The computation of the outputs may be done in any order. The contract of s allows

78/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

for activating the component in any order. This is interesting because one may not wait
for all the inputs to be available, and may compute an output when its required inputs
are available. Moreover, it is possible to compute only part of the outputs and change
state, for instance, in case we do not care about some outputs.

4.2.2 Multi-Cycle Synchronous Programs or Circuits

In a mono-clock synchronous program, all components execute together with respect to one
common and global clock. At each clock cycle, each component reads its inputs, computes its
outputs and updates its internal state. Sometimes, there is a need for systems where components
execute at distinct rates, each of them performing computations only at some instants. These
instants are defined by a clock associated with the component. Multi-cycle programs are systems
where there are at least two distinct clocks. One of these clocks is the base clock. The other
clocks are slower.

c1 c2

a

main program

ms1 ms2

Fig. 4.28: Two communicating components running at distinct speeds

Figure 4.28 is a description of a multi-cycle system with an abstract notation (it is not a 42
model). The components ms1 and ms2 are two synchronous systems. Each one is associated
with a clock (c1 and c2 respectively). Clocks are Boolean flows. For instance, the base clock
is the Boolean flow taking the value true at each instant. At each cycle of the base clock,
c1 (resp., c2) takes a Boolean value that indicates if ms1 (resp., ms2) will indeed perform a
computation step.

The component ms1 computes some data which is sent to the component ms2. As the com-
ponents may not be synchronized, there may be a need for some explicit memory acting as a
buffer to manage their communication.

In what follows, we present a type system for synchronous languages dedicate to clocks (Sec-
tion 4.2.2.1). Section 4.2.2.2 is a discussion on the size of the buffer to use in order to manage
components communication. In Section 4.2.2.3, we present the modeling of multi-cycle systems
with 42, and how contracts may help in identifying the clocks associated with the components.
The purpose of modeling such systems in 42 is to expose the potential memory used for the
communication between components associated with distinct clocks.

4.2.2.1 Clock Calculus in Synchronous Languages

The compilation process of synchronous languages consists in more than simple code generation.
It includes some analysis of the program such as data dependencies analysis and clock calculus.
The latter is a type system for clocks. It consists in associating a clock with each expression of
the program and checking the consistency of the clocks associated with the flows involved in an
operation. The clocks associated with the operands of any operator must be synchronized, i.e.,
they take the same value at each instant.

Since static verification of the equality of two Boolean expressions is undecidable, clock checking
in Lustre relies on syntactic substitutions to prove the equality of two clocks [CPHP87]. In

Tayeb BOUHADIBA Ph.D Thesis 79/186

4.2. Examples with Explicit Contracts

Signal, clock calculus consists in the synthesis of some constraints associated with clocks, and
verifying their consistency [BLG90].

In 42, which is not a language for the design of synchronous programs, the clocks are not dealt
with as in Lustre and Signal. In particular, there is no dedicated type system. The clocks in a
42 model are similar to the activation condition operator (condact) in Scade.

4.2.2.2 Communication Between Components Requires Memory

The size of the buffer used to manage the communication between two components associated
with distinct clocks depends on the behavior of the clocks. There may be four possibilities:

(1) Synchronized clocks: If the clocks are synchronized, i.e., they take the same value at each
instant, the system may be considered as mono-clock synchronous system as in Section 4.2.1.
One may avoid the use of buffers to make components communicate. The value produced by
the producer is consumed at the same instant. This is the case for mono-clock synchronous
programming in Lustre [HCRP91] for instance.

(2) Clocks are not synchronized but somehow equivalent: This case applies for systems
where the difference between the amount of computed values and the amount of the values
consumed is always positive and never exceeds the size of a buffer (n).

The N-Synchronous [CDE+06] model is an approach to the modeling of such systems. It is
built over a synchronous formalism, and proposes a relaxed notion of synchrony. It aims at
synchronizing flows associated with distinct clocks using intermediate buffers. The approach
requires clocks to expose periodic behaviors [CDE+05], from which fixed-size buffers may
be computed.

(3) The clock of the producer is faster: When the producer produces faster than the
consumer can consume, putting a buffer to store values is no longer possible. Suppose
for example that the producer is two times faster than the producer. The capacity of the
buffer will be exceeded whatever the size of the buffer. For such kind of applications, we
use one-place buffers which always deliver the last value stored, or their initial value. The
effect of using such a buffer is to sample the values produced with respect to the clock of
the consumer (e.g., the operator when in Lustre).

(4) The clock of the consumer is faster: Here, the right choice is to use a one-place buffer
with an initial value. The buffer is supposed to hold the last value produced and deliver it
whenever it is asked for. The buffer in this situation plays the role of a projection operator
(e.g., the operator current in Lustre).

In what follows, we first illustrate the general modeling of multi-cycle synchronous systems in
42, then we discuss the size of the buffer being used with regards to the information we have
about the clocks.

4.2.2.3 Modeling Multi-cycle Systems in 42

Figure 4.29 illustrates the modelling of the system of Figure 4.28 in 42. We can distinguish the
components ms1 and ms2 (the internal details of ms1 are exposed, they are described later).
The clock of each component is explicitly described as a data input of the component. c1’
(resp., c2’) defines a clock for the component ms1 (resp., ms2). The clock values are of type
Boolean, they are generated by the synchronous components clk1 and clk2. The components
r1 and r2 are used by the controller to know about the values of the clocks (see Section 3.1.2.1);
these components replicate their input on their output control and data ports. To manage the

80/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

communication between the components ms1 and ms2, we use an explicit buffer buf. The size
of the buffer varies according to the relation between the clocks of components.

go

geto

ms2

go

s1

geto go

s2

geto go

dup

geto go

buf

in out

gogeto

m-sync1

clk1

gogeto

r1

out

test

clk2

gogeto

r2

out

test

geto

m-sync

mss ms1

c2 c2’

a b

c1 c1’ c1’
c’

a

c

d

Fig. 4.29: One-place buffer used to manage multi-cycle components communication

The synchronous components expose the same interface as typical synchronous components
described in Sections 4.1.1 and 4.2.1. However, we require that some input/output data ports
be associated with the clocks. These particular input/output are of Boolean type. The contracts
allow to distinguish them from the actual inputs/outputs used for data exchange (see below).
In the sequel we use T and F to denote the values true and false respectively.

4.2.2.4 Individual Components and their Contracts

The Component ms1 exposes one input data port c1’ which corresponds to its input clock
and one data output a on which it may deliver some value. The contract of ms1 is described
in Figure 4.30. The activation of the component with geto requires the input clock c1’ with
the value T (i.e., true) to provide a value on the output data port a. The activation with go to
change state also requires the input clock with the value T.

Associating the explicit value T with the clock c1’ distinguishes this input from the inputs/out-
puts used for data exchange (i.e., a). The constraint put on the value of c1’ means that the
component ms1 may react only if it is on its clock, i.e., if its clock has the value T.

s1

{c1’=T}geto{a}
{c1’=T}go{}

Fig. 4.30: The contract of ms1

s1

{c2’=T; b}geto{}
{c2’=T; b}go{}

Fig. 4.31: The contract of ms2

The Component ms2 has two input data ports: c2’ corresponds to its input clock, b is a
data input. Its contract is illustrated in Figure 4.31. The geto (resp., go) activation requires
the inputs c2’ and b. Moreover, the value of c2’ must be T, because the input c2’ defines the
clock of the component ms2.

The Components clk1 and clk2 are also synchronous components. Each of them has one
Boolean output data port, c1 and c2 respectively. Their contracts are illustrated in Figure 4.32
and Figure 4.33 respectively. When the component clk1 (resp., clk2) is activated with geto,

Tayeb BOUHADIBA Ph.D Thesis 81/186

4.2. Examples with Explicit Contracts

it provides a Boolean value on its output c1 (resp., c2). Its activation with go to change state
requires no inputs.

s1

{}geto{c1}
{}go{}

Fig. 4.32: The contract of clk1

s1

{}geto{c2}
{}go{}

Fig. 4.33: The contract of clk2

The Components r1 and r2 expose one control input test, one Boolean control output
vc, one Boolean data input c1 (resp., c2) and one Boolean data output c1’ (resp., c2’). The
contract of the component r1 is illustrated in Figure 4.35 (the contract of r2 is similar). When
the component is activated with test it reads the input and reproduces its value on the output
data and control ports.

The Component buf acts as a buffer, its interface exposes one input data port a from wich
it may take a value to store, and one output data port b on which it may deliver a value. The
control inputs in and out are used to store and deliver a value respectively.

The contract of buf is illustrated in Figure 4.34. It says that the component may be activated
with in or out. The activation with in requires the input a; the activation with out requires no
inputs and provides b. Notice that neither the interface of buf nor its contract states on the size
of buf (i.e., one-place or n-places buffer). The size of the buffer is discussed in Section 4.2.2.6
below.

s0{}out{b} {a}in{}
s1

{c1}test/vc {c1’}

Fig. 4.34: The contract of buf Fig. 4.35: The contract of r1

4.2.2.5 The Controller

The controller m-sync implements a multi-cycle synchronous MoCC. It defines the programs
needed for the control inputs of the component mss. It should be able to detect when a
component may produce some outputs or require some inputs. To this end, it interrogates the
components r1 and r2 through their control input test, and stores the value of their control
output vc in α1 and α2, in order to know about the clocks associated with ms1 and ms2.

The controller m-sync is illustrated in Figure 4.36. It translates a global activation with geto
into a sequence of activations of the synchronous components that are on their clock, with geto,
in an order compatible with the partial order of data dependencies. The components clk1 and
clk2 are always activated because they are implicitly associated with the base clock. The
controller interrogates r1 (resp., r2) to know whether the component ms1 (resp., ms2) has to
be activated. If ms1 is on its clock, the controller activates the component buf with in in order
to store the computed value. If ms2 is on its clock, the controller activates the component buf
with out in order to provide the component ms2 with the input.

The activation of mss with go is translated by the controller into the activation of the syn-
chronous components with go. The activated components must be on their clock.

82/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

Controller m−sync i s {
var α1 , α2 : bool

for geto do : {
var a , b : f i f o (1 , int) ;
c1 , . . . , c2 ’ : f i f o (1 , bool) ;

clk1.geto ; c1 . put ; c1 . get ;
r1.test ; α1 := r1.vc ;
i f (α1) then {

c1 ’ . put ; c1 ’ . get ;
ms1.geto ;
a . put ; a . get ;
buf.in ;

}
clk2.geto ; c2 . put ; c2 . get ;
r2.test ; α2 := r2.vc ;
i f (α2) then {

buf.out ;
b . put ; b . get ;
c2 ’ . put ; c2 ’ . get ;
ms2.geto ;

}
}

for go do{
var a , b : f i f o (1 , int) ;
c1 , . . . , c2 ’ : f i f o (1 , bool) ;

clk1. go ;
i f (α1) then {

c1 ’ . put ;
c1 ’ . get ;

ms1.go ;
}

clk2. go ;
i f (α2) then {

c2 ’ . put ;
c2 ’ . get ;
b . put ;
b . get ;
ms2.go ;

}
}
}

Fig. 4.36: The programs of the controller m-sync

4.2.2.6 Choosing the Size of the Buffer

Using a One-place Buffer In the example described above, the contracts of the compo-
nents clk1 and clk2 expose no information about the values that the clocks c1 and c2 may
take. The most general case is to consider a one-place buffer with initial value to manage the
communication between the components ms1 and ms2. If the clock of ms1 is faster, then buf
acts as a sampling operator. At the opposite, if the clock of ms2 is faster, the buffer acts as a
projection operator.

Using a N-places Buffer Figure 4.37 illustrates possible contracts for the components clk1
and clk2 where the values of the clocks are explicitly described in the contract. The behavior
of the clocks is periodic, in the sense of [CDE+05]. Each four base-clock tick, c1 takes the
value true the two first tick, whereas c2 takes true the two last ones. As we explained in
Section 4.2.2.2-(2), as the clocks are somehow equivalent, we may use a n-places buffer. Pre-
cisely, a 2-places buffer, because the difference between the amount of consumed values and the
computed ones never exceeds 2. The size of the buffer is computable from the description of
the clocks, one may refer to the N-synchronous approach [CDE+06] for more details.

4.2.2.7 The Internal Details of ms1

The internal details of the component ms1 are described in Figure 4.39. It is composed of
two multi-clock synchronous components s1 and s2, each one exposing one input data port
associated with the clock of the component (i.e., c and c’ respectively). The component dup is
a duplicator, it is used to duplicate the input clock of the global component ms2 (i.e., c1’) in
order to provide the input clocks of the sub-components s1 and s2. This means that s1 and s2
are perfectly synchronized (the situation described in Section 4.2.2.2-(1)). In this case, there is
no need for a communication buffer between s1 and s2; the components communicate through

Tayeb BOUHADIBA Ph.D Thesis 83/186

4.2. Examples with Explicit Contracts

s0

s1

s2

s3 clk1

{}geto{c1=F}

{}geto{c1=T}

{}go{}{}go{}

{}geto{c1=F} {}geto{c1=T}

{}go{} {}go{}

s0

s1

s2

s3 clk2

{}geto{c2=T}

{}geto{c2=F}

{}go{}{}go{}

{}go{} {}go{}

{}geto{c2=T} {}geto{c2=F}

Fig. 4.37: The contracts of clk1 and clk2 describe the periodic behavior of c1: (TTFF)* and
c2: (FFTT)*

the wire d.

The contract of each of these components is described in Figure 4.38. The component dup is a
combinational component, it requires all the inputs to provide the outputs. The contract of s1
(resp., s2) describes which of the inputs are the input clocks.

s1

{c=T}go{}
{c=T}geto{d}

s1

{c’=T}go{}
{c’=T; d}geto{a}

s1

{c1’}geto{c; c’}

s1 s1dup

{}go{}

Fig. 4.38: The contract associated with the components dup, s1 and s2

The Controller The controller associated with the component ms1 is illustrated in Fig-
ure 4.39. When ms1 is activated with geto, the controller activates the components dup, s1,
and s2 with geto in an order compatible with the partial order of data dependencies. The
activation with go is translated into a sequence of activations of the subcomponents with go.

Notice that even if the components s1 and s2 are associated with clocks. The controller does
not check their input clocks in order to decide on their activation. As the clock is a global input
of ms1, it is the responsibility of the controller activating ms1 (i.e., m-sync) to check clock
values. If m-sync uses ms1 according to its contract, ms1 is activated only if the clock c1’ is
true, hence, s1 and s2 are activated only if their respective clocks are true.

4.2.2.8 Comments

Modeling multi-cycle systems in 42. 42 is not a language for the design of synchronous
systems. It allows for modeling various examples of multi-cycle synchronous systems, but
there is no type system dedicated to clocks. Our modeling approach of clocks resembles
to the activation conditions used in Scade programs. Using 42 to describe multi-cycle
systems has the benefit of modeling communication buffers explicitly as components.

Contracts and periodic clocks. When the clocks associated with the components are peri-

84/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

Controller m−sync1 i s {
for geto do : {

var c1 ’ , c , c ’ : f i f o (1 , bool) ;
a , d : f i f o (1 , int) ;

c1 ’ . put ; c1 ’ . get ; dup.geto ;
c . put ; c . get ; s1.geto ;
c ’ . put ; c ’ . get ;
d . put ; d . get ; s2.geto ;
a . put ; a . get ;

}
for go do{

var c1 ’ , c , c ’ : f i f o (1 , bool) ;
a , d : f i f o (1 , int) ;

c . put ; c . get ; s1.go ;
c ’ . put ; c ’ . get ;
d . put ; d . get ; s2.go ;
dup.go

}}

s1

geto go

s2

geto go

dup

geto go

gogeto

m-sync1

ms1

c1’
c’

a

c

d a

c1’

Fig. 4.39: The component ms1 and the programs of its controller m-sync1

odic, the contracts may be used to describe their behavior. In this situation, the contracts
may be used in order to compute the size of the buffers. To this end, we can benefit from
the work advocated to the N-synchronous approach.

4.2.3 Using Contracts to Describe Asynchronous Systems

The example of this section is intended to demonstrate how expressive the contracts are in
describing components. In particular for describing their synchronizations in an asynchronous
MoCC. Moreover, the example recalls the importance of the granularity in an asynchronous
model, and shows how we can play with the code of a controller in order to observe more (resp.,
less) details during the simulation.

controller1

prod

fifo

cons

op

op

op

report reqr

dr
gr

dw

gw

reqw

opG

main

Ports Types :
dr, dw : int gw, rr : {t, f} (true, false)
fifo.report : {ok, ko} reqr, reqw : {t}

Fig. 4.40: The producer/consumer example in 42

Figure 4.40 shows the structure of a system made of three components: a producer, a consumer,
and a bounded fifo used to store the elements produced before they are consumed. The

Tayeb BOUHADIBA Ph.D Thesis 85/186

4.2. Examples with Explicit Contracts

intended behavior is that the producer and the consumer perform cyclic jobs, writing to or
reading from the fifo from time to time. The producer should wait when the fifo is full, and
the consumer should wait when it is empty.

In the 42 model, the data ports and connections are representative of the real hardware system.
For instance, there is a protocol between the fifo and the consumer: the latter should send
a request to the fifo to know whether it may deliver an element, and it is blocked until the
fifo answers this request by a grant signal. Similarly, the producer should send a request to
know whether the fifo still has some room available, and it is blocked until the fifo accepts
the WRITE operation by sending a grant signal.

Each component has a single control input called op, meaning: perform a single atomic execution
step. The model is sufficiently abstract to represent systems in which the consumer and the
producer are dedicated hardware components, or two CPUs with embedded software.

4.2.3.1 Tuning the Granularity of the Simulation

The controller we use with this example is an asynchronous simulation controller. It may be
tuned in order to change the granularity of the simulation steps. We recall the importance of
such a granularity in Section 2.1.2.

There are several cases for which this example may be of interesting uses. For instance, the
model may be used in order to observe the communication between the consumer and the
producer through the fifo, or may be used in order to validate the communication protocol
established between the fifo and the other components. For the first situation, one may rely
on coarse granularity of simulation steps. A simulation step in this case would be the complete
dialog between the producer and the fifo to write some data, or the complete dialog between the
consumer and the fifo to read some data. For the second situation, there is a need to observe
more derails. For instance, we need to observe what happens when the consumer requests a
read while the producer is writing to the fifo. Hence the granularity must be finer.

In the sequel, we describe the components and their contracts in Section 4.2.3.2; we then describe
two examples of controllers: one with coarse-grained simulations steps (Section 4.2.3.3), and
another with fine-grained simulation steps (Section 4.2.3.4). Finally, we give some comments in
Section 4.2.3.5.

4.2.3.2 Individual Components and their Contracts

The Producer’s interface exposes two output data ports and one input data port: reqw is
used to send a write request; dw to send the data to be written; from gw it receives the grant
to a write signal.

The contract of prod is the one described in Figure 4.41. First it sends a request to write to
the fifo, via its port reqw. If it receives gw=f, it is not allowed to write, and returns to its
initial state (it will have to issue another request later). Otherwise, it will receive gw=t. At this
point, it may send a data via its port dw and return to the initial state.

The Consumer’s interface exposes two input data ports and one output data port: reqr is
used to send a read request; from gr it receives the grant to a read signal; from dr it receives
the read data.

The contract of cons is the one in Figure 4.42. First it sends a request to read from the fifo,
via its port reqr, and waits for a response. If it receives gr=f, it is not allowed to read, and
returns to its initial state (it will have to issue another request). If it receives gr=t, it is granted
access to read; it also needs the data read, via its port dr, and returns to its initial state.

86/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

p1

p3

p0
{}op{reqw}

{}op{dw} {gw=t}op{}

{gw=f}op{}

Fig. 4.41: Contract of the producer

c1

{}op{reqr}

{gr=f}op{}
{gr=t; dr}op{}

c0

Fig. 4.42: Contract of the consumer

The FIFO’s interface exposes one input port for each of the output ports of prod and cons;
and one output port for each of their input data ports. Its contract is the one in Figure 4.43.
First it receives a request for a read via its port reqr and puts a value on the report output
control port which is stored in variable α. This value tells the controller whether the fifo is
empty. If it is not empty (α = ok), it grants access, providing gr = t together with the data read
(via port dr). Otherwise, if it is empty, it does not grant access and provides gr=f. Similarly,
the fifo responds to a write request when it receives reqw. It provides a value on report stored
in α telling whether the fifo is full. If α = ko (the fifo is full), it will not grant access for a
write, and sends gw=f. If α = ok, the fifo grants access for the write request (it sends gw=t)
and waits for the value to be written on its dw input data port.

f2 f1

f3

{reqr}op/α=report{}{reqw}op/α=report{}

[α=ko]{}op{gw=f}

{dw}op{}

{}op{IF(α=ok)THEN{gr=t; dr}
ELSE{gr=f}}

f0

[α=ok]{}op{gw=t}

Fig. 4.43: The contract of the fifo

4.2.3.3 A Controller with Coarse-grained Simulation Steps

Figure 4.44 illustrates the code of the simulation controller describing coarse-grained simulation
steps. Basically, this controller does the following: for each global activation, it selects randomly
one component from the producer and the consumer. If the producer is selected, the controller
engages a sequence of activations of prod and fifo. It manages the dialog that happens between
them, during a write request. The dialog will end by a success, i.e., prod can write on the
fifo, or a failure, i.e., prod can’t write on the fifo. In either case, the macro-step ends.

Tayeb BOUHADIBA Ph.D Thesis 87/186

4.2. Examples with Explicit Contracts

Controller c o n t r o l l e r 1 i s
var α :{ ok , ko} ;
for opG do : {

var reqw , gw , reqr , gr : f i f o (1 , bool) ;
dw , dr : f i f o (1 , int) ;

int i := random (0 , 1) ;
i f (i =0){ // PROD w r i t e s to FIFO

prod.op ; reqw . put ; reqw . get ;
fifo.op ; α:= FIFO . r epor t ;
i f (α=ok){ // PROD can w r i t e

fifo.op ; gw . put ; gw . get ;
prod.op ; prod.op ;
dw . put ; dw . get ; fifo.op

}
i f (α=ko){ // PROD can ’ t w r i t e

fifo.op ; gw . put ; gw . get ;
prod.op ;

}}

else { // CONS reads from FIFO
cons.op ; reqr . put ; reqr . get ;
fifo.op ; α:= FIFO . r epor t ;
i f (α=ok){ // CONS can read

fifo.op ; gr . put ; gr . get ;
dr . put ; dr . get ; cons.op ;

}
i f (α=ko){ // CONS can ’ t read

fifo.op ; gr . put ; gr . get ;
cons.op ;

}} //end o f macro−s t e p
}

Fig. 4.44: Asynchronous simulation controller with coarse-grained macro-steps

Similarly, if the consumer is selected (the right part of the code), the controller manages the
dialog that happens between cons and fifo components during a read request. The success or
failure of the read request, ends the macro-step.

Figure 4.45-(a) illustrates part of the interleaving graph parsed by the controller. The black-
filled circles denote the end and the beginning of a macro-step. Each macro-step consists of a
set of component activations. For a sequence of activations of the component main, we observe
an interleaving of READ and WRITE actions from and to the fifo.

�
�
�
�
��
��
��
��

����
�
�
�
�

����
�
�
�
�

����

prod.op

fifo.op

prod.op cons.op

cons.op

fifo.op

fifo.op

fifo.op

fifo.op

fifo.op

prod.op

prod.op

fifo.op

prod.op cons.op

cons.op

fifo.op

fifo.op

fifo.op

fifo.op

fifo.op

prod.op

cons.op

cons.op

cons.op

cons.op

cons.op

cons.op

at
om

ic

(b)(a)

Fig. 4.45: Coarse-grained (a) Vs Fine-grained (b) macro-steps

4.2.3.4 A Controller with Fine-grained Simulation Steps

Figure 4.45-(b) illustrates the effect of considering fine-grained macro-steps comparing to the
coarse-grained macro-steps described by Figure 4.45-(a). Each macro-step consists of exactly
one activation of one subcomponent. As explained in Section 2.1.2.1, the refinement of the
granularity in asynchronous models exposes more behaviors. In our example, this appears as

88/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 4. Modeling Examples with 42 Components

additional dashed arrows.

Figure 4.46 illustrates part of a controller with fine-grained macro-steps as described in Fig-
ure 4.45-(b). The granularity is defined by the transitions of the contracts because each macro-
step consists of one subcomponent activation, which corresponds to one transition in its contract.

In order to be consistent with the contracts of the components, this controller must remember
two things: the state of the contract of each component, and the produced outputs that are still
not used. For instance, the variable p1 f0 c0 reqw in Figure 4.46 encodes the situation where
the producer is at state p1, the fifo is at state f0, the consumer is at state c0, and the output
reqw of the producer has been assigned a new value. At the beginning, the controller is at
state p0 f0 c0. Each global activation, it changes to another state depending on the activated
component, the inputs that were used, and the output that were produced.

Controller c o n t r o l l e r 1 i s {
var α : {ok , ko} ;
p 0 f 0 c 0 : int := 0 ; p 1 f 0 c 0 r e q r : int : = 1 ; p 1 f 1 c 0 : int := 2 ; . . .
s t a t e : int := p 0 f 0 c 0 ; c : int ;

for opG do : {
var reqw , gw , reqr , gr : f i f o (1 , bool) ;
dw , dr : f i f o (1 , int) ;

switch (s t a t e){
case p 0 f 0 c 0 :

c := random (0 , 1) ;
switch (c){

case 0 : prod.op;
s t a t e := p 1 f 0 c 0 r e q w ;
break ;

case 1 : cons.op;
s t a t e := p 0 f 0 c 1 r e q r ;
break ;

}
break ;

case p 1 f 0 c 0 r e q w :
c := random (0 , 1) ;
switch (c){
case 0 : reqw . put ; reqw . get ;

fifo.op ; . . .
case 1 : cons.op;

s t a t e := p 1 f 0 c 1 r e q r ;
break ;

}
break ;
case p 1 f 0 c 0 r e q r :

. . . .
}}}

Fig. 4.46: Asynchronous simulation controller with fine-grained macro-steps

4.2.3.5 Comments

42 control contracts are expressive. The contracts describe the communication protocol
between the fifo and the prod or cons components. Moreover, for some of the in-
put/output data ports we expose explicitly their value (e.g., reqw, gw, etc.). In fact,
these data ports are part of the real system and are used for synchronization. Depending
on the value carried by one of these data ports, a component may behave differently.
Hence, their value should appear in the control contract of the components.

Playing with the granularity of the simulation. Contrary to various simulation models,
tuning the granularity in 42 imposes some changes in the controller code not in the compo-
nents themselves. This is a benefit of separating the simulation mechanics from the model
semantics. In SystemC for instance, we need to change the implementation of components
in order to tune the granularity.

The communication of asynchronous components requires memory. In the simulation
model with coarse-grained steps (i.e., the controller in Section 4.2.3.3), only prod and

Tayeb BOUHADIBA Ph.D Thesis 89/186

4.2. Examples with Explicit Contracts

cons are asynchronous. They communicate through an explicit shared memory (i.e., the
fifo). In this case, there is no need for the memory associated with the outputs of the
components.

At the opposite, in the fine-grained simulation (Section 4.2.3.4), all of prod, cons, and
the fifo are asynchronous. The required memory for the communication between prod
(resp., cons) and fifo is abstracted by the memory associated with the outputs of the
components. The components prod and cons communicate through the explicit fifo.

Automatic generation of asynchronous simulation controllers. The task of writing a
simulation controller with fine-grained simulation steps would be complicated for complex
simulation models. There may be several states to encode. In Section 6.2.2 we introduce
controllers acting as contract interpreters to avoid the burden of writing them. The
information required by these controllers is encoded in the contracts. Contract interpreters
expose the same behavior as the controller in Figure 4.46.

90/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 5

Formal Definition of 42

Introduction (En) This chapter formally defines the various notions we presented
so far. At first, we define the notion of components and how are they combined in
order to form new components. Then, we define the operational semantics of the
controller, and show how the behavior of a composed component is deduced from the
behavior of its components and the programs of the controller. At the end, we for-
malize the contracts and the consistency relation between the components/controllers
and the contracts.

Contents

5.1 Components and Composing Components 92

5.1.1 Components and the Architecture Description Language 92
5.1.2 Controllers . 93
5.1.3 Combining Components . 93

5.2 42 Control Contracts . 95

5.2.1 Original Form of Control Contracts . 95
5.2.2 Expanded Form of Control Contracts 96
5.2.3 The Master/Slave Relation . 97

5.3 Formal Definition of Consistency . 98

5.3.1 Contracts Vs Basic Components . 98
5.3.2 Contracts Vs Controllers . 99

Introduction (Fr) Ce chapitre décrit formellement les différentes notions que
nous avons présenté jusqu’ici. Dans un premier temps, nous allons définir la notion
de composant, et comment les assembler pour former des composants composites.
Puis, nous définissons, à l’aide d’une sémantique opérationnelle, les différentes ac-
tions d’un contrôleur. Ensuite, nous montrerons comment le comportement d’un
composant composite est déduit du comportement de ses sous-composants et les
programmes associés au contrôleur. Enfin, nous formaliserons la notion de contrat
est les différentes notions de compatibilité entre composants/contrôleurs et contrats.

91

5.1. Components and Composing Components

5.1 Components and Composing Components

This section deals with the formal description of the basic elements of the model introduced in
Section 3.1. That is, the components, the architecture for combining them and the semantics
of the controllers. We show at the end, how the behavior of a composed component may be
deduced from the behavior of its sub-components, the wires describing its architecture and the
controller for managing the execution of components.

5.1.1 Components and the Architecture Description Language

5.1.1.1 Components

A component has an interface: the set of input and output data ports, the set of input and
output control ports. The ports take their values in some domain that can contain Boolean
values, numerical values, etc. A component has an internal state, belonging to a set Σ. The
most general definition of the behavior of a component is a set of relations corresponding to its
possible activations through its control inputs. For each control input, the component behavior
(which may be non-deterministic) is given as a relation that relates values for some of the data
inputs, the current state, values for some of the control and data outputs, and a new state. Let
us note D the union of all data types. We note ⊥ ∈ D an element that will be used whenever
we refer to an undefined value. The partial valuations of the interface ports are represented by
partial functions to D. We note f ∈ X ; D a partial function f , and dom(f) ⊆ X its domain.

