The WCET Analysis using Counters - A Preliminary
Assessment

Remy Boutonnet
Verimag, UJF
Grenoble, France
remy.boutonnet@imag.fr

ABSTRACT

The Worst-Case Execution Time (WCET) analysis aims to
statically and safely bound the longest execution path of a
program. It is also desirable for the computed bound to be
as close as possible to the actual WCET, thus making the
result of a WCET analysis tight. In this paper we propose
a methodology for the WCET analysis using an abstract
program (with special program variables called counters),
in order to better exploit the underlying program seman-
tics (via abstract interpretation) and to produce potentially
tighter WCET bounds.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

Keywords

WCET Analysis, abstract interpretation, semantic analysis

1. INTRODUCTION

The interaction of hard real-time systems with their exter-
nal environment is governed by a set of timing constraints.
In order to solve these constraints, it is necessary to esti-
mate the worst-case execution time (WCET) of the system
components. A WCET analysis computes for a given task
or program, a WCET bound which should be safe and tight
(close to the actual WCET).

The WCET analysis is performed at the binary level, with
knowledge about the underlying architecture. First, the typ-
ical WCET analysis workflow as standardized in [18], ex-
tracts the control-flow graph (CFG) from the binary code.
Subsequently, this CFG is the working structure for both
flow- and architecture-related analyses. Their result, which
is an annotated CFG, is used to compute the WCET bound
in a final phase, called path analysis. In order to achieve
tight bounds, a WCET analysis relies on a number of spe-
cific analyses, from flow analysis (e.g. detection of loop
bounds and infeasible paths) to architecture analysis (e.g.
of caches).

In this work, we address the flow analysis from the follow-
ing angle: how to extract more accurate semantic properties
which can help the WCET analysis by removing some infea-
sible paths. We denote an analysis which extracts semantic
properties, invariants on program executions, as a semantic
analysis. More specifically, in our context a semantic analy-
sis targets invariants which are directly translated into inte-

21

Mihail Asavoae
Verimag, UJF
_ Grenoble, France
mihail.asavoae@imag.fr

x=0;i=0;s=0; //a=08=0v=0;

while (i < N) { /] a++;
if(x < 10){
s +=3; /] B++;
}
if(s < N){
sH+=2x++; [/ v+

}

i+

Figure 1: Our example program instrumented with
counters «, 3,y

ger linear programming (ILP) constraints, as emphasised by
the implicit path enumeration technique (IPET) [17]. Our
work uses a program analyzer called Pagai [11], at the LLVM
Intermediate Representation level, over the LLVM compiler
infrastructure [15]. The key element of our approach is the
extraction of invariants from an abstract representation of
the input program, as an instrumented code with counters.
A counter is a special program variable which is attached
to a program part (e.g. a basic block) and incremented ev-
ery time the control flows through that part. We propose
the following workflow: after an automated instrumentation
of LLVM-IR code, the semantic analysis is performed using
Pagai (with a linear arithmetic abstract domain [6]). The
invariants, as relations between counters, are transferred to
binary code (actually to the path analysis formulation of
Otawa [4]), using a block-level traceability tool. We mea-
sure the improvements on the WCET bounds on a set of
syntactic and standard benchmarks.

‘We use the program described in Figure 1 to advocate on
how the WCET analysis can benefit from a counter-based
approach. The counters are «, 8,7, and N is a loop bound.

The following relations can be derived on those counters,
which are satisfied at the end of the program:

B+v<a+10 (1)

It shows that the blocks 4 and 6 of the control flow graph
of this program, in Figure 2, are both executed in the same
iteration of the while loop at most 10 times. Therefore, this
information is interesting for us since it leads to refinements
in the WCET of the whole program.

Outline. In Section 2 we overview the existing methods
on extraction of semantic properties for the WCET analysis.

b2

b4 s=s5+3 false

Figure 2: The control flow graph corresponding to
this example.

In Section 3 we elaborate on how our system is designed,
implemented and experimented with. We draw conclusions
and discuss about directions of future work in Section 4.

2. RELATED WORK
The WCET analysis requires knowledge about loop bounds

and infeasible paths in order to compute tight WCET bounds.

