
Stratified Static Analysis Based on Variable

Dependencies∗

David Monniaux† Julien Le Guen‡

September 1, 2011

Abstract

In static analysis by abstract interpretation, one often uses widening
operators in order to enforce convergence within finite time to an inductive
invariant. Certain widening operators, including the classical one over
finite polyhedra, exhibit an unintuitive behavior: analyzing the program
over a subset of its variables may lead a more precise result than analyzing
the original program! In this article, we present simple workarounds for
such behavior.

1 Introduction

During experiments, we found examples over which classical polyhedral anal-
ysis Cousot and Halbwachs (1978), even with alternative widenings Bagnara
et al. (2005), would fail to discover some simple program invariants, which could
sometimes even be discovered by interval analysis. This would even happen on
simple loops, e.g. for(int i=0; i<N; i++), if the loop contained a nested loop
not touching i: the analysis would not discover i ≥ 0! It is counter-intuitive
that difficulties in analyzing the behavior of the program on other variables
should lead to imprecise results for i.

In some of these examples, such as this simple loop, the lost invariants
could be easily recovered by syntactic pattern-matching, but such techniques
are brittle. We therefore searched for techniques inspired by our intuition that
poor results on certain variables should not impact variables not depending on
them.

1.1 Generalities and Notations

We consider the strongest invariant of a loop (or, more generally, of a program),
defined as the least fixed point lfp Ψ of a monotone operator Ψ over sets of
program states Cousot and Cousot (1992a). For instance, in program 2, the
strongest invariant of the loop is the least fixed point in (P(Z × Z),⊆) of the
operator

Ψ(X) = {(1, 0)} ∪ {(i+ 1, j + i) | (i, j) ∈ X ∧ i ≤ 5} (1)

∗This work was partially supported by ANR project “ASOPT
†CNRS / VERIMAG; http://www-verimag.imag.fr/\protect\unhbox\voidb@x\penalty\

@M\{}monniaux/; VERIMAG is a joint laboratory of CNRS and Université Joseph Fourier
‡VERIMAG & STMicroelectronics

1

http://asopt.inrialpes.fr/
http://www-verimag.imag.fr/\protect \unhbox \voidb@x \penalty \@M \ {}monniaux/
http://www-verimag.imag.fr/\protect \unhbox \voidb@x \penalty \@M \ {}monniaux/
http://www.cnrs.fr/
http://www.ujf-grenoble.fr/

Explicit-state model-checking computes such invariants as explicitly repre-
sented sets of states (that is, for each state there exists some little data struc-
ture). Implicit-state model checking uses compact representations of such sets,
such as binary decision diagrams, and computes the least solution of Ψ(X) = X
by finding the limit of the ascending sequence X0 = ∅, Xn+1 = Ψ(Xn); for sys-
tems with at most n states, this limit is reached within at most n iterations. For
infinite state systems such as software programs1 such an approach is infeasible,
because (a) the sets of states Xi may be large (or even infinite, if infinite non-
determinism is used) (b) the sequence may not converge within a finite number
of iterations.

Abstract interpretation Cousot and Cousot (1992a); Cortesi and Zanioli
(2011) solves point (a) by replacing arbitrary sets of states by over-approximations;
for instance, a set of points in Zn or Qn may be replaced by an enclosing convex
polyhedron Halbwachs (1979); Cousot and Halbwachs (1978); Halbwachs et al.
(1997). A given analysis thus restricts itself to a given abstract domain of sets
of states; in this article, we focus, as an example, on the domain of polyhedra,
but there exist many other abstract domains, for numerical Miné (2004) or non-
numerical states. The operator Ψ on concrete states is replaced by an abstract
operator Ψ], satisfying a soundness condition Ψ(X]) ⊆ Ψ](X]) for all X].2

Problem (b), that is, failure for the sequence X]
n+1 = Ψ](X]

n) to become
stationary, remains if the abstract domains contains infinite strictly ascending
sequences;3 this is for instance the case of the domain of convex polyhedra.
Some form of convergence acceleration is thus needed. Starting with u]

0 = ∅,
upwards iterations with widening Cortesi and Zanioli (2011); Cousot and Cousot
(1992a) compute4

u]
n+1 = u]

nO(u]
n tΨ](u]

n)) (2)

xt y is such that x, y ⊆ xt y (in the case of polyhedra, t is generally taken
to be the convex hull), and O is a widening operator, such that for all x ⊆ y,

y ⊆ xOy (soundness property), and any sequence of the form u]
n+1 = u]

nOv]n,
where v]n is any other sequence, is stationary: after a certain N , it is constant

(termination property). Then, Ψ(u]
N) ⊆ Ψ](u]

N) ⊆ u]
NO(u]

N t Ψ](u]
N)) =

u]
N , thus Ψ(u]

N) ⊆ u]
N , which means that u]

N is an inductive invariant of the
program, in which the strongest invariant is included.

Once an inductive invariant u]
N is obtained, it may be refined by narrowing

iterations, which in practice generally consist in computing Ψ]k(u]
N) until the

sequence becomes stationary or k exceeds a preset limit.
Widening operators have various unpleasant properties. The best known is

that they bring imprecision: the result of widening/narrowing iterations may

1One of the authors once heard the remark that a program without dynamic allocation
or recursion was just a finite-state automaton, thus all properties are decidable, including
halting. For the purpose of practical analysis, except for very small and simple programs,
such state spaces are so large that they should be treated as infinite.