Definition 1 (Components) A 42 component is a tuple: C = (Σ,Σinit, IC,OC, ID,OD,B)
where Σ is the set of internal states, Σinit ⊆ Σ is the set of initial states, (one initial value is
chosen when the component is instantiated) and IC, OC, ID, OD are the sets of names for
the control inputs, control outputs, data inputs, data outputs, respectively. B is the behavior of
the component, it is a total function B : IC −→ R where R ∈ R is a relation: R ⊆ (Σ× (ID ;

D)× (OD ; D)× (OC ; D)× Σ).

5.1.1.2 The Architecture

Components are assembled to form a system which may have global input and output, control
and data ports. The architecture description language used to describe a system has a data
flow style. A wire may relate an output data port of a component to the input data port of
another (potentially the same), a global input data port to the input data port of a component,
and an output data port of a component to a global output data port of the system. Wires do
not mean a priori any synchronization, nor memorization, they describe how data flows from
one data port to another.

Definition 2 (Architectures) An architecture for combining a set of components {Ci =
(Σi,Σinit

i , ICi, OCi, IDi, ODi,Bi)}I is a tuple A = (ICg, OCg, IDg, ODg, L) where the first two
fields describe the control ports of the assembly, the two successive fields describe the data ports
of the assembly, and L is the set of directed links between the data ports of the components,
or between the data ports of the assembly and the internal ones: L ⊆ (

⋃
I ODi) × (

⋃
I IDi) ∪

IDg × (
⋃
I IDi) ∪ (

⋃
I ODi) × ODg. Note that (x, y) ∈ L ∧ (x, z) ∈ L =⇒ y = z because links

are point-to-point. Similarly (y, x) ∈ L ∧ (z, x) ∈ L =⇒ y = z. The input and output control
ports are implicitly linked to the controller.

92/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 5. Formal Definition of 42

5.1.2 Controllers

A system made of components connected by wires has no semantics. The behavior of the
system is defined by a controller to which are connected (implicitly) the control ports of the
components. The controller activates the components, reads their control outputs and decides
what happens on the wires.

Let us consider a set of components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I , and an archi-

tecture A = (ICg, OCg, IDg, ODg, L), defining a new component Cg.

The controller has some internal memory in the set ΣC that can be used across the various
activations of Cg (on the examples of Chapter 4, this corresponds to a control point in the
program, and to the controller variables which are not attached to the links). It also has some
internal memory associated with the wires ΣL : L −→ M that is reinitialized for each new
activation. M is the union of the FIFO types.

The controller associates with each global control input icg ∈ ICg a program that activates the
subcomponents through their control inputs, stores their data outputs into ΣL, and gives them
data inputs taken in ΣL. These programs may be non-deterministic, and they have a final state.
The controller may store the control outputs in its state ΣC , and all its actions depend on ΣC .

Definition 3 (controller) For {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I a set of components,

and an architecture A = (ICg, OCg, IDg, ODg, L) for combining them; a controller is a tu-
ple (ΣC ,Σinit

C ⊆ ΣC ,Σ
final
C ⊆ ΣC , ICg −→ Progs, S). A program in Progs is a tuple (µS , F)

where µS = (ms1, ...,msn) ∈ (Tput ∪ Tget ∪ Tact)
n is a sequence or micro-steps, such that

Tput ⊆ ΣC × L × ΣC (resp. Tget ⊆ ΣC × L × ΣC) is the set of all possible put actions (resp.
get actions) of the controller, from a state, on a link ` ∈ L; Tact ⊆ ΣC ×

⋃
I ICi×ΣC is the set

of all component activations the controller may execute, from a state. F ⊆ Σfinal
c × (OCg ; D)

associates final states of the controller with partial valuations for the global control outputs.
S ⊆ ΣC × (

⋃
I OCi ; D) × ΣC defines how the controller stores partial valuations of control

outputs of the components into its state.

5.1.3 Combining Components

Combining components means considering a finite sequence of subcomponents activations and
memory storage on the internal links (micro-steps), as a macro-step corresponding to a global
activation. In order to describe how this is done, we will first describe the micro-steps and how
they can be combined into sequences. Then we will define which of these micro-step sequences
are the macro-steps of the new component.

In all the section below, we consider an architecture A = (ICg, OCg, IDg, ODg, L) for combining
a set of components {Ci = (Σi,Σinit

i , ICi, OCi, IDi, ODi,Bi)}I , and a controller (ΣC ,Σinit
C ⊆

ΣC ,Σfinal
C ⊆ ΣC , ICg −→ Progs, S) to define their global behavior. We also consider a particular

control input icg ∈ ICg, and its associated program (µS , F).

5.1.3.1 State of an Assembly

The state of an assembly of components is made of: the state of the controller (an element
σC of ΣC), the states of the components (an element σI of ΣI =

∏
I Σi), the states of the

links (an element σL of ΣL : L −→ M , where M is the union of all FIFO types associated
with the links), the states of the data ports and the control outputs (an element σP of ΣP :
(
⋃
I IDi ∪

⋃
I ODi ∪

⋃
I OCi ∪ IDg ∪ODg ∪OCg −→ D)). For the sake of simplicity, we assume

a unique naming of all ports. We will denote such a global state by a tuple (σC , σI , σP , σL).

Tayeb BOUHADIBA Ph.D Thesis 93/186

5.1. Components and Composing Components

Notice that we need a state of the data ports to express the fact that a component makes
some of its outputs available (resp. uses some of its data inputs), but does not copy them
onto the links (resp. from the links). The put and get operations of the FIFOs associated
with the links do the job. The method put will be represented in the semantics by a function
put : M × D −→ M where the assigned value is explicit and put(m, v) is the new value of
m after the action m.put(v). Similarly, the method get will be represented by a function
get : M −→ D ×M .

5.1.3.2 Micro-steps

For a given icg, the micro-steps that correspond to what the controller does with the components
and the links are described by the following three rules.

The rule [put] expresses that, if from its state σC , the controller puts a value on a link ` between
ports P1 and P2, then the global state evolves with a change in σC and σL only: the link `
receives a new value computed by put with the value of its producer port P1.

(σC , ` = (P1, P2), σ′C) ∈ Tput
(σC , σI , σP , σL) −→ (σ′C , σI , σP , σL[put(σL(`), σP (P1)) / `])

[put]

The rule [get] expresses that, if from its state σC , the controller gets the value of link ` between
ports P1 and P2, then the global state evolves with a change in σC , σP and σL: the consumer
port P2 of link ` receives the value taken from the link.

(σC , ` = (P1, P2), σ′C) ∈ Tget, (d,m
′) = get(σL(`))

(σC , σI , σP , σL) −→ (σ′C , σI , σP [d/P2], σL[m′/`])
[get]

The rule [act] expresses that, if from its state σC , the controller activates the component Cγ =
(Σγ ,Σinit

γ , ICγ , OCγ , IDγ , ODγ ,Bγ) through its control input icγ , then the first three fields of
the global state evolve. The state of the controller is modified because it stores the control
outputs of the component that is activated; the state of the component that is activated is
modified; the state of the ports is modified, because some of the output ports of the activated
component take new values, and its input ports are reinitialized.

(σC , icγ , σ′C) ∈ Tact,
∃vod, voc, vid, σ′γ such that (σγ , vid, vod, voc, σ′γ) ∈ Bγ(icγ)

and ∀x ∈ dom(vid). vid(x) = σP (x)
(σ′c, voc, σ

′′
C) ∈ S

σ′P = σP [vod(x)/x][voc(y)/y][⊥/z],∀x ∈ dom(vod), ∀y ∈ dom(voc), ∀z ∈ IDγ

(σC , σI = (σ1, σ2, ...σγ , ..., σn), σP , σL) −→ (σ′′C , σ
′
I = (σ1, σ2, ...σ

′
γ , ..., σn), σ′P , σL)

[act]

The transitions in Bγ(icγ) that can be taken are those whose input valuation vid : IDγ ; D
corresponds to what’s available in the ports. σ′′C is the modification of σ′C by storing the
values of oc; in σ′P the input ports of the component Cγ are reinitialized; the output ports in
dom(voc) ∪ dom(vod) are modified according to the valuations vod and voc of the transition,
these are the ports on which the component writes during the transition.

5.1.3.3 Macro-steps

The global component is of the form Cg = (Σg,Σinit
g , ICg, OCg, IDg, ODg,Bg). Σg = ΣC×ΣI×

ΣP , where ΣI represents the states of the controller, ΣI the states of the components, and ΣP

the state of the ports. Notice that the state of the links does not appear here, because the links’
values are not persistent across global activations.

94/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 5. Formal Definition of 42

The initial configuration Σinit
g = Σinit

C ×
∏
I Σinit

I × σinit
P is made of the initial state of the

controller, the initial states of the components, and some initial state for the ports, that we
may leave undefined. Indeed, the initial state is irrelevant because, if the controller is correct1,
then a port is never read before being written to. Hence ∀p.σinit

P (p) = ⊥.

The behavior Bg(icg) of the composed component for the particular control input icg we’ve been
considering so far is a relation R ⊆ (Σg × (IDg ; D)× (ODg ; D)× (OCg ; D)× Σg).

The rule [mac] shows that the tuples of this relation R are deduced from the program of the
controller (µS , F) associated with the global control input icg. The sequences of micro-steps
µS = (ms0,ms1, ...,msn) ends in a final state of the controller. A macro-step only remembers
the initial state and the final state of this sequence, the valuations of the data inputs and
outputs are deduced from the state of the global ports, and the valuation of the control outputs
is given by the values associated with the final state σnC of the controller, via the function F of
the program associated with icg.

The states of links are not persistent across the activations of the composed component. It
means that each macro-step starts with the initial value of the links ∀l ∈ L.σ0

L(l) = m where m
is the new value of m after m.init (see section 5.1.2).

(σ0
C , σ

0
I , σ

0
P , σ

0
L) ms0−−→ (σ1

C , σ
1
I , σ

1
P , σ

1
L) ms1−−→ ...

msn−−−→ (σnC , σ
n
I , σ

n
P , σ

n
L)

and σnC ∈ Σfinal
c and (σnC , vocg) ∈ F

((σ0
C , σ

0
I , σ

0
P), σ0

P (IDg), σnP (ODg), vocg, (σnC , σ
n
I , σ

n
P)) ∈ Bg(icg)

[mac]

5.2 42 Control Contracts

5.2.1 Original Form of Control Contracts

The contracts used to describe components in the examples of Section 4.2 are finite-state au-
tomata, whose transitions are labeled with various elements, including conditional data depen-
dencies. The variables denoted by Greek letters, used to refer to the values of control outputs,
may be used in conditions later on in the contract. The set of such variables is noted V.

Definition 4 (Contracts) For a component C = (Σ,Σinit, IC,OC, ID,OD,B), the contract
is an automaton P = (S, Sinit ⊆ S,V, IC,OC, ID,OD, T ⊆ S × LAB × S). LAB is the set of
transition labels. A label is a tuple of the form (c, ci, ic, aoc, co, ev) where:

• c is a condition on the variables of V, it tells if the transition is possible.
• ci describes the conditional inputs required by the component before the activation.
• ic is a single control input in IC. It should be used to activate the component.
• aoc describes the control outputs provided by the component after the activation, and the

way their values are referred to by the variables in V.
• co describes the conditional outputs provided by the component after the activation.
• ev describes the explicit values associated with some of the ports

5.2.1.1 Labels Definition

In the sequel, we describe the elements associated with a label of a transition. We define each
of them over a label instance (c, ci, ic, aoc, co, ev) and illustrate their relation with the concrete
syntax we have been considering so far through the various examples. We take the following
label as an example:

1The correctness of a controller is defined in section 5.3.2

Tayeb BOUHADIBA Ph.D Thesis 95/186

5.2. 42 Control Contracts

[α = a]{id1; if (β = b) then id2}ic1/α = oc1{od1; od2 = true}

The rule [C] describes the set of activation conditions that may be associated with a transition.
An element c ∈ C is a Boolean function on the values of the variables in V. For σv ∈ V −→ D,
a valuation of the variables in V, if c(σv) = true, the transition is possible, otherwise, it is
not possible. In the label example, c({α 7→ a, β 7→ c}) = true, which means that under the
configuration where α = a and β = c the transition is possible.

C = (V −→ D) −→ B [C]

The rule [CI] describes the set of functions for declaring the conditional inputs. For σv ∈ V −→
D a valuation of the variables in V, ci(σv)(id) tells whether the input id is required or not.
In our example, ci({α 7→ a, β 7→ c})(id2) = false, which means that under the configuration
where α = a and β = c the input id2 is not required for the activation of the component with
ic1.

CI = (V −→ D) −→ ID −→ B [CI]

The rule [AOC] describes the set of possible tuples to declare the control outputs provided by
the component and the way their values are referred to by the variables in V. For a given
aoc ⊂ AOC associated with a transition, (α, oc) ∈ aoc means that the control output oc is
produced by the component, and its value is referred to by the variable α. In our example
aoc = {(α, oc1)}.

AOC = {(α, oc)|α ∈ V, oc ∈ OC} [AOC]

The rule [CO] describes the set of functions to declare the conditional outputs for a transition.
For σv ∈ V −→ D a valuation of the variables in V, co(σv)(od) tells whether the output od is
produced after the activation or not. In our example, there is no condition associated with the
outputs od1 and od2, they are produced whatever the valuation of the variables in V.

CO = (V −→ D) −→ OD −→ B [CO]

The rule [EV] describes the set of possible partial functions to declare the explicit values asso-
ciated with the input/output ports of the component. Given a particular function ev ∈ EV ,
ev(p) = v means that the port p is associated with the value v. If p is an input data port, the
component requires the value v on its input p. If p is an output data (resp., control) port, the
transition guarantees that the component will produce the value v on the output data (resp.,
control) port p. In our example, ev = {od2 7→ true}.

EV = {(ID ∪OD ∪OC) ; D} [EV]

5.2.2 Expanded Form of Control Contracts

Using the variables in V, is a convenient way to write contracts, but if the types of the output
control variables are finite, this does not add to the expressiveness of the contract language.

The contract may be expanded in order to make the variables in V disappear. The new contract
is also an automaton where the valuations of V are added to the states of the contract. Also,
we add the explicit values associated with the ports of the component.

A state of the new contract is an element of SV = S × (V −→ D)× ((ID ∪ OD ∪ OC) ; D).
For short, a state will be noted sv = (s, σv, ev), where s is a state from the original contract,

96/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 5. Formal Definition of 42

σv is a valuation of the variables in V, and ev is the function used to declare the explicit values
associated with the port of the component.

The expanded contract is PV = (SV, SV init ⊆ SV, IC,OC, ID,OD, TV ⊆ SV × LAB’ × SV),
but now the labels in LAB′ are of the simpler form (req, ic, ocs, prod) where req ∈ 2ID, ic ∈ IC,
ocs ∈ 2OC , prod ∈ 2OD are, respectively, the set of required inputs, the unique input control
port, the set of control outputs produced, and the set of data outputs produced.

Definition 5 (Expansion) The rule [EX] describes the expansion of a general contract p into
a simpler contract p′. It gives the transitions of p′ in terms of the transitions of p.

For a given transition t in the original contract for which the global condition evaluates to true
(i.e., c(σv) = true), the set req (resp., prod) contains the set of the required inputs (resp.,
produced outputs), i.e., those for which the condition function (ci(σv)) (resp., (co(σv))) returns
true.

The set ocs contains the set of control outputs that were produced. σ′v is the new valuation of
the variables in V; notice that it generates one transition per value in the type of each control
output. To each target state of the generated transitions is associated the function ev of the
original transition.

The initial states are defined by: SV init = Sinit×{{v 7→ ⊥|v ∈ V}}×{{}}. Each initial state is
composed of an initial state of the original contract, a valuation that maps an undefined value
(i.e., ⊥) to each variable in V, and an empty valuation function of the ports.

t = (s, (c, ci, ic, co, aoc, ev), s′) ∈ T, c(σv) = true,
req = {id | ci(σv)(id)}, prod = {od | co(σv)(od)}, ocs = {oc | (αx, oc) ∈ aoc}
σ′v = σv[d1/α1, ...dn/αn] where aoc = {(αk, ock)}k=1..n, and dk ∈ type of(ock)

((s, σv, ev′), (req, ic, ocs, prod), (s′, σ′v, ev)) ∈ TV
[EX]

Example Figure 5.1 illustrates the effect of expanding one transition of an original contract
(a) when σv = {α 7→ a, β 7→ c}, and the type of oc1 control output is {a, b}. The expansion
generates two transitions in the expanded contract (b) because the variable α is associated
with the control output oc1 which takes its value in {a, b}. The variable β keeps the same
value because it is not associated with a control output in this transition. The control input
id2 does not appear in the generated transitions because under the configuration described by
σv, id2 is not required. To each of the target state of the transitions is associated the function
ev = {od2 7→ true}, because we know that after this activation, this output will take the value
true.

5.2.3 The Master/Slave Relation

We introduced, informally, the master/slave relation in Section 3.4.2.2. In some sense, this
relation implies the activation of two components in one atomic macro-step. This relation
cannot be part of the contract of a component, because it involves two distinct components.
The master/slave relation is defined over a set of assembled components.

Definition 6 (master/slave) Given a system defined as an assembly of a set of components
{Ci = (Σi,Σinit

i , ICi, OCi, IDi, ODi,Bi)}I , the master/slave relation is defined by the function
arch : init→ tar where:

• init ⊆
⋃
I Ci×

⋃
I OCi is the subset of initiator components, and their corresponding con-

trol outputs. These components are those requesting the activation of another component.

Tayeb BOUHADIBA Ph.D Thesis 97/186

5.3. Formal Definition of Consistency

od2 7→ true

α 7→ a
β 7→ c

s1

od2 7→ true

α 7→ b
β 7→ c

s1

...

α 7→ a
β 7→ c

s0

{id1}ic1/oc1{od1; od2}

{id1}ic1/oc1{od1; od2}

[α = a]{id1; if (β = b) then id2}ic1/α = oc1{od1; od2 = true}

s1s0
(a)

(b)

Fig. 5.1: The original (a) and expanded (b) form of a transition when the type of oc1 is {a, b}

• tar ⊆
⋃
I Ci ×

⋃
I ICi is the subset of target components, and their corresponding control

inputs. These components are those activated in response to an initiator request.

5.3 Formal Definition of Consistency

In the sequel, we define the consistency relation between a component and its contract in
Section 5.3.1, and the consistency of the controller with the contract of the components in
Section 5.3.2. We assume the controller is consistent with the contract when defining the
consistency of the component and vis-versa.

5.3.1 Contracts Vs Basic Components

Given a component C = (Σ,Σinit, IC,OC, ID,OD,B), and the expanded form of its contract
PV = (SV, SV init ⊆ SV, IC,OC, ID,OD, TV ⊆ SV × LAB’ × SV), we can see the compo-
nent and its contract as two transition systems, each one having its set of states (Σ and SV
respectively) and a transition relation (B and TV respectively).

A contract is an abstraction of the behavior of a component. A state of the contract corresponds
to some states of the component, and each transition in the contract describes the behavior of
the component during an activation. That is, what the inputs (resp., outputs) used (resp.,
produced) by the component are, and possibly their values.

The consistency between a component and its contract is defined by means of a simulation
relation (see the rule [SC] below). The alphabets of the two transition systems are disjoint: a
set of labels for the contract, and a set of behaviors for a component. Hence, to define the usual
simulation relation, we need to define a relation between a label of a contract and a behavior
of a component, first. This relation is described by the rule [AC].

Activation Consistency The rule [AC] describes the relation AC ⊆ B×LAB′. The behavior
associated with an activation b ∈ B(ic) is consistent with the label l = (req, ic, ocs, prod), if the
activation of the component with ic:

• uses not more than the inputs declared in the label (dom(vid) ⊆ req), produces at least the
data and control outputs as declared in the label (prod ⊆ dom(vod) and ocs ⊆ dom(voc)

98/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 5. Formal Definition of 42

respectively).
• associates the same explicit values with the data and control ports as described by the

function ev′

l = (req, ic, ocs, prod). ((s, σv, ev), l, (s′, σ′v, ev
′)) ∈ TV

b = (σ, vid, vod, voc, σ′). b ∈ B(ic)
dom(vid) ⊆ req, prod ⊆ dom(vod), ocs ⊆ dom(voc)

∀id ∈ (ID ∩ dom(ev′))vid(id) = ev′(id)
∀od ∈ (OD ∩ dom(ev′))vod(od) = ev′(od)
∀oc ∈ (OC ∩ dom(ev′))voc(oc) = ev′(oc)

(b, l) ∈ AC
[AC]

The Simulation Relation The rule [SC] says that a state s of the contract simulates a
state σ of the component if and only if for all behaviors b corresponding to an activation of the
component with a control input ic, there exists a transition labeled with l in the contract, which
is consistent with the behavior of the component (i.e., (b, l) ∈ AC), and leads the contract to a
state s′ that simulates the new state of the component after the activation (i.e., (s′, σ′) ∈ SC).

∀(s, σ) ∈ S × Σ ∃l ∈ LAB′. l = (c, ci, ic, aoc, co, ev),

∀(ic, b) ∈ B. b = (σ, vid, vod, voc, σ′) =⇒ (b, l) ∈ AC, s
l→ s′

(s, σ) ∈ SC (s′, σ′) ∈ SC
[SC]

Definition 7 (Consistency of a Component with its Contract)
The rule [CC] describes the consistency relation between a component and its contract. It says
that a component C = (Σ,Σinit, IC,OC, ID,OD,B) is consistent with its contract
PV = (SV, SV init ⊆ SV, IC,OC, ID,OD, TV ⊆ SV × LAB’ × SV) if and only if each ini-
tial state of the component is simulated by an initial state of its contract.

∀σ ∈ Σinit, ∃s ∈ SV init. (s, σ) ∈ SC [CC]

5.3.2 Contracts Vs Controllers

In the sequel, we consider:

• A set of components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I

• The set {PVi = (SVi, SV init
i ⊆ SVi, ICi, OCi, IDi, ODi, TVi ⊆ SVi × LAB’i × SVi)}I of

their expanded contracts.
• An architecture A = (ICg, OCg, IDg, ODg, L)
• A controller (ΣC ,Σinit

C ⊆ ΣC ,Σfinal
c ⊆ ΣC , ICg −→ Progs, F, S)

The consistency of the controller expresses that, given the way the components are assem-
bled with the architecture, and given their contracts, the controller is correct, i.e., it uses the
components according to their contracts.

Since the controller activity (e.g., ctrl of Figure 5.2) happens only in response to the activations
of the global component (e.g., main of Figure 5.2), the consistency relation requires that the
controller respects the contract PVi (e.g., Figure 5.3) of each component Ci (e.g., the component
b) for all sequences of global activations allowed by the contract of the global component. In the
sequel, we assume that the global component is activated correctly according to its contract.

We can check the consistency of the controller with respect to each component contract sep-
arately. We note Tacti ⊆ (ΣC × ICi × ΣC) the set of activations of the component Ci;

Tayeb BOUHADIBA Ph.D Thesis 99/186

5.3. Formal Definition of Consistency

Tgeti ⊆ (ΣC × Li × ΣC) (where Li = {(a, b) ∈ L.b ∈ IDi}), the set of get operations on
the wires connected to one of the input ports of Ci.

For a sequence of global activations ΩS , the controller outputs a sequence of ordered micro-steps
µS = (ms0, ...,msn) ∈ (Tact ∪ Tput ∪ Tget)n. In order to capture only the activations of Ci in
the sequence of micro-steps µS , we denote µS/Tacti = (ms0, ...,msk) ∈ (Tacti)

k where k ≤ n the
sequence obtained from µS by removing all the micro-steps but the activations of the component
Ci. Similarly, µS/(Tacti ∪ Tgeti) captures its activations and data input assignments.

a
b

ctrl main

i o

f
e

ic1 ic2

{i}ic1{o}

s0 s1

{}ic2{}

Fig. 5.2: An assembly of components Fig. 5.3: A contract for the component b

The definition of the consistency relation can be split into two sub-properties, that should be
both true:

First, each contract PVi can be seen as a recognizer of the language of correct activation
sequences of Ci; we can just erase anything in the labels of PVi but the control inputs, and
we get a language recognizer in the form of a non-deterministic finite automaton Ai = (SAi =
SVi, SA

init
i = SV init

i , SAfi = SAi, ICi, TAi ⊆ SAi × ICi × SAi), on which all states have to
be considered as accepting states. The rule [rec1] defines the transitions set of Ai. Figure 5.4
illustrates the automata associated with the contract of the component b. The words to be
tested are obtained by keeping only the activations of Ci (i.e., µS/Tacti). For each possible ΩS ,
the corresponding µS/Tacti has to be accepted by Ai, for all Ci (i.e., µS/Tacti ∈ L(Ai)).

(s, (req, ic, ocs, prod), s′) ∈ TVi
(s, ic, s′) ∈ TAi

[rec1]

Second, for each activation of a component, the controller should provide the required inputs.
The operation get on the FIFO associated with the wire connected to an input port is considered
as an assignment to this port. In the same sense of Ai we construct an automaton Di = (SDi =
SVi×Av, SDinit

i = SV init
i ×{(IDi → false)}, SDf

i = SDi, IDi, ICi, TDi ⊆ SDi× ICi ∪ IDi×
SDi). The states of Di are associated with a total function in the set Av ⊆ (IDi → B). It
defines whether an input has been assigned a new value or not (i.e., if it is available). The
initial states are associated with the function returning false because no input is supposed to
be available. The set of transitions TDi is constructed following the rules [rec2] and [rec3].

(s, (req, ic, ocs, prod), s′) ∈ TVi
∀id ∈ req, av(id) = true
∀id ∈ req, av′ = av[id/false]

((s, av), ic, (s′, av′)) ∈ TDi
[rec2]

(s, av) ∈ SDi

∃id ∈ IDi, av
′ = av[id/true]

((s, av), id, (s, av′) ∈ TDi
[rec3]

Figure 5.5 illustrates such an automaton for b. The rule [rec2], tells that the activation of
the component is only possible in the states where all the required data inputs are available.
After the activation, the required inputs are no longer available. The rule [rec3], defines the

100/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 5. Formal Definition of 42

s1

ic2

ic1

s0

i ic1 i
i

s0 s0 s1
i7→t i7→f

ic2

i7→f

Fig. 5.4: Activations recognizer for b Fig. 5.5: Data dependencies for b

transitions corresponding to the data input assignments. When id (i in Figure 5.5) is assigned
a new value, we move to a state where av′(id) = true.

The controller respects the data dependencies of the component Ci, if it provides the component
with the required input before it activates it. In other words, the controller is consistent with the
contract if the sequence µS/(Tacti ∪ Tgeti) is recognized by Di. Notice that µS/(Tacti ∪ Tgeti) ∈
L(Di) =⇒ µS/Tacti ∈ L(Ai). We introduced Ai to a better understanding of the concept.

Tayeb BOUHADIBA Ph.D Thesis 101/186

5.3. Formal Definition of Consistency

102/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6

Exploiting 42 Control Contracts

Introduction (En) The control contracts we adopted for 42 are basically used for
the specification of components in order to use them correctly. This chapter presents
some interesting uses of the contracts. A 42 control contract relates a component
to the controller activating it; the consistency issues between controllers/compo-
nents and the contracts are presented at first. At a second place, we show how
controllers may be deduced from the contracts. We present static code generation
for 42 controllers describing the synchronous MoCC, and contract interpreters for
the asynchronous MoCC.

Contents

6.1 Contracts and Consistency Checking 103
6.1.1 Checking Component Implementation 104
6.1.2 Checking Controller Micro-steps . 105

6.2 Deducing the Controller from the Contracts 105
6.2.1 Static Code Generation for Synchronous Controllers 106
6.2.2 Asynchronous Simulation Controllers as Contracts Interpreters 107

Introduction (Fr) Les contrats de contrôle que nous avons adopté pour le modèle
42 sont essentiellement dédiés à la spécification des composants afin de les utiliser
correctement. Dans ce chapitre, nous introduisons d’autres usages intéressants de
ces contrats. Dans un premier temps, nous montrons l’utilité des contrats pour
observer différentes notions de compatibilité entre les composants/contrôleurs et les
contrats. Ensuite, nous montrerons comment les contrats peuvent être utilisés pour
déduire le code d’un contrôleur : nous donnons une exemple de génération de code
de contrôleur pour des assemblages synchrones décrits en 42, ainsi que la technique
d’interprétation de contrats pour déduire des contrôleurs pour le MoCC asynchrone.

6.1 Contracts and Consistency Checking

In design by contracts (see Section 2.3.3), a contract holds between two or more entities of a
system. The point of view of design by contracts community is to avoid defensive programming
to check the integrity of a contract. Instead, checking the contract should be a feature of the
design framework. This helps separate the implementation from its specification.

103

6.1. Contracts and Consistency Checking

d

c
c0 c1

{}ic2/oc{c; d}

{a}ic1/oc{}ic1 ic2

c

occ.oc:{ok, ko}

a

Fig. 6.1: A component and its contract

In the case of 42, the contract holds between a component and the controller activating the
component. The consistency properties we are interested in was introduced informally in Sec-
tion 3.3; Section 5.3 deals with their formalization. We require that:

• The component must be a good implementation of the contract associated with it.
• The controller must activate the component respecting the constraints expressed by its

contract.

In the sequel we illustrate over the example of Figure 6.1, how do we check the consistency of
the components/controllers with the contracts. Notice that we consider the expanded form of
control contracts as described in Section 5.2.2. We assume the controller to be consistent with
the contract when checking the component implementation and vice-versa.

Figure 6.1 is an example component and its contract. The interface of the component exposes
two input control ports to activate it (ic1, ic2), one input and two output data ports (a and
c, d) respectively, and one output control port oc which takes its values in {ok, ko}. The
behavior of the component as described by the contract is as follows: first, the component
should be activated with ic1, this activation requires a value on the input a and produces the
value of the control output oc. Second, it should be activated with ic2 which requires no inputs
and provides outputs on c and d data ports.

