Timing Analysis Enhancement for Synchronous Program’

Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux and Fabienne Carrier
Grenoble-Alpes University
Verimag, centre équation
2 avenue de Vignate, 38610 Giéres

{firstname.lastname}@imag.fr

ABSTRACT

In real-time systems, an upper-bound on the execution time
is mandatory to guarantee all timing constraints: a bound on
the Worst-Case Execution Time (WCET). High-level syn-
chronous approaches are usually used to design hard real-
time systems and specifically critical ones. Timing analysis
used for WCET estimates are based on the executable bi-
nary program. Thus, a large part of semantic information,
known at the design level, is lost due to the compilation
scheme (typically organized in two stages, from high-level
model to C, and then binary code). In this paper, we aim
at improving the estimated WCET by taking benefit from
high-level information. We integrate an existing verification
tool to check the feasibility of the worst-case path. Based
on a realistic example, we show that there is a large possible
improvement for a reasonable analysis time overhead.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-time and
embedded systems; D.2.8 [Software Engineering]: Met-
rics—Performance measures; D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking

General Terms

Algorithms, Measurement, Verification

Keywords

WCET, Model-Based Design, Synchronous Languages,
Model Checking, Traceability

1. INTRODUCTION

Hard real-time systems are generally built using model-
based design. Particularly, control engineering systems are

*This work is supported by the french research fundation
(ANR) as part of the W-SEPT project (ANR-12-INSE-0001)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

RTNS 2013 , October 16 - 18 2013, Sophia Antipolis, France

Copyright 2013 ACM 978-1-4503-2058-0/13/10 ...$15.00.
http://dx.doi.org/978-1-4503-2058-0/13/10.

often generated from synchronous designs. In hard real-
time systems any execution must fulfil timing constraints.
To guarantee that these constraints are respected, a bound
on the Worst-Case Execution Time is necessary.

Static timing analyses aim at estimating this upper-bound
on the WCET. They are based on abstractions of the hard-
ware and the software. They generally suffer the necessary
over-estimation due to abstraction. The source of this over-
estimation is twofold: the hardware model may generate
over-estimation when joining abstract states, the seman-
tics of the program may generate over-estimation due to
the fact that the execution path corresponding to the esti-
mated WCET may be infeasible. In this paper, we aim at
improving static WCET analysis when the program under
analysis has been generated from a synchronous model. We
improve the WCET estimation by reducing the set of infea-
sible paths. We do not focus on the hardware analysis that
we consider orthogonal.

WCET analyses are derived on the binary level. When
programs are generated from high-level design, they are first
translated into an intermediate language (usually C or ADA)
then compiled into binary. Due to this two-step compila-
tion, it may appear that most of semantic information is
lost: the WCET estimation should be enhanced by consid-
ering this high-level semantic information. Two main issues
must be solved to integrate these high-level semantic prop-
erties: (i) how to extract interesting semantic properties at
the high-level, (ii) how to transfer information from one level
to the lower next level (traceability).

This paper is structured as follows. First, we introduce
the context: WCET analysis, synchronous model, and why
synchronous model is a good candidate to enhance WCET
estimation. Then, we show on a realistic example that the
WCET estimation may be largely refined and we introduce
our approach for programs generated from Lustre [5].

2. CONTEXT
2.1 WCET/Timing Analysis

In this paper we consider static timing analysis. Figure 1
shows the general timing analysis workflow that is used in
a large part of WCET tools [15]. The analysis is based
on the binary program. The Control Flow Graph (CFG)
is first reconstructed from the binary. Then, a set of value
analyses extracts memory addresses, loop bounds and simple
infeasible paths. These analyses are mainly based on the
binary or the C files (note that in case the C files are used
some traceability analysis is necessary).

CFG
Recon-
struction
Control-
flow Graph
Value Loop Control-

Analvsi Bound flow
natyss Analysis Analysis
Annotated
CFG
Basic Block Path
Timing Info Analysis

Figure 1: WCET analysis workflow

Micro-
architectural
Analysis

This semantic and address information is then helpful to
proceed to the micro-architectural analysis. This analysis
mainly estimates the execution time of basic blocks taking
into account the whole architecture of the platform (pipeline,
caches, buses,...). Note that, in this paper, we consider
mono-processor platforms. The last step of the analysis uses
the basic block execution time and semantic information to
build the whole worst-case execution time.

In this paper we are contributing in this last step and the
value/control-flow analysis. We extract semantic informa-
tion from design-level (semantic analysis) and add them to
the path analysis. In the rest of this section, we detail the
most popular path analysis: the implicit path enumeration
technique. More information about previous steps or differ-
ent path analyses may be found in state of the art papers [15,
2].

Implicit Path Enumeration Technique. The implicit path
enumeration technique is based on integer linear program-
ming (referred as ILP in the sequel). The main idea is to
associate to each block and each edge of the CFG, (1) an es-
timation of their local execution time, (2) a numerical vari-
able denoting their number of executions (block) or traversal
(edge). The total execution time is then defined as the sum
of these variables, weighted by their local execution time.
The system of constraints is a set of structural constraints:
two constraints per block, one for entry edges, one for exit
edges. For instance for block 9 of Figure 7 (right part):

x9 = edger o + edges,g = edgeg 21

where x; represents the number of executions of block i and
edge; ; the number of executions of the edge from block
to block j. The estimated worst-case execution time is ob-
tained by maximizing the following objective function that
computes the execution time of the program:

Z]EB Ziepred(j) tLJ * edgei»j

where B is the set of all blocks in the CFG, pred(j) gives
the set of blocks in B that precede basic block j in the CFG,
ti,; is the worst-case execution time of basic block j when
block ¢ is the previous executed block.