2Some presentations of abstract interpretation distinguish the abstract element X] from
the set of states γ(X]) that it represents. In this article, we chose not to, in order to simplify
notations.

3Again, for practical purposes, it suffices that there exist exceedingly long finite ascending
sequences for analysis to become unfeasible.

4Following the usage in APRON Jeannet and Miné (2009), our definition of uOv assumes
that u ⊆ v; if this is not the case, use uO(u t v) instead.

2

be strictly larger than the least element of the abstract domain that is an in-
ductive invariant, let alone an invariant (in Sec. 5 we shall list some alternative
approaches that do not suffer from this inconvenience, at the expense of gen-
erality). The contribution of this article is a generic method to reduce some of
the imprecision induced by widening.

1.2 Motivating Example

Classical polyhedral analysis Cousot and Halbwachs (1978),5 when applied to
Listing 1, discovers that i ≥ 1 ∧ i ≤ 5 is an invariant at the head of the loop.
Yet, running the same analysis on Listing 2 yields i ≤ 5 but not i ≥ 1.

Listing 1: Loop until 5

i n t i =1 ;
while (i <=5) {

i = i +1;
}

Listing 2: j = i(i+ 1)/2

i n t i =1 , j =0 ;
while (i <=5) {

j = j + i ;
i = i +1;

}

...n0

..n1

..n2

..n3

..n4

.
i ← 1

j ← 0

.i ≤ 5

.
j ← j + i

i← i+ 1

.i > 5

This example is not fortuitous: it models how to address consecutive lines
of a matrix in lower triangular packed storage mode. In that memory-effective
approach, the matrix is stored in memory as a unidimensional array, each line
next to the preceding one, and line number i only uses i positions in the array:
j is the index of the start of the line in the array.

Program 1 is an abstraction of Program 2: each execution of the latter
maps to an execution of the former. Yet, the analysis of the former produces
a more precise loop invariant than the analysis of the latter. This is an ex-
ample of the non-monotonicity of analyzes using widenings, a long-known phe-
nomenon (Cousot and Cousot, 1992b, ex. 11): a more precise abstraction may
ultimately lead to less precision in the final analysis result.

Analysis of Program 2 with the basic upwards iteration and widening scheme
(widening at every iteration) Cousot and Cousot (1992a), using the standard
widening on polyhedra,6 yields the successive polyhedra

• i = 1 ∧ j = 0

• −i + j ≥ −1 ∧ i ≥ 1: draw a line through the first two reachable states
and obtain a polyhedron in (i, j) generated by vertex (1, 0) and ray (1, 1);

5One may try examples on B. Jeannet’s online Interproc analyzer at http://pop-art.

inrialpes.fr/interproc/interprocweb.cgi
6The standard widening on polyhedra P1OSP2, in intuitive terms, suppresses from P2

constraints not present in P1. In reality, its correct definition contains subtleties regarding
polyhedra of dimension less than the dimension of the space, and the original definition Cousot
and Halbwachs (1978) had to be corrected Halbwachs (1979). Bagnara et al. (2005) recalls
the corrected definition.

3

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Analysis Node u]
0 u]

1 u]
2 u]

3 u]
4 u]

5

Classic
n1 (entry)

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

n1 (after O or 4)

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

Stratified
n1 (entry)

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

n1 (after O or
4) and intersec-
tion with previous
stratum . .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

. .i

.j

Table 1: Comparison of classic static analysis (upward iterations with widening
O followed by descending iterations) and stratified static analysis on Program 2.
Classic analysis loses the constraint i ≥ 1 and finds > in 5 iterations. The upper
bound i ≤ 5 is found with one narrowing iteration. Stratified analysis on the
stratum consisting of variable i first finds 1 ≤ i ≤ 5. Then, it analyzes stratum i,
j and intersect with result of stratum i. A fixed point is found after 4 iterations
(u]

3, last line). The table also shows the polyhedra found after two narrowing
iterations. The resulting polyhedron, even without narrowing iterations, is much
more precise than the one found by classic analysis.

• −i+ j ≥ −1 ∧ 7i− 4j ≥ 7: polyhedron in (i, j) generated by vertex (1, 0)
and rays (1, 1) and (4, 7).

So far, so good: such polyhedra still imply i ≥ 1. At the next iteration, however,
this constraint is lost and one gets the polyhedron −i+ j ≥ −1, and finally >,
the whole plane. The constraint i ≤ 5 is recovered by one step of downwards
iteration. Analysis with the improved widening proposed by Bagnara et al.
Bagnara et al. (2005), as implemented in the Parma Polyhedra Library, yields
a different iteration sequence, but still reaches > at the end.

If one runs a polyhedral analysis on Program 1, one gets the inductive in-
variant 1 ≤ i ≤ 5, which is also valid for Program 2. Intersecting this invariant
with the output of the widening in the analysis of Program 2 yields a reasonably
precise polyhedron (Table 1).