6.1.1 Checking Component Implementation

The consistency of a component with its contract may be checked dynamically, considering
the contract as a monitor evolving in parallel with the component. The consistency checking
consists in the verification that: for each activation, the behavior of the component corresponds
to what is expected by the contract. That is to say, the component should not use an input
that is not declared as required in the corresponding transition, and should produce the values
of the data and control outputs of the component as described by the contract.

To check the consistency, we need to know whether the component accessed a port of its interface
or not. A way to do it, dynamically, is to allow port access using accessors only (Figure 6.2).
Each port is equipped with a Boolean value which indicates whether the port has been accessed
or not. Before the activation, the Boolean value of each port is initialized to false through init().
After the activation with the control input ic, we collect all the used (resp., produced) input
(resp., output) data ports in the set DataicU (resp., DataicP). Also the control ports are collected
in the set ControlicP . We compare these sets with the set of required data inputs, provided data
outputs and the provided control outputs corresponding to the transition that has been taken.

In the example illustrated above, we check that: Dataic1U ⊆ {a}, {c, d} ⊆ Dataic1P , {oc} ⊆
Controlic2P . That is, to check that: when activated with ic1, the component didn’t use more
than the input a; and produced at least the outputs c, d; its activation with ic2 should produce
at least the value of the control output oc. If one of these inclusion tests fails, the component
is not consistent with its contract.

Our contracts are not limited to express the input output data dependencies. The transitions

104/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

class InputPort<Type>{
Type value ;
bool used ;
i n i t (){ used=fa l se ;}

Type read (){
used = true ;
return value ;

}
}

class OutputPort<Type>{
Type value ;
bool produced ;
i n i t (){ produced=fa l se ;}

wr i t e (Type va l){
produced=true ;
va lue=va l ;

}
}

Fig. 6.2: Accessors to port values

may be decorated to expose the values expected on the output ports. Following the same
reasoning, this example may be extended to check if the component puts the right value on an
output port as described by the contract.

6.1.2 Checking Controller Micro-steps

The consistency relation that should hold between the controller and the contracts of the com-
ponents was addressed formally in Section 5.3.2. We showed that the consistency checking may
be performed locally to a component. The only thing we need to know is if the controller acti-
vates the component respecting the control sequences described by the contract; and for each
activation, if the component is provided with its required inputs. The formal description led
us to the definition of a recognizer of micro-steps sequences. The automaton describes how the
component should be activated, and how it should be provided with the required inputs.

c1

a.get

c0 c0
a→f a→t a→f

c.ic2

a→t

a.get

c.ic2

c1

a.getc.ic1a.get

Fig. 6.3: A recognizer of the correct micro-steps for the component in Figure 6.1

Figure 6.3 illustrates a recognizer of the correct micro-steps sequences extracted from the con-
tract of Figure 6.1. We recall that each state is associated with a function that tells whether
the input a is provided to the component or not. a.get micro-step makes the input available,
c.ic1 indicates that the input has been used.

To check the consistency of the controller with the contracts of the components. We extract the
recognizers from their respective contracts (their alphabet is disjoint). The recognizers are the
basis of monitors that are instantiated with each component. The micro-steps corresponding
to the component c makes its recognizer evolve. If the micro-step does not match a transition
in the recognizer, the controller is not consistent with the contract of c.

6.2 Deducing the Controller from the Contracts

So far, we presented several modeling examples with 42. The controllers associated with the
assemblies were written in an imperative style language. Instead of writing the controllers and

Tayeb BOUHADIBA Ph.D Thesis 105/186

6.2. Deducing the Controller from the Contracts

checking their consistency with the contracts later (see Section 6.1.2), we propose in this section
to generate them automatically. Automatic generation of the controllers depends on the MoCC
and relies on the information provided by the contracts and the architecture of the assembly.
It guarantees the controllers to be consistent with the contracts.

In Section 6.2.1 we describe static code generation which yield a controller written in an imper-
ative style language similar to what we have presented so far. Section 6.2.2 describes contract
interpreters where the controller micro-steps are generated at runtime. The distinction between
the two approaches is what would distinguish static scheduling of activities from their dynamic
scheduling.

6.2.1 Static Code Generation for Synchronous Controllers

This section describes how contracts may help in generating the code of a controller for the
synchronous MoCC. For such a MoCC, we know that each global geto (resp., go) consists of
a sequence of activations of the components with geto (resp., go). The architecture and the
contracts describe the data dependencies.

Generating the code of the controller consists in the computation of a partial order of the
controller micro-steps. First, the partial order is used to detect the presence of cyclic data
dependencies. Second, if there is no cycles, a total order is extracted from the partial order.

6.2.1.1 Computing the Partial Order of the Controller Micro-Steps

Let us consider a set of synchronous components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I and

an architecture A = (ICg, OCg, IDg, ODg, L) for combining them. We note Pc = (Sc, Sinit
c ⊆

Sc,Vc, ICc, OCc, IDc, ODc, Tc ⊆ Sc×LABc×Sc) the contract of the component c. A transition
of a contract is noted t = (s, (req, ic, ocs, prod), s′). We note t ∈ Tc a transition in the contract
of the component c.

Below, the rules [ARCH] and [CONT] describe how the partial order of the micro steps is
computed for a global activation with geto.

The rule [ARCH] relies on the architecture of the assembly. It tells that a put operation on a
wire l always precedes the operation get on the same wire. The precedence is noted l.put ≺ l.get

The rule [CONT] relies on the information about the data dependencies of the outputs. It says
that for a given transition of the contract associated with the computation of some outputs
of the component c (i.e., getox), the operation get on a wire connected to a required input
(i.e., li) precedes the activation of the component (i.e., c.getox), which in turn precedes the
operation put on the wires connected to the provided outputs (i.e., lo).

l = (p1, p2) ∈ L
l.put ≺ l.get

[ARCH]

t = (s, (req, getox, ocs, prod), s′) ∈ Tc
∀li = (p, id) ∈ L.id ∈ req
∀lo = (od, p) ∈ L.od ∈ prod

li.get ≺ c.getox
c.getox ≺ lo.put

[CONT]

6.2.1.2 Complete Vs Partial Computation of the Outputs

From the partial order of micro-steps, one computes a total order consistent with it using
topological sorting algorithms. Such a complete order corresponds to the code associated with
a global control input (implemented by the controller). However, it does not allow for partial
computation of the outputs.

106/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

For partial computation of the outputs, we extract a partially ordered set from the initial set
for each output. The extracted set for the computation of a given output ox consists of a chain
that contains l.get as a minimal element, where the micro-step l.get defines the value of the
output ox. The maximal elements of that chain correspond to activations of pre components,
or to micro-steps of the form d.put; these micro-steps corresponds to reading from global data
inputs (the dependencies of the output ox). Then, we compute a complete order on each chain.
Each complete order is associated with a particular geto of the controller.

6.2.2 Asynchronous Simulation Controllers as Contracts Interpreters

This section deals with the deduction of the code of a controller for an asynchronous MoCC.
Contrary to the static code generation described previously in Section 6.2.1, the micro-steps
associated with each macro-step are computed on the fly.

Figure 6.4 recalls the architecture of a simple producer/consumer system. This example is
described in Section 4.2.3; there, we associated controllers written in an imperative-style. We
commented on the difficulty of writing controllers with fine grained simulation steps.

The controllers we describe in this section are based on contract interpretation. They allow
for the simulation of the system at a granularity defined by the transitions of the contract
of each component. We first describe how the system may be simulated by interpreting its
contract alone, then we comment on the simulation of contracts plus the implementation in
Section 6.2.2.3.

controller1

prod

fifo

op

op

op

report reqr

dr
gr

dw

gw

reqw

opG

cons

Ports Types :
dr, dw : int gw, rr : {t, f} (true, false)
fifo.report : {ok, ko} reqr, reqw : {t}

Fig. 6.4: The producer/consumer example in 42

6.2.2.1 Contract Interpretation Principle

In 42 simulation models like the one of Figure 6.4, the atomicity is expressed by the op control
input. Each activation of the component with the input op makes it execute a (potentially long
but terminating) piece of its behavior.

In a 42 model made of two components C1 and C2, we can consider each of the components to
be an automaton, whose transitions are labeled by op. The simulation produces the paths of
the asynchronous product of these two automata (see Section 2.1.2).

Instead of modeling the behavior of components with general automata, we consider their
contracts. The contracts define an abstract view of the behavior of the components. They
contain all the information needed to understand the explicit synchronizations between the

Tayeb BOUHADIBA Ph.D Thesis 107/186

6.2. Deducing the Controller from the Contracts

p1

p3

p0
{}op{reqw}

{}op{dw} {gw=t}op{}

{gw=f}op{}

c1

{}op{reqr}

{gr=f}op{}
{gr=t; dr}op{}

c0

Fig. 6.5: Contract of the producer Fig. 6.6: Contract of the consumer

f2 f1

f3

{reqr}op/α=report{}{reqw}op/α=report{}

[α=ko]{}op{gw=f}

{dw}op{}[α=ok]{}op{gw=t}

{}op{IF(α=ok)THEN{gr=t; dr}
ELSE{gr=f}}

f0

Fig. 6.7: Contract of the FIFO

p1,f0,c1
Available = {reqr, reqw}

α = null

p0,f0,c1
Available = {reqr}

α = null

p0,f0,c0
Available = {}

α = null

p1,f0,c0
Available = {reqw}

α = null

p1,f2,c0
Available = {}

α = ko

p1,f2,c0
Available = {}

α = ok

FIFO FIFOCONSPROD

CONS PROD

Fig. 6.8: Interleaving component activations

components.

The simulation MoCC — and the corresponding 42 controller — can be obtained automatically
by interpreting contracts.

Example Let us illustrate all this with the example. The contracts of the producer, the
consumer, and the FIFO, are given by Figures 6.5, 6.6 and 6.7 respectively. The types of
the ports are given in Figure 6.4. Figure 6.8 gives a small part of the graph whose paths
are explored by the non-deterministic contract interpreter. The simulation starts with all the
component contracts in their initial state. At each simulation step, the choice of the component
to consider is non-deterministic, among the components whose contract shows that at least
one transition is possible (all data required are present in the set Available). Activating a
component consists of choosing a transition in its contract, from the current state. After the
activation, the required data are removed from the set Available, the provided ones are added
to it. The control outputs are given non-deterministic values (in their finite domain).

108/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

1 Controller i n t e r p r e t e r i s {
2 CT ⊂ (

⋃
Ci ×

⋃
Ti) //Components and t h e i r t r a n s i t i o n s

3 Available ⊂
⋃
IDi // s e t o f a v a i l a b l e input data

4 CS ∈ ΠSi // Contracts s t a t e s
5 for opG do{
6 l et TR = {t | t = (s, lab, s′) ∈

⋃
Ti.s ∈ CS}

7 l et ET = ExTR
Available

8 l et (c , t) ∈ CT.t = (s, lab, s′) ∈ ET
9 f o ra l l id in reqt { id . put ; id . get ;}

10 c . i c ;
11 Available := (Available\reqt)∪(prodt)
12 CS := CS\{s} ∩ {s′}
13 }}

Fig. 6.9: Sketch of the contracts interpreter

6.2.2.2 Controller Implementation

For a set of components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I and their respective contracts

{Pi = (Si, S0
i ⊆ Si, ICi, OCi, IDi, ODi, Ti ⊆ Si × LABi × Si)}I ; Figure 6.9 is a sketch of the

interpreter controller. For the sake of simplicity, we consider contracts with simple transitions
where all the control variables do not appear. This amounts to contract expansion as defined
in Section 5.2.2 and does not affect the complexity of the controller algorithm. A transition
label in LABi will be considered as a tuple (req ∈ 2IDi , ic ∈ ICi, ocs ∈ 2OCi , prod ∈ 2ODi),
where IDi, ODi, ICi, OCi are respectively the sets of data input, data output, control input
and control output ports of the component Ci. In the sequel we adopt the notations reqt, ocst,
prodt, ict for the sets req, ocs, prod and the input control port associated with the label of a
transition t.

Computing the Set of Executable Transitions At each simulation step, TR denotes
the set of the outgoing transitions. We note ExTRAvailable, the subset of TR including only
the executable transitions when the available inputs are those in the set Available. Ex is a
function Ex : (2

S
Ti × 2

S
IDi)→ 2

S
Ti defined by the rule [EX]. The rule says that, given a set

of transitions TR, and a set of available inputs Available, a transition t from TR is executable
if and only if its required inputs reqt are included in the set Available.

TR ∈ 2
S
Ti , Available ∈ 2

S
IDi , t ∈ TR

(t ∈ ExTRAvailable) =⇒ reqt ⊆ Available
[EX]

The Interpretation Algorithm The interpreter of Figure 6.9 needs to know about the
subcomponents and their possible transitions (line 2). It maintains the set of available inputs for
each component (line 3) and the state of each contract (line 4). For each global activation (i.e.,
a simulation step), the controller computes the set TR of all outgoing transitions from the state
of the contracts CS (line 6). From the set TR it computes the set of executable transitions ET
using the function ExTRAvailable (line 7). It selects randomly one executable transition t among
the set ET (line 8). The interpreter provides the component, to which belongs the selected
transition with its required inputs (line 9) and activates it with the corresponding control input
(line 10). At the end of the macro-step, the controller removes the used inputs from the set
Available, and adds the provided ones (line 11). It also updates the state of the contracts (line
12).

Tayeb BOUHADIBA Ph.D Thesis 109/186

6.2. Deducing the Controller from the Contracts

Contracts’ Variables Are Given Non-deterministic Values Notice that the variables
used to store control outputs values do not appear in the controller because of the use of
expanded form of control contracts. The variables are now associated with the states of the
contracts (see Section 5.2.2). We recall that each transition in the original contract that may
update the value of a variable corresponds to a set of transitions with the same label, leading to
distinct states. The target states are distinguished by the values associated with the updated
variables. The random selection of transitions in the expanded contract, makes the values
assigned to variables non-deterministic.

6.2.2.3 Comments

Executing contracts allow for abstract simulation. Contracts are considered as abstract
implementation of components. Executing contracts allows for observing the behavior of
the assembly, and checking component synchronizations. This may be done early in the
design flow, before the concrete implementation is written.

The granularity of the simulation is defined by the contracts. For each global activa-
tion of the system, the controller makes one component execute one transition of its
contract.

The concrete implementation may be used when interpreting contracts. The same
controller may be used with the concrete implementation of the components. The con-
troller uses the contracts to take the decision to activate the components. The values of
the control outputs are no longer non-deterministic, they take the values that are indeed
produced by the component. In this case, the simulation exposes exactly the same behav-
ior as in the simulation model described in Section 4.2.3.4. Contract interpreters avoid
the complicated and error-prone task of writing the controllers manually.

6.2.2.4 Hierarchic Contract Interpreters

In this section we describe how composed components may be used in an asynchronous model
where the simulation is based on contract interpretation. This requires the components be
equipped with their specification. Specifying composed components may be done in two ways:

• With explicit specifications: one can try to write the control contract of a composed
component by hand, mostly inspired by the subcomponent contracts, and the architecture
of the assembly. The contract may be deduced automatically but this may yield a huge
automaton.
• Using introspection mechanism: that is to keep only the contracts of the components

at the leaves of the hierarchy, and to compute the contracts of the composed ones on
the fly during the simulation. The component should provide additional control ports
dedicated to introspection mechanism as described in Section 3.2.3. Hierarchic contract
interpreters deal with this option; these are described in the sequel.

Example Consider the system illustrated in the Figure 6.10. The component main is com-
posed of two components p and fc. For each of its subcomponents, we also describe their
internal structure. p, only encapsulates a producer component prod. fc is made of fifo and
cons components. In this example, we have two levels of hierarchy; the components prod,
fifo, cons are at the leaves of the hierarchy. These are described in the system of Figure 6.4.

To simulate the system, one may flatten the architecture, considering only the components at
the leaves, put a contract interpreter as the one described in Figure 6.9, and simulate. This
approach may be interesting in case we want to gain efficiency, but implies re-engineering the

110/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

op

fifo

cons

op

report reqr

dr
gr

op

prod

reqw

gw

gw

enqop(n)

dw

fcp

main
resp

bottom’ op

enq

bottom

top

respreport

op(n)

Fig. 6.10: The producer/consumer example in 42

system and assumes we have access to the detailed implementations of the components p and
fc.

Basic Idea The approach described in this section allows us to keep the architecture as it is
given. It splits the task of the controller interpreter of Figure 6.9 among the controllers at each
level of the hierarchy (top, bottom, and bottom’ controllers in Figure 6.10). The idea is that:

• Each controller (except top) constructs on the fly, the contract of the component encap-
sulating it. bottom (resp., bottom’) constructs the contract of fc (resp., p) depending
on the contracts of fifo and cons (resp., prod). There is a need for communication be-
tween the controllers bottom (resp., bottom’) and top. top asks the controllers bottom,
bottom’ for the possible transitions through enq (for enquire) input control port. bottom,
bottom’, respond with a set of transitions through resp output control ports.

• Each controller manages the available inputs that depend on the internal connections and
let the controller above it manage the ones depending on the global inputs. The controller
bottom manages the availability of dr, gr and reqr and let the controller top mange dw,
and reqw. The controller bottom’ does not manage any input.

• The transition to be taken is selected by the controller at the top of the hierarchy. It
corresponds to a set of activations that go in depth until reaching a component at the
leaves. For example, top selects a transition corresponding to the component fifo; it
activates fc through the parameterized op(n), the parameter corresponds to the index of
the transition to be taken (see below); then the controller bottom activates fifo and the
step is finished.

What Kind of Specification is Exchanged? The data type for the exchange between the
controllers top and bottom or bottom’ is a set of indexed transitions (n, t) ∈ (N×

⋃
i Ti) where

the index n is a unique identifier of the transition t. The controller top does not need to know
all the data dependencies of the transition, only those managed by itself are interesting (i.e.,
reqw, dw and gw). That’s why, bottom will only communicate a transition where all its local
dependencies (i.e., dr, gr and reqr) are hidden using the function Proj .

Proj :
⋃
Ti × 2P →

⋃
Ti where P is the set of all possible component ports; is a function that

constructs a new transition from an original one, hiding some port names in its label. The rule

Tayeb BOUHADIBA Ph.D Thesis 111/186

6.2. Deducing the Controller from the Contracts

[PROJ] defines it, it says that: given a contract transition t, and a set of ports names p; Projtp
is a transition where all ports names are removed except those included in the set p.

t = (s, (req, ic, ocs, prod), s′) ∈
⋃
Ti

p ∈ 2P .P =
⋃
IDi ∪ODi ∪ ICi ∪OCi

Projtp = (s, (req ∩ p, ic ∩ p, ocs ∩ p, prod ∩ p), s′)
[PROJ]

6.2.2.5 Controllers Description

In what follows we describe the controllers needed for the design of hierarchic simulation models,
where only the components at the bottom of the hierarchy are equipped with explicit contracts.
We start with the controllers that are at the bottom of the hierarchy, then the one that is at
the top. Finally, we will describe controllers that may be used at the intermediate levels, when
there are more than two levels of hierarchy.

Each controller manages a set of components {Ci = (Σi,Σinit
i , ICi, OCi, IDi, ODi,Bi)}I , assem-

bled with an architecture A = (ICg, OCg, IDg, ODg, L). For the sake of simplicity, each wire
and the ports connected to it have the same name. In the case where this does not hold, one
can perform naming substitution.

For each controller, the set G describes the set of global ports of the encapsulating component;
I defines the set of subcomponents inputs that do not depend on global inputs; NTC is the set
of indexed subcomponent transitions that are possible from their actual state.

The Controller at the Bottom is illustrated in Figure 6.11. It knows about its subcom-
ponents and their explicit contract transitions (CT), together with the actual states of the
contracts (CS). The local inputs are those described by the set I, their availability is managed
through the set Available. The global outputs are described by G. NTC is the set of index
transitions, and the component to which each transition belongs.

When the component is activated with enq, the controller computes the set NTC (line 7); each
tuple in this set is composed of a unique integer identifier n, a component c, and a possible
transition t from the actual state (s) of the corresponding contract. At line 8, it computes the
set TRI ; it is the set of transitions from NTC projected on the local inputs. TRI is used to
resolve local dependencies at line 9. Each tuple in the set ret consists of a projected transition
on the global ports ProjtG and its index; we keep only the transitions that have their local
dependencies resolved (ProjtI ∈ Ex

TRI
Available). At line 10, the controller assigns the set ret to the

control output resp.

112/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

1 Controller bottom i s {
2 CT ⊂ (

⋃
Ci ×

⋃
Ti) ;Available ⊂

⋃
IDi ; CS ∈ ΠSi

3 NTC ⊂ (N ×
⋃
Ti ×

⋃
Ci)

4 G = IDG ∪ODG ∪ ICG ∪OCG ; I =
⋃

i IDi\G
5 for enq do{
6 NTC = {(n, t, c) | ∃!n ∈ N, ∃(c, t = (s, lab, s′)) ∈ CT.s ∈ CS}
7 TRI = {tI | ∃(n, t, c) ∈ NTC.tI = Projt

I}
8 ret = {(n, t′) | (n, t, c) ∈ NTC.t′ = Projt

G ∧ Projt
I ∈ Ex

TRI

Available}
9 re sp := r e t ;

10 }
11 for op(n) do{
12 l et t = (s, lab, s′).∃(n, t, c) ∈ NTC
13 f o ra l l id in reqt { id . put ; id . get ;}
14 c . i c ;
15 f o ra l l od in (prodt\I) { id . put ; id . get ;}
16 f o ra l l oc in (ocst ∩G) {oc := c . oc ;}
17 Available := (Available\reqt)∪(prodt)
18 CS := CS\{s} ∩ {s′}
19 }}

Fig. 6.11: Sketch of controller at the bottom of the hierarchy

When activated with op(n), the controller receives the index of the selected transition n. It
retrieves the transition t, and the component c from NTC (line 13), provides the component
with the required inputs (line 14), activates it (line 15), assigns the global outputs with the
corresponding values produced by the component (line 16), copies the control output produced
(line 17), finally, it updates the available inputs and the state of the contracts.

The Controller at the Top (Figure 6.12) manages the activation of its subcomponents in
the set C, and the set of available inputs Available. For each activation with op, the controller
constructs the set NTC: it asks the subcomponents for their possible transitions through
enq (line 6); the set NTC will contain the set of indexed transitions and their corresponding
component. The indexed transitions are gathered from the output control ports resp of each
component (line 7). From the set of all transitions TR, it selects randomly one transition t that
has it data dependencies resolved (ExTRAvailable at line 9). It provides the component to which
belongs the transition with the required inputs (line 10), activates it with the corresponding
input control port together with the index of the transition (line 11). After the activation it
updates the set of available inputs (line 12).

6.2.2.6 Extending the Approach to Multiple Levels of Hierarchy

The controllers top and bottom allow for hierarchic contract interpretation with only two levels
of hierarchy. To extend the approach to multiple levels, another kind of controller should be
used in the intermediate levels. Before describing this type of controller, let us see the global
interaction between the controllers. Figure 6.13 describes a hierarchy of contract interpreters.
At the head of the tree, there is a controller of type top. At the leaves, controllers of type
bottom manage the explicit contracts. In the intermediate levels, controllers of type middle are
used.

The idea is that each controller constructs on the fly, the transitions needed by the controller
above it. Using the explicit contracts, bottom2 and bottom3 construct the contracts needed by
the controller middle2. The controllers middle1 and middle2 construct the contracts needed
by top based on the transitions received form the controllers they interact with.

Tayeb BOUHADIBA Ph.D Thesis 113/186

6.2. Deducing the Controller from the Contracts

1 Controller top i s {
2 C ⊂

⋃
i Ci// the s e t o f subcomponents

3 Available ⊂
⋃
IDi

4 NTC ⊂ (N ×
⋃
Ti × C)

5 for opG do{
6 f o ra l l c in C {c . enq ;}
7 l et NTC = {(n, t, c) | ∃c ∈ C.(n, t) ∈ c.resp}
8 l et TR = {t | ∃n, c.(n, c, t) ∈ NCT}
9 l et (n, c, t) ∈ NCT.t = (s, lab, s′) ∈ ExTR

Available

10 ∀ id ∈ reqt { id . put ; id . get ;}
11 c . i c (n) ;
12 Available := (Available\reqt)∪(prodt)
13 }}

Fig. 6.12: Sketch of controller at the top of the hierarchy

middle1

top

middle3

bottom1

middle2

bottom2 bottom3

explicit contracts

Fig. 6.13: Hierarchic contract interpreters

The transition to execute is selected by the controller top. Once selected, top activates the
corresponding component. The controller of type middle inside this component translates it
into the consequent activation of its subcomponent. The sequence of activations goes in depth
until reaching the activation of a basic-component by a controller of type bottom.

Figure 6.14 is the sketch of the controllers of type middle. It has some similarities with the
controllers top and bottom. When activated with enq, the controller constructs the set NTC:
it asks the subcomponents for their possible transitions through enq (line 8); the set NTC
will contain the set of indexed transitions and their corresponding component. The indexed
transitions are gathered from the output control ports resp of each component (line 9). At line
10, it computes the set TRI , it is the set of transitions projected on the local inputs. The set
ret is the projected transitions on the global ports ProjtG and their indexes, we keep only the
transitions that have their local dependencies resolved (ProjtI ∈ Ex

TRI
Available). At line 12, the

controller assigns the set ret to the control output resp.

When activated with op(n), the controller selects the transition and the component associated
with n. It provides the component with the required inputs and activates it (lines 16,17).
The global data and control outputs are produced depending on the values provided by the
components (line 18,19). At the end, the set of available inputs is updated.

114/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

1 Controller middle i s {
2 C ∈

⋃
i Ci// the s e t o f subcomponents

3 Available ⊂
⋃
IDi

4 NTC ⊂ (N ×
⋃
Ti ×

⋃
Ci)

5 G = IDG ∪ODG ∪ ICG ∪OCG

6 I =
⋃

i(IDi ∪ODi ∪ ICi ∪OCi)
7 for enq do{
8 f o ra l l c in C {c . enq ;}
9 NTC = {(n, t, c) | ∃c ∈ C.(n, t) ∈ c.resp}

10 TRI = {tI | ∃(n, t, c) ∈ NTC.tI = Projt
I}

11 ret = {(n, t′) | (n, t, c) ∈ NTC.t′ = Projt
G ∧ Projt

I ∈ Ex
TRI

Available}
12 re sp := r e t ;
13 }
14 for op(n) do{
15 l et t = (s, lab, s′).∃(n, t, c) ∈ NTC
16 f o ra l l id in reqt { id . put ; id . get ;}
17 c . i c (n) ;
18 f o ra l l od in (prodt\I) { id . put ; id . get ;}
19 f o ra l l oc in (ocst ∩G) {oc := c . oc ;}
20 Available := (Available\reqt)∪(prodt)
21 }}

Fig. 6.14: Sketch of controller at the middle of the hierarchy

6.2.2.7 Contracts Interpretation and Master/Slave Relation

The master/slave relation introduced in Section 3.4.2.2 may be taken into account when inter-
preting contracts. This relation implies a notion of atomicity in the activation of components.
It relates an output control port of an initiator component to the input control port of the target
one. If the control output port is produced when activating the initiator, the target component
should be activated with the corresponding control input during the same macro-step.

The relation is defined over a set of components {Ci = (Σi,Σinit
i , IDi, ODi, ICi, OCi,Bi)}I .

The subset of control inputs and outputs (and their corresponding components) involved in the
master/slave relation are defined by the sets tar ⊆

⋃
I Ci ×

⋃
I ICi and init ⊆

⋃
I Ci ×

⋃
I OCi

respectively. The master/slave relation is defined as a function arch : init→ tar.

6.2.2.8 Example

Figure 6.15 is an example modeling function call and return in 42. The system is composed of
a component c that may call the function f provided by the component c’. The master/slave
relation is described at the top of the component main. It expresses that: whenever the control
output callf of the caller c is produced, the component c’ should be activated with f, and
whenever the callee’s output control port endf is produced, the caller should be activated with
contf .

Components and their Contracts The interface of the caller c exposes one output data
port param to send function call parameters, and one input data port return to receive the
results of the call. It also exposes two input control ports op and contf : op is used to make
it perform one simulation step, contf is used to activate it after a function call. The output
control port contf is used to tell the controller that a function should be called. The contract of
c is described in the Figure 6.16 (the one on the left). It expresses that the component should
be activated first with op; the component then produces the value of the control output callf
and the value of the param data port. Second, the component should be activated with contf

Tayeb BOUHADIBA Ph.D Thesis 115/186

6.2. Deducing the Controller from the Contracts

callf endf

ctrl

c’.endf =⇒ c.contf
c.callf =⇒ c’.f

c

op

param

return

c’

contf op f

op

Fig. 6.15: Function call and return modeling in 42

which requires the result of the call to be available in the input data port return.

{}op/callf{param}

{return}contf{}

c0 c1

{param}f{}

{}op/endf{return}

c0’ c1’

(c) (c’)

Fig. 6.16: Contracts for the components in Figure 6.15

The interface of the callee c’ exposes one input data port param to receive function call pa-
rameters, and one output data port return to provide the results of the function call. The
input control port op makes it perform one simulation step; f is used to perform the function
call. The output control port endf is used to tell the controller that the function terminates.
The contract of c’ is described in the Figure 6.16 (the one on the right). It expresses that the
component should be activated with f, and requires the input param. Then, the component
should be activated with op, which produces the value of the control output endf and provides
the results of the function call through return data port.

The Controller The controller interpreter needed for this kind of application is described in
Figure 6.17. It knows about the components and their contracts CT . It manages the state of
the contracts (CS) and the available inputs (Available). It also needs the function describing
the master/slave relation arch : init → tar. The controller is somewhat similar to the one
described in Figure 6.9, with the small difference that it manages the master/slave relation.

The set of executable transition TE is also computed differently. It is composed of the set
of transitions having their requirements satisfied, and the corresponding control input is not
subject to the master/slave relation (line 10).