In this paper we use the tool OTAWA®. It gives us the
CFG, all t; ; and the ILP set of constraints that describes
the CFG and contains the objective function. We name
ilp.fq this initial set of constraints.

2.2 Synchronous programming

The synchronous paradigm was proposed in the early 80’s
with the aim of making easier the development of safety
critical control systems. The main idea is to propose an
idealized vision of time and concurrency that helps the pro-
grammer to focus on functional concerns (does the program
compute right?), while abstracting away real-time concerns
(does the system compute fast enough?). The goal of this
section is to list the characteristics of synchronous languages
that are of interest for timing analysis. For a more general
presentation see [8, 5].

Semantically, a synchronous program is a reactive state
machine: it reacts to its inputs by updating its internal
state (internal variables) and producing the corresponding
outputs. The sequence of reactions defines a global no-
tion of (discrete) time, often called the basic clock of the
program. Reactions are deterministic, which means that
the semantics can be captured by a transition function
(Sk+1,0%) = F(sk,ir), meaning that at the reaction number
k, both the current outputs o, and the next state siy1 are
completely determined by the current inputs ix and state sg.
Moreover, the program must be well initialized: the initial
state (so) is also completely determined.

Practically, synchronous languages are providing features
for designing complex programs in a concise and structured
way. There are mainly two programming paradigms: in
data-flow languages (e.g. Lustre, Scade?®, Signal [7]), pro-
grams are designed as networks of operators communicat-
ing through explicit wires; in control-flow languages, pro-
grams are designed as sets of automata communicating via
special variables, generally called signals (e.g. Esterel [5],
SynchCharts®, Scade V62?). The style may vary, but the
languages are all based on the same principles:

Synchronous concurrency: all the components of a pro-
gram communicate and react simultaneously;

Causality checking: since all communications occur at
the same “logical instant”, a causality analysis is nec-
essary to check whether the whole behavior is deter-
ministic or not, in which case the program is rejected.
This analysis is based on data-dependency analysis and
may be more or less sophisticated depending on the
language/compiler;

Compilation into sequential code: the basic compila-
tion scheme for all synchronous languages consists in
producing purely sequential code from the parallel
source design; this generation relies on the causality
analysis, which, if it succeeds, guarantees that there
exists a computation order compatible with the data
dependencies (this principle is often referred as static
scheduling).

http:/ /www.otawa.fr

http://www.esterel-technologies.com /products/scade-
suite/
3http://www.i3s.unice.fr/ map/ WEBSPORTS/SyncCharts/

s s
:|

F

2 o

(a) hierarchical concurrent design (b) state machine code

Figure 2: Synchronous compilation.

To summarize, the compilation of synchronous programs
implements the semantics of the program as defined be-
fore: it identifies and generates the memory and the tran-
sition function of the program. Figure 2 illustrates this
principle for a data-flow design: the hierarchic concurrent
design (a) is compiled into a simple state machine code
(b); according to the data dependencies (arrows), a pos-
sible sequential code for the function F' is H(); G(), where
H() = H1(); Hs(); H2().

The synchronous compiler only produces the transition
function, that is, the function that performs a single step of
the logical clock. The design of the main program, respon-
sible of iterating the steps, is left to the user. As a matter
of fact, this loop strongly depends on architectural choices
and on the underlying operating system. A typical choice
consists in embedding the transition function into a periodic
task activated on a real-time system clock.

Note that the principles presented in this section are valid
for a large class of Model Based Design methods. As soon
as a modeling language is equipped with an automatic code
generator following the principles of Figure 2, it becomes a
“de facto synchronous language”. For instance, it is the case
for the well-known Simulink/Stateflow* environment, which
was originally designed for simulation purpose, and has been
completed with code generators.

2.3 Timing analysis of Synchronous pro-
grams

The synchronous approach permits an orthogonal separa-
tion of concerns between functional design and timing anal-
ysis. The design and compilation method produces a code
(transition function) which is intrinsically real-time, in the
sense that it guarantees the existence of a WCET bound
whatever be the actual execution platform. This property
is achieved because the languages are voluntary restricted in
order to forbid any source of unboundedness: no dynamic
allocation, no recursion, no “while” loops. More precisely,
the characteristics of a typical generated transition function
are the following;:

e the flow graph is mainly sequential, made of basic
statements and nested conditionals (if, switch);

e synchronous languages allow to declare and manipu-
late statically bounded arrays, that are naturally im-
plemented using statically bounded for loops;

e the code generation may be modular, in which case
it contains function calls: the main transition function
calls the transition functions of its sub-programs and so

“http://www.mathworks.fr /products/stateflow/

Synchronous Code

Compiler Generator
High Level (e-g-Lus2c) Transition (e-g-gec) Binary
Design I Function - Code
(e.g. Lustre) (e.g. C) (e.g. ARMT)

Figure 3: Typical 2-stage code generation in Model
Based Design

on; however this calling tree is bounded and statically
known.

Note that, besides these clean and appealing principles, syn-
chronous languages also allow the user to import external
code, in which case it becomes his/her responsibility to guar-
antee the validity of the real-time property.

The role of timing analysis is then to estimate an actual
WCET for a particular platform. Synchronous generated
code is particularly favorable for WCET estimation, since it
is free of complex features (no heap, complex aliasing, loops,
nor recursion). The goal of this paper is to try to go further,
by exploiting not only generic properties of synchronous pro-
grams, but also functional properties. We start from the
statement that static analysis of high-level synchronous pro-
grams has made important progress during the last decades:
there exist checking tools (Model-checking, Abstract inter-
pretation) able to discover or verify non-trivial functional
properties, in particular invariants on the state-space of the
program. This statement raises the following question: can
such properties be exploited to enhance the timing analysis?
Another statement is that such properties are hard or even
impossible to discover at the binary level, and thus cannot
be handled by existing timing analysis tools.