Thus, the basic idea of our method: run preliminary analyzes over abstrac-
tions of the program obtained by removing some of the variables, in order to
refine the analysis of the complete program. In order to further convey our in-
tuition, let us remark that Prog. 2 is the result of loop fusion over the following
program :

for (i =1 ; i <=5; i ++) t [i]= i ;
for (i =1 ; i <=5; i ++) j += t [i] ;

4

Normal forward polyhedral analysis on this program will find good invariants
for both loops. In particular, the second loop may not perturb analysis of the
first loop. It seems reasonable that the same applies to the code after loop
fusion.

The same code could have been the result of the compilation into C of a
data-flow program (e.g. Simulink or Lustre) consisting in a ramp generator and
an integrator:

..ramp 1 . . . 5 .Σ

Again, it seems natural that the analysis of the integrator should not hamper
the analysis of the ramp.

2 Stratified Analysis

We have investigated two approaches. In stratified analysis, we successively
perform several static analyzes by abstract interpretation, the results from each
analysis being used to refine the following ones. In stratified widening, a single
analysis pass is performed, but with a widening improving on and derived from
the traditional widening on polyhedra.

2.1 Dependency Strata

We consider a set S of subsets of the set of variables V of the program, such that
V ∈ S; we order it by inclusion. An immediate predecessor of S ∈ S, denoted
by S′ ≺ S, is S′ such that S′ (S and there is no S′′ such that S′ (S′′ (S.

In practice, if we have a relationship v1 → v2 meaning “v1 flows into v2
through some computation” or “v2 depends on v1”, then the elements of S are,
in addition to V itself, subsets S of V closed by: if v ∈ S and v′ → v, then
v′ ∈ S. One way to construct such subsets is to compute for each variable v the
set S(v) = {v′ | v′ → v}, and add this set to S unless it is already present. For
better efficiency, one computes the strongly connected components of →, and
takes S(v) for one v in each component.

Note that → needs not be the semantics dependency relation, which takes
into account both data and control dependencies. In intuitive (and imprecise)
terms, a variable x is said to be data-dependent on a variable y if x is assigned
to by an expression where y appears; a variable x is said to be control-dependent
on a variable y if x is assigned in a program branch executed or not executed
according to the value of y. Collecting all program elements on which a vari-
able depends, through data or control dependencies, is known as slicing Weiser
(1984). If → takes into account all dependencies, then S(v) is the slice of vari-
ables on which v depends.

A helpful intuition of our method is that it performs analyzes on program
slices of increasing size; but this is somewhat misleading, because we do not
make any assumption on → and thus it does not necessarily reflect all depen-
dencies. In particular, ignoring control dependencies, compared conventional
slicing, may produce simpler slices, of a more manageable size — X. Rival,
when developing the Astrée static analyzer, observed that, for many variables,
the slice corresponded to approximately 80% of the code, thus slicing did not
significantly simplify the program Rival (2005a).

5

2.2 Informal Definition

Let S be a subset of the variables in program P . We note P|S the program
P where all references to variables outside S have been replaced by nondet()
nondeterministic choices.

Program P

i n t i =1 , j =0 ;
while (i <=5) {

j = j + i ;
i f (j % 2 == 0) i = i +1;

}

P|S for S = {i}
i n t i =1 ;
while (i <=5) {

i f (nondet ()) i = i +1;
}

For any program P , let C(P) be its collecting semantics: the set of reachable
states of P . In order to simplify notations, for S ⊆ S′, we identify sets of states
referring to the variables in S with their completion by all values for variables
in S′ \ S. For any S, P|S is a safe abstraction of P : C(P) ⊆ C(P|S). More
generally, if S ⊆ S′, C(P|S′) ⊆ C(P|S).

For any program P , let A(P) be the result of static analysis of P . Correctness
of the analysis means C(P) ⊆ A(P). Let A(P,K) be the result of the static
analysis of P where the semantics of P is restricted to states in K: in other
words, all states outside of K are removed from the transition relation. For any
K ⊇ C(P), C(P) ⊆ A(P,K).

For each S ∈ S, we compute the intermediate analysis result R(S) after all
R(S′), S′ ≺ S, have been computed, as follows:

R(S) = A

(
P|S ,

∩
S′≺S

R(S′)

)
(3)

Remark that in this formula, we could have made S′ to range over all predeces-
sors without changing the result; however, this would have been less efficient.

By induction on the length of the ≺-chains, for all S, R(S) ⊇ C(P|S). At
the end, R(V) ⊇ C(P) is a correct analysis result for the whole program; in
fact, any R(S) ⊇ C(P), so one can stop the analysis at any step, for instance
because of a time limit.

This is the analysis performed in §1.2, with S = {{i}, {i, j}}.

2.3 Formal Definitions and Variants

Let S ∈ S. We assume that the result R(S′) of the analysis for all S′ ≺ S has
already been computed. Let K] =

∩
S′≺S R(S′); we assume that lfp Ψ ⊆ R(S′)

for all S′ ≺ S and thus that lfp Ψ ⊆ K].
The analysis described at Eqn. 3 is defined by the sequence:

u]
n+1 = u]

nO(u]
n t (Ψ](u]

n ∩K]) ∩K])) (4)

We compute the limit R(S) = u]
N of that stationary sequence, and output

u]
N ∩K].
Let us note Ψ|A(X) = Ψ(X∩A)∩A. In other words, Ψ|A is Ψ with everything

outside of A being discarded. The following lemma means that we do not change
the strongest invariant by throwing out unreachable states in the definition of
the semantics, which is intuitive.