For each macro-step, at least one component is actviated. The first actviation is at line 13.
The actviated component may produce some control outputs which correspond to initiators in
the master/slave relation. The produced control outputs are maintaned in the set calls (line
16). As long as the set contains some elements, the controller retrieves one of them and selects
a transition corresponding to the taraget activation (lines 18 to 22). The controller activates
the corresponding component (lines 23 and 24), and updates the set calls in case some control
outputs are produced (line 25). In each iteration the states of the contracts and the available
inputs are updated.

Comments The hierarchic controllers interpreters described in Figures 6.11, 6.12, 6.14 may
be extended such that each of them manages a local master/slave relation. To do so, we extend

116/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 6. Exploiting 42 Control Contracts

1 Controller i n t e r p r e t e r i s {
2 CT ⊂ (

⋃
Ci ×

⋃
Ti) //Components and t h e i r t r a n s i t i o n s

3 Available ⊆
⋃
IDi // s e t o f a v a i l a b l e input data

4 CS ∈ ΠSi // Contracts s t a t e s
5 tar ⊆

⋃
Ci ×

⋃
I ICi

6 init ⊆
⋃
Ci ×

⋃
I OCi

7 arch : init→ tar
8 for opG do{
9 l et TR = {t | t = (s, lab, s′) ∈

⋃
Ti.s ∈ CS}

10 l et ET = {t | ∃(c, t) ∈ CT ∧ t ∈ ExTR
Available ∧ (c, ict) /∈ tar}

11 l et (c , t) ∈ CT.t = (s, lab, s′) ∈ ET
12 f o ra l l id in reqt { id . put ; id . get ;}
13 c . ict ;
14 Available := (Available\reqt)∪(prodt)
15 CS := CS\{s} ∩ {s′}
16 l et calls = {(c, oc1), (c, oc2), ... | oci ∈ ocst ∩ init}
17 while (calls 6= ∅) do{
18 l et (c, oc) ∈ calls
19 calls = calls/(c, oc) ;
20 l et TR = {t | t = (s, lab, s′) ∈

⋃
Ti.s ∈ CS}

21 l et ET = {t′ = (ss, lab′, ss′) | t ∈ ExTR
Available ∧ ((c, oc), (c′, ic′t)) ∈ arch}

22 l et (c′, t′) ∈ CT.t′ = (s, lab, s′) ∈ ET
23 f o ra l l id in req′

t { id . put ; id . get ;}
24 c ′.ic′t ;
25 calls := calls ∪ {(c′, oc1), (c′, oc2), ... | oci ∈ ocs′

t ∩ init}
26 Available := (Available\req′

t)∪(prod′
t)

27 CS := CS\{s} ∩ {s′}
28 }
29 }}

Fig. 6.17: Managing master/slave relation when interpreting contracts

Tayeb BOUHADIBA Ph.D Thesis 117/186

6.2. Deducing the Controller from the Contracts

1 Controller i n t e r p r e t e r i s {
2 CT ⊂ (

⋃
Ci ×

⋃
Ti) //Components and t h e i r t r a n s i t i o n s

3 Available ⊂
⋃
IDi // s e t o f a v a i l a b l e input data

4 CS ∈ ΠSi // Contracts s t a t e s
5 for opG do{
6 l et TR = {t | t = (s, lab, s′) ∈

⋃
Ti.s ∈ CS}

7 l et ET = ExTR
Available

8 i f (ET = ∅) {deadlock}
9 . . .

10 . . .
11 }}

Fig. 6.18: Detecting deadlocks when interpreting contracts

their code with the loop described between lines 15 and 24 of the controller code in Figure 6.17,
together with the small difference that holds when computing the set of executable transitions.

6.2.2.9 Runtime Verification of Properties

Contract-based simulation of asynchronous systems may serve for runtime verification of prop-
erties (see Section 2.4.3). The organization of a simulation model in 42 makes it easy to decide
how a property should be encoded.

For instance, if the property is related to some data communicated between components, the
best decision is to encode the property as a component. This component is then connected to
some outputs of the other components and activated by the controller.

On the other side, if the property is related to control, the best decision is to encode it into
the controller. For instance, in order to check component synchronization or the absence of
deadlocks.

Detecting Deadlocks Within the 42 simulation engine, a deadlock corresponds to the state
where no further simulation step can be performed, i.e., no transition is executable by the
controller. One may check for deadlocks simply by observing the set of the executable transitions,
computed by the controller at each simulation step.

Figure 6.18 illustrates part of the controller interpreter described in Figure 6.9 augmented with
statements to check potential deadlocks. We recall that the state ET is the set of executable
transitions. If the set ET is empty, no transition can be selected by the controller, thus no
further simulation steps. This corresponds to a deadlock. The statement at lines 8 is added to
the controller code in order to detect such a situation.

118/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7

Hardware Simulation and
Software Execution

Introduction (En) A modeling tool for embedded systems should encompass the
modeling of the hardware and the software parts. Besides, it should enable the
interaction between the two parts. This chapter deals with the development of virtual
prototypes of the hardware to enable the execution of the embedded software. At a
first place, we introduce 42 as a model for describing hardware prototypes, and the
way the embedded software may be run on the virtual prototypes. At a second place,
we present first steps toward the formalization of SystemC/TLM components with
42. SystemC/TLM is the de-facto standard for the modeling of Systems-on-a-Chip
but lacks in formalization.

Contents

7.1 Prototyping Hardware Using 42 . 120
7.1.1 An Example System-on-a-Chip . 120
7.1.2 Modeling the Hardware Architecture with 42 122
7.1.3 Contract-Based Simulation . 125

7.2 Software Execution . 126
7.2.1 Using Wrappers for Hardware/Software Simulation 126
7.2.2 Checking Software Implementation . 129

7.3 Formalizing SystemC-TLM with 42 Components 130
7.3.1 Structural Correspondence Between 42 and SystemC 132
7.3.2 Executable Contracts For SystemC-TLM Components 133
7.3.3 Typical Uses of the Approach . 135
7.3.4 Comments . 141

Introduction (Fr) Un outil de modélisation pour les systèmes embarqués doit per-
mettre la modélisation de la partie matérielle, de la partie logicielle, ainsi que
l’interaction entre les deux parties. Dans ce chapitre, nous montrons des cas
d’utilisation de 42 dans le domaine du prototypage virtuel du matériel pour
l’exécution du logiciel embarqué. Dans un premier temps, nous donnons un exem-
ple de prototypage virtuel de systèmes matériels et comment exécuter le logiciel sur
ces prototypes 42, indépendamment de tout autre approche existante. Ensuite, nous
nous intéresserons à la 42-isation de SystemC/TLM ; SystemC/TLM étant un des
standards de développement de prototypes virtuels pour les systèmes-sur-puce. La
42-isation consiste à décrire les composants SystemC/TLM en 42. Notre approche
contribue à la formalisation des composants TLM.

119

7.1. Prototyping Hardware Using 42

7.1 Prototyping Hardware Using 42

7.1.1 An Example System-on-a-Chip

In order to start writing the software early in the design flow of a System-on-a-Chip, software
developers require some executable prototype of the hardware platform. As a virtual prototype,
one may use the RTL model of the hardware platform. But, for the sake of efficiency, the
virtual prototype should be abstract so as to expose only the behaviors of the hardware that
are interesting for the software developers (see Section 2.2.1). The virtual prototype may be
useful to detect some design errors related to the hardware platform earlier, or to perform
architecture exploration.

This section is presented as an example to expose some guidelines to model virtual prototypes
of the hardware with 42.

7.1.1.1 A Typical Hardware Architecture for Systems-on-a-Chip

Figure 7.1 is the structure of a hardware platform. It is made of a CPU, a LCD (Liquid Crystal
Display), a bus, and a memory. The LCD is a component that may be programmed by the
CPU, in order to perform repetitive transfers from the memory (like a DMA, Direct Memory
Access component). There is a need for some communication between the LCD and the CPU,
to inform the cpu that the transfers that were programmed are finished. This is done with an
interrupt. In order to display something on the LCD, the software writes an image in some
dedicated place of the memory; then it programs the LCD so that it now transfers the image
from the memory to the screen; then it waits for the interrupt from the LCD, meaning the
transfer is finished. Figure 7.3 describes part of the software that will run on the cpu. We give
more details about the software in Section 7.2.

cpu

lcd

mem

B
U

S

r/w
status
data

address

r/w
status
data

address

r/w
status
data

address

interrupt

Fig. 7.1: An example of hardware architecture for Systems-on-a-Chip

7.1.1.2 Intended Behavior

In our example, the software repeatedly displays a full green screen, then a blue one, then a red
one, and so on. On Figure 7.2, (a) and (b) show normal states of the display. (b) is possible
because the LCD may take some time to replace a full green screen by a full blue one. (b)
corresponds to the following situation: the CPU had written a green image before, it has just
written a blue one; it is waiting for the interrupt telling it that the blue transfer is finished. The
LCD is transferring the blue image, part of the green one is still visible. When the transfer is
finished, and the screen is totally blue, it will send the interrupt to the CPU.

On the contrary, (c) should not be possible. The only way of obtaining such a state is when the

120/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

da b c

green
blue

red white

Fig. 7.2: LCD ScreenShots

. . .
int main (int argc , char ∗∗ argv) {

while (1) {
l c d p r i n t (green) ;
w r i t e l c d (0 x01 , 0 x1) ;
w a i t i n t e r r u p t () ;
l c d p r i n t (blue) ;
w r i t e l c d (0 x01 , 0 x1) ;
w a i t i n t e r r u p t () ;
l c d p r i n t (red) ;
w r i t e l c d (0 x01 , 0 x1) ;
w a i t i n t e r r u p t () ;

}
}

Fig. 7.3: Part of the software running on the cpu

software starts reprogramming the LCD (writing the red image, for instance) without waiting
for the last programming to finish. The situation (d) is due to some data errors of the software.

7.1.1.3 Typical Bugs

A typical misconception of the hardware platform is to forget the interrupt wire between the
LCD and the CPU. If this wire does not exist, the only way for the software to know that a
transfer is finished would be to have a precise knowledge of the time it can take. In high level
models like TL models, this is prohibited. Synchronizations should be made explicit, so as to
get robust software, able to run correctly on various hardware platforms, with different timings.
A typical synchronization bug in the software is to forget to wait for the interrupt from the
LCD. Another kind of bug would be due to pure data errors, like writing to an erroneous part
of the memory, or writing only a part of the image, or using the wrong color, etc.

7.1.1.4 Benefits of Using 42 for Modeling Hardware

The benefits of a 42 model for the system described above are the following:

Contract-based simulation to detect synchronization problems: the whole system can
be described by its architecture and the contracts of the components, without knowing
the details of the components. Then, the system can be simulated following the principles
of Section 6.2.2. In this first step, the contract of the CPU is in fact the contract of the
CPU plus the software that will run on it; but the part of the behavior which is due to
the software is very abstract, as we will see on the example.

Executing the real software on the simulated hardware platform: when the architec-
ture and the contracts have been simulated so that early synchronization problems (like

Tayeb BOUHADIBA Ph.D Thesis 121/186

7.1. Prototyping Hardware Using 42

forgetting the interrupt wire, or forgetting to wait for the interrupt in the CPU+SW con-
tract) have been discovered and corrected, the same model can be simulated together with
the execution of the real software. This allows us to see more bugs, typically the data bugs
(wrong color, etc.). But the interesting part is that it allows a check on the compatibility
between the contract of the CPU component (which includes some information on the
software) and the actual piece of software, written in C or other languages.

7.1.2 Modeling the Hardware Architecture with 42

Figure 7.4 is the structure of the model in 42. Each wire between two components models a
communication in the real hardware platform. The type of the wires may be Boolean (e.g., for
intr) or record (e.g., acdX encapsulating the address, the control R/W, and the data to be
written). Each component is equipped with its local contract where the output control values
may be used. lcd.report may take the value ok (resp., ko) which states that the transfer of
the image from the memory is finished (resp., not finished).

Ports Type:
CPU.report : {MT,LT} acdX : [a : int, c : {R,W}, d : int] intr : {t, f}
CPU.report2 : {IT,NoIT} respX : [status : bool, data : int] target : {L,M}
LCD.report : {ok, ko}

acdM

acdC

target

acdL

respLT

respL

acdLT

report2report
intr

respM

report

respC
op

cpu

op

lcd

op

op

bus

op

mem

async

main

Fig. 7.4: The 42 model of the example in Figure 7.1

7.1.2.1 Describing Components with Control Contracts

The Contract of the cpu is illustrated in the Figure 7.5. It is in fact the contract of the
embedded software, plus some hardware mechanisms like the memorization of the interrupts
until they are taken into account (variable interrupt in Figure 7.10). The contract of the cpu
reports on the state of the software, which may end an atomic step in three cases: either it
stops just before an access to the memory or the LCD, or it is waiting for an interrupt. These
three situations are encoded with the two control outputs report and report2. The control
output report may take its value in { MT, LT } (memory or LCD access, respectively). The
control output report2 may take its value in { IT, NoIT }. The value IT indicates that the
software is waiting for an interrupt.

122/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

c3’

c1’

c2’

c4 c4’

c0

c3

c1

c2{r
es

p C
}o

p/
α

=
re

po
rt
{}

[α
=

LT
]{
}o

p{
ac

d C
;

ta
rg

et
=

L
}

{intr=t}op{}

{intr=t}op{}

{intr=t}op{}

{intr=t}op{}

{intr=t}op{}

{}op/α=report{}

[α=MT]{}op{acdC ; target=M}

[α=MT]{}op{acdC ; target=M}

{intr=t}op{}

{respC}op/α=report; report2=IT{}

{}op/α=report{}

[α
=

LT
]{
}o

p{
ac

d C
;

ta
rg

et
=

L
}

{r
es

p C
}o

p/
α

=
re

po
rt
{}

{intr=t}op{}

{respC}op/α=report; report2=IT{}

Fig. 7.5: Contract of the cpu component (software + interrupt bit)

Tayeb BOUHADIBA Ph.D Thesis 123/186

7.1. Prototyping Hardware Using 42

The contract of the CPU is as follows. The unprimed states (resp., the primed ones) correspond
to cases when there is no memorized interrupt (resp., there is a memorized interrupt). When the
interrupt arrives (transitions labeled by {intr=t}op{}), the contract changes from an unprimed
state to a primed one (e.g., c4 to c4’). When the interrupt is taken into account, the contract
changes from a primed state to an unprimed one (the only one is from c4’ to c1, the interrupt
bit may not be cleared before receiving the acknowledgment corresponding to the last LCD
programming).

From the initial state c0, the initial activation op goes to state c1 and corresponds to the first
part of the software, before it stops for a memory or LCD access (at this point, it should not stop
because it is waiting for an interrupt). The value of report output referred to by α indicates
the target (MT or LT).

From c1, the interrupt can be taken, and the contract goes to c1’. Otherwise, the software
starts the memory or LCD access, by sending relevant information on its output data ports
(acdC , target). It goes to c2 or c3.

In c2 and c3, the CPU is waiting for the acknowledgment from the target component (respC).
From c2 it goes back to c1 for potential new memory accesses; from c3 it goes to c4: the lcd
has been programmed, and the software should now wait for the interrupt stating that the lcd
has finished.

From c4, the only possible change is that the interrupt arrives, and is stored. The contract goes
to state c4’. Then the software can take it into account, and go to state c1 again.

At states c3 and c3’, the software is waiting for the acknowledgement from the lcd. Once the
acknowledgement is received, the transition of the contract states that the software is waiting
for an interrupt by explicitly setting the control output report2 to the value IT.

The Contract of the lcd is illustrated in the Figure 7.6, it describes the following behavior:
in state l0 the lcd waits until it is programmed by the cpu (this comes as a data on input
acdLT , transition to l1). Then it acknowledges this by writing to its port respLT and it
reaches state l2. The loop between l2 and l3 corresponds to a sequence of read actions from
the memory (acdL), each of them being acknowledged (respL). For each read the contract
stores the control output report in variable β. In state l3, if β is ok it means this was the last
read, and the lcd returns to state l0 and writes a true value to its interrupt port (intr=t),
for the cpu. If β is ko, it writes a false value (intr=f) and continues.

l3

l1l0

l2

{acdLT }op{}

{}op/β=report{acdL}

[β=ko]{respL}op{intr=f}

[β=ok]{respL}op{intr=t} {}op{respLT }

Fig. 7.6: The contract of the lcd

The Contract of the Component mem is illustrated in the Figure 7.7. It is quite simple: it
accepts read or write requests on its input port acdM and acknowledges them by respM (which
encapsulates the request status, and potentially a data delivered for a read request).

124/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

{acdM}op{}

{}op{respM}

m1m0

Fig. 7.7: The contract of the memory

{respM}op{respL; acdLT }

{acdC ; target=L}op{acdLT }
{acdC ; target=M}op{acdM}

{acdL}op{acdM}

{respLT }op{respC}
{respM}op{respC}

{respM}op{respL; acdM}

{respM}op{respL}

{acdC ; target=L}op{}

{acdC ; target=M}op{}

{respM}op{respC ; acdM}
{respLT }op{respC ; acdM}

{acdL}op{acdM}

b2

b0

b3

b4

b1b5

Fig. 7.8: The contract of the bus

The Contract of the Component bus is illustrated in the Figure 7.8. It is more complex,
because it describes the correct transportation of read and write accesses, and their correspond-
ing acknowledgments. The possible transfers are: the cpu writes to the memory; the lcd reads
from the memory. We do not consider the case of parallel software running on the CPU and
issuing several accesses to the bus in parallel. The contract of the bus shows that an access
to the bus can be memorized until the current transfer is terminated, but only two parallel
transfers are considered. In a real bus, this is far more complex, but the contract is of the same
form (we would need a better language than flat explicit automata to describe it, though).

7.1.3 Contract-Based Simulation

Following the principles of contract interpretation described in Section 6.2.2, the hardware
platform can be simulated with the contracts alone. The contracts are considered as an abstract
implementation of the hardware components. But for the contract of the cpu we include a very
abstract view of the embedded software.

At this point we simulate only the contracts in order to check component synchronization;
several bugs are due to synchronization problems. Executing contracts allows for discovering
them early. Such bugs would be hard to detect when dealing with several lines of implementation
code. The bugs may be related to the software abstract view (included in the contracts of the
cpu) or even related to the design of components modeling hardware components.

An exhaustive simulation would build the complete interleaving graph (for applying model-
checking), but it can also be used as an input for a runtime verification tool (in the sense of a tool
like Verisoft [God97], or using dynamic partial orders adapted to SystemC/TLM [HMMCM06]).
Even if we do not use a specification language for temporal properties, we can observe generic

Tayeb BOUHADIBA Ph.D Thesis 125/186

7.2. Software Execution

properties like deadlocks (see Section 6.2.2.9), and some livelocks. The two following simulation
results, obtained for the case study, illustrate two bugs that can be found early.

The Interrupt Bug After writing an image, the processor waits for an interrupt coming from
the LCD to start writing a new image. If the interrupt never occurs, the system is blocked.
Suppose we modify the contract of the LCD to introduce this bug: on Figure 7.6, the transition
from state l3 to l0 is now labeled by: [β=ok]{respL}op{}. Suppose the simulation has reached
the state {(c4,b0,m0,l3), Available ={respL}, β=ok} 1 (the processor is waiting for the
interrupt, the memory is waiting for a READ/WRITE request, and the bus has just delivered
the memory acknowledgment to the LCD). At this state, only the LCD may be activated, and
the simulation moves to the state {(c4,b0,m0,l0), Available ={}}. At this state, all the
component transitions require inputs. But no inputs are available, which leads to a deadlock.

Other Bugs Other problems may be detected by the simulator. For instance, there are cases
when a component is never activated. It’s not necessarily a bug, but it deserves at least a
warning. For example, when the LCD waits to be programmed, if the processor never does it,
the LCD is never activated.

7.2 Software Execution

Figure 7.9 illustrates a possible code for the software that will run on the processor of the hard-
ware platform described earlier. The software describes a periodic behavior: writing an image
on some place in the memory, pixel by pixel using the function write mem(); then programming
the LCD using the function write lcd() so that the LCD starts transferring the image; then
waiting for the interrupt coming from the LCD by calling the function wait interrupt(), in
order to start writing the next image.

On the real system, the functions like write mem() and write lcd() will be implemented (later)
by accesses to the memory and the LCD registers via the bus in order to write something. The
software developers have to use such functions because at this level of the design process, the
details of the hardware platform may not be known. Here we focus on the global behavior of
the software, not on the details of the communication with the hardware components.

7.2.1 Using Wrappers for Hardware/Software Simulation

To reflect the decisions of the software on the hardware platform, one has to execute the em-
bedded software on the simulated hardware. This may be done in two ways: using a ISS or a
native wrapper. Both of the two techniques were discussed in Section 2.2.2.2. In this section,
we propose to make the software implementation execute in a native wrapper.

7.2.1.1 Wrapping the Software into a 42 Component

The wrapper provides the implementation of the functions used by the software to communicate
with the hardware components; i.e., write mem(), write lcd(), and wait interrupt(). The
code of such a wrapper is given in Figure 7.10.

To make the software run together with the simulation of the hardware platform, the wrapper is
implemented as a 42 component. To each function used by the software, the wrapper associates

1The set Available contains the available inputs. See Section 6.2.2 for more details.

126/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

#define WIDTH 20
#define HEIGHT 20
#define blue 0 x f f 0 0 0 0 f f
#define red 0 x f f f f 0 0 0 0
#define green 0 x f f 0 0 f f 0 0

void l c d p r i n t (unsigned long int pattern) {
int y ;
for (y=0; y<HEIGHT∗WIDTH; y++)

write mem (y , pattern) ;
}

int main (int argc , char ∗∗ argv) {
while (1) {

l c d p r i n t (green) ;
w r i t e l c d (0 x01 , 0 x1) ;
w a i t i n t e r r u p t () ;
l c d p r i n t (blue) ;
w r i t e l c d (0 x01 , 0 x1) ;
w a i t i n t e r r u p t () ;
l c d p r i n t (red) ;
w r i t e l c d (0 x01 , 0 x1) ;
w a i t i n t e r r u p t () ;

}
}

Fig. 7.9: A possible software code for controlling the LCD

i n t e r r u p t : bool ;
w r i t e l c d (int a , int d){

r epor t . wr i t e (”LT”) ;
r epor t2 . wr i t e (”NoIT”) ;
pause () ;
acdc . wr i t e (a , ”W” ,d) ;
t a r g e t . wr i t e (”L”) ;
pause () ; r e sp c . read () ;

}

w a i t i n t e r r u p t (){
r epor t2 . wr i t e (”IT”) ;
pause () ;
i n t e r r u p t =0;// c l e a r i n t e r r u p t

}

write mem (int a , int d){
r epor t . wr i t e (”MT”) ;
r epor t2 . wr i t e (”NoIT”) ;
pause () ;
acdc . wr i t e (a , ”W” ,d) ;
t a r g e t . wr i t e (”M”) ;
pause () ; r e sp c . read () ;

}

op (){
i f (i n t r . hasValue ())

i n t r . read () ;
i n t e r r u p t =1;// s e t i n t e r r u p t

else resume () ;
}

Fig. 7.10: The code of the wrapper component

Tayeb BOUHADIBA Ph.D Thesis 127/186

7.2. Software Execution

Contract transitions Software code Wrapper code

c0

c1

c2

c1

{}op/α=report{}

op/α=report{}

{acdC ; target=M}
[α=MT]{}op

{respC}

T
h

ir
d

S
ec

on
d

F
ir

st

.

. . .
write mem (0 ,0 x f f . .) ;

→

write mem (1 ,0 x f f . .) ;
→

.

//1st a c t i v a t i o n wi th op
resume () ;
←

r epor t . wr i t e (”MT”) ;
. . . ; pause () ;

//2nd a c t i v a t i o n wi th op
resume () ;
acdc . wr i t e (0 , ”W” ,0 x f f . .) ;
t a r g e t . wr i t e (”M”) ;
pause () ;

//3rd a c t i v a t i o n wi th op
resume () ;
r e sp c . read () ;
←
r epor t . wr i t e (”MT”) ;
. . . ; pause () ;

Fig. 7.11: The correspondence between the software code and the contract transitions

a set of actions to accomplish the decision of the software. The combination of the wrapper
plus the embedded software defines the implementation of the processor component (cpu).

The control input op from which the cpu is activated is defined by the wrapper. When activated
with op, the wrapper lets the software execute a piece of its code. When the software calls the
wrapper functions, the wrapper states on the decision of the software putting a value on report
and report2 output control ports.

For instance, when the software performs the call write mem(), the wrapper reports through
the control outputs that the software is indeed willing to write something on the memory. It
also puts the parameters of the function call on the corresponding output data ports; i.e., the
memory address, the data to be written, etc.

7.2.1.2 Activating the Wrapper to Make the Software Execute

Technically, the wrapped software is run as a thread that may suspend itself with pause().
The simulation of the hardware platform is the main program; it may reactivate the software
thread with the resume() function.

Consider a case when the simulation controller transforms a global activation op into an activa-
tion of the processor component (cpu.op). This resumes the thread of the software, which runs
until the next pause() in a communication primitive (e.g., write mem). The software thread
being suspended, the simulation controller considers cpu.op to be terminated. Next time it will
be activated, the software thread will start execution from where it had paused. An execution
from one pause to the next one is the atomic step of the cpu component.

128/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

7.2.1.3 An Example of Execution Trace

Figure 7.11 illustrates an execution trace of the wrapped software starting from the instantiation
of the component cpu. On the left of the figure, we describe the transitions of the contract of
the cpu; on the right, the code executed with respect to each transition.

First, the thread executing the software is paused after the instantiation. The activation of
the cpu (the wrapper) will resume the thread. The control passes to the software which
executes some code until calling the function write mem(0,0xff..) to write a value at
the address 0. The wrapper reports that the software requires memory access through
the control output report (outputting MT). After that, the thread is suspended and the
control is handed back to the controller that may activate other components.

Second, for the 2nd activation of the cpu, the thread is resumed. We are still in the body of
the function write mem(). As described by the transition of the contract, the wrapper
outputs the memory address, the value to be written, and the target component (i.e., M).
The output values are those corresponding to the parameters of the function call. At the
end, pause is called.

Third, once the response of the memory access is made available for the cpu, the controller
activates it. This resumes the execution of the thread. The wrapper reads the re-
sponse. At this point, the call to the function write mem(0,0xff..) is terminated,
the control flow is back to the software implementation. The software performs the call
write mem(1,0xff..) to write the next pixel into the memory. The wrapper behaves as
in the first activation.

7.2.2 Checking Software Implementation

Once the bugs related to component synchronization are detected by the simulation of the con-
tracts alone, the execution of the actual software together with the contracts of the components
may reveal other bugs. First, the behavior of the software may not conform to what is described
by the contract. Checking the software consistency with the contract allows for detecting such
implementation errors. Second, observing the simulation of the HW/SW components may also
reveals other bugs.

7.2.2.1 Using the Contracts to Check Software Decisions

When executing the contracts alone, the values of the control outputs are non-deterministic,
except for those associated with explicit values. When running actual embedded software, we
check its consistency with the contract of the cpu as described in 6.1.1. The production of
the control outputs is done by the wrapper functions. Hence checking the control output of
the wrapper component is a way of checking that the software has indeed made a call to the
function it was expected to call.

For instance, one of the typical bugs mentioned previously is: the software omits to wait for
the interrupt before reprogramming the LCD. So, suppose we omit the first occurrence of
wait interrupt() in the program of Figure 7.9. The simulation will report that the contract
is violated. The outgoing transitions from c3 and c3’ declare that the control output report2
will take the value IT. However, the only possible way to output the value IT on the control
output report2 is to call the function wait interrupt() which is omitted by the software.
This is a bug in the software, detected because it is not consistent with its contract.

This mechanism makes it possible to run the software and to check its consistency with the
contract, even if it is given as object code. The only constraint is that it uses the wrapper

Tayeb BOUHADIBA Ph.D Thesis 129/186

7.3. Formalizing SystemC-TLM with 42 Components

functions to access the hardware.

7.2.2.2 Observing the HW/SW Simulation to Detect More Bugs

Despite the fact that the software respects its contract, there may be more bugs, related to the
data. For instance, suppose the code of the lcd print function is changed in the program of
Figure 7.9: the condition of the loop is now y<HEIGHT+WIDTH, which means that the program
writes 40 pixels instead of 400. This bug may be detected by observing the output on a simulated
LCD, as shown on Figure 7.2-(d). The top of the LCD is colored whereas the bottom of it has
the color corresponding to the initial memory value (white).

7.3 Formalizing SystemC-TLM with 42 Components

The design of virtual prototypes for Systems-on-a-Chip has seen the emergence of the Trans-
action Level Modeling (see Section 2.2.1.1). The TLM approach is component-based, in which
hardware blocks are described by means of modules communicating with transactions. The
de-facto standard for TLM is SystemC which gained a lot of success due to its C/C++ part.

Being based on a general-purpose programming language, SystemC-TLM has no formal seman-
tics. Models written with SystemC-TLM are hard to analyze formally. On the other hand, 42
allows for describing components formally. As introduced in Section 3.4.1, it may be used for
reasoning on components of other frameworks.

The purpose of this section is to establish the structural correspondence between the SystemC-
TLM components, as defined informally by the TLM guidelines, and the 42 components. The
42-ization of SystemC-TLM components is a way of formalizing the principles of SystemC-TLM.
The interesting uses of this approach are explained in section 7.3.3.

To establish the correspondence we use a simple example written in SystemC. The example
(denoted by sctlm in the sequel) is that of Figures 7.12 and 7.13. The corresponding 42 model
(denoted by 42m in the sequel) is described in Section 7.3.1.

7.3.0.3 A TLM-PV Example in SystemC

TLM allows several abstraction levels, the example of this section is described at the level of
programmer’s view (PV). The example models two modules module1 and module2 communi-
cating with transactions through the ports attached to each module. The direction of the arrow
shown on a port determines the role of the port. On Figure 7.12, p2 in module1, and p1 in
module2, are initiator ports; p1 in module1, and p2 in module2, are target ports.