More precisely, the binary code is obtained via a two-stage
compilation. Figure 3 illustrates this typical scheme, which
is valid for all synchronous languages, and more generally
for most Model-Based Design methods: high-level design is
compiled into an “agnostic” general purpose language (C,
most of the time), and then compiled for a specific binary
platform. We give as example the languages and compilers
that are actually used in this work (Lustre and its compiler,
C and gee, and ARMT as the target processor).

WCET estimation is performed at the binary level, and
enhancing the estimation mainly consists in rejecting (prun-
ing) execution paths on the binary. This process raises sev-
eral problems:

Control structure. There must exist conditional branches
in the binary, otherwise there is nothing to prune. It sup-
poses that the synchronous compiler actually generates a
control structure, that will later be compiled into condi-
tional branches. This fact strongly depends on the high-
level language and its compiler. Control flow languages
(Esterel, Scade 6) provide explicit control structures that
are likely to be mapped into C, and then binary control
structures. In data-flow languages, the control structure is
implicit: conditional computation is expressed in terms of
clock-enable conditions, similarly to what happens in circuit
design. The compiler must generate conditional statements,
but the whole structure is likely to be less detailed than the
one produced from a high level control-flow language. In this
paper, we focus on this less favorable case, by considering
examples written in Lustre.

Non trivial functional properties. At the high level, we
must be able to discover and/or check properties that are
hard to find at the binary level. For this purpose, state
invariants are clearly good candidates: they are related to
the fact that the program state is initialized with a known
value, and that it is only modified by successive calls to
the transition function. All this information is indeed not
available for the WCET analyser.

Traceability. Supposing that the compilation produces a
suitable control structure, and that we can find interesting
functional properties, there remains the technical problem
of relating the properties with the binary code branches.
This traceability problem is made more complex because
of the two stage compilation: if we can expect a relatively
simple traceability between Lustre and C, this is not the
case between C and the binary code, in particular because
of the code optimizations that may be rather intrusive.

All these problems and the proposed solutions are detailed
in section 4.

3. RELATED WORK

As far as the authors know there is no previous work
specifically targeting the enhancement of timing analysis for
synchronous data-flow languages (SCADE/Lustre).

In [6] the AiT WCET tool® is integrated in the SCADE
suite for analyzing the binary programs generated from
SCADE. This work pays attention to traceability but does
not check the feasibility of estimated worst-case paths ac-
cording to the high-level semantics.

Other related work focus specifically on the Esterel lan-
guage. As explained in Section 2.3 and in [13], Esterel is a
control-flow language; the timing analysis is easier than for
data-flow language due to the fact that the mapping of high-
level control-flow graph and the C level is almost one-to-
one. Thus, the analysis may be based on the high-level CFG
through some graph traversal analysis and pattern match-
ing [13, 10, 4]. The existing analyses of Matlab/simulink
programs are also mainly based on the “control-flow” fea-
tures of this language with some annotations about the ex-
ecution modes [14, 11].

The analysis of synchronous programs may gain some se-
mantic information by considering in the context of a step
the state of the memory at the end of the previous step [9].
This work is orthogonal to our approach. As a future work,
we will extend our approach with this “memory” considera-
tion.

Some related works use model-checking to analyse
WCET [15]. Among them: in [1] PRET-C concurrent pro-
grams are analysed; in [3] dynamic analysis is combined to
model-checking to get timing and path information.

Finally, none of the cited work relies on optimization from
the C level to binary level. They suppose that there is no
optimization and limit their path analysis at the C level
while we start from binary level.

4. PROOF-OF-CONCEPT ON A REALIS-
TIC EXAMPLE

This section details the methods developed for this study,
through the treatment of a typical example. We do not claim

®http://www.absint.com/

Binary code

High-Level ©

Traceability P N

Analysis

Traceability
Information

[Infeasible Path Removal]

Initial ILP
System

(Uses Ipsolve and Lesar)
2 Algorithms

Figure 4: Proof-of-concept Workflow

onoff ___ g

toggle — P — N 1V

data |

»
>

B % outB

Figure 5: Overall organization of a typical control
system.

to propose a complete “turnkey” solution, but rather a proof
of concept that illustrates how, and how much, WCET can
be enhanced by exploiting high-level functional properties.

Figure 4 presents the general workflow of the experiment
presented in this section. From the source high level code,
the generated C code, and the corresponding binary code,
the Traceability Analysis tool extracts information relating
high-level expressions to binary branches (§ 4.2). In the
meanwhile, the external tool OTAWA analyses the binary
code and builds the initial WCET problem (expressed as
an Integer Linear Programming optimization System). Us-
ing the high-level code and the traceability information, the
Infeasible Path Removal tool tries to refine the initial ILP
system in order to obtain an enhanced WCET estimation.
This tools provides several algorithms/heuristics and uses
the external tools 1p_solve to solve ILP systems and Lesar
to model-check properties of the high-level code (§ 4.6).

4.1 Example

This example is a simplified version of a typical control
engineering application. The overall organisation is shown
in Figure 5. At higher level, a program is designed as a
hierarchy of concurrent sub-programs dedicated to a partic-
ular “task”; the example has two concurrent tasks, A and B,
performing treatments on the same input data, according
to input control commands (onoff, toggle). Tasks are in
general not independent: in the example, B depends on a
value produced by A. One role of the high-level compiler is
to correctly schedule the code according to these dependen-
cies (§2.2).