The existing support for automatic extraction of semantic
properties like the aforementioned ones is usually coming
in two flavours: as a result of abstract interpretation or of
symbolic execution. More recent approaches also use state
of the art satisfiability modulo theory (SMT) solving to ad-
dress parts of the WCET analysis.

Abstract interpretation, introduced in [5] is one of the
major program reasoning techniques. It relies on abstract
domains, like linear arithmetic [6] and fixpoint computation
to generate invariants at the program points of interest. In
the context of WCET analysis, abstract interpretation plays
a key role [19] in both control-flow (e.g. in value analysis)
or processor behaviour analyses {e.g. in cache analyses).

Symbolic execution [13] is a technique which uses arbi-
trary values as program inputs and allows program reason-
ing at the level of execution paths. Symbolic execution has
drawn interest from the WCET analysis community [9, 14],
but while it is potentially very precise, it suffers from scala-
bility issues when it is applied on large programs. As a con-
sequence, symbolic execution in WCET analysis is coupled
with search space reduction [9] techniques or it is applied on
code fragments [14].

Recent works [14, 10] rely on SMT-solving techniques
to compute WCET bounds. For example, WCET squeez-
ing [14] employs a form of symbolic execution on paths
returned by an external WCET analyzer. This technique
embeds the path analysis into a CEGAR loop, allowing an
incremental strengthening of the WCET bound. The ap-
proach in [10] computes WCET bounds as solutions of op-
timisation modulo theory problems (i.e. extensions of the

22

SMT to maximisation problem). The program semantics
are encoded as an SMT formula. To maintain the scalabil-
ity of the analysis, the original SMT formula is augmented
with additional constraints called "cuts”, which express sum-
maries of portions of code.

Using counters to extract semantic properties is not new,
existing counter-based approaches have been proposed, for
example in [8] using a single counter and in [12] with multi-
ple counters. The former considers one counter which repre-
sents time and accumulates the program semantics into it.
The later overcome the issue with the single-counter annota-
tions to work with complex invariant generation tools, CFG
graph transformation and generation of progress invariants,
it computes loop bounds and infeasiblilty relations.

The existing WCET analyzers span from industrial strength
platforms, like aiT [1] to academic tools like Otawa [4],
SWEET [2] and Chronos [16]. The oRange tool 7] comple-
ments the Otawa timing analyzer by computing loop bounds
using static analysis with abstract interpretation [5, 3] on
C programs. The SWEET tool supports an implementa-
tion of the abstract execution over the domain of intervals.
The Chronos timing analyzer integrates a pattern-based se-
mantic analysis which keeps track, for a particular branch,
of which assignments or other branches may influence it.
The industrial timing analyzer aiT uses a similar pattern-
driven analysis to identify code portions (e.g. loop or branch
shapes) and apply the appropriate analysis. While we con-
ducted limited experiments on SWEET, Chronos and aiT,
these tools seem capable to detect certain types of bounds
and infeasibility relations: for SWEET - up to the strengths
of the abstract domain and for Chronos and aiT - up to
the code structure which exhibits certain syntactic patterns.
However, using a specialised static analyzer to compute se-
mantic properties and to transfer these properties seems to
offer power (through various abstract domains) as well as
flexibility (i.e. driven by the strengths of the static ana-
lyzer).

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

3.1 General System

In the most general context, a counter-based methodology
for WCET analysis is driven by two elements: a compilation
toolchain (which also fixes the input language) and a WCET
analyzer (which includes the necessary processor behaviour
analyses). Next in Figure 3 we describe an implementation
of this methodology over the LLVM infrastructure and the
Otawa timing analyzer.

The standard WCET analysis workflow, in Figure 3 (left)
computes the WCET bound of the binary code (in our case it
is ARM code) generated from LLVM-IR code. The Otawa
timing analyzer relies on an ILP formulation of the path
analysis and embeds an ILP solver to compute the result
(i.e. the WCET bound). Our counter-based analysis work-
flow, in Figure 3 (right) could be seen as a plugin for the
WCET analysis. For the purpose of semantics extraction,
the Pagai static analyzer uses the initial LLVM-IR code,
instrumented with counters. Pagai computes invariants on
the counters, at the LLVM-IR level, using either abstract
interpretation or its combination with SMT solving. The
invariants are directly translated into ILP constraints. Fi-

Instrumented
LLVM-IR
Code

' LLVM compiler '

PAGAI Analyzer

Invariants
(LLVM)
i Traceability Tool '

Binary
(ARM)

Otawa Tim-
ing Analyzer

ILP For-
mulation T~~.