T1 R1 T2

p1p2 p1 p2

f1 f2

module1 module2

Fig. 7.12: Example of SystemC/TLM (architecture)

Modules implement behaviors The behavior of a module is given by a set of threads (rep-
resented by circles with steps on Figure 7.12), and a set of functions (represented by straight

130/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

1 void module1 : : T1(){
2 int a = 0 ;
3 while (true){
4 wait (e1) ;
5 a++;e2 . n o t i f y () ;
6 a++;e3 . n o t i f y () ;
7 }}
8 void module1 : : R1(){
9 int b = 0 ;

10 while (true){
11 b++;wait (e2) ;
12 b++;p2 . f 2 (b) ;
13 }}
14 void module1 : : f 1 (int x){
15 cout << x ;
16 e1 . n o t i f y () ;
17 wait (e3) ;
18 }// ** module1 **

19 void module2 : : T2(){
20 int c ;
21 while (true){
22 c++; p1 . f 1 (c) ;
23 c++; wait (e4) ;
24 }
25 }
26

27 void module2 : : f 2 (int x){
28 cout<< x ;
29 e4 . n o t i f y () ;
30 }// ** module2 **

Fig. 7.13: Example of SystemC/TLM (code)

lines with steps), both programmed in full C++ (see Figure 7.13). module1 has two threads T1
and R1, and one function f1, while module2 has a single thread T2 and a function f2.

The threads are active code, to be scheduled by the global scheduler; The functions f1 and f2
are passive code, waiting to be called. They are attached to the port of the modules. f1 (resp.,
f2) is attached to the port p1 (resp., p2) in module1 (resp., module2).

Threads and functions of the same module share events Events are used in order to
synchronize with each other. They can be notified, or waited for. In module1 (Figure 7.13)
there are three events e1, e2, e3.

The threads are managed by the SystemC scheduler The SystemC scheduler is non-
preemptive: a running thread has to yield, by performing a wait on an event (or on time, see
comments below, but we will use untimed models). For instance, for the thread T1 of module1,
the only point where the thread yields is wait(e1). The execution of a++; e2.notify(); a++;
e3.notify(); is therefore atomic.

Modules communicate with transactions only According to the TLM-PV guidelines,
communications between modules cannot use the event mechanism, because this would be
meaningless w.r.t. the physical parallelism to be modeled. The only possible communications
are called transactions, implemented by blocking function calls; the link between a caller and
the callee is established through the architecture.

On Figure 7.13, the thread T2 of module2 initiates a transaction on its port p1 (written
p1.f1(c)). This is a call to the function f1 in module1 (which is attached to the target
port p1 of module1), because the initiator port p1 of module2 is connected to the target port
p1 of module1. When the call is executed (T2 being running), the control flow is transferred
to module1, until f1 terminates; then the control flow returns to module2, and the execution
continues until the next yielding point (wait(e4) in the example). Since function f1 in module1
waits for the event e3, it yields if e3 is not present; this means that thread T2 in module2 may
yield because of a wait statement in the function it has called in another module. An example

Tayeb BOUHADIBA Ph.D Thesis 131/186

7.3. Formalizing SystemC-TLM with 42 Components

top

bottom1bottom2

main

op

f2 t2f1 t1 r1

f1Cendf2f2Cendf1

fd2e1

e2

e3

e4

respf1Cendf2respf2Cendf1

fd1

callf1 contf2 op(n) enq enqcontf1 callf2 op(n)

callf1op op op contf2 op callf2 op contf1

module1 module2

module1.endf1 =⇒ module2.contf1

module1.f2C =⇒ module2.callf2

module2.endf2 =⇒ module1.contf2

module2.f1C =⇒ module1.callf1

Fig. 7.14: 42 architecture for the system of Figures. 7.12 and 7.13

atomic sequence is the following: the scheduler elects thread R1, which is at line 12; it executes
b++ and then calls f2 via the port p2; the body of f2 in module2 is executed entirely, and the
control returns to module1; the thread R1 loops, executes b++ at line 11, and stops on wait(e2)
at line 11.

7.3.1 Structural Correspondence Between 42 and SystemC

In this Section we give the corresponding 42 model (42m) of the SystemC example (sctlm) of
Figures 7.12 and 7.13. The architecture of 42m is given by Figure 7.14; the control contracts
associated with the components are described in Section 7.3.2. For the sake of clarity, we will
suppose that we cannot have, simultaneously, two active calls of a given function. Our full
encoding of SystemC into 42 forbids recursion and relies on code duplication when a function
may have several parallel callers.

7.3.1.1 Architecture and Ports

The SystemC model sctlm is made of several modules that have ports; each module contains
threads and functions. The 42 model 42m is hierarchic; at each level of the hierarchy, it is made
of a set of components, and a controller. The architecture of 42m (Figure 7.14) is built by using
one 42 component per module in sctlm, at the highest level of hierarchy; moreover each 42
component corresponding to a module M is itself built as a 42 system, with one component per
thread of M , and one component per function of M ; The main component only has a control
input op for asynchronous simulation.

Highest Level The module ports in sctlm are used to route function calls. At the highest
level of the 42 hierarchy, these function calls of sctlm are encoded by separating the control
effect, and the data exchanged. For instance, the fact that thread T2 in module2 may call f1 of
module1 via the ports p1 (Figure 7.13), corresponds to:

• The data wire fd1 from module2 to module1 on Figure 7.14;
• The output control port f1C (for f1 is called) of module2;
• The input control port callf1 of module1 (to activate the code of f1);

132/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

• The output control port endf1 (for f1 has finished) of module1;
• The input control port contf1 of module2 (to continue the execution of the thread that

has called f1, when f1 is finished).
• The master/slave relation to describe how the control should be passed from one module

to another (the implications over the assembly).

Each module has output data ports corresponding to the parameters of the functions that can
be called from inside the module, and input data ports corresponding to the parameters of the
functions it provides (we assume a union type for these ports, representing all the functions
parameters). It also has one input control callfi for each function it provides, and one control
input contfi for each function that may be called from it. Each module also has a control input
enq (for enquire) and a control output resp (for response). These control ports are used for
introspection (see Section 3.2.3). Finally each module has a parameterized control input op for
asynchronous simulation; the integer parameter will be used, in conjunction with the enq/resp
mechanism, in order for top to choose a transition in a module.

Deepest Level At the deepest level, the 42 components represent threads and functions that
may communicate through events. The events are encoded as data wires2. A thread or function
that may notify (resp., wait for) the event e has an output (resp., input) data port e. The con-
trollers bottom1 and bottom2 ensure the connection between the control ports of the modules,
and the control ports of the functions and threads.

Each component associated with a function has an input data port for the parameters (connected
to the corresponding input data port of the module); it also has a control input callfi (used
to start the function), and a control output endfi (produced when the function terminates);
finally the control input op is used to re-activate the function code, when it had stopped on a
wait, and still has something to do before it terminates. If the function calls another function,
the component also has the ports related to functions, explained below for threads.

Each component associated with a thread has a control input op to perform one execution step,
from where it had stopped last time it was activated, until the next wait or function call. For
each function f the thread may call, the component has an output control port fC to signal
that the function is called, and an output data port to send the actual parameters; this data
port is connected to the output data port of the module. A thread that can call a function f
also has a contf control input, to resume its execution when the function terminates.

7.3.2 Executable Contracts For SystemC-TLM Components

Figure 7.15 gives example contracts for the threads and functions t1, r1, t2, f1, f2. The
contract of a function f always starts with a transition triggered by callf, and needs the data
input corresponding to the parameters; it is always a loop (to allow for successive executions of
the function). If the body of the function does not wait, nor call other functions, the contract
is simply a loop on the initial state, producing endf. In the example, this is the case for f2. If
the body of the function has wait statements, the contract has additional states, with outgoing
op transitions, which need the data input corresponding to the event which is waited for (this
is the case for f1).

The contract of a thread is made of transitions triggered by op or the contfi corresponding to
the functions fi it may call. Each transition that produces fiC also provides the data output

2This produces the effect of persistent events, in the sense that an event is memorized until consumed by
another thread executing a wait; in SystemC, standard events are not persistent: they are lost if no eligible
process waits for them. We could encode non-persistent events in 42 as well.

Tayeb BOUHADIBA Ph.D Thesis 133/186

7.3. Formalizing SystemC-TLM with 42 Components

r1
r2r1

{}op{} {e2}op/f2C{fd2}

{}contf2{}

r0

{e4}op/f1C{fd1}

t2

{}op/f1C{fd1}

tctb

{}contf1{}

ta

{fd2}callf2/endf2{e4}

f2

{e1}op{e2; e3}
{}op{}

t0 t1t1

fa

f0 f1

{fd1}callf1{e1}

{e3}op/endf1{}

f1

Fig. 7.15: Example 42 contracts for the components of Figure 7.14

corresponding to the parameters, and reaches a state whose only outgoing transition is triggered
by contfi.

7.3.2.1 Using Hierarchic Contracts Interpreter to Simulate the Model

In the sctlm model, the threads are managed by the SystemC scheduler, the transactions
are simply function calls. In the 42m model, the controllers mimic the behavior of such a
scheduler. The MoCC implemented by the controllers is asynchronous. For modeling SystemC,
we made the choice of using controllers acting as contracts interpreters, as those described in
Section 6.2.2.4.

The Controller top The controller needed at the highest level should be able to manage the
asynchronous simulation of components, when the components have to be asked for their speci-
fication (i.e., introspection). Also, it should model the general effect of function call and return,
taking into account the information provided by the master/slave relation. In Section 6.2.2.7,
we gave the implementation details of such a controller.

For a global activation with op, the controller top asks the modules for the possible transitions in
the current states of their contracts (with the control input enq). Each module answers through
resp. Depending on the response of the components the controller translates the global op into
a sequence of activations of the modules; the first activation corresponds to an activation of a
module with its control input op(n), if the activated module requests a call to a function, top
engages a sequence of activations to model the behavior of function call and return.

The Controllers bottom1 and bottom2 The controllers inside the modules (bottom1 and
bottom2) know the explicit contracts of the threads and functions. They perform an on-the-
fly production of the contract of a module, from the contracts of its threads and functions.
They compute an asynchronous product, restricted by the effect of event-based communication
between the threads and functions.

The controllers bottom1 and bottom2 are thus in charge of providing the set of possible transi-
tions of the module in response to an activation with enq. They also translate an input op(n)
into the appropriate activation of a thread or function with input op. Finally, they route the
activations callfi and contfi to the appropriate component. Conversely, they copy the con-

134/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

. . .
a©while (true){

x++;
e3 . n o t i f y () ;
e4 . n o t i f y () ;
b©wait (e1) ;
i f (x < 42){

c©p . f (x) ;
d©p . g (x) ;

}
y=0;
while (y<5){

y++;
e©wait (e2) ;

}
}

ba
{}contg{e3;e4}

c d

{e2}op{}

e

{}op{e3;e4} {e1}op/fC{fd} {}contf/gC{gd}

{e1}op{}

{e2}op{e3;e4} {}contg{}

{e1}op{e3;e4}

Fig. 7.16: A SystemC thread and its corresponding non-deterministic control contract

trol outputs endfi and fiC of the threads and functions into the corresponding outputs of the
module. The details of their implementation were given in Section 6.2.2.4.

7.3.2.2 Automatic Extraction of Control Contracts from SystemC-TLM Code

To better understand the relation between 42 contracts and SystemC code, notice that contracts
can be automatically extracted from SystemC code. Figure 7.16 gives an example SystemC
thread, and the corresponding contract. The states of the contract correspond to points where
the SystemC code waits for events, or calls functions (the notation a© is added for the example,
it is not part of SystemC). A transition op corresponds to a piece of code that stops on a wait,
or on a function call. Events are translated into data dependencies. The tests on data produce
non-determinism. For instance, from state b©, there are three possible paths, depending on (x
< 42) and (y<5), leading to states b©, c© or e©.

A method for extracting 42 contracts automatically from SystemC code is under development;
it is based on the SystemC front-end Pinapa [MMMC05b]. Pinapa can also be used to automat-
ically generate the architecture of the 42 model from the architecture of the SystemC model,
and from an analysis of its code, to determine which events are waited for, and which functions
are called.

7.3.3 Typical Uses of the Approach

The system of Figure 7.17 is made of: a dma (Direct-Memory-Access) component, a cpu, a
memory, and a bus. The behavior is as follows: the embedded software running on the cpu
first writes something to the memory from address a1 to address a2; then it programs the dma
to perform a transfer of this portion of the memory to another place (say, between addresses
a3 and a4). The advantage of using a dma is that the cpu can then do something else while
the memory transfer is performed. When it is finished, the dma sends an interrupt to the cpu,
which can repeat the same behavior.

Tayeb BOUHADIBA Ph.D Thesis 135/186

7.3. Formalizing SystemC-TLM with 42 Components

cpu

dma

mem

B
U

Sinterrupt

Fig. 7.17: An example of hardware architecture for Systems-on-a-Chip

��������

ir
q

w
ri

te

w
ri

te

re
ad

read
write bus

dmacpu mem
copy

Fig. 7.18: SystemC/TLM model of the Figure 7.17

In SystemC/TLM, the model is that of Figure 7.18. The four hardware elements are compo-
nents, communicating via transactions. The communications from the cpu to the memory or
the dma, and the communications between the dma and the memory, are transactions through
the bus. The interrupt is a direct transaction from the dma to the cpu. When the cpu writes
to the memory, this is modeled as follows: the thread of the cpu calls the function write of the
bus, which itself calls the function write of the memory. The 42 model of Figure 7.19 is built
as explained in section 7.3.1. We do not give all the details.

In the sequel we present the benefits of establishing the correspondence between SystemC-TLM
and 42. First, we show how the contracts of 42 may be used to detect synchronization bugs
in existing SystemC-TLM models; 42 may also be used as a starting point of the design of
SystemC-TLM virtual platforms; finally, we show how models written in SystemC-TLM and
models written in 42 may be mixed and executed together.

7.3.3.1 Debugging Existing SystemC-TLM Code

Suppose we are provided with an already existing virtual prototype for debugging purposes.
The model is written in SystemC-TLM and is provided together with the software application
running on the cpu. The code of such a platform may be quite huge3 and hard to debug. The
current approaches to debugging SystemC models rely on simulation. This may be complex
because the debugging session deals with all the information of the components. Even if we only
want to check the synchronization effects between the embedded software and the rest of the
hardware components (e.g., the dma), we have to observe the full simulation through carefully
chosen breakpoints.

The 42-ization of the SystemC model may help detecting bugs related to synchronization be-
3The SystemC model of STI7200 chip contains millions LOCs

136/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

top

main

op

bus

cpu

mem

dma

Fig. 7.19: 42 model for the system of Figure 7.18

bottom

dbW

abW

dbR

abR

itcontIcontR contW op

callW contR contI contW op(n) enq

endW IC WC RC resp

adW

ddW

e

callW

endW RCWCIC

copy

dma

write

Fig. 7.20: 42 model of the dma component

tween components. First, we extract a detailed architecture and control contracts from the
SystemC code of the components as described in Section 7.3.2. For instance, for a real dma
model written in SystemC, we would extract a detailed architecture like that of Figure 7.20
(showing that the dma is made of a function write and a thread copy).

Extracting the Contracts of the Components Once the architecture of the system is
defined in 42, the contract of each function and thread of the HW components are extracted.
Figure 7.21 illustrates the contracts of the thread copy and the function write of the dma.
This dma is quite simple (only one transfer at a time, no suspension), but the SystemC code is
already 50 to 100 lines.

In the contract of the thread, non-determinism comes from the abstraction of data in condition-
als. State t3 corresponds to the state of the dma where it either terminates the whole transfer,
or starts the transfer of a new word.

In the contract of the function write, we see conditions on specific values of a data input (e.g.,
adW=08). The dma has three local registers at offsets 00, 04, 08, where the cpu should write
the start and end addresses of the memory transfer, and the transfer command, respectively.
The first two are data registers; the last one is a control register, in the sense that writing to

Tayeb BOUHADIBA Ph.D Thesis 137/186

7.3. Formalizing SystemC-TLM with 42 Components

t0 t1 t2

t3t4
w0

{e}op/RC{abR;dbR}{}op{}

{}contW /RC{abR;dbR}{}contI{}

{}contR/WC{abW ;dbW }

{}contW /IC{it}

{adW=08; ddW }callW /endW {e}

{adW=00; ddW }callW /endW {}
{adW=04; ddW }callW /endW {}

copy write

Fig. 7.21: 42 contracts of the dma component

it triggers some behavior. This is visible in the contract of the function write: if the input
address is 08, the transition produces the event e that triggers the thread copy to start the
transfer.

One may wonder how such a contract may be extracted automatically from a piece of SystemC
code, in particular the explicit values associated with the data inputs. In most of the cases, the
function is written as a switch statement with explicit constants for the cases, which makes the
extraction feasible. In other cases, we could try to exploit the information on which registers
are control ones, as specified in semi-formal interface definitions like IPXact [Con].

Simulation of the Contracts to Detect Synchronization Bugs Once the architecture
of the system and the component contracts are extracted, we simulate the system by executing
the contracts only. The simulation of contracts (in the 42 world) is lightweight comparing to the
actual SystemC code. Moreover, we can define some properties to be monitored. The properties
would be expressed formally in a quite elegant manner.

7.3.3.2 Using 42 Models as a Starting Point of the Design of SystemC Models

To design new SystemC-TLM platforms from scratch, 42 may be used as a starting point of the
design approach. Having in mind the virtual prototype we are interested in (e.g., the system of
Figure 7.17), we can design the 42 system corresponding to the future SystemC model:

• First, we identify the 42 components corresponding to the hardware blocs, and the po-
tential communication (i.e., the transactions) between them. At this point of the design
flow, we define the architecture of the system at the highest level of the hierarchy (e.g.,
Figure 7.19), where all the components have been connected by wires, and the required
control ports have been identified.

• Second, for each component, we design the set of threads that define its active behavior,
and the functions that are in charge of responding to incoming transactions. For the
threads and functions, we identify those in charge of emitting transactions (if any). Also,
we define the set of events that would be used to synchronize them.

• Finally, to each thread and function, we associate a control contract. As described pre-
viously, we simulate the system by executing contracts to check synchronization bugs. If
we are happy, we start developing the SystemC model. Notice, that the 42 system may
be used as input to some automatic tools in order to generate a skeleton of the SystemC
model.

138/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

Reusing Existing SystemC Components When developing systems in SystemC/TLM,
it is often the case that there exist models for usual components like the dma, the bus, and
the memory. The model of a memory is simple, but the model of a real dma can be quite
complex, because it can allow several transfers at the same time, and/or it can offer support for
suspending/resuming a transfer, etc. The developer has to build a system by connecting those
existing components, and then has to write embedded code to be executed by the cpu (with
native simulations, or by using an ISS). Debugging the software to check if it synchronizes with
the hardware components (e.g., the dma) may be quite complex. The correspondence we have
defined allows the following alternative approach:

• First, we extract the architecture and the contracts of the existing components (i.e., the
dma, the memory, the bus).

• Second, we write from scratch a non-deterministic contract for the CPU component (it
is in fact a contract of the CPU, plus the embedded software that will run on it); we
execute this CPU+SW contract together with the extracted contracts, in the 42 world;
we see only the synchronization effects, not the general complexity of the SystemC code.
Moreover, since the 42 model exposes clearly the control effects hidden in function calls,
the points where the system has to be observed to debug the synchronization effects are
already built in the model. The simulation speed can be quite good, also, because of the
simplicity of the model. If the simulation of the contracts reveals no bugs, we may start
developing the software code with respect to the contract we designed.

• Once we are happy with the contract of the cpu+sw, having played with it in the context
of a complete SoC, we start developing the real embedded software (that will be executed
by a SystemC component which is an instruction-set-simulator of the cpu). At the end,
we may still execute the set of 42 contracts, together with the actual SystemC code of the
cpu (which, itself, executes the embedded software). Executing SystemC code with the
contracts is described below. This is a way of checking, dynamically, that the embedded
software, together with the ISS, conforms to the abstract cpu+sw contract.

7.3.3.3 Mixing the Two Models

The way we established the correspondence between SystemC and 42 models, makes it easy
to mix both of the execution models. That is, making C++ code (written for SystemC-TLM
components) execute with 42 controllers, and executing 42 control contracts with the SystemC
scheduler. The details about how we can do that, and the benefits we get are described in the
sequel.

Execution of 42 Control Contracts with SystemC Scheduler For the development of
new components for SystemC-TLM platforms, engineers are used to write rough implementation
of the components under development to play with synchronization effects with the rest of the
platform. Such an implementation may contain some non-determinism encoded with rand
statements.

Instead of writing rough code of the components under development, we propose to implement
the functions and threads of the components as 42 contracts. The 42 control contracts are well
suited to describe the synchronization of components; replacing the rough implementation of
a component with a 42 contract would yield a better clarity of the intended behavior of the
component.

Encoding an automaton with a general programming language (e.g., C++) is not so hard.
Figure 7.22 is a possible encoding of the contract of the thread copy of Figure 7.21 in SystemC-
TLM (C++). The states of the contracts are encoded with a switch statement, the label of each

Tayeb BOUHADIBA Ph.D Thesis 139/186

7.3. Formalizing SystemC-TLM with 42 Components

int state= 0 ;
while (true){

switch (state){
case 0 : state = 1 ; break ;
case 1 : wait (e) ; p .R(abR , dbR) ; state = 2 ; break ;
case 2 : p .W(abW , dbW) ; state = 3 ; break ;
case 3 : i f (rand ()%2)

p .R(abR , dbR) ; state = 2 ; break ;
e l s e

p2 . I c (i t) ; state = 4 ; break ;
case 4 : state = 1 ; break ;
}

}

Fig. 7.22: An encoding of the contract of the thread copy of Figure 7.21 in SystemC-TLM

transition is translated into the corresponding SystemC code (i.e., function calls and waiting
for events).

Execution of SystemC Code with 42 Controllers The principles of executing the Sys-
temC code with 42 controllers are as follows. A SystemC module can be compiled separately,
yielding an object code with entry points for threads and functions. Each 42 component cor-
responding to a thread or function is a Java wrapper for the corresponding entry point in this
object code, connected to it via a JNI interface. This execution mode is similar to what we
described in Section 7.2.1.

We provide re-implementations of the event class, and of the wait and notify methods. Each
time a piece of SystemC code calls a wait (e), or a e.notify() this is intercepted by the
wrapper, so that the 42 world knows about the events exchanged. We also have to intercept
the function calls. This is done by re-implementing the class port of SystemC.

When a 42 component wrapping a SystemC thread or function is activated, the wrapper (i.e.
the component) lets the SystemC thread or function execute, until it reaches a wait statement
or a function call, which is intercepted by the wrapper. The wrapper will report on the activity
of the SystemC code, and yield the control to the 42 controller. The control will not return to
the SystemC code until the next activation of the wrapper.

Matching the State of the Code with the State of the Contract To execute the code
of a function or thread together with its corresponding 42 control contract, we had to solve
the general problem that appears when executing non-deterministic contracts together with
deterministic code: how to establish the correspondence between the states of the contracts,
and the control point in the actual execution? A solution to this intrinsic problem exists when
the implementation (here, the SystemC code) is written by somebody who knows the contract;
the programmer has to relate explicitly the code he/she writes to the states of the contract.
This can be done by using a special annotation function state. Figure 7.23 is an example
implementation of a contract, where the correspondence is made (the initial state does not need
to be specified with a state annotation).

The special function state we introduced is intercepted by the wrapper, which can inform the
42 controllers (that interpret contracts) about the current control point in the SystemC code.

If we cannot rely on these annotations, there is no way to extract the correspondence automat-
ically, even with sophisticated program analysis techniques. The points corresponding to states
are easy to discover, but we cannot decide which of the contract states they correspond to.

140/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 7. Hardware Simulation and Software Execution

while (true){
x++;
e3 . n o t i f y () ;
e4 . n o t i f y () ;
state (b) ;
wait (e1) ;
i f (x < 42){

state (c) ; p . f (x) ;
state (d) ; p . g (x) ;

}
y=0;
while (y<5){

y++; state (e) ;
wait (e2) ;

}
}

ba
{}contg{e3;e4}

c d

{e2}op{}

e

{}op{e3;e4} {e1}op/fC{fd} {}contf/gC{gd}

{e1}op{}

{e2}op{e3;e4} {}contg{}

{e1}op{e3;e4}

Fig. 7.23: Annotations in SystemC code to match the state of the contract

7.3.4 Comments

Extending the model with time and shared variables. In the example, we did not use
time, nor shared variables. However, the example is sufficient to illustrate the key points
of the correspondence with 42. We may generalize our correspondence scheme to allow
shared variables in a module, and timed models. This is a bit more complex than the
version presented here, but follows the same lines. The shared variables would be modeled
as components; the notion of time would be an additional decoration of the transitions in
a contract. The controller on the top of the hierarchy will play the role of a global time
keeper.

The complexity exposed by the 42 model is intrinsic to formal models. The corres-
pondence between SystemC/TLM and 42 may seem complex. In particular, there are
more ports and connections between components in the 42 version, and mimicking the
effect of the SystemC scheduler with two levels of controllers is more complex than flat-
tening the structure and relying on function calls, as in SystemC. However, we think 42
should not be blamed for that; it only makes explicit the complex synchronization patterns
of TLM components that are hidden in the SystemC execution engine. In other words,
the complexity of a component in its 42 version is a better representation of its intrinsic
complexity, than the SystemC/TLM version.

Reusing components requires detailed description. The 42 version exposes exactly the
information that a user should have in mind when trying to reuse a TLM component.
If we want to use SystemC/TLM modules in other contexts (42 or another one), we
need to expose functions offered to the other modules, including the control dependencies
they imply. Conversely, the two levels of controllers allow to make the effect of events
as locally hidden as it should be; this makes it possible to use TLM modules written in
other languages, with a local managing of internal synchronization, with events or another
mechanism.

False positive errors. The 42 contracts are some abstraction of the behavior of the threads
and functions of a SystemC component. This means that their execution exposes more
behaviors than the execution of the SystemC code would do. Hence, the execution of
contracts may detect some bugs which may be false-positives; that is, errors that will
not appear in the real SystemC model. Though, one can check if an error is indeed

Tayeb BOUHADIBA Ph.D Thesis 141/186

7.3. Formalizing SystemC-TLM with 42 Components

observable in the SystemC model: we just execute the SystemC code together with the
control contracts and reproduce the execution trace that led to the error.

On the formalization of TLM. There has been a lot of work on the formalization of Sys-
temC, as a parallel programming language. In [NH06, PS08], the approach is to write
formal models by hand, by reengineering a System-on-a-Chip description in SystemC;
this allows clever abstractions, but forbids the direct use of SystemC models. Another
idea is to extract formal models automatically from SystemC programs, so that tools like
model-checkers can be applied. In [HFG08], the formalization uses timed automata, with
a connection to Uppaal [LPY97]. [MMMC05a, MMC+08] describe several formalizations
and connections to SMV [Mcm92a], SPIN [Hol97], etc. However, all these formalizations
include some form of a global model for the SystemC scheduler, and the TLM principles in
SystemC are not formalized, in the sense that there is no clear definition of what a TLM
component is. Guidelines only exist for the developers of TL models.

142/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8

Related Work

Introduction (En) The 42 model tackles some notions in relation with the mod-
eling of heterogeneous embedded systems. In particular, it addresses the notions of
components, contracts, and MoCCs. A lot of work has been dedicated to the design
and modeling of embedded systems, components and specification languages. Some
of the related work were already presented in Chapter 2. This chapter presents other
approaches related to 42, not all of them are dedicated to embedded systems. We
cannot be exhaustive and give a complete list of the approaches, we present some of
them in order to discuss the choices we made for 42.

Contents

8.1 Component Models and MoCCs . 144

8.1.1 Ptolemy . 144

8.1.2 General Discussions on Design and Expressiveness of Models 147

8.1.3 Reactive Modules . 148

8.1.4 An Academic Approach to Software Components: Fractal 150

8.1.5 Coordination of Component Activities with Reo 152

8.2 Specification Languages and Contracts 153

8.2.1 Formal Specification of Behaviors . 153

8.2.2 Contracts for Hardware Components . 155

Introduction (Fr) 42 est une approche à composants pour la modélisation des
systèmes embarqués hétérogènes. Durant la présentation de cette approche, nous
avons vu que 42 s’intéresse particulièrement aux notions de composant, contrat et
de MoCC. Beaucoup de travaux ont été dédiés à la conception et à la modélisation
des systèmes embarqués, ainsi qu’au développement de modèles à composants et de
langages de spécifications. Dans le chapitre 2 nous avons abordé quelques approches
existantes. Les travaux connexes à 42 sont nombreux. Nous ne pouvons pas être
exhaustif et citer toutes les approches. Dans le chapitre actuel, nous essayons de
compléter la liste des travaux connexes par quelques approches afin de discuter les
choix que nous avons adopté pour 42. Ces approches ne sont pas toutes dédiées aux
systèmes embarqués.

143

8.1. Component Models and MoCCs

composite actor

hierarchical abstraction

actor
port

external port

Fig. 8.1: The design of a composite actor in Ptolemy

8.1 Component Models and MoCCs

This section describes some component-based modeling approaches and comments on their
relation with 42. We dedicate a significant part of this section to the description of Ptolemy,
since 42 is mostly inspired from this approach (Section 8.1.1). Then, in Section 8.1.2 we discuss
the expressiveness and design choices of 42 regarding to modeling approaches of embedded
systems in general, and the Ptolemy approach in particular. Sections 8.1.3, 8.1.4, 8.1.5 are
dedicated to reactive modules, Fractal and Reo respectively.

8.1.1 Ptolemy

Ptolemy [EJL+03] is a component-based model designed for the purpose of modeling hetero-
geneous embedded systems. It is equipped with a graphical simulation tool that allows for
combining several MoCCs hierarchically.

Figure 8.1 1 illustrates the modeling of a system in Ptolemy. The basic blocks (Ramp, Const,
etc.) to build a system are actors (in the sense of [HBS73]) which have input and output ports.
Each system is associated with a MoCC (a MoCC is called a domain) and is implemented by
a director. The assembly of Figure 8.1 is associated with the SR (Synchronous Reactive)
director. The role of a director is to manage the scheduling of actors.