Figure 6 shows the core of sub-program A. This program

idle onoff —=] = idle
toggle —® control ¥ low
A0 [™ high

data > Al > j_» out

high j

- A2 —

Figure 6: Submodule A behaves according to 3 op-
erating modes.

performs several treatments on its input data according to
several operating modes. The data part is kept abstracted,
but we gave meaningful names to the control part in order
to make their role clearer. The small arrow on the top of a
block behaves as a clock-enable: the block is activated (i.e.,
executed) if and only if the clock is true. In the example,
idle (resp. low and high), enables the computation of A0
(resp. Al and A2). The clocks are themselves computed by
a control logic, according to the input commands onoff and
toggle. We don’t detail the code corresponding to control,
but roughly, the command onoff switches between idle or
not, and, when not idle, toggle switches between low and
high mode. What is really important for the sequel, is that
the controller satisfies the following high-level requirement:
if the inputs onoff and toggle are assumed exclusive, then
the program guarantees that idle, low and high are also
(pairwise) exclusive.

Sub-program B is similar to A except that it has only two
operating modes: when nom (nominal mode) it computes the
function B0, and when degr (degraded mode) it computes
B1. The control logic is also simple: the mode switches from
nominal to degraded (and conversely), whenever the input
command onoff is activated. This last point is important
since it introduces a high-level property relating the modes
of A and the modes of B: B must be in mode degr whenever
A is not in mode idle.

Finally, this example, while relatively simple, is a good
candidate for experimenting since it satisfies high-level prop-
erties that are likely to enhance the WCET estimation:

e whatever be the details of the compilation (from Lus-
tre to C, and C to binary), high-level control vari-
ables (clock-enables) will certainly be implemented by
means of conditional statements,

e high-level relations between clock-enables (exclusivity)
are likely to make some execution paths infeasible, and
then, the WCET estimation should be enhanced.

For this experiment, the example has been developed in
Lustre, in order to use the associated tool chain, mainly the
Lustre to C compiler 1us2c® and the Lustre model-checker
Lesar[12].

Shttp://www-verimag.imag.fr/The-Lustre-Toolbox.html

Before considering the whole program, we analyse the
WCET of the different modes, in order to foresee which com-
bination of modes is likely to be the most costly. It appears
that the cost of the combinations (A2 + B1) and (A0 + B0)
are both very close, and much higher than any other possi-
ble combination. Thus, the worst case is expected for one
of these cases.

The first problem (relating high-level variables to binary
branches) is addressed as the traceability problem in the
following. When binary branches are related to high-level
variables, the next step consists in developing an automated
method for enhancing the WCET estimation (§ 4.6).

4.2 Traceability

For this experiment, we use a state of the art C compiler,
arm-elf-gcc 4.4.2, a widely used cross compiler for the
ARMT platform.

First of all, we have to define precisely what the traceabil-
ity problem is: for a given edge in the binary control flow
graph (e.g., basic block i to basic block j, noted edge; ;),
find, if possible, a Boolean Lustre expression (e.g. toggle
and not onoff), such that the binary branch is taken iff the
Lustre expression is true. We have developed a prototype
tool to solve this problem, for which we only present here he
main principles. Because of the two-stages compilation, the
problem requires to trace information at two levels: from
Lustre to C, and then C to binary.

From Lustre to C. This problem is easily solved since we
control the development of the lus2c compiler. The com-
piler has been adapted in such a way that all if statements
in the generated C code get the form if (Lk) where Lk is a
local C variable; moreover, a pragma is generated in order
to associate this variable to the source expression it comes
from. We note £(Lk) this Lustre expression. The semantics
of such a pragma is: the value of the C variable at this partic-
ular point of the C program is exactly the value of the Lus-
tre expression. For a sake of simplicity, we no longer make
a difference between the C variable and the corresponding
expression: we talk about the Lustre condition controlling
the C statement.

From C to binary. The problem, while mainly technical,
can hardly been addressed here in a completely satisfactory
way: patching the gcc compiler to exactly add the informa-
tion we need would require an amount of work which is out
of the scope of this academic study. We have then chosen to
rely on the existing debugging features to relate binary code
to the C code. Indeed, code optimization may dramatically
obfuscate the C control structure within the binary. The
retained solution is then not complete but safe: whenever a
binary choice can be related, via the debugging information,
to a corresponding if statement in the C code, we keep this
information. Otherwise the choice is simply ignored. While
naive, this solution resists to relatively intrusive optimiza-
tions performed by gcc on the control structure.

4.2.1 Traceability without optimization

Without optimization (-00 option of gcc), as expected,
the binary control flow graph strictly maps the C control
flow graph.

Figure 7 shows the C CFG (left) and the binary CFG
(right) of the example. Both graphs have been simplified

BB 8 (A0)
BB 9
BB 21
BB 22 (Al)
BB 23
BB 29
BB 30 (A2)
BB 31
BB 49
BB 50 (BO)

BB 51

BB 57

BB 58 (B1)

binary code

Figure 7: CFG traceability with -O0

in order to outline parts of interest (the actual graphs have
more than 70 nodes). Only the branches concerning the
calls of interest (A0, Al, etc) are depicted. Unsurprisingly,
a one-to-one correspondence is automatically found by our
tool, based on the gce debugging information.

4.2.2 Traceability with optimization

Using optimizations raises problems in critical domains
submitted to certification process. For instance in avionics,
the highest safety levels of the DO-178B document’ spec-
ify that traceability is mandatory from requirements to all
source or executable code. Discussing whether some opti-
mization is reasonable in critical domains is out of scope
of this paper: we only aim at experimenting how optimiza-
tions may affect traceability, and thus, be an obstacle for
enhancing WCET estimation.