6

Lemma 1. lfp Ψ = lfp Ψ|A for any A ⊇ lfp Ψ.

Proof. lfp Ψ|A is the limit of the ascending sequence defined by X0 = ∅, Xn+1 =
Ψ|A(Xn), lfp Ψ that of Y0 = ∅, Yn+1 = Ψ(Yn). By induction, for all n, Xn =
Yn.

Corollary 2. u]
N , and thus u]

N ∩ K], includes lfp Ψ, that is, the reachable
states.

Proof. Proof Because y ⊆ xOy and y ⊆ xty for all x, y, Ψ](u]
N ∩K])∩K] ⊆ u]

N

and thus ΨK](u]
N) = Ψ(u]

N ∩K])∩K] ⊆ u]
N . Thus, lfp ΨK] ⊆ u]

N . The result
follows from the lemma.

We conclude that, by induction over ≺, for all S, lfp Ψ ⊆ R(S).
We shall now describe a subtly different iteration scheme, which supposes

some additional properties of O:

Definition 3. We say that O satisfies the “up to” termination condition if for
any fixed K], any u]

0 ⊆ K], any sequence v]n ⊆ K] the sequence defined by

u]
n+1 = (u]

nOv]n) ∩K] is stationary if u]
n ⊆ v]n for all n.

This property ensures the correctness of widening “up to” Halbwachs et al.
(1997), a well-known improvement to widening, and is true of the standard
widening on polyhedra as well as Bagnara et al.’s improved widening (Bagnara
et al., 2005, p. 53). Using the same notations and hypotheses as above, we use
this iteration:

u]
n+1 = (u]

nO(u]
n t (Ψ](u]

n) ∩K]))) ∩K] (5)

Again, once we get a stationary value u]
N in this sequence, then it is such

that lfp Ψ ⊆ u]
N :

Lemma 4. If u]
N+1 ⊆ u]

N in Eqn. 5, u]
N includes lfp Ψ, the set of reachable

states.

Proof. Proof Ψ(u]
N) ∩K] ⊆ Ψ](u]

N) ∩K] ⊆ u]
N+1 ⊆ u]

N , from the correctness

of Ψ]. Furthermore, by construction, u]
N ⊆ K], thus Ψ(u]

N) ∩K] = Ψ|K](u]
N).

Ψ|K](u]
N) ⊆ u]

N , thus lfp Ψ|K] ⊆ u]
N . The result follows from Lem. 1.

3 Stratified Widenings

An alternative to the method described in the preceding section, which runs
successive analyzes of increasing precision, is to run a single analysis over a
reduced product Cortesi and Zanioli (2011) of polyhedral domains, but with a
special widening operator. We shall provide two options for that operator.

3.1 Widening with or without Reduction

We distinguish the internal state (PS)S∈S of the iteration sequence from the set
of states represented, as in Monniaux (2009). The various abstract operations
will therefore continue operating on polyhedra as usual: only the widening
operator is replaced.

7

Our widening operators will take a tuple (PS)S∈S as a first argument and
single polyhedron Q as a second argument. A tuple (PS)S∈S represents the
polyhedron

γ ((PS)S∈S) =
∩
S∈S

PS ; (6)

the tuples are ordered point-wise, (PS)S∈S v (QS)S∈S if and only if for all S,
(PS) ⊆ (QS).

We note πS(P) the projection of polyhedron P onto the variables in S.
If S ⊆ S′, a polyhedron on the variables in S shall be also considered as a
polyhedron on the variables in S′ by keeping the same constraints. This means,
in particular, that P ⊆ πS(P) for any P and S.

The first widening operator is very simple:

(PS)S∈SO1Q = (PSOπS(Q))S∈S (7)

where O is any widening on polyhedra. This widening converges because each
coordinate converges, since O is a widening. It is obvious that, if (PS)S∈S is the
resulting limit, then γ ((PS)S∈S) is an inductive invariant.

The second widening applies internal reductions. (RS)S∈S denotes (PS)S∈S
O2(QS)S∈S . We compute the RS in ascending order with respect to ≺, with
the convention that the intersection of zero polyhedra is the full polyhedron:

RS = (PSOπS(Q)) ∩
∩

S′≺S

RS′ (8)

Theorem 5. Assuming that O is a widening satisfying the “up to” termination
condition (Def. 3), O2 is a widening.

Proof. Proof Let u(n+1) = u(n)O2v
(n) be a sequence, with u(n) v v(n) for all n;

each element u(n) consists in u
(n)
S for S ∈ S. We prove that for all S ∈ S the

sequence u
(n)
S is stationary, by induction over ≺.

For S with no predecessor, (u
(n)
S) is of the form u

(n+1)
S = u

(n)
S Ov(n)S , and the

result follows from O being a widening.

Consider now the property satisfied for all S′ ≺ S. For all S′ ≺ S, (u
(n)
S′)

is stationary; thus there is a N such that for n ≥ N , all (u
(n)
S′) for S′ ≺ S are

constant.
∩

S′≺S u
(n)
S′ is thus constant for n ≥ N . The results follows from O

being a widening satisfying our additional property.