Actors are connected with relations (the wires), through which they communicate tokens. The
set of relations between actors define the architecture of the system. Ptolemy is hierarchic, a
set of connected actors and a director may be encapsulated in order to form a composite actor.
The composite actor also exposes new input and output ports. The component Sinewave of
the figure is the encapsulation of the assembly.

Actors An actor in Ptolemy is an entity having ports from which it may consume and produce
tokens. A port may be an input port, an output port, or an input/output port. An actor reacts
when the director fires (activates) it.

1The figure is borrowed from [LZ07]

144/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8. Related Work

Each port may be associated with some parameters such as the multiplicity, and the consump-
tion (resp., production) rate. A port allows one relation to be connected (multiplicity equals to
one) to it, while a multi-port allows more than one relation. The rate parameter defines how
much tokens would be consumed or produced at each firing.

To be used by a director, an actor should implement some methods related to its initialization,
execution, and finalization. We focus on the executable interface that an actor must implement.
This interface includes the following methods:

prefire() is called prior to the method fire(). It checks whether the preconditions of the
firing of the actor are satisfied or not. For instance, it may return false, if some of the
inputs of the actor do not have enough tokens.

fire() may be called if prefire() returns true. The effect of such a method is to compute
the output tokens depending on the input tokens, and the internal state of the actor. It
should not modify the state of the actor.

postfire() is called to modify the internal state of the actor. To this end, it may read the input
tokens.

An actor is called domain-polymorphic when it implements these methods as they were de-
scribed; in addition, it guarantees them to be finite. A domain-polymorphic actors may be used
in an assembly, whatever the MoCC implemented by the director.

However, some actors may not guarantee such a behavior, thus they may be used just with
particular MoCCs; they are domain-specific actors. For instance, some actors may not guarantee
the state to be unchanged when the fire() method is called; others may not guarantee the
methods to be finite.

Directors Ptolemy provide several directors organized in a catalogue. In the sequel we present
some of them to expose some details about the possible interactions between an actor an the
directors:

Process Network This domain is an implementation of the Khan Process Network [Kah74,
KB77]. Within this domain [Goe98], each actor is associated with a thread which con-
tinuously calls the methods prefire(), fire(), and postfire() of the actor. Actors
execute concurrently, reading from an input is made blocking with the PN domain.

Data Flow In this domain, actors are not associated with threads, they are fired directly by
the director depending on a scheduling policy. The scheduling may be computed statically
as it is done in the Synchronous Data Flow domain which assumes fixed consumption/pro-
duction rates. In the Dynamic Data Flow domain [Zho05], the scheduling is computed at
the beginning of each iteration because the rates may change from an iteration to another.

Continuous Time This domain deals with continuous time [Liu98], where the director man-
ages a global notion of time. It advances the time by fixed steps, small enough to approx-
imate the continuous behavior. The actors are fired at each step.

Discrete Events In this domain [Lee99], the tokens communicated between components are
associated with a time stamp; and are maintained in a queue. The director retrieves the
events from the queue starting from the oldest ones, and fires the actor to which these
tokens are intended. During the firing, the actor may compute some tokens to which it
associates a time stamp. Actors have also the possibility to request a firing at a given
point in time.

Tayeb BOUHADIBA Ph.D Thesis 145/186

8.1. Component Models and MoCCs

A director may impose on the actors to be polymorphic. That is, they should implement the
executable interface strictly as it was described previously. Others may impose less constrained
implementation but still they may use polymorphic actors.

Through the interface of the composite actor, the encapsulated director exposes the executable
interface. Depending on its inner director, a composite actor may or may not be domain-
polymorphic. Thus it may not be used in any domain. This raises the issue of MoCCs compat-
ibility when combining them.

Combining MoCCs In Ptolemy, directors are combined hierarchically to model heterogene-
ity. Some MoCCs may be combined without problem, and others are incompatible. The in-
compatibility raises when the inner director of a composite actor may not expose the required
executable interface required by the domain in which the composite actor is used. Also, in-
compatibility raises because the notion of time. Directors may deal with the notion of time
differently, which may cause some issues related to time resolution when combing them.

Comments

Predefined Vs Programmable MoCCs Ptolemy provides an extensible catalog of prede-
fined directors, each one implementing a MoCC. The equivalent notion of directors in 42
is that of controllers. Our point of view is that, if we need to model all possible types
of structured interactions, we should not rely on a catalogue of predefined interactions,
but we should be able to program new interactions in the model. In 42 the MoCCs are
implemented by controllers as small programs that express several types of concurrency
and structured interactions in terms of basic primitives.

Allowing programmable MoCCs has the benefit of clearly describing the concurrency
between components. The operational description of the MoCC has something to do with
that. Moreover, the way controllers are written in 42 makes it explicit the exchange of
information between components and the controller. Such information is required by the
controller to structure component interactions. This is something which is not often clear
in Ptolemy.

The most relevant work around MoCCs is the family of TAG semantics [BCCSV05]. In
some sense, 42 is an intermediate point of view, between the way MoCCs are programmed
but not fully formalized in Ptolemy, and the way they are formalized but far from pro-
gramming purposes in the TAG semantics.

Expressing parallelism In Ptolemy, components may execute in parallel. For instance, in the
KPN MoCC as implemented by Ptolemy, components are run as threads with blocking
read from the inputs. In 42, we did not provide a semantics of parallel activation of
components. The controller activates the components in sequence. When we need to
express parallelism, we rely on interleaving their activations. This provides a better means
for reasoning than parallel threads would provide.

Components and Contracts The fire() method of a Ptolemy actor is the unique entry-
point to make the actor perform some computation. Components in 42 may be associated
with several entry-points (i.e., control inputs) through which they may be activated. At
each activation Ptolemy actors may require a certain amount of input tokens on the same
input port, while 42 components use one value from each input at each activation. This
also holds for output ports.

The catalogue of Ptolemy actors may be extended with new actors. For an actor to
be domain-polymorphic, its implementation of the executable interface (i.e., prefire,

146/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8. Related Work

fire, postfire methods) should follow the description given above. This constitute an
implicit contract for a domain-polymorphic actor. Other contracts are derived by relaxing
some of the constraints [GBA+09]. The usability of an actor within a MoCC relies on
such implicit contracts. With 42, beside implicit contracts, components may be described
with explicit ones. Even if a component is designed for a particular MoCC, it may be used
with another MoCC as long as the controller is consistent with the component contract.

8.1.2 General Discussions on Design and Expressiveness of Models

This section discusses some points related to the expressiveness and design choices of 42 regard-
ing to some existing modeling approaches for embedded systems.

Describing various MoCCs within the same model The design of embedded systems in-
volves some expertise from various domains. In each domain there exist some well defined
models that fit the requirements. We think that a modeling framework for embedded sys-
tems should be able to combine such domain specific models in order to provide a global
model for an embedded system. This means that a modeling framework should be able
to describe various MoCCs within the same formalism.

When the modeling framework is associated with a particular MoCC, as it would be the
case for synchronous languages [HCRP91, BG92, GG87], it is often the case that the
designer uses some languages features to describe other concurrency models [HB02].

As in Ptolemy, 42 belongs to the family of models where the MoCC is part of the design
not a built-in notion of the language. Other approaches follow the same point of view, see
for instance ModHel’X [HB08], Rialto [BL02], etc.

Architecture Description Languages and MoCCs In 42, the ADL has a dataflow style.
Since the connections have no meaning until the MoCC is defined as a controller, this only
means that we express data dependencies explicitly in the ADL, and control aspects in
the MoCC. For 42, we chose only one style of architecture description language, because
we want a simple formal semantics.

In Ptolemy, the notion of MoCC is somewhat extreme: given a picture made of boxes and
arrows, it is possible to consider it, either as a dataflow diagram, or as an automaton,
just by changing MoCCs. This means that even the interpretation of the architecture-
description (ADL) part is left to the MoCC: the ADL, used to group components at a
given level of the hierarchy, may be dataflow (in which case the components are implicitly
in parallel), or given as an explicit automaton (in which case the components execute
sequentially), or anything else that could be expressed in a new MoCC. This is a key
point in Ptolemy for building the family of modal models [LZ05], in which an automaton
is used to control several activities associated with its states, and described with other
MoCCs.

Oriented connections vs non-oriented ones 42 adopts a dataflow style architecture de-
scription language, with oriented connections. In Ptolemy, in the modeling tool Spice [SPI]
for electronic circuits, or in the bond graph formalism [Tho75], this is not necessarily the
case, allowing the modeling of various physical behaviors. With 42 we concentrate on
discrete computer systems.

Even for modeling computer behaviors, some models choose symmetric synchronization
primitives like rendez-vous, thus relying on non-oriented connections (see for instance the
Architectural Interaction Diagrams, or AIDs [RC03])

Tayeb BOUHADIBA Ph.D Thesis 147/186

8.1. Component Models and MoCCs

Strict Hierarchy A basic component, or a composed component built as an assembly of other
components, are perfectly undistinguishable in any 42 context. This is true also for
Ptolemy, Fractal [BCL+06a], and to some extent SystemC-TLM [Ghe06]. Early version
of the component model BIP [BBS06] did not have a dedicated notion of encapsulation
that could hide the details of an assembly and allow to consider it as a basic component,
but this was fixed in recent work.

In some formalisms developed in the architecture description languages community, there
is also a clear distinction between the set of elementary components, and the object
obtained by combining them with an ADL. However, the focus is more on component
interactions [AAAG+05, SDK+95a, SDK+95b].

We consider this strict hierarchy property to be a key property of component-based frame-
works, because it allows to forget as much as possible about the details of the components,
as soon as possible. Moreover, the hierarchy is essential for the modeling of heterogeneity,
since we do not allow to use several MoCCs at the same level.

Continuous vs discrete models 42 is limited to the discrete case. When we need to in-
clude the physical environment in a model, we can consider components that are non-
deterministic discretized versions of some continuous models, but we do not study how
to mix continuous and discrete MoCCs. Ptolemy addresses this problem. Moreover, it
allows the combination of discrete and continuous models in the same system description,
which is really useful for embedded systems that may include digital and analog parts.

Other proposals, like VHDL-AMS [vhd99] or SystemC-AMS [VPB+08] concern the mod-
eling of mixed digital-analog systems, but they do not address the component aspects.
Moreover, they concentrate on the collaboration between a numerical solver and a discrete
simulation engine, from a quite operational point of view, without trying to define the
semantics of this heterogeneous combination. Similarly, Matlab/Simulink designs can mix
continuous and discrete parts, but the notion of a component is not dealt with specifically.
In both cases, if the collaboration between a numerical solver and a discrete simulation
engine involves a fixed-step sampling of the continuous part, the result can be expressed
easily in a discrete framework, where one of the components is a discretized version of a
continuous object; this is what we provide with 42. Nevertheless, there is a need for mixed
discrete/continuous models, but the problem is the semantics, not the implementation.

8.1.3 Modeling Synchronous/Asynchronous Systems with Reactive Modules

Reactive modules [AH99] is a formal approach to modeling discrete concurrent systems. This
approach aims at modeling synchronous and asynchronous systems in the same formalism. The
goal is to allow for hardware/software codesign and verification.

The modeling language proposed by this approach allows to construct models hierarchically
by composing non-deterministic modules in parallel. Modules may be seen as components and
have a clear separation between the internal state and the interface variables.

The Modules Figure 8.2 illustrates a reactive module (named latch). Such a module would
be used as a basic block for describing hierarchical systems. A module consists of a collection
of variables, and of set of atoms that modify the values of the variables in discrete rounds.

The Variables The variables are organized in three categories: external variables (similar
to inputs) are modified by the environment (e.g., set, reset); interface variables (similar to
outputs) are modified by the module (e.g, out); private variables are modified by the module

148/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8. Related Work

module l a t c h
external set , r e s e t : B
interface out : B
p r i v a t e state : B;
atom out reads state

update
| true → out ’ := state ;

atom state awaits set , r e s e t , out
in i t update
| set ’ = 0 ∧ r e s e t = 0 → state ’ := out ’
| set ’ = 1 → state ’ := 1
| r e s e t ’ = 1 → state ’ := 0

Fig. 8.2: A reactive module modeling a synchronous latch

and are not observable by the environment (e.g., state). In a reactive module, the value of a
variable at the beginning of a round is referred to by unprimed identifier (e.g., reset); and to
its value at the end of the round with primed identifier (e.g., set’).

The Atoms An atom declares a set of guarded-actions that are executed during the initial-
ization round (init keyword), or during the update round (update keyword), or both (init
update). During a round, if not stated explicitly, at most one action with a satisfied guard of an
atom is executed. If more than one action is possible, a non-deterministic choice is performed.

When several modules are connected together (connection is performed by renaming the vari-
ables of the modules), all the atoms are run in parallel to execute one of their actions. However,
there may be an order in which actions of the atoms are executed. For instance, the expression
atom state awaits set, reset, out declares an atom that modify the variable state, and
should be executed after the variables set, reset, out have been given new values. This
creates a order of execution between this atom and the other atom of the module, because the
latter is in charge of updating the value of the variable out.

Modeling Heterogeneity with Reactive Modules In reactive modules, the module is in
charge of defining whether it behaves as a synchronous module or as an asynchronous one. An
asynchronous module is a module that may leave the values of some of its interface variables
unchanged during a round. This is possible because an atom may declare some empty action
with a guard true. Hence, it is possible to take this action at any round. If a module is not
asynchronous, it is synchronous.

In reactive modules, it is possible to apply some operators on a synchronous (resp., asyn-
chronous) module in order to force it to behave as an asynchronous (resp., synchronous) one.
For instance, consider the expression next Y for P where next is an operator, Y is the set
of interface variables, P is an asynchronous process. The operator next forces the process to
execute in the same round, as many actions as possible to update the values of all interface
variables. Thus, such a process would behave as a synchronous one following the definition of
synchrony of reactive modules.

comments

Non-determinism A modeling framework for embedded systems should allow for describing
non-deterministic behaviors. Allowing for non-determinism means that components may
be described with an abstract view of their behavior. This because some components may
not be known, or provided as a specification only.

Tayeb BOUHADIBA Ph.D Thesis 149/186

8.1. Component Models and MoCCs

Reactive modules and 42 allows for describing non-deterministic behaviors. At a given
round, a reactive module may have more than one actions to perform. Similarly, a 42
component may be non deterministic. Moreover, we allow controllers to embed some
non-determinism when activating components. See for instance, contract interpreters in
Section 6.2.2

Modeling heterogeneity Modeling heterogeneity with reactive modules relies on adapting
the behavior of a component so that it fits in the desired computational model. Such an
adaptation yields a new module. We gave an example of how to make an asynchronous
module behave as a synchronous one. In 42, as in Ptolemy, we model heterogeneity by
putting distinct MoCCs in a hierarchy. The concurrency model is implemented by the
controllers, which allows to use components within a particular MoCC even if they were
not designed for it.

Separation of implementation and specification In reactive modules, an atom declara-
tion describes its data dependencies. Based on these information, the modules are sched-
uled in order to expose the expected behavior. In 42, this would be something related to
the specification part. The contract of a component describes its data dependencies. In
42, the emphasis is put on the encapsulation aspect which requires specification, it is not
the case with reactive modules.

8.1.4 An Academic Approach to Software Components: Fractal

Fractal [BCL+06a] is a component-based model designed for the development of systems and
applications ranging from operating systems to graphical interfaces. It makes a strict separation
between the interface of a component and its implementation. The communication between
components is well detailed in order to make the software architecture explicit.

Fractal is not tied to a specific language, many frameworks implementing Fractal specifications
were designed. Beside Julia [BCL+06b], its reference Java implementation, many frameworks
exist such as Think [FSLM02], a C-implementation for operating systems development, Frac-
Net [SPED06], a .NET implementation; etc.

Hence, Fractal is provided as a specification that defines the notion of components, and their
composition. It also defines the set of non-functional interfaces a component should implement,
in order to be used in framework based on the Fractal specifications. Such a framework would
allow instantiating systems, and has many features related to components reconfiguration (at
launch-time or at runtime); component introspection, life cycle management, etc.

Components Figure 8.3 is a system designed with Fractal. The system ClientServer is
composed of the component Client and the component Server. Fractal is hierarchic, the
ClientServer is also a component and may be used in other designs.

A Fractal component implements two types of interfaces: functional and control interfaces.

• A functional interface is an interface that corresponds to a provided or required function-
ality of a component. The component client has a provided interface m of type M, and a
required one s of type S.

• A control interface (e.g., C, BC, etc.) defines a set of methods related to the non-functional
aspect of a component such as introspection, reconfiguration, life cycle management, etc.
For instance, BC (Binding-controller) is an interface that allows to connect a functional
interface of a component to a functional interface of another component.

150/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8. Related Work

BCC CC

C BC C BC

Client Server

ClientServer

m,M

s,S

s,Sm,M

membrane

content

client interfaceserver interface

control interface

Fig. 8.3: The design of a Client/Server system in Fractal

A Fractal component is composed of two parts, a content and a membrane (also called a con-
troller). The content part defines its functional behavior, it describes the implementation of the
component. The membrane embodies the behavior of the component, its consists of the set of
control interfaces the component may have.

Assembling Components Fractal components are connected with bindings. A binding may
connect a required functional interface of a component to a provided functional interface of
another component. For instance, the required interface s of the Client is connected to the
provided interface s of the Server. A binding may also connect a provided (resp., required)
interface of the encapsulating component to the provided (resp., required) interface of an inner
component. The connection between the interface of ClientServer and the interface of Client
is an example.

The bindings make the architecture explicit. They describe how the control and data flows pass
through the components. For instance, when a method is called through the interface of the
component ClientServer, the call is transported to the interface of the component Client.
On its turn, the Client component may call a method through the provided interface of the
component Server.

In Fractal, there is no controller to define the activation of components. Components commu-
nicate through function calls.

Comments

Components interaction Fractal components communicate via service calls. The control
flow together with the parameters are passed to the callee at the moment of the call. In
42, it is the responsibility of the controller to manage the activation of components and
their communication.

Controllers Vs Control interface In Fractal a control interface (i.e., the membrane) wraps
each component. The membrane intercepts the service calls at the border of the composite
component and translates it into a call to a subcomponent service. The membrane of a
composite component corresponds to the controller of 42 components. However, a con-
troller is global to a set of components, while the membrane may be local to a component.

Tayeb BOUHADIBA Ph.D Thesis 151/186

8.1. Component Models and MoCCs

The membrane manages some non-functional aspects such as: life-cycle management,
reconfiguration, introspection, etc. The controllers in 42 are, in general, concerned with
the MoCC. Still, they may manage some non-functional aspects such as introspection (see
Section 6.2.2).

Runtime configuration Runtime configuration is an important feature of software compo-
nent models. Fractal supports such a feature, allowing for stopping components at runtime
and replacing them by other ones. We think that runtime configuration is not so impor-
tant for embedded systems, in particular for critical systems. Imagine what would happen
if we replace part of the software during the flight of an air plane. Moreover, the main con-
cern of 42 is modeling, while Fractal is dedicated to component-based design of complex
systems.

8.1.5 Coordination of Component Activities with Reo

The approach adopted by Reo [Arb04] is based on the separation between the computation
performed by individual components and the communication that holds between them. While
the implementation of components is left to some programming languages, the emphasis with
Reo is on the connection and the communication between them.

Given a set of components of a system, Reo aims at filling the gap when interfacing them.
Reo allows to describe the coordination between the components by means of connectors. The
connectors form the required glue code to make the entities of the system interact in a desirable
manner; because the correctness of individual entities does not imply the correctness of their
composition.

Components Any active entity that performs computation is considered as a component.
For instance, threads, modules, processes, etc., are components. The synchronizations and
communications that happen inside a component are irrelevant for Reo. What is of interest is
the inter-components communication that takes place through channels.

Components are supposed to execute in potentially distinct logical/physical devices. Thus, Reo
may be used to describe the coordination between several threads running on a single processor,
or large scale applications distributed over a network of computers. For instance, in [MA07]
web-services are modeled by constraint automata [BSAR06], while Reo is used to describe their
coordination.

Connectors Reo connectors consist of a set of communication channels. Each channel has
two directed ends, and exposes a simple communication pattern like synchronous, asynchronous,
etc., communication. A set of channels assembled in a particular topology form a particular
connector. This connector is then used to connect components (see Figure 8.4), and describes
complex communication patterns between them.

Related Approaches Reo belongs to the family of coordination languages first introduced
by the coordination language Linda [CG89, ACG86]. Several approaches to coordination
languages have been defined. Existing coordination models and languages where described
in [PA98]; the authors argue that these models are mainly classified into two classes: data-
driven models (e.g., Linda, Laura [Tol96], Sonia [Ban96], etc.) and control-driven models (e.g.,
Darwin/Regis [MDK94], Rapide [SDK+95a], etc.).

152/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8. Related Work

connector

channel component

Fig. 8.4: Components connected with Reo connectors

8.1.5.1 Comments

Do connections express some behavior? Reo and the similar approaches focus on the con-
nection between components. Connectors express complex communication patterns be-
tween components and are built by combining other connectors. Basic connectors de-
scribe simple communication patterns like point-to-point communication, broadcasting,
synchronous/asynchronous communication, etc. Reo connectors are associated with some
behavior and memory. A connector may memorize a data, duplicate it, or even lose it.

In 42, the connections only express that some information may flow from one component
to another. There is no synchronization nor memory attached to the connections, a priori.
The controller may decide to manage some temporary memory corresponding to the wires
in order to describe complex communication patterns, but this does not mean that the
wire behaves as memory for the connected components, since the lifetime of this memory
is limited to the macro-step. In 42, the need for complex communications patterns usually
leads to the following solution: if a communication pattern has a complex behavior, it is
a component, not a connection.

8.2 Specification Languages and Contracts

8.2.1 Formal Specification of Behaviors

The work around specification languages is motivated by the fact that component-based devel-
opment should rely on formal description of components. Formal approaches are used in order
to develop techniques and tools that would help designing correct component-based systems.

The ancestors of formal specification languages are Process Algebra [Mil80, Hoa78], first intro-
duced for the modeling of concurrent systems. Process algebra allow for describing the behavior
of processes and provide several constructs for describing their sequential/parallel composition,
communication, synchronization, etc.

In the area of component-based development, many specification languages where designed [PV02,
VVR06, FS02] and where successfully ported to existing component-based models such in Frac-
tal [BCL+06a], and SOFA [PV02].

8.2.1.1 Interface Automata

An interface automaton [dAH01] is an automaton-based description of a component. It is an
automaton whose transitions are labeled with an action. The action may be an input action,
output action, or an internal action. At each state, it expresses the assumptions about the
environment in terms of the accepted inputs; and the guarantees about the behavior of the
component in terms of output actions.

Tayeb BOUHADIBA Ph.D Thesis 153/186

8.2. Specification Languages and Contracts

Interface automata are syntactically similar to I/O automata [LT87], but they impose some
assumptions on the behavior of the environment. An interface automaton describes the behavior
of a component only under environments satisfying the assumptions.

Composing Interface Automata In interface automata, communication between compo-
nents is assumed to be directed and point-to-point. Composing two components that may
coincide in some inputs and outputs (we will refer to these inputs and outputs as shared ac-
tions) yield a new component. The behavior of the new component would be described by an
interface automaton computed with respect to the interface automata of its constituents.

The composition operator is simply an asynchronous product of automata with synchronizations
on the shared actions. That is, at a given state of the product:

• actions of the constituents are interleaved if they are not shared.

• constituents perform one step synchronously if their transition is labeled with the same
action with distinct directions (input/output).

Compatibility Issues When composing interfaces, some illegal states may appear in the
product of interfaces. Illegal states are states where one component outputs a shared action
while the other does not accept it. That is, they do not synchronize on shared actions at such
a state.

However, the composition of interface automata follows an optimistic approach. Illegal states
in an open system does not imply that the composed components are incompatible, because
there may be an environment in which these states are made unreachable. Illegal states in a
closed system are synonym of incompatibility.

Refinement Interface automata also tackles the refinement relation between components.
An interface I ′ refines the interface I guarantees that I ′ may be used in whatever assembly
I is used. Refinement acts contravariantly on input assumptions and output guarantees. The
interface I ′ should have more relaxed (resp., restricted) assumptions on the environment (resp.,
guarantees).

8.2.1.2 Modal Specifications

Modal specifications [Lar90] describe the behavior of processes by means of labeled transition
systems. The transitions are labeled with an action of the process and associated with a modal-
ity (must or may). Modalities impose restrictions on the transitions of possible implementation
by telling which transitions are necessary (must) and which are admissible (may). Modal speci-
fications extend Process Algebra in the sense that specifications may be combined using process
constructs.

A modal specification may be associated with several implementations. A must transition is
available in every component that implements the modal specification; while a may transition
needs to be. Implementations are prefix-closed languages or deterministic automata.

Modal specifications admit refinements; a specification refines another if it preserves the required
transitions, while it may restrict the admissible ones. The refinement process of a specification
allows for getting the final implementation gradually.

Beside the refinement relation, modal interfaces admit composition, conjunction, and quotient.

154/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 8. Related Work

8.2.1.3 Modal Interface

Modal interface [RBB+09] are a combination of modal specifications and interface automata.
This approach extends modal specifications by typing the actions with input and output labels,
à la interface automata. It then benefits from the properties of both of the two approaches
described above.

8.2.1.4 Comments

Expressing modalities An action labeling a transition of a modal specification corresponds
to a piece of code a 42 component would execute during an activation. Hence, every
transition in a 42 contract corresponds to an action of a modal specification. However,
there are no modalities in 42 contracts. If a contract declares that a transition is possible,
then a component consistent with that contract must implement such a transition.

Expressing the type of inputs/outputs Interface automata allow for expressing the se-
quences of inputs/outputs of a component. Depending on the modeling purpose, the
inputs and outputs may be function calls, events, etc. In 42, the separation between con-
trol and data and the way they are described in the contracts make a clear description of
what is being modeled.

Refinement Refinement is dealt with in interface automata together with modal specifications.
We think that a specification language should provide a refinement relation, so that it
allows for gradually obtaining an implementation for a given specification. However, the
only notion of refinement relation defined for 42 is the consistency relation between a
component and its contract in Section 5.3.1.

Compatibility The compatibility between components is given a clear semantics in interface
automata. This because the concurrency model between components is given a fixed
definition. It is an asynchronous model with synchronization in shared actions. In 42,
this is not the case. We allow for the description of several MoCCs. We would describe
several notions of compatibility between components, each one related to a particular
MoCC.

8.2.2 Contracts for Hardware Components: The Don’t Care Conditions

For hardware components, don’t care conditions [BBS98, Dev91, DM93, DMN90] are some
specifications associated with parts of a logic circuit. Don’t care conditions arise during the
design phase. They play an important role in specification and optimization of the logic circuit
being designed.

Given a logic component with inputs and outputs, the designer may declare that he does not care
about a provided output under a certain condition. For instance, the expression o = - in VHDL
allows for declaring that the value assigned to o is not of interest. Moreover, the designer is
able to declare that particular configurations of inputs never occur. Such declarations constitute
explicit specifications from which implicit ones may be derived.

Specifying don’t care conditions depends on the abstraction level used to describe the circuit.
By declaring don’t care conditions, the designer allows for the synthesis of an optimized logic
circuit where the network of logic gates related to don’t cares has been removed.

The 42 contracts may also be used in order to express don’t care conditions for logic components.
However, we would used these contracts only for specifications. The aim of 42 is modeling, and
is not tied to a particular design approach where sophisticated techniques like optimizations are
needed.

Tayeb BOUHADIBA Ph.D Thesis 155/186

8.2. Specification Languages and Contracts

156/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 9

A Tool for the 42 Component
Model

Introduction (En) The 42 model that has been described so far is not associated
with any particular language. This chapter presents our prototype tool implemented
in Java. The tool has been used to enable the simulation of the various examples
presented in this thesis. The purpose of such a presentation is to expose the basic
features a 42-based tool would have. We first present how basic components are
written and how we describe the architecture of systems in order to design com-
posed components. Then we present the instantiation mechanism together with the
simulation engine and its graphical interface.

Contents

9.1 Writing Components and Architectures 158

9.1.1 Basic Components . 158

9.1.2 Composed Components . 160

9.1.3 Controllers . 160

9.1.4 Contracts . 161

9.2 An Execution Engine to Perform Simulations 161

9.2.1 Instantiation of Systems . 162

9.2.2 Simulation . 163

9.2.3 A Graphical Interface . 163

Introduction (Fr) Le modèle à composants 42 est une approche indépendante de
tout langage de programmation ou de formalisme pour la modélisation des systèmes
embarqués. Dans ce chapitre, nous présentons un outil que nous avons développé en
Java qui implémente les différentes notions du modèle 42. Cet outil a été utilisé pour
la description est la simulation des différents exemples présentés dans cette thèse.
Le but de cette présentation est de montrer les caractéristiques qu’un outil pour 42
devrait avoir. Dans un premier temps, nous présentons l’écriture des composants
de base. Ensuite, nous verrons comment décrire des architectures en assemblant
des composants pour définir de nouveaux composants. Enfin, nous présenterons
le processus d’instantiation et de simulation de systèmes, ainsi qu’une interface
graphique pour décrire des architectures.

157

9.1. Writing Components and Architectures

controller1

prod

fifo

cons

op

op

report

op

report reqr

dr
gr

dw

gw

reqw

opG

main

Fig. 9.1: The model of the producer consumer system

9.1 Writing Components and Architectures

In this section we are about to present how to design systems. We describe how components
are designed, and how they are assembled to form new components by means of the exam-
ple of Figure 9.1. The example is the model of the producer consumer system described in
Section 4.2.3. The same example was used in Section 6.2.2 to introduce controllers acting as
contract interpreters.

The tool maintains a repository of already created components that may be used during the
design of a new system. Each component is associated with at least two files. A file describing its
interface, and a file describing its implementation (how it is designed). In the current version of
the tool, these description files, together with the contracts are written in XML. In this chapter
we describe each of these files for each type of component (basic/composed), by means of a
simple syntax avoiding XML markups.

9.1.1 Basic Components

Figure 9.2 is the implementation of the basic component PROD of Figure 9.1 in our prototype tool.
The implementation of basic components has to extend the abstract class BasicComponent42.
This class implements some methods that are required when a component is instantiated. In
particular, the methods that are related with the initialization of the ports of the basic compo-
nent.