Figure 8 shows the C CFG and the binary CFG obtained
with gcc -02. The most remarkable effect of the optimiza-
tion concerns the first part (computation of A): the source
sequence of 3 conditionals is implemented by a structure
of interleaved jumps. In this graph, some branches of bi-
nary code get no debugging information at all and thus,
cannot be related to the source code (BB1 and BB10). Con-
versely some source tests have been duplicated in the target
code (e.g. BB4 and BB5 are attached to the same source
test). The goal of this kind of transformation is to give pri-
ority (in average) to program-counter increment (sequence)
over costly program-counter jump. Even relatively intrusive,

"http://www.rtca.org/store_list.asp

C code

binary code
Figure 8: CFG traceability with -O2

this transformation does not affect traceability: the binary
choice is related to its source C condition, but, indeed, sev-
eral branches may refer to the same source.

4.3 From paths to predicates

At this point, we suppose that traceability analysis has
been achieved. The result is a partial function from CFG
edges to C literals (either Lk or not Lk), and then, to the
corresponding Lustre conditions (either £(Lk) or —=&(Lk)).

We note cond;,; the Lustre condition corresponding to
edge; ; (if it exists). Note that if edge; ; and edge; ; are the
two edges of a binary choice, if cond; ; exists, then cond; i
exists too, and cond;,; = —cond; . Here are, for instance,
some of the 16 traceability “facts” found on the optimized
code of the example (see Figure 8):

condsr = conds,7 = E(LB)

conds,s = conds,g = ~E(L5)

condig,20 = 5(L43)
condie,19 = ﬁS(L43)

In the sequel, for the sake of simplicity, we extend the
traceability function by assigning the condition “true” to any
edge that is not related to a Lustre condition. For instance,
in the example: condentry,1 = condia = condis = -+ =
true.

4.4 Checking paths feasibility

A path (or more generally a set of paths) in the CFG
can be described by a set of edges. Consider the bi-
nary CFG in the case -02 (Fig. 8); the set of edges

{edge, 4, edge, ,, edgeg 15} corresponds to the set of paths
that passes by those 3 edges. In particular, for this set of
paths, basic blocks 7 (A0) and 12 (A1) are both executed.
For such a set {edge;, ; }, one can build a Lustre logical ex-
pression expressing the feasibility of the paths: A, cond;, j, .

The idea is then to check whether this Boolean expres-
sion is satisfiable according to the knowledge we have on
the program. In some cases the answer is trivial: when the
expression syntactically contains both a condition Lk and
its negation —Lk, the corresponding edges are trivially ez-
clusive. Some of these trivial exclusions are already taken
into account as structural constraints: this is obviously the
case for conditions guarding the two outcoming branches of
a same node (e.g. edge; ; and edge, ;). However, this is not
always the case: in the C code, the same condition may be
tested several times along the control graph, in which case
the logical exclusion is not “hard-coded” in the structure.

When infeasibility is not trivial, it is necessary to use
a decision tool. More precisely, we build the predicate
infeasible = —(A\, cond;, j;.), and ask the model-checker
(Lesar) to prove that infeasible is an invariant of the pro-
gram. The model-checker (just like any another automatic
desision tool) is partial; it may answer:

“yes”: in which case we know that infeasible remains true
for any execution of the program, and, thus the correspond-
ing paths can be pruned out.

“inconclusive”: in which case infeasible may or may not
be an invariant.

In the example, the model-checker answers “yes” for the
infeasibility predicate —(conds,z A conds,12). As expected
from the program specification, it means that blocks 7 (call
of A0) and 12 (call of A1) are never both executed.

One of the main argument for the proposed method is that
such property is almost impossible to discover at the binary
or C level: this is a relatively complex consequence of both
assumptions on inputs and dynamics of the underlying state
machine:

e inputs onoff and toggle are assumed exclusive,

e idle and low are initially exclusive (resp. true and
false),

e whatever be an execution of the program satisfying the
assumption, the computation of idle and low ensures
that they remain exclusive in any reachable state.

The model-checker also covers simpler static logical prop-
erties, for instance:
(X =Y)AX AY),
and even simple numerical properties®:
(X >5)A(3X <14))

4.5 From infeasibility to linear constraints

In this case study, we limit the use of the discovered prop-
erties to the pruning of infeasible paths in the last stage of
the WCET estimation, that is, at the ILP level. For ILP
solving, we use the tool 1p_solve®.

Suppose that we have proved —(A, cond;, j,); it means
that there exists no path passing by all the corresponding

edges {edge;, ; }-

8More precisely, Lesar is equipped with a numerical solver
that handles Linear Algebra Theory.
http://Ipsolve.sourceforge.net/

In the ILP system, each edge is associated to a numer-
ical variable representing the number of times the edge is
traversed during an execution; the same notation edge;, ;.
is used for these numerical variables (context avoids mis-
leading). This section presents how to translate the logical
expression into a numerical constraint.

In the general case (programs with loops), translating the
exclusivity of a set of edges {edge;, ; } requires an extra in-
formation: a structural mazx of the set. Intuitively, a struc-
tural max is an upper bound of the number of executions
that pass through at least one of the edges. Given such
structural max p, the exclusivity property can be translated
into a numerical constraint:

[edge;, s, <M X
The smallest is the bound, the most precise is the constraint.
In the case of loop-free programs (which is the case for our
example and, more generally, for any transition function not
using arrays), 1 is a structural max for any set of edges. For
a set of n edges, the ILP constraint is:

Zzzl 6dgeik,jk <n

For instance, the proven invariant —(conds 7 A conds 12) is
translated into:

edge477 + eclge&12 <2

4.6 Algorithms and strategies

We have seen so far: how to use a model-checker to check
infeasibility properties, and how to translate such properties
into numerical constraints for the ILP solver. The problem
is now to define a complete algorithm for the WCET esti-
mation, that decides which properties to check and when to
check them.

