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ABSTRACT

The Worst-Case Execution Time (WCET) analysis aims to
statically and safely bound the longest execution path of a
program. It is also desirable for the computed bound to be
as close as possible to the actual WCET, thus making the
result of a WCET analysis tight. In this paper we propose
a methodology for the WCET analysis using an abstract
program (with special program variables called counters),
in order to better exploit the underlying program seman-
tics (via abstract interpretation) and to produce potentially
tighter WCET bounds.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures
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1. INTRODUCTION
The interaction of hard real-time systems with their exter-

nal environment is governed by a set of timing constraints.
In order to solve these constraints, it is necessary to esti-
mate the worst-case execution time (WCET) of the system
components. A WCET analysis computes for a given task
or program, a WCET bound which should be safe and tight
(close to the actual WCET).

The WCET analysis is performed at the binary level, with
knowledge about the underlying architecture. First, the typ-
ical WCET analysis workflow as standardized in [18], ex-
tracts the control-flow graph (CFG) from the binary code.
Subsequently, this CFG is the working structure for both
flow- and architecture-related analyses. Their result, which
is an annotated CFG, is used to compute the WCET bound
in a final phase, called path analysis. In order to achieve
tight bounds, a WCET analysis relies on a number of spe-
cific analyses, from flow analysis (e.g. detection of loop
bounds and infeasible paths) to architecture analysis (e.g.
of caches).

In this work, we address the flow analysis from the follow-
ing angle: how to extract more accurate semantic properties
which can help the WCET analysis by removing some infea-
sible paths. We denote an analysis which extracts semantic
properties, invariants on program executions, as a semantic

analysis. More specifically, in our context a semantic analy-
sis targets invariants which are directly translated into inte-

x = 0; i = 0; s = 0; // α = 0; β = 0; γ = 0;
while (i < N) { // α++;

if(x < 10){
s += 3; // β++;

}
if(s < N){

s += 2; x ++; // γ++;
}
i ++;

}

Figure 1: Our example program instrumented with
counters α, β, γ

ger linear programming (ILP) constraints, as emphasised by
the implicit path enumeration technique (IPET) [17]. Our
work uses a program analyzer called Pagai [11], at the LLVM
Intermediate Representation level, over the LLVM compiler
infrastructure [15]. The key element of our approach is the
extraction of invariants from an abstract representation of
the input program, as an instrumented code with counters.
A counter is a special program variable which is attached
to a program part (e.g. a basic block) and incremented ev-
ery time the control flows through that part. We propose
the following workflow: after an automated instrumentation
of LLVM-IR code, the semantic analysis is performed using
Pagai (with a linear arithmetic abstract domain [6]). The
invariants, as relations between counters, are transferred to
binary code (actually to the path analysis formulation of
Otawa [4]), using a block-level traceability tool. We mea-
sure the improvements on the WCET bounds on a set of
syntactic and standard benchmarks.
We use the program described in Figure 1 to advocate on

how the WCET analysis can benefit from a counter-based
approach. The counters are α, β, γ, and N is a loop bound.
The following relations can be derived on those counters,

which are satisfied at the end of the program:

β + γ ≤ α+ 10 (1)

It shows that the blocks 4 and 6 of the control flow graph
of this program, in Figure 2, are both executed in the same
iteration of the while loop at most 10 times. Therefore, this
information is interesting for us since it leads to refinements
in the WCET of the whole program.

Outline. In Section 2 we overview the existing methods
on extraction of semantic properties for the WCET analysis.
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Name Program Description LOC #Cntrs #Inv WCET init WCET final Red %

selector Fragment of SCADE design 134 14 14 1112 528 52.6%

roll− control From the SCADE Suite 234 25 19 501 501 0%

cruise− control From the SCADE Suite 234 35 31 881 852 3.3%

sou Syntactic benchmark 1 69 3 3 99 67 47.8%

even Syntactic benchmark 2 82 9 8 2807 2210 21.3%

break Syntactic benchmark 3 114 4 5 820 820 0%

rate limiter Program from [10] 35 2 2 43 29 32.6%

Figure 4: Set of benchmarks for the counter-based WCET analysis
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