The class implementing a component (Figure 9.2) includes the declaration of the set of its
internal variables, its input/output data ports, and its control ports. The input control ports
of the component are implemented as methods (e.g., op()).

When the component is activated with an input control port, it is usually required that the
corresponding method executes only part if its code. In the example, this is achieved by using
a switch statement. A more elegant manner would be the use of some yielding primitives
that the component would call to terminate the execution step.

9.1.1.1 Interface Description

The classes implementing the behavior of basic components are compiled into byte-code classes
that are instantiated when the component is used somewhere. To facilitate the use of such
classes, a component is also equipped with a description of its interface. Figure 9.3 illustrates
the interface description file of the component prod of Figure 9.1. It consists in the description
of the set of input/output data/control ports of the component; i.e., their name, their data
type, etc.

158/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 9. A Tool for the 42 Component Model

public class PROD extends BasicComponent42 {
// i n t e r n a l v a r i a b l e s
private int s t a t e ;
// por t d e c l a r a t i o n
private ID <Boolean> g w ;
private OD <Integer > dw;
. . .

// Constructors , i n i t i a l i z i n g ports , e t c .
. . .
// Input c o n t r o l p o r t s
public void op (){

switch (s t a t e){
case 0 :

req w . wr i t e (new Boolean (true)) ;
s t a t e =1;
break ;

case 1 :
Boolean g = g w . read () ;
i f (g . booleanValue ()) s t a t e =2;
else s t a t e = 0 ;
break ;

case 2 :
dw . wr i t e (new I n t e g e r (4 2)) ;
s t a t e =0;
break ;

} } }

Fig. 9.2: The implementation of the component prod in Java

interface PROD ITF{
port {name : op , data type : bool , type : i c }
port {name : g w , data type : bool , type : id }
port {name : d w , data type : int , type : id }
port {name : req w , data type : bool , type : od}
port {name : report , data type : {ok , ko } , type : oc}

}

Fig. 9.3: Interface description file of the component prod

Tayeb BOUHADIBA Ph.D Thesis 159/186

9.1. Writing Components and Architectures

component PROD{
interface : PROD ITF
contract : PROD−CT
basic { javaclass : PROD}
}

Fig. 9.4: Implementation description file of the component prod

interface MAIN ITF{
port {name : opG , data type : bool , type : i c }

}

Fig. 9.5: Interface description file of the component main

9.1.1.2 Implementation Description

As we said previously a component should be associated with a file describing how it is designed.
For instance, Figure 9.4 illustrates the implementation file associated with the component prod.
The implementation file associated with a basic component refers to the interface of the com-
ponent, the Java class defining its behavior, and potentially to the contract associated with the
component.

9.1.2 Composed Components

Composed components are designed as assemblies of existing components that are picked from
the repository. The Component main of Figure 9.1 is made of the three components. What we
need to know about a composed component is its subcomponents, how they are connected, and
which controller manges their execution. All of these information are in the implementation
file.

9.1.2.1 Interface Description

Basic and composed components are not distinguishable from the outside. Hence, the descrip-
tion of the interface of a composed component does not differ from the interface description of
a basic one. For the composed component main, the interface description would only declare
its input control port opG (Figure 9.5).

9.1.2.2 Implementation Description

The implementation description file gathers all the information we need about the composed
component. Figure 9.4 is the one associated with the component main of Figure 9.1. It tells that
the component main is associated with the interface main-itf (of Figure 9.5), and the contract
main-ct. It also tells that main is composed of three components (prod, cons, and fifo). The
architecture of the system is described by the set of wires. With each wire is associated a name,
a source port and a sink port. Moreover, the implementation file of a composed component
refers to the controller associated with the assembly.

9.1.3 Controllers

The controllers described so far in this thesis are of two types. Controllers defined by means of
an imperative style language, and controllers defined as contract interpreters.

160/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 9. A Tool for the 42 Component Model

component MAIN{
interface : MAIN ITF
contract : MAIN CT
composed{

subcomponent{ name : PROD, type : PROD}
subcomponent{ name : CONS, type : CONS}
subcomponent{ name : FIFO , type : FIFO}
architecture{

wire{ name : g w , source : FIFO . g w , sink : PROD. g w}
wire{ name : d w , source : PROD. d w , sink : FIFO . d w}
wire{ name : req w , source : PROD. req w , sink : FIFO . req w}
. . .

}
controller { name : c t r l , type : language , f i l e : c t r l . c t l }

}
}

Fig. 9.6: Description file of the system in Figure 9.1

The element controller in the implementation file of a composed component (e.g., Figure 9.6)
defines the name associated with the controller, its type, and potentially the path to a file
containing the controller code (see below). In the attribute type of the element controller is
allowed:

• language in case the controller is written in the imperative style language used so far.
The attribute file has to be filled, it refers to the file containing the code of the controller.

• interpreter in case we use a contract interpreter that has accesses to the explicit control
contracts of each component (see Section 6.2.2.2).

• bottom-interpreter in case we deal with hierarchic contract interpreters, where the
concerned controller is at the bottom of the hierarchy.

• top-interpreter in case we deal with hierarchic contract interpreters, where the con-
cerned controller is at the top of the hierarchy.

• middle-interpreter in case we deal with hierarchic contract interpreters, where the
concerned controller is used in the intermediate levels of the hierarchy.

9.1.4 Contracts

In the same spirit of interface and implementation description, the contract of each component
is described by means of an XML file. It describes the set of initial states together with the
transitions of the contract. It also refers to the interface of the component it is associated with.
Figure 9.7 illustrates part of the contract associated with the component prod.

9.2 An Execution Engine to Perform Simulations

Once a component is designed, the tool allows for creating an instance of it. The instance of
the component may be activated with its control inputs in order to performs simulations.

Tayeb BOUHADIBA Ph.D Thesis 161/186

9.2. An Execution Engine to Perform Simulations

contract PROD CT{
initials{

state{ name : p0}
}
transitions{

transition{ lab : {}op{ req w } , src : p0 , sink : p1}
transition{ lab : {g w=f }op/ repor t {} , src : p1 , sink : p0}
. . .

}
}

Fig. 9.7: Part of the contract of the component prod

I n s t a n t i a t e (component x)
read implementation f i l e
read i n t e r f a c e f i l e
c r e a t e por t s
i f (ba s i c) then

i n s t a n t i a t e Java class
endif
i f (composite) then

for each subcomponent i do
I n s t a n t i a t e (i)

endfor
connect components with wi re s
i n s t a n t i a t e the c o n t r o l l e r

endif

Fig. 9.8: The instantiation process

9.2.1 Instantiation of Systems

The existing components are maintained in a repository from which the tool can access to the
details of the components; i.e., their interface, implementation, Java classes, contracts, etc. In
order to instantiate a system, the tool requires the reference to the component at the highest
level of the hierarchy. It then follows the algorithm described in Figure 9.8. For example,
Intantiate(main) would create an instance of the system described in Figure 9.1)).

The instantiation algorithm is as fallows: first, it reads the implementation details and create
the interface of the component. If the component is a basic one, it just creates an instance of
the Java class implementing its behavior. If the component is a composed one, the tool then
instantiates all its subcomponents, connect them and create an instance of the controller that
defines how they should be activated.

When it comes to instantiate a controller, the tool instantiate a Java class that implements the
behavior of the controller. Depending on the type of the controller, the Java class may be an
interpreter of the imperative style language, or a contract interpreter.

The instantiation process parses the architecture of the components (the implementation de-
scription files) starting form the top level to the leafs of the hierarchy. It then instantiates
components starting from those that are at the leafs, i.e., the basic ones.

162/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 9. A Tool for the 42 Component Model

Fig. 9.9: A screen shot of the graphical interface of the tool

9.2.2 Simulation

The simulation process consists in creating an instance of a system, and activating it continu-
ously with its control inputs. The activation of the component is nothing more than the call to
the Java method that defines the behavior; it relies on the Java package reflection.

The simulation engine does not interferes with the behavior of the system. That is, the observed
behavior is that exposed by the implementation of the controllers and the basic components.

9.2.3 A Graphical Interface

The tool provides a graphical editor for creating components and architectures in order to
facilitate the design of systems. Figure 9.9 illustrates a screen shot of the editor. It allows
to automatically generating the set of description files associated with the components, and a
skeleton of the Java class implementing the behavior of a basic component.

The editor is developed within the GMF (Graphical Modeling Framework) plug-in of Eclipse,
that provides generative component and runtime infrastructure for graphical editors. For the
moment there is no direct connection between the simulation tool and the graphical editor.

Tayeb BOUHADIBA Ph.D Thesis 163/186

9.2. An Execution Engine to Perform Simulations

164/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 10

Conclusion & Prospects

10.1 Summary

The questions that motivated the 42 modeling approach are related to the design and the
simulation of embedded systems. Facing the complexity of these systems and the difficulty to
find an optimal solution, engineers are used to perform simulations. Various tools have shown
their effectiveness in providing virtual prototypes of embedded systems long before the final
system is available.

Because of time-to-market constraints, the embedded systems are mainly made of components.
Hence the virtual prototypes should also be component-based. Most of the virtual prototyping
tools favor a modular approach. However, they do not have a clear definition of components
and do not provide a framework for reasoning on how these components may be assembled to
form a system.

We recall the main challenges that motivated the design of the 42 approach:

• provide a language-independent component-based framework for modeling hardware soft-
ware systems.
• provide support for a clean definition of the components, and help enforcing the FAMA-

PASAP (Forget As Much As Possible As Soon As Possible) principle.
• provide support for integration of existing modeling and simulation tools in open virtual

prototyping environments.

10.1.1 Contributions

Components for Embedded Systems The major contribution of the work presented in
this thesis lies in the complete definition of the 42 component-based modeling approach. We
designed 42 with the idea of applying the FAMAPASAP principle. In order to enforce this
principle, we decided to decouple the control from the data flows. This has the benefit of clearly
describing component communications and how the control passes from a component to another.
This has proven crucial for the application to SystemC/TLM.

The specification language in the form of control contracts is also a crucial point for the applica-
tivity of the approach. Moreover, since contracts are executable, it helps obtaining lightweight
simulation models.

A Rich Suite of Examples In order to be convinced by the expressiveness of 42, we devel-
oped a suite of modeling examples. The examples deal with the modeling of various MoCCs

165

10.2. Prospects

ranging from pure synchrony to pure asynchrony as well as heterogeneous models. The results
of these experiments helped in tailoring the basis of 42.

Virtual Prototyping of Hardware/Software Systems We experimented the usability of
42 as a tool for the virtual prototyping of hardware. The idea being to execute some embedded
software on the virtual prototype, as it is done in the domain of systems-on-a-chip. In the
context of this experiment we showed how the contracts may be executed in order to reason on
component synchronizations early in the design flow. We also showed how the actual embedded
software may be executed together with the contracts, which helps checking the compatibility
of the software with its specification.

Using 42 Jointly with Other Approaches We provided a complete case-study on the use
of 42 together with an existing component-based approach. We chose SystemC/TLM since it
is the de-facto standard for the virtual prototyping of systems-on-a-chip. We demonstrated
how expressive the 42 model is in describing TLM components. In particular, it insists on the
interface TLM components should have, and how the contracts may describe their behavior.
Moreover, we presented the possibility of generating 42 components from SystemC/TLM com-
ponents, as well as the possibility of executing 42 and SystemC/TLM components with the
SystemC scheduler or the 42 controllers. This shows the interoperability of the two approaches.

The 42-ization of SystemC/TLM may considered as a first step towards a framework providing
support for the integration of existing modeling approaches and simulation tools in open virtual
prototyping environments. The framework would consist of a set of tools for describing models
from distinct approaches in the same formalism (e.g., 42-ization) and to execute them together.

A Toolset for Executing 42 models For the purpose of experiments we implemented a
tool to allow for the design of 42 components and assemblies as well as the simulation of these
systems. The tool takes into account the execution of 42 components given as detailed imple-
mentations (in languages like C, Java, Lustre, etc.), as well as the execution of control contracts.
Moreover we are capable of importing components from other approaches and executing them
together with 42 ones.

10.2 Prospects

42 is a new component-based approach to the modeling of heterogeneous embedded systems.
Its actual version is expressive enough to model various MoCCs. The model may be extended in
order to gain more expressiveness, or to cover other modeling aspects. Future research directions
are numerous, they may include the points listed in the sequel.

10.2.1 Semantical Aspects

Along with the examples described in this thesis, we showed that the controllers are expressive
enough to describe various MoCCs. When it comes to model parallel activities of components,
we rely on a non-deterministic controller that produces interleaving of components’ activations.
The question of whether there would be a need for expressing parallelism in the controllers has
never been examined, because simulation models do not need such a feature. But this could be
investigated.

Another direction of research would be related to the notion of time in the 42 model. Indeed,
in almost all the examples we described, we dealt with a logical notion of time, except in the

166/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 10. Conclusion & Prospects

synchronous modeling of programs where we inherit a notion of quantitative time (counting
clock ticks). Logical time is adopted by several modeling approaches and has proven useful.
However, it does not give solutions to all problems related to timing aspects. For that purpose,
we could investigate how to deal with general quantitative time in 42.

10.2.2 The Language of Control Contracts

Another direction of further work would be related to the language used for control contracts.
This includes enhancement of their readability and expressiveness.

Readability: The examples of contracts we have seen so far are small enough to be under-
standable. However, a contract for a component exposing a complex behavior may be a huge
automaton. The Greek variables used to refer to the control outputs of a component play an
important role for enhancing the readability of the control contracts. We can just compare the
original form of a contract with its expanded version to see the difference (see Section 5.2.2).
In the same sense, we can introduce more variables from finite-domains to keep a small set of
states (e.g., counters).

Sometimes the behavior of a component may be expressed in terms of a simple combination
of the behaviors of its subcomponents. In this situation, it is useful to express the contract
of a component in terms of simple operations on the set of its subcomponent contracts. By
simple operations we mean for instance, synchronous or asynchronous product of automata,
asynchronous product with synchronization, etc.

Expressiveness: In the simulation and execution of control contracts, we are not limited in
the expressiveness of the language of contracts as it would be the case if we were interested in
verification. For that purpose, we could think about a more expressive language than automata
for writing contracts. This would deserve some work, in particular, in the definition of the
required expressiveness of that language (e.g., non-determinism, variables with infinite domains,
etc.).

10.2.3 Towards Non-Functional Properties

An embedded system must satisfy non-functional properties as well as functional ones. In
the context of this thesis we mainly deal with the functional aspects of an embedded system.
However, thinking about non-functional properties, typically energy consumption, is becoming
unavoidable. This is true for embedded systems in general and for sensor networks or consumer
electronics (mobile phones and all kinds of portable devices) in particular, because of lifetime
or autonomy constraints.

There is a need for high-level models to reason about non-functional aspects for embedded sys-
tems. They would allow for taking design decisions satisfying functional as well as non-functional
properties, early in the design cycle. Therefore, there is a need for describing functional and
non-functional models, as well as their relation with each other. This challenging problem
initiated the HELP (High Level Models for Low Power Systems) project 1.

We did some preliminary experiments (see [BMAM08] below) with 42 in order to answer some
questions related to functional and non-functional modeling of embedded systems. These ex-
periments raised the following points:

1an ANR Arpège project http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/

Tayeb BOUHADIBA Ph.D Thesis 167/186

10.3. Publications Related to 42

• The interface between the functional and the non-functional parts of a component: e.g.,
the influence of the functionality on the consumption in one component.
• The non-functional interface between components: e.g., how to deduce the consumption

of an assembly from the consumption of its components.
• The organization of functional and non-functional models: as a hierarchy of functional-

components next to a hierarchy of non-functional ones, or as a hierarchy of mixed
functional/non-functional components.

Thanks to its interoperability with SystemC/TLM, 42 is a good candidate for the HELP project.
SystemC/TLM would be used to design virtual prototypes modeling the functional aspect of
embedded systems. 42 would then be used as framework for integrating these functional models
with non-functional ones from other approaches.

10.3 Publications Related to 42

Conference Papers

BM09 Tayeb Bouhadiba and Florence Maraninchi. Contract-based coordination of hardware
components for the development of embedded software. In John Field and Vasco Thu-
dichum Vasconcelos, editors, COORDINATION, volume 5521 of Lecture Notes in Com-
puter Science, pages 204–224. Springer, 2009.

BMF09 Tayeb Bouhadiba, Florence Maraninchi, and Giovanni Funchal. Formal and executable
contracts for transaction-level modeling in systemc. In Samarjit Chakraborty and Nicolas
Halbwachs, editors, EMSOFT, pages 97–106. ACM, 2009.

MB07 Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computation
for a component-based approach to heterogeneous embedded systems. In Charles Consel
and Julia L. Lawall, editors, GPCE, pages 53–62. ACM, 2007.

Workshops

MB07+ Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computation
for a component-based approach to heterogeneous embedded systems. In SYNCHRON’07
International Open Workshop on Synchronous Programming.

BMAM08 Tayeb Bouhadiba, Florence Maraninchi, Karine Altisen, Matthieu Moy. Computa-
tional Modeling of Non-Functional Properties with the Component Model 42. Position
paper for the ARTIST MoCC’08 Workshop, july 2008, Eindhoven

168/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 10’

Conclusion & Perspectives (In
French)

10’.1 Résumé

Les questions qui ont motivé la définition de l’approche 42 sont liées à la modélisation et à la
simulation des systèmes embarqués hétérogènes. Pour faire face à la complexité de ces systèmes,
et à la difficulté à trouver une solution optimale, les approches de développement adoptées par
les ingénieurs reposent sur la simulation. Ainsi, un large éventail d’outils est disponible pour
fournir des modèles de simulation et prototypes virtuels bien avant que le système réel ne soit
disponible.

Les contraintes liées au temps de mise sur le marché poussent les développeurs de systèmes
embarqués à adopter des approches de conceptions par assemblage de composants. Cela est
particulièrement claire pour le développement de la plateforme matérielle. Ainsi, les approches
de prototypage virtuel sont intrinsèquement composants. Cependant, la plupart des outils de
prototypage virtuel adoptent une approche modulaire pour le développement de prototypes
virtuels, mais n’ont pas une définition claire de la notion de composants. En plus, ils ne four-
nissent pas d’environnement adéquat pour réfléchir sur les composants et comment ils peuvent
être assemblés pour former un système.

Nous rappelons les challenges qui ont motivé la définition du modèle 42:

• fournir un environnement, indépendant de tout langage ou formalisme, pour la modélisation
par composants de systèmes matériels/logiciels.
• fournir un support pour une définition claire de la notion de composants, et aider à

appliquer le FAMAPSAP.
• fournir un support pour l’intégration de modèles existants, issus d’outils hétérogènes, dans

un environnement de prototypage virtuel ouvert.

10’.1.1 Contributions

Composants pour les Systèmes Embarqués La contribution majeure des travaux de cette
thèse consiste en la définition de l’approche à composants 42. 42 a été défini dans le but de
fournir un environnement de prototypage virtuel des systèmes embarqués qui aide à appliquer le
principe du FAMAPSAP. A cet effet, une première étape a été de dissocier le flot de contrôle du
flot de données. L’avantage de cette séparation est de rendre explicite la communication entre
les composants, et le passage du flot de contrôle d’un composant à un autre. Cette séparation

169

10’.1. Résumé

a favorisé la description de plusieurs MoCCs, et s’est avérée très intéressante pour l’application
de 42 à SystemC/TLM.

Le langage de spécification sous la forme de contrats de contrôle a été un point crucial dans
l’application de 42 à SystemC/TLM. De plus, comme les contrats de contrôle sont exécutables,
il a été possible d’obtenir des modèles de simulation légers, qui nous permettent d’observer la
synchronisation entre les composants TLM.

Un Riche Ensemble d’Exemples de Modélisation Afin d’être convaincu de l’expressivité
du modèle 42, nous avons développé une série d’exemples de modélisation. Les exemples que
nous avons présenté consistent en la modélisation de plusieurs MoCCs allant du pure syn-
chrone au pure asynchrone, ainsi que des MoCCs hétérogènes. Les résultats des expériences de
modélisation ont permit d’affiner les éléments de base de 42.

Prototypage Virtuel de Systèmes Matériel/Logiciel Dans le contexte du prototypage
virtuel des systèmes-sur-puce, nous avons effectué des expérimentations pour étudier l’utilisabilité
de 42 en tant qu’approche pour le développement de prototypes virtuels du matériel. Le but
étant de fournir un support sur lequel le logiciel embarqué pourra être exécuté. L’utilisation
des contrats de contrôle en tant qu’abstractions non-déterministes du comportement des com-
posants nous a fourni un support pour réfléchir sur la synchronisation des composants, très
tôt, avant que l’implémentation des composants ne soit détaillée. Nous avons développé un
mécanisme d’exécution de contrats et d’implémentations ensemble. Nous avons étendu ce
mécanisme d’exécution afin de pouvoir exécuter le logiciel embarqué sur le prototype virtuel
du matériel. Ce mécanisme nous permet aussi de tester la compatibilité des implémentations
(ainsi que le logiciel embarqué) avec les leurs contrats.

L’utilisabilité de 42 avec des Approches Existantes Dans le but de montrer l’utilisation
conjointe de 42 avec des approches existantes, nous avons fourni un cas d’étude complet de
modélisation de SystemC/TLM en 42. Nous avons choisi SystemC/TLM vu qu’il est l’un des
standards dans l’industrie pour le prototypage virtuel des systèmes-sur-puce. Nous avons montré
que l’expressivité du modèle 42 est suffisante pour décrire des composants SystemC/TLM.
SystemC/TLM étant assez complexe, sa modélisation en 42 montre les détails cachés par la
mécanique de simulation de SystemC. En particulier, nous avons pu décrire l’interface que doit
avoir un composant TLM, indépendamment de la mécanique de simulation de SystemC.

Dans ce cas d’étude, nous avons montré aussi, l’utilisation des contrats de contrôle pour décrire
les comportements des composants TLM et comment les exploiter pour fournir des modèles
de simulation légers, utilisables comme support pour la réflexion sur la synchronisation des
composants TLM. De plus, nous avons présenté la possibilité d’extraire les contrats de contrôle
depuis du code SystemC, ainsi que la possibilité d’exécuter des composants 42 et SystemC/TLM
avec l’ordonnanceur SystemC ou bien avec les contrôleurs 42. Ceci montre l’interopérabilité des
deux approches.

La 42-isation de SystemC/TLM peut être considéré comme un premier pas vers un environ-
nement de prototypage ouvert, qui permet l’intégration de différentes approches de simulation
et de modélisation. Cet environnement consisterait en un ensemble d’outils pour la description
de modèles provenant de différentes approches dans le même formalisme (e.g., la 42-isation) et
les exécuter ensemble.

Un Outil pour Simuler des Modèle écrits en 42 Afin de pouvoir simuler et exécuter des
modèles écrits en 42, nous avons développé un outil qui nous permet d’écrire des composants
42, de les assembler, et de les simuler. L’outil permet l’exécution de composants décrits par

170/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 10’. Conclusion & Perspectives (In French)

des implémentations concrètes (écrite en un langage tel que Java, C, Lustre, etc.), ainsi que
l’exécution des contrats de contrôle. De plus, nous somme capable d’importer des composants
existants, provenant d’autres approches, et de les exécuter dans la mécanique de simulation de
42.

10’.2 Perspectives

42 est une approche à composants pour le prototypage virtuel des systèmes embarqués hétérogènes.
Sa version actuelle, telle qu’elle est décrite dans cette thèse, est assez expressive pour décrire
différents MoCCs. Le modèle peut être étendu pour augmenter son expressivité, ou pour couvrir
d’autres aspects de modélisation. Plusieurs directions sont possible pour les travaux futurs ; ils
pourraient inclure les points suivants :

10’.2.1 Aspect Sémantiques

Durant la description des exemples de modélisation, nous avons montré que les contrôleurs sont
assez expressifs pour décrire différents MoCCs. Quand il y a eu besoin de modéliser des activités
parallèles, nous avons utilisé des contrôleurs non-déterministes qui produisent des interleavings
d’activation de composants. Jusqu’à maintenant, nous n’avons pas regardé si l’expression du
parallélisme dans les contrôleurs est une propriété indispensable. La question de l’expression
du parallélisme dans les contrôleurs 42 est une piste de recherche futurs.

Une autre direction de recherche est liée à la notion du temps dans les modèles 42. En effet,
dans la plupart des exemples que nous avons donné, nous nous somme contenté d’une notion
logique du temps, à part pour la modélisation du synchrone où nous héritons d’une notion
de temps quantitatif (les ticks d’horloge). Le temps logique est adopté par plusieurs modèles
de simulation et a été prouvé utile. Cependant, il ne fourni pas de solutions pour toutes les
questions liées au temps. Pour 42, un des travaux futurs serait de réfléchir à comment gérer
une notion quantitative du temps, d’une manière générale.

10’.2.2 Le Langage des Contrats de Contrôle

Les autres directions des travaux futurs concernent le langage utilisé pour écrire des contrats
de contrôle. Ceci implique l’augmentation de leur lisibilité et leur expressivité

Lisibilité: Les exemples de contrats que nous avons vu jusqu’à maintenant sont assez petits
pour être compréhensibles. Cependant, un contrat pour un composant au comportement com-
plexe peut être décrit par des automates assez gros. Les lettres Grecs que nous avons utilisé
pour faire référence aux sorties de contrôle d’un composant jouent un rôle important dans la
lisibilité d’un contrat. La comparaison entre la version originale d’un contrat et sa version ex-
pansée nous montre l’apport de ces variables (voir la section 5.2.2). Dans le même esprit, sans
rajouter à l’expressivité des contrats, nous pouvons introduire d’autres variables d’un domaine
fini pour garder un petit ensemble d’états (e.g., compteurs).

Parfois, le comportement d’un composant composite peut être décrit par une simple combinai-
son des comportements de ses sous-composants. Dans cette situation, il peut être intéressant
d’exprimer le contrat du composant composite en terme d’opérations simples sur les contrats
de ses sous-composants. Par exemple, nous pouvons décrire le contrat d’un composants comme
étant le produit synchrone, asynchrone, etc. des contrats de ces sous-composants.

Tayeb BOUHADIBA Ph.D Thesis 171/186

10’.3. Publications Autour de 42

Expressivité: L’objectif de 42 est d’identifier les éléments de base nécessaires à la description
des MoCCs. Nous ne cherchons pas à limiter son expressivité pour rentrer, par exemple, dans un
contexte de vérification formelle. Cette remarque est aussi valable pour les contrats de contrôle.
On peut penser par exemple à un langage plus expressif que de simples automates pour écrire les
contrats. Identifier un nouveau langage pour les contrats de contrôle mérite quelques travaux
de recherche, essentiellement pour déterminer l’expressivité requise (e.g., non-determinisme,
variables d’un domaine infini, etc.).

10’.2.3 Vers la Modélisation de Propriétés Non-Fonctionnelles

En plus des propriétés fonctionnelles, les systèmes embarqués doivent souvent satisfaire des
propriétés non-fonctionnelles. Dans cette thèse, nous nous somme focalisé sur la modélisation
de l’aspect fonctionnel d’un système. Cependant, modéliser les propriétés non-fonctionnelles,
typiquement la consommation en énergie, est indispensable. Ceci est vrai pour les systèmes
embarqués en général, et pour les réseaux de capteurs ou l’électronique grand public (e.g.,
téléphones mobiles et équipements portables) en particulier, à cause des contraintes liées à leur
autonomie ou leur durée de vie.

Pour la modélisation des systèmes embarqués, il y a besoin de modèles haut-niveaux pour
réfléchir sur leurs aspects fonctionnels et non-fonctionnels. Ces modèles permettraient de pren-
dre des décisions sur la conception d’un système, très tôt dans le flot de conception, afin de
satisfaire à la fois les contraintes fonctionnelles et non-fonctionnelles. L’influence du fonction-
nel sur le non-fonctionnel (et inversement) étant de plus en plus significative, il y a besoin de
formalismes capables de décrire des aspects fonctionnels et non-fonctionnel ainsi que la relation
qui existe entre eux. Ce problème de modélisation a motivé l’initiation du projet HELP (High
Level Models for Low Power Systems) 1.

Nous avons effectué quelques expérimentations (voir [BMAM08] ci-dessous) avec 42 afin de
répondre à quelques questions liées à la modélisation des aspects fonctionnels et non-fonctionnels
des systèmes embarqués. Ces expérimentations ont soulevé les points suivantes:

• Quelle est l’interface entre les parties fonctionnelles et non-fonctionnelles d’un composant
: e.g., l’influence de la fonctionnalité sur la consommation en énergie d’un composant.
• Comment organiser des modèles fonctionnels et non-fonctionnels : comme une hiérarchie

de composants fonctionnels en parallèle à une hiérarchie de composants non-fonctionnels,
ou bien comme une seule hiérarchie où les composants fonctionnels et non-fonctionnels
sont mélangés à tous les niveaux.

Grâce à son interopérabilité avec SystemC/TLM, 42 est un bon candidat pour le projet HELP.
Dans ce projet, SystemC/TLM serait utilisé pour la conception de prototypes virtuels, modélisant
ainsi des propriétés fonctionnelles d’un système. 42 serait utilisé comme environnement pour
l’intégration des ces prototypes fonctionnels avec des modèles non-fonctionnels issus d’autres
approches.

10’.3 Publications Autour de 42

Publication dans des Conférences Internationales

BM09 Tayeb Bouhadiba and Florence Maraninchi. Contract-based coordination of hardware
components for the development of embedded software. In John Field and Vasco Thu-

1Un projet ANR Arpège http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/

172/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Chapter 10’. Conclusion & Perspectives (In French)

dichum Vasconcelos, editors, COORDINATION, volume 5521 of Lecture Notes in Com-
puter Science, pages 204–224. Springer, 2009.

BMF09 Tayeb Bouhadiba, Florence Maraninchi, and Giovanni Funchal. Formal and executable
contracts for transaction-level modeling in systemc. In Samarjit Chakraborty and Nicolas
Halbwachs, editors, EMSOFT, pages 97–106. ACM, 2009.