Instead of polyhedra, one may use other abstract domains fitted with an
operation u such that a ∩ b ⊆ a u b for all a, b. Let us however note that
O1 and O2 yield the same results as the ordinary widening O if applied to
domains, such as difference bound matrices or octagons Miné (2004) where O
and projection commute: πS(P)OπS(Q) = πS(POQ), and therefore that they
bring no improvement for such domains: the PS are just projections of PV .
More precisely:

Lemma 6. Assume that πS(P)OπS(Q) = πS(POQ) for all P and Q. Any
iteration sequence of the form P (n+1) = P (n)OQ(n) then satisfies, for all n and

S ∈ S, P (n)
S = πS(P

(n)
V), assuming this equality holds for n = 0.

8

Proof. Proof Regarding O1: by induction over n, for any S, P
(n+1)
S = P

(n)
S OπS(Q

(n)) =

πS(P
(n)
V)OπS(Q) = πS(P

(n)
V OQ) = πS(P

(n+1)
V).

Regarding O2: by induction over n, then by induction over S with respect to

�: (P
(n)
S OπS(Q

(n)))∩
∩

S′≺S P
(n+1)
S′ = (πS(P

(n)
V)OπS(Q

(n)))∩
∩

S′≺S πs′(P
(n+1)
V) =

πS(P
(n)
V OπS(Q

(n))) ∩
∩

S′≺S πs′(P
(n+1)
V) = πS(P

(n+1)
V) ∩

∩
S′≺S πs′(P

(n+1)
V) =

πS(P
(n+1)
V), since for any X and S′ � S, πS′(X) ∩ πS(X) = πS(X).

3.2 Generalized Reduction Leads to Nontermination

Communicating information between several abstract domains used at the same
time is sometimes referred to as a closure or reduction operation. Our O2

operation includes a partial closure, with information flowing from a to b if
a ≺ b, but not the reverse. One could wonder about applying reductions in all
directions. Unfortunately, we would lose the termination property of widening,
as demonstrated by the following example. 7

Listing 3: Alternating increments

i n t i =0 , j =0 ;
while (t rue) {

i f (i <= j) i ++; else j ++;
} i

j

This loop has different behaviors on odd and even iterations: at iteration
2n, i = n and j = n; at iteration 2n + 1, i = n + 1 and j = n. The results
of a static analysis with polyhedra on (i, j), and unions instead of widenings,

are, in constraint form: P]
2n : P] ∧ i ≤ n and P]

2n+1 : P] ∧ j ≤ n, P] denoting
i ≥ j ∧ i ≤ j+1∧ j ≥ 0 (we identify P] with the conjunctions of the constraints
that define it). If for the iteration n = 4 we use widening,8 we instead obtain

P]
4 = P], which is an inductive invariant.
We have established that this program poses no challenge to “classical”

polyhedral analysis. The same is true if we apply one of the analyzes of Sec. 2
or one of the widenings of Sec. 3.1. Let us now see what happens if we modify
the O2 operator of Sec. 3.1 by allowing reductions not following ≺.

Instead of the definition given at Eq. 8, we instead initialize all RS to
PSOπS(Q), then apply some replacements, or reductions, of the form:

RS := RS ∩
∩

S′ 6=S

πS(RS′) (9)

If we reach a fixed point for this replacement system, using the terminology
from octagons Miné (2004), we say that we have applied the closure operation.

Let us first remark that γ ((RS)S∈S) is left unchanged any number of such
reductions:

Lemma 7. Let (R′
S)S∈S be the same as (RS)S∈S except that R′

S0
= RS0

∩∩
S′ 6=S0

πS0(RS′). Then, γ ((R′
S)S∈S) = γ ((RS)S∈S).

7The fact that widenings followed by reductions with cycles (reduce a using b, then reduce
b using a) may not ensure termination is already known. For instance, closure in difference-
bound matrices and octagons breaks termination. (Miné, 2004, example 3.7.3, p. 85)

8Applying unions at n first iterations and then applying widening is a standard technique
known as delayed widening.

9

Proof. Proof γ ((R′
S)S∈S) =

∩
S∈S R′

S = γ ((RS)S∈S) ∩
∩

S′ 6=S0
πS0(RS′) =

γ ((RS)S∈S)∩
∩

S′∈S πS(RS′). SinceRS′ ⊆ πS0(RS′) for any S′,
∩

S′∈S πS(RS′) ⊇∩
S′∈S RS′ = γ ((R′

S)S∈S). The result follows.

Because γ ((RS)S∈S) does not change, after the reductions, γ ((RS)S∈S) is
still the same as γ(POQ). Our new “widening” thus verifies the soundness
property (see Sec. 2.3); the problem is that it does not verify the termination
property!

Let us have S = {{i}, {j}, {i, j}}; instead of P{i}, P{j} and P{i,j} we shall

respectively note I], J] and P]. At iteration n, we shall therefore have a poly-
hedron I]n on {i} (thus, an interval) and one polyhedron J]

n on {j} in addition
to the polyhedron P]

n on {i, j}. If using unions instead of widenings, we have

I]2n = [0, n], I]2n+1 = [0, n + 1], J]
2n = [0, n] and J]

2n+1 = [0, n]. Consider now

using widening at the iteration n = 4. I]4 = I]3 = [0, 2], but J]
4 = [0,+∞).