In the sequel, we use the following notations:

o “BinaryAnalysis(bprg) — ilpcg,” is the abstraction for
the main OTAWA procedure that analyses a binary
program and returns a whole initial integer linear pro-
gram (i.e., linear constraints 4+ objective function), a
linear constraint is noted ilc,

e CheckInv(lprg,lexp) — yes/no represents the call of
the Lesar model-checker; it takes a Lustre program and
a Lustre predicate, and returns yes if the predicate is
a proven invariant of the program, no otherwise,

e LPSolve(ilp) — wcep represents the call of the ILP
solver; it returns the worst-case execution path,

o ConditionOfPath(wcep) — lexp is the procedure that
traces back a binary path to the corresponding con-
junction of Lustre literals, as explained in Section 4.4,

e ConstraintOfPath(wcep) — ilc is the procedure that
takes a binary path and produces the integer linear
constraint that will be used to state the infeasibility of
the path, as explained in 4.5.

4.6.1 Removing trivial exclusions

A first step, which is almost free once the traceability step
has been done, consists in taking into account trivial exclu-
sions of the form Ln and —Ln. As explained in Section 4.4,
some of these trivial exclusions are also structural, and thus

the constraint is already taken into account in the ilp.g,
system. However other trivial exclusions are not structural:
they are due to the Lustre compilation that may open and
close the same test several times along the execution paths.

For all pairs of edges with opposite conditions, that are
not structurally exclusive, we generate the ILP constraint
edge; ; + edge, ; < 2. The effect of this first enhancement
strongly depends on the optimization level:

e In -00 case, traceability identifies 9 conditions: the 5
depicted on the simplified CFG (Fig. 7) plus 4 more.
Some conditions are tested several times along the ex-
ecution path. For instance, one of the extra condition
(named M7), and that intuitively controls some initial-
izations, is tested not less than 7 times. Other con-
ditions are tested 4 times (L5, L15 etc). Finally, 102
trivial (but not structural) exclusions are automati-
cally discovered and translated into ILP constraints.
The WCET estimation is slightly enhanced: 4726 to
4701 cycles. The enhancement is not impressive, but
the number of possible paths is once and for all dra-
matically reduced: by considering the details of the
branches, we know that these constraints are dividing
by 2'7(131.072) the number of feasible paths.

e In -02, traceability only identifies 6 conditions, the
ones outlined on Figure 8, plus the M7 presented above.
The fact that 3 conditions from the C code have dis-
appeared in the binary code is due to an optimization
related to the target processor capabilities: ARM7Y pro-
vides a conditional version for most of its basic instruc-
tions, and the gcc compiler can then replace simple
conditional statements with (even simpler) conditional
instructions. Since the resulting binary CFG is much
simpler than the one obtained with -00, the result is
less impressive: no trivial exclusion is discovered which
is not already a structural exclusion. This first step
gives a non-enhanced WCET estimation (762 cycles,
which is OTAWA initial estimation).

4.6.2 lIterative refutation algorithm

First, we experiment a refinement algorithm which iterates
LPSolve and Lesar calls to obtain a candidate worst case
and try to refute it. The pseudo-code of the algorithm is
the following:

Algorithm 4.1: RefineWCET(Iprg, bprg)

ilp < BinaryAnalysis(bprg)

while true

weep <+ LPSolve(ilp)

lexp < ConditionOfPath(wcep)

infeasible <— CheckInv(lprg, —lexp)

if infeasible
then ilp + ilp U ConstraintOfPath(wcep)
else return (ilp)

do

The result of this algorithm is optimal modulo the deci-
sion procedure: it converges to a worst-case path which is
actually feasible according to the decision procedure.

The obvious drawback of the method is the number of
necessary iterations, which can grow in a combinatorial way.
Our example clearly illustrates this problem. Let us consider
the -00, and focus only on the interesting branches (binary

cfg in Figure 7). Unsurprisingly, the initial worst-case path
found by LPSolve corresponds to a case where all modes are
executed:

ed9€7,87 €d9€21,227 edg€29,307 €d9549,507 €d9€57,58

This path is refuted by the model checker, and a new
numerical constraint is added to the ILP problem:

edge; g + edgesy 20 + edgeng 30 + edgeyg 50 + edgesr 55 < 5

In return, the ILP finds another worst case where edge; g
is replaced by edge; 4, in other terms, all but the least costly
mode are executed (A0). This path is refuted and a new
constraint is added:

edger o + edgesy 99 + €dgeag 30 + edgesg 50 + edgess 55 <5

which leads to another false worst case where all modes
but Al are executed (the second in the cost order), and so
on. To summarize: the algorithm first enumerates all the
cases where all modes but one are executed, then where all
modes but two are executed, and finally all but three. It
finally reaches the real worst case where exactly 2 modes
(actually A2 and B1) are executed.

In the example, the algorithm behaves slightly differently
depending on the code optimization level:

e With -00, the algorithm converges in 298 steps, from a
first estimation of 4701 (after the trivial exclusion re-
moval §4.6.1) to a final optimal estimation of 2375. As
expected, the worst case path is the one where modes
A2 and B1 are executed.

e With -02, the algorithm converges after 114 steps,
from an estimation of 762 to 459 cycles. As expected,
the worst case path is the one where modes AQ and
B0 are executed.

This experiment outlines the combinational cost of the
method. This problem arises because the iterative con-
straints are not precise enough: for instance, a constraint
states that at most 4 of 5 edges can be taken, where the
“right” information is that they are all pairwise exclusive.