Bem. Pro})‘el‘tiﬁs‘ Invariants
(ARM)
' ILP Solver '
Legend:

< WoRT D Data > ((Phase)

Figure 3: General workflow for Counter-based
WCET Analysis

nally, a traceability tool maps the LLVM-IR blocks to ARM
basic blocks and facilitates the transfer of Pagal invariants
on counters at the binary level. These properties are inte-
grated into the path analysis of Otawa and solved in order to
obtain the WCET bound. The WCET analysis is performed
over the initial program, the instrumented code is used only
to extract invariants w.r.t. program semantics. Moreover,
our workflow does not consider code optimisations between
the LLVM-IR and ARM levels, however the code could and
should be optimized from C (i.e. not represented in the
workflow) and LLVM-IR levels. Our counter-based method-
ology works when replacing Otawa with the aiT, SWEET or
Chronos timing analyzers (all using IPET), up to some sup-
ported architectures. The counters approach can be used in
difference scenarios: to find or refine loop bounds or infeasi-
ble paths, particularly those created by mutually exclusive
conditions.

By processing the example of Figure 1 through the PA-
GAIT static analyzer, we automatically obtain the following
constraint between the counters «, 8 and ~:

W0+a—-p—v > 0 (2)

aswellas —a+38+2y>0,a—pF>0and a—~vy > 0.

This relation shows what we have derived by hand for
our example: the then-parts of the two conditions in the
while loop are both executed in the same iteration at most
ten times. Therefore, the counters approach with a static
analyzer is able to automatically find a non-trivial case of
infeasible path: the path containing the blocks b4, b5, b6,
b7 is executed at most ten times.

We can also use the counters approach to find or refine a
loop bound where other tools like cRange cannot find one.
In our example in Figure 1, if the condition of the while loop
i < N isreplaced by z < 10 and the second condition s < N

23

by s < 150, the PAGALI static analyzer outputs the relation
—10 + a = 10 which enables us to show that the while loop
is executed at most 10 times in that case.

3.2 Experiments

Our set of benchmark programs covers a wide range of ap-
plications (though of small size - column LOC in Figure 4).
We include automatically generated code from high-level de-
signs - (e.g. asnapshot called selector and avionics-specific
controllers in roll-control and cruise-control) as well as
several syntactic programs with complicated infeasible paths
(e.g. sou, even, break, and rate_limiter). In order to ex-
tract semantic properties using the Pagai static analyzer, we
automatically instrument the LLVM IR code (the working
level for Pagai) with a number of counter variables (in col-
umn #Cntrs) and a set of invariants (in column #Inv)
which are fed into the ILP representation of path analysis.
In this paper, we use the processor behavior analysis as pro-
vided by Otawa, our main concern being the program-level
semantic analysis.

The set of invariants covers relations between basic blocks
(represented by their respective counter variable) of several
forms. First, there are the loop bounds types of relations,
like for the benchmarks break and selector. Second, the
path infeasibility relations are expressed either as invariants
on two counter variables (in the case of pairwise exclusive
branches) - for the benchmark programs sou and even - or
as a counter value which is equal to zero (i.e. the paths going
through the particular basic block are infeasible) - for the
benchmark rate_limiter. Moreover, for some benchmarks
like selector, the infeasibility relations are more expressive
as an invariant on three counter variables than the pairwise
relations. Third, the set of invariants also includes relations
which do not contribute to a reduction of the WCET bound.
Overall, the experiments show promising results because, in
general it is difficult to obtain improvements of more than
several percents (indeed, the code size is rather small).