Let us now apply the closure operation: we replace P]
4 = P] by its intersec-

tion with I]4 and obtain P] ∧ i ≤ 2; then we replace J]
4 by its intersection with

the updated P]
4 and obtain [0, 2]. At the next iteration, with the roles of I] and

J] reversed, we obtain I]5 = [0, 3], J]
5 = [0, 2] after closure, and then I]6 = [0, 3],

J]
6 = [0, 3].
The iterations with widening followed by closure behave, on I] and J], like

those with unions — and they do not converge within finite time. Observe that
this happens because we alternatively reduce I] → P] → J] and J] → P] → I],
whereas the definitions of Sec. 3.1 only allow I] → P] and J] → P].

4 Experimental Results

The stratified analysis presented in section 2, in both variants (Eqn. 4 and
Eqn. 5), was evaluated against the classical analysis described by Eqn. 2 on a
set of benchmarks used by STMicroelectronics in the development cycle of its
compilers, in addition to a few specific examples such as the one from Sec. 1.2.

LAO Kernels is a set of benchmarks internally used for the evaluation of
compilers code generators and optimizations. It is mainly composed of small
computational kernels representative of the target applications of STMicroelec-
tronics (audio and video stream processing, embedded device control), associ-
ated with a testing harness to be able to run them on the target processor. It
contains 63 functions, of which 49 contain at least one loop. Loops have to
exhibit some properties, like a non-linear relation between variables in the loop
scope, in order to benefit from this method. Stratified analysis finds a more
precise invariant for 5 of these functions.

Among these 5 functions, discrete cosine transform has three nested loops.
The intuition of why stratified analysis performs better is it obtains an invariant
for the indices affected by the outer loop before attempting to analyze the inner
loop, thus preventing imprecisions during the inner loop analysis to affect the
invariant on the outer loop indices.

The dependency relation used to create the strata is based on a modified
dataflow graph; strongly connected components (SCC) are reduced to super-
nodes, while keeping the existing dependency relations. Initial strata stem from
the root nodes of this SCC dependency graph, additional ones are created by

10

following the dependency relations until one stratum encompasses all variables
in the dependency graph. In the while loop of the listing 2, the variable j
depends from i; the SCC nodes simply consist of {i} and {j}, and the analysis
creates two strata {i} and {i, j}.

The two variants of stratified analysis described by Eqn. 4 and Eqn. 5 find
the same results, and in all cases find invariants equal to or stronger than those
obtained by the classical analysis. Bagnara et al.’s alternate widening Bagnara
et al. (2005) yields iteration sequences different from those obtained by the
classical widening, but ultimately finds the same invariant; thus, our approach
improves on theirs on this benchmark set.

Table 2 shows the number of variables in the outermost stratum, along with
the number of strata considered by the analysis and its overhead with respect to
the standard analysis using only the classic widening. Some programs exhibit a
large number of strata, impacting the cost of the analysis. It is possible to run
the expensive stratified analysis after a first cheaper standard analysis, while
focusing on certain loop nests (those reaching > for instance).

Function # of vars # of strata Overhead
autocorrelation 9 8 5.55x
binary search 2 2 1.95x

discrete cosine transform 27 17 9.79x
integer power 2 3 2.29x

listing 2 2 2 1.66x

Table 2: Number of variable in the last stratum, number of strata and overhead
of stratified analysis for programs that benefit from this method. The baseline
for overhead measures is the classic analysis using bare widenings, without delay
or widening-up-to).

We rely on the APRON numerical abstract domain library9 Jeannet and
Miné (2009) for all abstract domain computations. APRON implements, among
other domains, convex polyhedra with the classical widening, with linearization
of nonlinear expressions following Miné’s approach Miné (2006). In addition, in
order to compare with Bagnara et al.’s alternate widening, we used the Parma
Polyhedra Library10 Bagnara et al. (2008) (with the classical widening, the PPL
produces exactly the same results as APRON up to equivalence of constraints,
thus providing a means to test for possible bugs in the polyhedral computations).

5 Related Work

It has long been recognized that analysis using polyhedra over all variables in a
program, or even all variables in a single function, is unfeasible because of the
high complexity of polyhedral operations in higher dimensions. This is also true
of weaker domains such as octagons. For this reason, the Astrée analyzer uses
relational domains only on “packs” of variables Blanchet et al. (2002, 2003): for
instance, if we have four variables a, b, c, d and two packs {a, b} and {b, c, d},
the analysis will track relationships between a, b and b, c, d separately: no direct
relation will be established between a and d.

9http://apron.cri.ensmp.fr/library/
10http://www.cs.unipr.it/ppl/

11

http://apron.cri.ensmp.fr/library/
http://www.cs.unipr.it/ppl/

A related approach is factoring of polyhedra Halbwachs et al. (2006): when
a polyhedron P is a Cartesian product P1 × . . . × Pn of polyhedra in lower
dimension, with respectively vi vertices (or, more generally, generators), it is
often advantageous to keep this product representation as much as possible
instead of considering it as a polyhedron of

∏
i vi vertices, because of algorithms

that need to work on the generator representation. An alternative is to dispense
totally with the generator representation Simon and King (2005); Simon and
Chen (2010).