4.6.3 Searching properties before WCET estimation

In this section, rather than refuting an already obtained
worst-case path, we study the possibility of inferring, a pri-
ori, a set of high-level properties that are likely to help the
forthcoming search of worst-case path. More precisely, we
consider that a set of relevant high-level conditions has been
selected. This selection may be greedy (all the identified con-
ditions), or more sophisticated (conditions controlling “big”
pieces of code).

In our simple example, both heuristics lead to select the
same set of interesting conditions: the ones controling the
modes {L5,L15,1L26,140,L43} (Fig. 7 and 8), plus some oth-
ers depending on the code optimization (4 more in case -00,
1 more in case -02).

Useful information on these variables are disjunctive rela-
tions (or clauses): if one can prove that a disjunction is an
invariant (e.g. —L15V —L26 V —L43), its negation (conjunc-
tion) is proven impossible and the corresponding paths can
be pruned.

A virtual complete method. Using a model checker, it is
theoretically possible to find an “optimal set of invariant
clauses” over a set of conditions Ly (optimality is relative
to the decision procedure capabilities). The sketch of the
algorithm is the following:

e let Iprg be the considered Lustre program, and s be its
state variables; a model-checker can compute a formula
Reach(s) denoting a superset of the reachable states of
the program; in some cases (e.g. finite-state programs)
the formula is exact, but in general (e.g. numerical
values) the formula is a strict over-approximation;

e let L be the conditions of interest, and ex(s) = E(Lk)
the corresponding Lustre expressions; these expres-
sions are functions of the program state variables;

e consider the following formula over the state variables
and the conditions:

Reach(s) N\,ex (Lk = ex(s))

Quantifying existentially the state variables projects
the formula on the Ly variables only, giving the set of
all possible configurations for the Ly variables:

®(Ly) = 3s - Reach(s) \ycx (L = ex(s))

e formula ®(Lg) can be written in conjunctive normal
form (i.e conjunction of clauses):

d’(Lk) = /\iel Di(Lk)

involving a minimal number of minimal clauses (this is
the dual problem of finding a minimal prime implicants
cover for disjunctive normal forms);

e cach minimal clause can be translated into a minimal
infeasibility constraint as explained in Section 4.5.

This algorithm combines several well-known intractable
problems (reachability analysis, minimal clause cover) and
remains largely virtual.

A pragmatic pairwise approach. We now focus on non-
complete methods that may/may not find relevant rela-
tions. From a pragmatic point of view, two-variable clauses
(i-e., pairwise disjunctive relations) are good candidates: the
number of pairs remains relatively reasonable (quadratic),
and their analysis is likely to remain reasonable (since they
only involve a small portion of the full program).

We detail the algorithm on the example, in the case -02
(cf. Fig. 8). All the conditions identified by the traceabil-
ity process are selected: the 5 emphasized in Fig. 8 (L5,
L15, L26, L40, L43), plus an extra one, M7. Intuitively, this
variable controls initializations; it has a strong influence on
functionality, but not on the WCET. We build and check all
the possible pairwise disjunctive relations between these 6
conditions, that is, 4 X (6 X 5)/2 = 60 predicates. The proof
succeeds for 14 relations, that reflect most of the properties
we know from the program specification: exclusion between
B0 and B1, pairwise exclusion for A0, A1 and A2, exclusion
between B0 and either A1 and A2.

One property of the program is not reflected: the fact that
at least one of the modes A0, A1, A2 is executed. This prop-
erty is induced by a 3-variable disjunction, and thus, cannot

be discovered by the method. However, this information is
useless, since the worst case certainly not occurs when none
of the modes are executed.

Another exclusion is discovered: —M7 V —L26. Intuitively,
this property means that mode A2 cannot be executed at
the very first reaction. This is an unexpected consequence
of the specifications'®, which may have some influence on
the worst-case path.

Finally, the 14 properties are translated into 114 ILP con-
straints (remember that the same condition may control sev-
eral branches). With this additional constraints, 1p_solve
directly gives the same worst-case path and time obtained
with the iterative algorithm. To summarize, this somehow
brute-force method gives the same result with only 60 rel-
atively cheap calls to Lesar, and a single call to LPSolve,
where the a priori smarter refutation method requires 114
relatively costly calls to the model-checker and as many calls
to LPSolve.

In case -00, 9 atomic conditions are identified, leading to
144 binary disjunctions to check; 21 are proven invariant by
Lesar, and translated into 396 ILP constraints. The final
estimation is 2376, which misses the optimal one for 1 cycle.
The path obtained is still not feasible: this is the drawback
of the method which only consider pairwise properties and
may miss more complex relations. However, if and when
optimality is the goal, the algorithm can be completed with
one (or more) steps of the iterative method.

4.7 Results and discussion

Table 1 gives some quantitative results on the experiment.
Each line corresponds to an algorithm (complete iterative
method, or pairwise exclusion method) and an optimization
level of gcc.

The first 3 columns detail the WCET estimation (in cpu
cycles): the initial estimation is performed without any ad-
ditional information (initial OTAWA WCET), the first (en-
hanced) one is obtained by exploiting the trivial (syntac-
tic) exclusions (§ 4.6.1), and the final estimation is obtained
by exploiting all the information, including those coming
from Lesar. For the 3 main tools involved in the method,
Lesar, lp_solve and OTAWA, we give the number of nec-
essary calls and their cost (total computation time). Note
that OTAWA is called once in any case (not given in the
table), and that the number of lp_solve calls is always the
number of Lesar calls plus 2 (initial and first estimations).
A column describing the complexity of ILP constraints is
also given in order to better understand the influence of the
methods on the ILP solver. For each case, we distinguish
3 sets of constraints, for which we give both their number
and their arity (maximal number of variable appearing in a
constraint): structural constraints describe the binary CFG,
they are produced once for all by OTAWA and only depend
on the optimization level. Trivial constraints are those that
reflect simple exclusions and also depend only on the opti-
mization level. At last, invariant constraints are those that
come from the invariant properties checked by Lesar.