4. CONCLUSIONS

In this paper we addressed the problem on how to tune
the WCET analysis so as to produce tighter WCET bounds.
As such, we proposed a methodology to extract semantic in-
formation via special program variables called counters. We
used a program analyzer, called Pagai, to compute flow re-
lations (as relations between these counters). Finally, we
transferred these relations into an IPET formulation of the
path analysis and observed encouraging results with im-
provements over 20% on certain benchmarks. The method-
ology is still under development as we would like to investi-
gate how our counter-based WCET analysis compares with
and could complement existing WCET analyzers using au-
tomated extraction of semantic properties.

5. ACKNOWLEDGMENTS

The authors thank Fabienne Carrier and Claire Maiza for
their valuable comments on the paper content and Julien
Henry for his help with the Pagai static analyzer. This work
was partially funded by grant W-SEPT (ANR-12-INSE-0001)
from the French Agence national de la recherche.

6. REFERENCES
[1] AbsInt Angewandte Informatik: aiT Worst-Case

Execution Time Analyzers.

Name Program Description | LOC | #Cntrs | #Inv | WCET init | WCET final | Red % |

selector Fragment of SCADE design 134 14 14 1112 528 52.6%
roll — control From the SCADE Suite 234 25 19 501 501 0%
cruise — control From the SCADE Suite 234 35 31 881 852 3.3%

sou Syntactic benchmark 1 69 3 3 99 67 47.8%
even Syntactic benchmark 2 82 9 8 2807 2210 21.3%
break Syntactic benchmark 3 114 4 5 820 820 0%

rate limiter Program from [10] 35 2 2 43 29 32.6%

Figure 4: Set of benchmarks for the counter-based WCET analysis

2] Chronos: A timing analyzer for embedded software.
http://www.mrtc.mdh.se/projects/wcet /sweet /index.html. Sci. Comput. Program., 69(1-3):56-67, 2007.

[3] Z. Ammarguellat and W. L. H. III. Automatic [17] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient
recognition of induction variables and recurrence microarchitecture modeling and path analysis for
relations by abstract interpretation. In PLDI, pages real-time software. In IEEFE Real-Time Systems
283-295, 1990. Symposium, pages 298-307, 1995.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. (18] R. Wilhelm and all. The worst-case execution-time
OTAWA: An open toolbox for adaptive WCET problem—overview of methods and survey of tools.
analysis. In SEUS, 2010. ACM TECS, 7(3):1-53, 2008.

[5] P. Cousot and R. Cousot. Abstract interpretation: a [19] R. Wilhelm and B. Wachter. Abstract interpretation
unified lattice model for static analysis of programs by with applications to timing validation. In CAV, pages
construction or approximation of fixpoints. In POPL, 22-36, 2008.

1977.

[6] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
POPL, 1978.

[7] M. de Michiel, A. Bonenfant, H. Cassé, and P. Sainrat.
Static loop bound analysis of ¢ programs based on flow
analysis and abstract interpretation. In RT'CSA, 2008.

[8] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed:

precise and efficient static estimation of program

computational complexity. In POPL, pages 127-139,

2009.

J. Gustafsson, A. Ermedahl, C. Sandberg, and

B. Lisper. Automatic derivation of loop bounds and

infeasible paths for WCET analysis using abstract

execution. In RTSS, 2006.

[10] J. Henry, M. Asavoae, D. Monniaux, and C. Maiza.
How to compute worst-case execution time by
optimization modulo theory and a clever encoding of
program semantics. In LCTES, pages 43-52, 2014.

[11] J. Henry, D. Monniaux, and M. Moy. Pagai: A path
sensitive static analyser. Electr. Notes Theor. Comput.
Sei., 289:15-25, 2012.

[12] N. Holsti. Computing time as a program variable: a
way around infeasible paths. In WCET, 2008.

[13] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385-394, 1976.

[14] J. Knoop, L. Kovécs, and J. Zwirchmayr. Wcet
squeezing: on-demand feasibility refinement for proven
precise wcet-bounds. In RTNS, pages 161-170, 2013.

[15] C. Lattner and V. S. Adve. Llvin: A compilation
framework for lifelong program analysis &
transformation. In CGO, pages 75-88, 2004.

[16] X. Li, L. Yun, T. Mitra, and A. Roychoudhury.

9

24