MB07 Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computation
for a component-based approach to heterogeneous embedded systems. In Charles Consel
and Julia L. Lawall, editors, GPCE, pages 53–62. ACM, 2007.

Workshops

MB07+ Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computation
for a component-based approach to heterogeneous embedded systems. In SYNCHRON’07
International Open Workshop on Synchronous Programming.

BMAM08 Tayeb Bouhadiba, Florence Maraninchi, Karine Altisen, Matthieu Moy. Computa-
tional Modeling of Non-Functional Properties with the Component Model 42. Position
paper for the ARTIST MoCC’08 Workshop, july 2008, Eindhoven

Tayeb BOUHADIBA Ph.D Thesis 173/186

10’.3. Publications Autour de 42

174/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Bibliography

[AAAG+05] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley Schmerl, Nagi
Nahas, and Tony Tseng. Modeling and implementing software architecture with
acme and archjava. In ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 676–677, New York, NY, USA, 2005. ACM. 148

[ACG86] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. Com-
puter, 19(8):26–34, 1986. 152

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in
System Design, 15(1):7–48, 1999. 148

[ALM10] Karine Altisen, Yanhong Liu, and Matthieu Moy. Performance evaluation of
components using a granularity-based interface between real-time calculus and
timed automata. In Eighth Workshop on Quantitative Aspects of Programming
Languages (QAPL), Paphos, Cyprus, March 2010. 21

[AM10] Karine Altisen and Matthieu Moy. Arrival curves for real-time calculus: the
causality problem and its solutions. In J. Esparza and R. Majumdar, editors,
TACAS, pages 358–372, March 2010. 21

[And04] Charles André. Computing synccharts reactions. Electronic Notes in Theoret-
ical Computer Science, 88:3–19, October 2004. http://www.sciencedirect.com;
doi:10.1016/j.entcs.2003.05.007. 22

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component compo-
sition. Mathematical. Structures in Comp. Sci., 14(3):329–366, 2004. 152

[Ban96] Mario Banville. Sonia: An adaptation of linda for coordination of activities in
organisations. In COORDINATION ’96: Proceedings of the First International
Conference on Coordination Languages and Models, pages 57–74, London, UK,
1996. Springer-Verlag. 152

[BBS98] Daniel Brand, Reinaldo A. Bergamaschi, and Leon Stok. Don’t cares in synthesis:
theoretical pitfalls and practical solutions. IEEE Trans. on CAD of Integrated
Circuits and Systems, 17(4):285–304, 1998. 155

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-
time components in bip. In SEFM ’06: Proceedings of the Fourth IEEE Inter-
national Conference on Software Engineering and Formal Methods, pages 3–12,
Washington, DC, USA, 2006. IEEE Computer Society. 148

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. A static analyzer for large safety-critical software. In Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI’03), pages 196–207, San Diego, California, USA, June
7–14 2003. ACM Press. 37

175

Bibliography

[BCCSV05] Albert Benveniste, Benôıt Caillaud, Luca P. Carloni, and Alberto Sangiovanni-
Vincentelli. Tag machines. In EMSOFT ’05: Proceedings of the 5th ACM inter-
national conference on Embedded software, pages 255–263, New York, NY, USA,
2005. ACM Press. 146

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1):64–83, 2003. 20

[BCL+06a] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The FRAC-
TAL component model and its support in java. Softw, Pract. Exper, 36(11-
12):1257–1284, 2006. 33, 148, 150, 153

[BCL+06b] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java: Ex-
periences with auto-adaptive and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006. 150

[Ber92] Gerrard Berry. A hardware implementation of pure esterel. Sadhana, 17(1):95–
130, 1992. 27

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous programming lan-
guage: Design, semantics, implementation. Sci. Comput. Program., 19(2):87–152,
1992. 24, 147

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins.
Making components contract aware. Computer, 32(7):38–45, 1999. 33

[BL02] Dag Björklund and Johan Lilius. A language for multiple models of computation.
In CODES ’02: Proceedings of the tenth international symposium on Hardware/-
software codesign, pages 25–30, New York, NY, USA, 2002. ACM. 147

[BLG90] Albert Benveniste and Paul Le Guernic. Hybrid dynamical systems theory and
the signal language. In IEEE Transactions on Automatic Control, pages 535–546.
IEE, 1990. 80

[BM09] Tayeb Bouhadiba and Florence Maraninchi. Contract-based coordination of hard-
ware components for the development of embedded software. In John Field and
Vasco Thudichum Vasconcelos, editors, COORDINATION, volume 5521 of Lec-
ture Notes in Computer Science, pages 204–224. Springer, 2009. 11, 17

[BMF09] Tayeb Bouhadiba, Florence Maraninchi, and Giovanni Funchal. Formal and
executable contracts for transaction-level modeling in systemc. In Samarjit
Chakraborty and Nicolas Halbwachs, editors, EMSOFT, pages 97–106. ACM,
2009. 11, 17

[Bou07] Yussef Bouzouzou. Accélération des simulations de systèmes sur puce au niveau
transactionnel. Diplôme de recherche technologique, Université Joseph Fourier,
2007. 29

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system soft-
ware via static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1–3, New
York, NY, USA, 2002. ACM. 37

176/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Bibliography

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling compo-
nent connectors in reo by constraint automata. Sci. Comput. Program., 61(2):75–
113, 2006. 152

[BWH+03] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio
Passerone, and Alberto L. Sangiovanni-Vincentelli. Metropolis: An integrated
electronic system design environment. IEEE Computer, 36(4):45–52, 2003. 28

[CC76] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties
of programs. In Proceedings of the Second International Symposium on Program-
ming, pages 106–130. Dunod, Paris, France, 1976. 37

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 238–252, Los Ange-
les, California, 1977. ACM Press, New York, NY. 37

[CCG+04] Marcello Coppola, Stephane Curaba, Miltos D. Grammatikakis, Giuseppe Maruc-
cia, and Francesco Papariello. Occn: A network-on-chip modeling and simulation
framework. In DATE, pages 174–179. IEEE Computer Society, 2004. 10, 16

[CCM] Object Management Group: CORBA Components, v. 3.0, OMG document
formal/02-06-65. 33

[CDE+05] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence
Plateau, and Marc Pouzet. Synchronization of periodic clocks. In EMSOFT
’05: Proceedings of the 5th ACM international conference on Embedded software,
pages 339–342, New York, NY, USA, 2005. ACM. 80, 83

[CDE+06] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence
Plateau, and Marc Pouzet. -synchronous kahn networks: a relaxed model of
synchrony for real-time systems. In J. Gregory Morrisett and Simon L. Pey-
ton Jones, editors, POPL Symposium on Principles of Programming Languages,
pages 180–193. ACM, 2006. 80, 83

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–263,
1986. 35

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM,
32(4):444–458, 1989. 152

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, January 1999. 35, 36

[CGS94] Thomas Cheatham, Haiming Gao, and Dan C. Stefanescu. A suite of analysis
tools based on a general purpose abstract interpreter. In CC ’94: Proceedings
of the 5th International Conference on Compiler Construction, pages 188–202,
London, UK, 1994. Springer-Verlag. 37

[CMMC08] Jérôme Cornet, Florence Maraninchi, and Laurent Maillet-Contoz. A method
for the efficient development of timed and untimed transaction-level models of
systems-on-chip. In DATE ’08: Proceedings of the conference on Design, automa-
tion and test in Europe, pages 9–14, New York, NY, USA, 2008. ACM. 67

Tayeb BOUHADIBA Ph.D Thesis 177/186

Bibliography

[CMP01] Paul Caspi, Christine Mazuet, and Natacha Reynaud Paligot. About the design
of distributed control systems: The quasi-synchronous approach. Lecture Notes
in Computer Science, 2187:215–226, 2001. 21

[Con] The Spirit Consortium. IP-XACT 1.4 specification.
www.spiritconsortium.org/releases/1.4. 138

[Cor08] Jérôme Cornet. Separation of Functional and Non-Functional Aspects in Trans-
actional Level Models of Systems-on-Chip. PhD thesis, Institut National Poly-
technique de Grenoble, 2008. 29

[Cou97] Patrick Cousot. Types as abstract interpretations. In POPL ’97: Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 316–331, New York, NY, USA, 1997. ACM. 37

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. Lustre: a
declarative language for real-time programming. In POPL ’87: Proceedings of
the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 178–188, New York, NY, USA, 1987. ACM. 79

[CR05] Feng Chen and Grigore Rosu. Java-mop: A monitoring oriented programming
environment for java. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS,
volume 3440 of Lecture Notes in Computer Science, pages 546–550. Springer,
2005. 36

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. Proceedings of
the Ninth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 26(5):109–120, 2001. 34, 153

[Dev91] Srinivas Devadas. Optimizing interacting finite state machines using sequential
don’t cares. IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, 10(12):1473–1484, 1991. 155

[DM93] Maurizio Damiani and Giovanni De Micheli. Don’t care set specifications in
combinational and synchronous logic circuits. IEEE Trans. on CAD of Integrated
Circuits and Systems, 12(3):365–388, 1993. 155

[DMN90] Srinivas Devadas, Hi-Keung Tony Ma, and A. Richard Newton. Redundancies
and don’t cares in sequential logic synthesis. J. Electronic Testing, 1(1):15–30,
1990. 155

[EJB03] Enterprise Java Beans specifcation, version 2.1. Sun Microsystems, November
2003. 33

[EJL+03] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig,
Stephen Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the
ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003. 10, 16, 144

[Fal09] Ylies C. Falcone. Étude et mise en oeuvre de techniques de validation à
l’exécution. Thèse de doctorat, Université Joseph Fourier, Grenoble, November
2009. 36

[FF09] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dy-
namic race detection. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation, pages 121–133,
New York, NY, USA, 2009. ACM. 36

178/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Bibliography

[FLVC05] Peter H. Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An Overview of
the SAE Architecture Analysis & Design Language (AADL) Standard: A Ba-
sis for Model-Based Architecture-Driven Embedded Systems Engineering, volume
176/2005 of IFIP International Federation for Information Processing, pages 3 –
15. Springer Boston, 2005. 28

[FS02] Andrés Faŕıas and Mario Südholt. On components with explicit protocols sat-
isfying a notion of correctness by construction. In On the Move to Meaningful
Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated Interna-
tional Conferences DOA, CoopIS and ODBASE 2002, pages 995–1012, London,
UK, 2002. Springer-Verlag. 153

[FSLM02] Jean-Philippe Fassino, Jean-Bernard Stefani, Julia L. Lawall, and Gilles Muller.
Think: A software framework for component-based operating system kernels.
In Carla Schlatter Ellis, editor, USENIX Annual Technical Conference, General
Track, pages 73–86. USENIX, 2002. 150

[GBA+09] Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Carole
Goble. Heterogeneous composition of models of computation. Future Generation
Computer Systems, 25(5):552–560, 2009. 147

[GG87] Thierry Gautier and Paul Le Guernic. Signal: A declarative language for syn-
chronous programming of real-time systems. In FPCA, pages 257–277, 1987. 24,
147

[GG03] Abdoulaye Gamati and Thierry Gautier. Synchronous modeling of avionics ap-
plications using the signal language. Real-Time and Embedded Technology and
Applications Symposium, IEEE, 0:144, 2003. 21

[GH06] Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in
linear relation analysis. In Kwangkeun Yi, editor, SAS, volume 4134 of Lecture
Notes in Computer Science, pages 144–160. Springer, 2006. 24

[Ghe06] Frank Ghenassia. Transaction-Level Modeling with Systemc: Tlm Concepts and
Applications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006. 10, 11, 16, 17, 28, 148

[Gir94] Alain Girault. Sur la Répartition de Programmes Synchrones. Phd thesis, INPG,
Grenoble, France, January 1994. 24

[God97] Patrice Godefroid. Model checking for programming languages using verisoft. In
POPL, pages 174–186, 1997. 125

[Goe98] M. Goel. Process networks in ptolemy ii. Technical Report UCB/ERL M98/69,
EECS Department, University of California, Berkeley, 1998. 145

[Gon07] Laure Gonnord. Accélération abstraite pour l’amélioration de la précision en
Analyse des Relations Linéaires. Thèse de doctorat, Université Joseph Fourier,
Grenoble, October 2007. 24

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and Shuqing
Zhao. SpecC: Specification Language and Methodology. Springer, 1 edition, March
2000. 28

[Hal92] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1992. 20

Tayeb BOUHADIBA Ph.D Thesis 179/186

Bibliography

[HB02] Nicolas Halbwachs and Siwar Baghdadi. Synchronous modelling of asynchronous
systems. In EMSOFT ’02: Proceedings of the Second International Conference
on Embedded Software, pages 240–251, London, UK, 2002. Springer-Verlag. 147

[HB08] Cécile Hardebolle and Frédéric Boulanger. Modhel’x: A component-oriented
approach to multi-formalism modeling. pages 247–258, 2008. 147

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In IJCAI’73: Proceedings of the 3rd interna-
tional joint conference on Artificial intelligence, pages 235–245, San Francisco,
CA, USA, 1973. Morgan Kaufmann Publishers Inc. 144

[HCRP91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous dataflow programming language lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991. 24, 80, 147

[HFG08] Paula Herber, Joachim Fellmuth, and Sabine Glesner. Model checking SystemC
designs using timed automata. In CODES/ISSS ’08, pages 131–136, New York,
NY, USA, 2008. ACM. 142

[HLR92] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and
verifying real-time systems by means of the synchronous data-flow language lus-
tre. IEEE Transactions on Software Engineering, 18(9):785–793, 1992. 20

[HLR93] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous ob-
servers and the verification of reactive systems. In M. Nivat, C. Rattray, T. Rus,
and G. Scollo, editors, Third Int. Conf. on Algebraic Methodology and Software
Technology, AMAST’93, Twente, June 1993. Workshops in Computing, Springer
Verlag. 35

[HM06] Nicolas Halbwachs and Louis Mandel. Simulation and verification of asynchronous
systems by means of a synchronous model. In ACSD ’06: Proceedings of the Sixth
International Conference on Application of Concurrency to System Design, pages
3–14, Washington, DC, USA, 2006. IEEE Computer Society. 21

[HMMCM06] C. Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, and Matthieu
Moy. Automatic generation of schedulings for improving the test coverage of
systems-on-a-chip. In Formal Methods in Computer-Aided Design, pages 171–
178. IEEE Computer Society, 2006. 125

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, 1978. 153

[Hol97] Gerard J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997. 37, 142

[HP96] Gerard J. Holzmann and Doron Peled. The state of spin. In CAV ’96: Proceedings
of the 8th International Conference on Computer Aided Verification, pages 385–
389, London, UK, 1996. Springer-Verlag. 37

[HP08] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in
simple programs. In PLDI’08: 2008 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 339–348. ACM, June 2008.
37

180/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Bibliography

[Jan03] Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency and Time in
Models of Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003. 20

[JHR+07] Erwan Jahier, Nicolas Halbwachs, Pascal Raymond, Xavier Nicollin, and David
Lesens. Virtual Execution of AADL Models via a Translation into Synchronous
Programs. In Proceedings of the 7th ACM & IEEE international conference on
Embedded software EMSOFT 2007, pages 134 – 143, Salzburg Austria, 2007.
ASSERT. 21

[JPSN09] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized
dynamic program analysis technique for detecting real deadlocks. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, pages 110–120, New York, NY, USA, 2009. ACM. 36

[Kah62] Albert B. Kahn. Topological sorting of large networks. Communications of the
ACM, 5(11):558–562, November 1962. 62

[Kah74] Gilles Kahn. The semantics of a simple language for parallel programming. In
ifip congress 74, pages 471–475, 1974. 70, 71, 145

[KB77] Gilles Kahn and David B.MacQueen. Coroutines and networks of parallel pro-
cesses. In ifip congress 77, pages 993–998, 1977. 70, 145

[Kra98] Reto Kramer. icontract - the java(tm) design by contract(tm) tool. In TOOLS
’98: Proceedings of the Technology of Object-Oriented Languages and Systems,
page 295, Washington, DC, USA, 1998. IEEE Computer Society. 34

[Lar90] Kim Guldstrand Larsen. Modal specifications. In Proceedings of the International
Workshop on Automatic Verification Methods for Finite State Systems, pages
232–246, London, UK, 1990. Springer-Verlag. 154

[LAS00] Tal Lev-Ami and Shmuel Sagiv. Tvla: A system for implementing static analyses.
In SAS ’00: Proceedings of the 7th International Symposium on Static Analysis,
pages 280–301, London, UK, 2000. Springer-Verlag. 37

[Lee99] Edward A. Lee. Modeling concurrent real-time processes using discrete events.
Ann. Softw. Eng., 7(1-4):25–45, 1999. 145

[LFLL06] Samper Ludovic, Maraninchi Florence, Mounier Laurent, and Mandel Louis.
Glonemo: Global and accurate formal models for the analysis of ad-hoc sensor
networks. In InterSense: First International Conference on Integrated Internet
Ad hoc and Sensor Networks, Nice, France, May 2006. IEEE. 10, 16, 21

[Liu98] Jie Liu. Continuous time and mixed-signal simulation in ptolemy ii. Technical Re-
port UCB/ERL M98/74, EECS Department, University of California, Berkeley,
1998. 145

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
Journal Software Tools for Technology Transfer, 1(1-2):134–152, 1997. 142

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In PODC, pages 137–151, 1987. 154

[LZ05] Edward A. Lee and Haiyang Zheng. Operational semantics of hybrid systems. In
Manfred Morari and Lothar Thiele, editors, HSCC, volume 3414 of Lecture Notes
in Computer Science, pages 25–53. Springer, 2005. 147

Tayeb BOUHADIBA Ph.D Thesis 181/186

Bibliography

[LZ07] Edward A. Lee and Haiyang Zheng. Leveraging synchronous language princi-
ples for heterogeneous modeling and design of embedded systems. In EMSOFT
’07: Proceedings of the 7th ACM & IEEE international conference on Embedded
software, pages 114–123, New York, NY, USA, 2007. ACM. 144

[MA07] Sun Meng and Farhad Arbab. Web services choreography and orchestration in reo
and constraint automata. In SAC ’07: Proceedings of the 2007 ACM symposium
on Applied computing, pages 346–353, New York, NY, USA, 2007. ACM. 152

[MB07] Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of com-
putation for a component-based approach to heterogeneous embedded systems.
In Charles Consel and Julia L. Lawall, editors, GPCE, pages 53–62. ACM, 2007.
11, 17

[Mcm92a] Kenneth L. Mcmillan. The SMV system, November 06 1992. 142

[McM92b] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, Pittsburgh, PA, USA, 1992. 37

[MDK94] Jeff Magee, Naranker Dulay, and Jeff Kramer. Regis: a constructive develop-
ment environment for distributed programs. Distributed Systems Engineering,
1(5):304–312, 1994. 152

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
34

[Mey97] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-
Hall, 1997. 34

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980. 153

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267 – 310, 1983. 21

[MMC+08] Florence Maraninchi, Matthieu Moy, Jérôme Cornet, Laurent Maillet Contoz,
Claude Helmstetter, and Claus Traulsen. SystemC/TLM Semantics for Hetero-
geneous System-on-Chip Validation. In IEEE, editor, 2008 Joint IEEE-NEWCAS
and TAISA Conference 2008 Joint IEEE-NEWCAS and TAISA Conference, page
unknown, Montréal Canada, 06 2008. B.6.3, D.2.4, D.3.1, F.4.3, F.3.1, B.8.1. 142

[MMMC05a] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Lussy: A
toolbox for the analysis of systems-on-a-chip at the transactional level. In ACSD,
pages 26–35. IEEE Computer Society, 2005. 142

[MMMC05b] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa: An
extraction tool for SystemC descriptions of systems-on-a-chip. In EMSOFT, pages
317–324, September 2005. 135

[MR01] Florence Maraninchi and Yann Rémond. Argos: an automaton-based syn-
chronous language. Comput. Lang., 27(1/3):61–92, 2001. 22

[NH06] Bernhard Niemann and Christian Haubelt. Formalizing tlm with communicating
state machines. In FDL, pages 285–293. ECSI, 2006. 142

[PA98] George A. Papadopoulos and Farhad Arbab. Coordination models and languages.
Advances in Computers, 46:330–401, 1998. 152

182/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Bibliography

[PBJ98] F. Plásil, D. Bálek, and R. Janecek. Sofa/dcup: Architecture for component
trading and dynamic updating. In CDS ’98: Proceedings of the International
Conference on Configurable Distributed Systems, page 43, Washington, DC, USA,
1998. IEEE Computer Society. 33

[plo] Polyspace. http://www.mathworks.com/products/polyspace/. 37

[Pnu77] Amir Pnueli. The temporal logic of programs. In SFCS ’77: Proceedings of
the 18th Annual Symposium on Foundations of Computer Science, pages 46–57,
Washington, DC, USA, 1977. IEEE Computer Society. 35

[PR09] Marc Pouzet and Pascal Raymond. Modular static scheduling of synchronous
data-flow networks: an efficient symbolic representation. In EMSOFT ’09: Pro-
ceedings of the seventh ACM international conference on Embedded software,
pages 215–224, New York, NY, USA, 2009. ACM. 63

[PS08] Olivier Ponsini and Wendelin Serwe. A schedulerless semantics of tlm models
written in systemc via translation into lotos. In Jorge Cuéllar, T. S. E. Maibaum,
and Kaisa Sere, editors, FM, volume 5014 of Lecture Notes in Computer Science,
pages 278–293. Springer, 2008. 142

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software com-
ponents. IEEE Transactions on Software Engineering, 28(11):1056–1076, 2002.
34, 153

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-
current systems in cesar. In Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, London, UK, 1982. Springer-Verlag.
36

[Ray88] Pascal Raymon. Compilation stparée de programmes LUSTRE. Technical report,
SPECTRE L5, IMAG, Grenoble, June 1988. 63

[RBB+09] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud, Axel
Legay, and Roberto Passerone. Modal interfaces: unifying interface automata
and modal specifications. In EMSOFT ’09: Proceedings of the seventh ACM
international conference on Embedded software, pages 87–96, New York, NY,
USA, 2009. ACM. 155

[RC03] Arnab Ray and Rance Cleaveland. Architectural interaction diagrams: Aids for
system modeling. In ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 396–406, Washington, DC, USA, 2003. IEEE
Computer Society. 147

[RH92] Frédéric Rocheteau and Nicolas Halbwachs. Implementing reactive programs on
circuits: A hardware implementation of lustre. In Proceedings of the Real-Time:
Theory in Practice, REX Workshop, pages 195–208, London, UK, 1992. Springer-
Verlag. 27

[RHR91] Christophe Ratel, Nicolas Halbwachs, and Pascal Raymond. Programming and
verifying critical systems by means of the synchronous data-flow language lustre.
In SIGSOFT ’91: Proceedings of the conference on Software for citical systems,
pages 112–119, New York, NY, USA, 1991. ACM. 24

Tayeb BOUHADIBA Ph.D Thesis 183/186

Bibliography

[Rin00] Thomas Ringler. Static worst-case execution time analysis of synchronous pro-
grams. In Ada-Europe ’00: Proceedings of the 5th Ada-Europe International
Conference on Reliable Software Technologies, pages 56–68, London, UK, 2000.
Springer-Verlag. 21

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: a dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems (TOCS, 15(4):391–411, 1997. 36

[SDK+95a] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
and Gregory Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Transactions on Software Engineering, 21(4):314–335, 1995. 148,
152

[SDK+95b] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
and Gregory Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Transactions in Software Engeneering, 21(4):314–335, 1995. 148

[SPED06] Lionel Seinturier, Nicolas Pessemier, Clément Escoffier, and Didier Donsez. To-
wards a reference model for implementing the fractal specifications for java and
the .net platform. In Fractal CBSE workshop at ECOOP 2006, Nantes, July 3
2006, to appear at Springer Verlag LNCS Serie, 2006. 150

[SPI] Spice. bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/. 147

[sysa] Synopsys, inc. cocentric(r) systemc compiler behavioral modeling guide, 2002. 27

[SYSb] System verilog. www.systemverilog.org. 28

[sys06] Ieee standard system c language reference manual. IEEE Std 1666-2005, pages
01–423, 2006. 28, 29

[TBO05] Jean-Charles Tournier, Jean-Philippe Babau, and Vincent Olive. Qinna, a
component-based qos architecture. In George T. Heineman, Ivica Crnkovic,
Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski, and Kurt C. Wall-
nau, editors, CBSE, volume 3489 of Lecture Notes in Computer Science, pages
107–122. Springer, 2005. 34

[Tho75] Jean U. Thoma. Introduction to Bond-Graphs and their applications. Pergamon
Press, 1975. 147

[Tol96] Robert Tolksdorf. Coordinating services in open distributed systems with laura.
In COORDINATION ’96: Proceedings of the First International Conference on
Coordination Languages and Models, pages 386–402, London, UK, 1996. Springer-
Verlag. 152

[VDBL89] Jan. Van Den Bos and Chris. Laffra. Procol: a parallel object language with pro-
tocols. In OOPSLA ’89: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 95–102, New York, NY, USA, 1989.
ACM. 34

[ver] Verilog. http://www.verilog.com. 27

[vhd92] Ieee standards interpretations: Ieee std 1076-1987, ieee standard vhdl language
reference manual. IEEE Std 1076/INT-1991, page 1, 1992. 27

184/186 Verimag/Grenoble INP Tayeb BOUHADIBA

Bibliography

[vhd99] Ieee standard vhdl analog and mixed-signal extensions. IEEE Std 1076.1-1999,
page i, 1999. 148

[VPB+08] Michel Vasilevski, Francois Pecheux, Nicolas Beilleau, Hassan Aboushady, and
Karsten Einwich. Modeling refining heterogeneous systems with systemc-ams:
application to wsn. In DATE ’08: Proceedings of the conference on Design,
automation and test in Europe, pages 134–139, New York, NY, USA, 2008. ACM.
148

[VVR06] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the be-
havior of software components using session types. Fundam. Inf., 73(4):583–598,
2006. 34, 153

[Wei08] Tim Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, De-
sign. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008. 28

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003. 34

[Zho05] G. Zhou. Dynamic data flow modeling in ptolemy ii. Technical Report UCB/ERL
M05/7, EECS Department, University of California, Berkeley, Jan 2005. 145

Tayeb BOUHADIBA Ph.D Thesis 185/186

Abstract

The work presented in this thesis deals with virtual prototyping of heterogeneous embedded
systems. The complexity of these systems make it difficult to find an optimal solution. Hence,
engineers usually make simulations that require virtual prototyping of the system. Virtual
prototyping of an embedded system aims at providing an executable model of it, in order to
study its functional as well as its non-functional aspects. Our contribution is the definition of a
new component-based approach for the virtual prototyping of embedded systems, called 42. 42
is not a new language for the design of embedded systems, it is a tool for describing components
and assemblies for embedded systems at the system-level.

Virtual prototyping of embedded systems must take into account their heterogeneous aspect.
Following Ptolemy, several approaches propose a catalogue of MoCCs (Models of Computation
and Communication) and a framework for hierarchically combining them in order to model
heterogeneity. As in Ptolemy, 42 allows to organize components and MoCCs in hierarchy.
However, the MoCCs in 42 are described by means of programs manipulating a small set of
basic primitives to activate components and to manage their communication.

A component-based approach like 42 requires a formalism for specifying components. 42 pro-
poses several means for specifying components. We will present these means an give particular
interest to 42 control contracts.

42 is designed independently from any language or formalism and may be used jointly with
the existing approaches. We provide a proof of concept to demonstrate the interest of using 42
and its control contracts with the existing approaches.

Keywords. Heterogeneous Embedded Systems, Components, Virtual Prototyping, Contracts and Specifica-
tions, MoCCs (Models of Computation and Communication), Synchronous/Asynchronous, Semantics.

Résumé

Les travaux présentés dans cette thèse portent sur le prototypage virtuel des systèmes em-
barqués hétérogènes. La complexité des systèmes embarqués fait qu’il est difficile de trouver
une solution optimale. Ainsi, les approches adoptées par les ingénieurs reposent sur la simu-
lation qui requiert le prototypage virtuel. L’intérêt du prototypage virtuel est de fournir des
modèles exécutables de systèmes embarqués afin de les étudier du point de vue fonctionnel et
non-fonctionnel. Notre contribution consiste en la définition d’une nouvelle approche à com-
posants pour le prototypage virtuel des systèmes embarqués, appelé 42. 42 n’est pas un nouveau
langage pour le développement des systèmes embarqués, mais plutôt un outil pour la description
et l’assemblage de composants pour les systèmes embarqués, au niveau système.

Un modèle pour le prototypage virtuel des systèmes embarqués doit prendre en compte leur
hétérogénéité. Des approches comme Ptolemy proposent un catalogue de MoCCs (Models of
Computation and Communication) qui peuvent être organisés en hiérarchie afin de modéliser
l’hétérogénéité. 42 s’inspire de Ptolemy dans l’organisation hiérarchique de composants et de
MoCCs. Cependant, les MoCCs dans 42 ne sont pas fournis sous forme de catalogue, ils sont
décrits par des programmes qui manipulent un petit ensemble de primitives de base pour activer
les composants et gérer les communications entre eux.

Une approche à composants comme 42 requiert un formalisme de spécification de com-
posants. Nous étudierons les moyens proposés par 42 pour décrire les composants. Nous nous
intéresseront particulièrement aux contrats de contrôle de 42.

42 est indépendant de tout langage ou formalisme. Il est conçu dans l’optique d’être utilisé
conjointement avec les approches existantes. Nous donnerons une preuve de concept afin de
montrer l’intérêt d’utiliser 42 et les contrats de contrôle associés aux composants, conjointement
avec des approches existantes.

Mots Clés. Systèmes Embarqués Hétérogènes, Composants, Prototypage Virtuel, Contrats et Spécifications,
MoCCs (Models of Computation and Communication), Synchrone/Asynchrone, Sémantique.

	Introduction (In French)
	Introduction
	Background
	Overview of the 42 Model
	Modeling Examples with 42 Components
	Formal Definition of 42
	Exploiting 42 Control Contracts
	Hardware Simulation and Software Execution
	Related Work
	A Tool for the 42 Component Model
	Conclusion & Prospects
	Conclusion & Perspectives (In French)