We can reasonably conclude, by comparing the cases -02
and -00, that the iterative algorithm is unlikely to scale
up for bigger codes. From the -02 code to the -00 code,
the size grows roughly 3 times; in the same time, both the
number of iterations and the total cost of Lesar seem to

10Gince we assume that inputs are exclusives, it takes at least
two reactions to reach this particular mode.

Algo/optim Wecet estimation Lesar ILP Constraints LPSolve OTAWA | Total
initial | first | final || calls | cost || struct. triv. inv. calls | cost cost cost

fter./-00 || 4726 | 4701 | 2375 || 298 | 2.8s || 178 (2) | 102 (2) | 298 (30) || 300 | 90s 64s 163s
iter/-02 762 | 762 | 459 || 114 | 0.7s || 60 (3) | 6(2) | 114 (6) || 116 | 1.5s Is 4.55
pair./-00 4726 | 4701 | 2376 || 144 | 1.4s || 178 (2) | 102 (2) | 396 (2) 3 0.1s 64s 67s
pair./-02 762 762 459 60 0.6s 60 (3) 6 (2) 47 (2) 3 0.1s 1s 2.3s

Table 1: Experiment: quantitative results

grow linearly (factor between 2 and 3), but the total cost
of LPSolve dramatically explode (multiplied by 60). More
than the increasing number of constraints, the increasing
of their complexity explains this explosion (298 constraints,
each involving 30 variables).

On the contrary, the pairwise exclusion method behaves in
a very promising way: when considering only the overhead
due to our method, and not the cost of OTAWA, the cost
seems to grow linearly.

S. CONCLUSION

In this paper, we introduced a method to improve timing
analysis of programs generated from high-level synchronous
design. The main idea is to take benefit from semantic infor-
mation that are known at the design level and may be lost
by the compilation steps. For that purpose, we use existing
verification tools that work on Lustre programs to check the
feasibility of paths. Furthermore, our approach may work
on optimised code (from C to binary). We introduced the
approach on a realistic example and showed that there is
a huge possible improvement, with a reasonable overhead
compared to the (unavoidable) cost of the binary code and
architecture analyses.

As future work, we would like to extend our approach to
other languages with a reacher set of high-level constructs
(e.g. Scade V6), and to other code generators (e.g., Com-
pecert'!). The long term aim is to study the possibility of a
complete WCET-aware compilation chain.

6. REFERENCES

[1] S. Andalam, P. Roop, and A. Girault. Pruning
Infeasible Paths for Tight WCRT Analysis of
Synchronous Programs. In DATE, 2011.

[2] M. Asavoae, C. Maiza, and P. Raymond. Program
semantics in model-based wcet analysis: A state of the
art perspective. In WCET, pages 31-40, 2013.

[3] J.-L. Béchennec and F. Cassez. Computation of wcet
using program slicing and real-time model-checking.
CoRR, abs/1105.1633, 2011.

[4] M. Boldt, C. Traulsen, and R. von Hanxleden. Worst
case reaction time analysis of concurrent reactive
programs. ENTCS, 203(4):65-79, June 2008.

[5] P. Caspi, P. Raymond, and S. Tripakis. Synchronous
programming. In I. Lee, J. Y.-T. Leung, and S. H.
Son, editors, Handbook of Real-Time amd Embedded
Systems, chapter 14. Chapman and Hall/CRC, 2007.

[6] C. Ferdinand, R. Heckmann, T. L. Sergent, D. Lopes,
B. Martin, X. Fornari, and F. Martin. Combining a
high-level design tool for safety-critical systems with a

"http://compeert.inria.fr

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

tool for WCET analysis on executables. In ERTS2,
2008.

T. Gauthier, P. L. Guernic, and L. Besnard. Signal, a
declarative language for synchronous programming of
real-time systems. In Proc. 8rd. Conf. on Functional
Programming Languages and Computer Architecture.
LNCS 274, Springer Verlag, 1987.

N. Halbwachs. Synchronous programming of reactive
systems. Kluwer Academic Pub., 1993.

L. Ju, B. K. Huynh, S. Chakraborty, and

A. Roychoudhury. Context-sensitive timing analysis of
esterel programs. In DAC, pages 870-873, 2009.

L. Ju, B. K. Huynh, A. Roychoudhury, and

S. Chakraborty. Performance debugging of esterel
specifications. In CODES-ISSS, 2008.

R. Kirner, R. Lang, G. Freiberger, and P. Puschner.
Fully automatic worst-case execution time analysis for
Matlab/Simulink models. In ECRTS, 2002.

P. Raymond. Synchronous program verification with
lustre/lesar. In S. Mertz and N. Navet, editors,
Modeling and Verification of Real-Time Systems,
chapter 6. ISTE/Wiley, 2008.

T. Ringler. Static worst-case execution time analysis
of synchronous programs. In Ada-Europe, pages 56—68,
2000.

L. Tan, B. Wachter, P. Lucas, and R. Wilhelm.
Improving timing analysis for Matlab
Simulink/Stateflow. In ACES-MB, 2009.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,

S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,

R. Heckmann, T. Mitra, F. Mueller, 1. Puaut,

P. Puschner, J. Staschulat, and P. Stenstrom. The
worst-case execution-time problem - overview of
methods and survey of tools. ACM Trans. Embedded
Comput. Syst. (TECS), 7(3), 2008.