The literature on slicing is abundant, since the early 1980s Weiser (1984).
Syntactic slicing extracts all program statements, variables etc. that affect the
value of variable v, or, rather, a safe superset thereof. The resulting slice is
executable, which is interesting for testing or debugging methods, but less so
for abstract interpretation; this is why we may use lax dependency relations
(Sec. 2.1), since we in effect replace any unknown dependency by nondetermin-
istic choice. Semantic slicing relaxes the requirement that the resulting program
be a syntactic subset of the original program Ward and Zedan (2007). X. Rival
considers a form of abstract semantic slicing Rival (2005a,b), where program
executions are restricted to those affecting the reachability of undesirable pro-
gram states (alarms); in contrast, our method does not suppose we have a set
of properties (absence of alarms) to prove.

The design of widening operators is surprisingly difficult. The original widen-
ing operator on polyhedra Cousot and Halbwachs (1978) was sensitive to syntax:
different ways of representing the same polyhedron in constraint form yielded
different widened polyhedra; this problem was later fixed Halbwachs (1979).
Because the result of iterations with widening is non-monotonic, precision is
highly heuristic: in particular, replacing a widening operator by one producing
smaller polyhedra at each iteration does not necessarily translate in a smaller
invariant in the end (Bagnara et al., 2005, p. 42).

Despite this caveat, many widening operators have been proposed for convex
polyhedra (Bagnara et al., 2005, p. 30)Simon and Chen (2010). Many are vari-
ants on the classical widening: some apply union in lieu of the classical widening
in a way that does not preclude termination Bagnara et al. (2005); the “up to”
widening, also known as widening with thresholds or limited widening Halbwachs
et al. (1997), extracts possibly relevant constraints from the program and keeps
in POQ the constraints from that set satisfied by both P and Q; a related idea is
widening with landmarks, which uses estimates of the number of supplementary
iterations necessary to enable a currently disabled transition Simon and King
(2006); widening with a care set uses a proof goal and counterexamples in order
to guide the widening Wang et al. (2007). Our approach is largely orthogonal
to these, and in fact can be combined with them.

In the recent years, there has been much interest in techniques for inferring
invariants without doing conventional Kleene iterations. Policy iteration (also
called strategy iteration; the technique is inspired by game theory) exists in two
flavors. Descending policy iteration Gaubert et al. (2007) solves a descending
sequence of least fixed points of simpler operators; these least fixed points may
be solved approximately using widenings, thus this technique is orthogonal to
ours. In contrast, ascending policy iteration Gawlitza and Seidl (2007) and
other techniques based on constraint programming Sankaranarayanan (2005)
or quantifier elimination Monniaux (2010) provide some optimality guarantees,
but impose restrictions on the kind of program instructions supported. Such

12

restrictions may be lifted by abstracting program operations into the supported
subset Miné (2004), which may in turn entail an outer loop with widenings.

We finally note that nothing in our approach is specific to polyhedra, or even
to numerical domains.

6 Conclusion

Following our intuition that failure to analyze well parts of a program should
not negatively influence precision on other parts not depending on them, we
proposed four analysis schemes: two proceed by analyzes of restrictions of the
program code to variable subsets, the other ones use alternative widening oper-
ators. Though we focused on improving the classical polyhedral analysis, two
of our methods apply to any abstract domain, and the two other ones make
a reasonable assumption on the underlying abstract domain and its widening
operator.

References

R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: To-
ward a complete set of numerical abstractions for the analysis and verification
of hardware and software systems. Science of Computer Programming, 72(1–
2):3–21, 2008.

Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. Precise
widening operators for convex polyhedra. Science of Computer Programming,
58(1–2):28–56, October 2005. doi: 10.1016/j.scico.2005.02.003.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. Design
and implementation of a special-purpose static program analyzer for safety-
critical real-time embedded software. In Torben Ægidius Mogensen, David A.
Schmidt, and I. Hal Sudborough, editors, The Essence of Computation: Com-
plexity, Analysis, Transformation, number 2566 in LNCS, pages 85–108.
Springer, 2002.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In PLDI, pages 196–207. ACM,
2003.

Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators for
abstract interpretation. Computer Languages, Systems & Structures, 37(1):
24–42, 2011. doi: 10.1016/j.cl.2010.09.001.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. of
Logic and Computation, pages 511–547, August 1992a. ISSN 0955-792X. doi:
10.1093/logcom/2.4.511.

Patrick Cousot and Radhia Cousot. Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation. In PLILP, vol-

13

http://dx.doi.org/10.1016/j.scico.2005.02.003
http://dx.doi.org/10.1016/j.cl.2010.09.001
http://www.worldcat.org/issn/0955-792X
http://dx.doi.org/10.1093/logcom/2.4.511

ume 631 of LNCS, pages 269–295. Springer, 1992b. ISBN 3-540-55844-6. doi:
10.1007/3-540-55844-6 101.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Principles of Programming Languages
(POPL), pages 84–96. ACM, 1978. doi: 10.1145/512760.512770.

Stéphane Gaubert, Éric Goubault, Ankur Taly, and Sarah Zennou. Static anal-
ysis by policy iteration on relational domains. In Rocco de Nicola, editor,
Programming Languages and Systems (ESOP), volume 4421 of LNCS, pages
237–252. Springer, 2007. ISBN 978-3-540-71316-6.

Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strat-
egy iteration. In Rocco de Nicola, editor, Programming Languages and Sys-
tems (ESOP), volume 4421 of LNCS, pages 300–315. Springer, 2007. ISBN
978-3-540-71316-6. doi: 10.1007/978-3-540-71316-6 21.

Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. PhD thesis, Université scientifique et
médicale de Grenoble, 1979.

Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of
real-time systems using linear relation analysis. Formal Methods in System
Design, 11(2):157–185, August 1997.

Nicolas Halbwachs, David Merchat, and Laure Gonnord. Some ways to reduce
the space dimension in polyhedra computations. Formal Methods in System
Design, 29(1):79–95, 2006. doi: 10.1007/s10703-006-0013-2.

Bertrand Jeannet and Antoine Miné. APRON: A library of numerical abstract
domains for static analysis. In Ahmed Bouajjani and Oded Maler, editors,
CAV, volume 5643 of LNCS, pages 661–667. Springer, 2009. ISBN 978-3-642-
02657-7. doi: 10.1007/978-3-642-02658-4.

A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In VMCAI, volume 3855 of LNCS, pages 348–363, Charleston,
South Carolina, USA, January 2006. Springer.

Antoine Miné. Domaines numériques abstraits faiblement relationnels. PhD
thesis, École polytechnique, 2004.

David Monniaux. A minimalistic look at widening operators. Higher order and
symbolic computation, 22(2):145–154, December 2009. ISSN 1388-3690. doi:
10.1007/s10990-009-9046-8.

David Monniaux. Automatic modular abstractions for template numerical con-
straints. Logical Methods in Computer Science, June 2010. ISSN 1860-5974.
doi: 10.2168/LMCS-6(3:4)2010.

Xavier Rival. Understanding the origin of alarms in Astrée. In Chris Hankin and
Igor Siveroni, editors, SAS, volume 3672 of LNCS, pages 303–319. Springer,
2005a. ISBN 3-540-28584-9.

Xavier Rival. Traces Abstraction in Static Analysis and Program Transforma-
tion. PhD thesis, École polytechnique, 2005b.

14

http://www.worldcat.org/isbn/3-540-55844-6
http://dx.doi.org/10.1007/3-540-55844-6_101
http://dx.doi.org/10.1145/512760.512770
http://www.worldcat.org/isbn/978-3-540-71316-6
http://www.worldcat.org/isbn/978-3-540-71316-6
http://dx.doi.org/10.1007/978-3-540-71316-6_21
http://dx.doi.org/10.1007/s10703-006-0013-2
http://www.worldcat.org/isbn/978-3-642-02657-7
http://www.worldcat.org/isbn/978-3-642-02657-7
http://dx.doi.org/10.1007/978-3-642-02658-4
http://www.worldcat.org/issn/1388-3690
http://dx.doi.org/10.1007/s10990-009-9046-8
http://www.worldcat.org/issn/1860-5974
http://dx.doi.org/10.2168/LMCS-6(3:4)2010
http://www.worldcat.org/isbn/3-540-28584-9

Sriram Sankaranarayanan. Mathematical Analysis of Programs. PhD thesis,
Stanford University, 2005.

Axel Simon and Liqian Chen. Simple and precise widenings for H-polyhedra.
In Kazunori Ueda, editor, APLAS, volume 6461 of LNCS, pages 139–155.
Springer, 2010. ISBN 978-3-642-17163-5. doi: 10.1007/978-3-642-17164-2 11.

Axel Simon and Andy King. Exploiting sparsity in polyhedral analysis. In
Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of LNCS, pages
336–351. Springer, 2005. ISBN 3-540-28584-9. doi: 10.1007/11547662 23.

Axel Simon and Andy King. Widening polyhedra with landmarks. In APLAS
(Programming languages and systems), volume 4279 of LNCS, pages 166–182.
Springer, November 2006. ISBN 3-540-48937-1. doi: 10.1007/11924661 11.

Chao Wang, Zijiang Yang, Aarti Gupta, and Franjo Ivançíı. Using counterexam-
ples for improving the precision of reachability computation with polyhedra.
In CAV (Computer aided verification), volume 4590 of LNCS, pages 352–365.
Springer, July 2007. doi: 10.1007/978-3-540-73368-3 40.

Martin Ward and Hussein Zedan. Slicing as a program transformation.
ACM Trans. Program. Lang. Syst., 29, April 2007. ISSN 0164-0925. doi:
10.1145/1216374.1216375.

Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357,
1984.

15

http://www.worldcat.org/isbn/978-3-642-17163-5
http://dx.doi.org/10.1007/978-3-642-17164-2_11
http://www.worldcat.org/isbn/3-540-28584-9
http://dx.doi.org/10.1007/11547662_23
http://www.worldcat.org/isbn/3-540-48937-1
http://dx.doi.org/10.1007/11924661_11
http://dx.doi.org/10.1007/978-3-540-73368-3_40
http://www.worldcat.org/issn/0164-0925
http://dx.doi.org/10.1145/1216374.1216375

	Introduction
	Generalities and Notations
	Motivating Example

	Stratified Analysis
	Dependency Strata
	Informal Definition
	Formal Definitions and Variants

	Stratified Widenings
	Widening with or without Reduction
	Generalized Reduction Leads to Nontermination

	Experimental Results
	Related Work
	Conclusion

