
A General Approach for Expressing Infeasibility in Implicit
Path Enumeration Technique ∗

Pascal Raymond
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

CNRS, VERIMAG, F-38000 Grenoble, France
Pascal.Raymond@imag.fr

ABSTRACT
Static timing analysis aims at computing a guaranteed up-
per bound to the Worst-Case Execution Time (WCET) of a
program. It requires both an accurate modeling of the hard-
ware, and a precise analysis of the program in order to reject
infeasible executions (in particular, all infinite ones). For
the actual computation of the worst-case execution, most
of the existing tools and methods are based on the Implicit
Path Enumeration Technique (IPET), which consist in en-
coding this search into a numerical optimization problem
(Integer Linear Programming, ILP). An interest of this ap-
proach is that it naturally integrates the loop bounds. It also
allows to implicitly prune infeasible paths, as far as they can
be expressed using linear constraints. Several works on the
subject are using this ability in order to enhance the WCET
estimation: they identify specific property patterns (e.g., im-
plications, exclusions) and propose ad hoc translation into
numerical constraints.

The goal of this paper is to go further than ad hoc reasoning
by proposing a general method for translating infeasibility
in terms of numerical constraints. It does not address the
problem of finding infeasible paths, only the one of charac-
terizing them as precisely as possible. Moreover the paper
aims at exploring the limits of the method, and thus, it does
not try to enhance the result using additional methods (e.g.,
graph transformation).

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
WCET, infeasible path, Integer Linear Programming

∗This work is supported by the french research fundation
(ANR) as part of the W-SEPT project (ANR-12-INSE-
0001).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESWEEK’14, October 12 - 17 2014, New Delhi, India.
Copyright 2014 ACM 978-1-4503-3052-7/14/10 ...$15.00
http://dx.doi.org/10.1145/2656045.2656046

1. INTRODUCTION
Static timing analysis aims at computing, given a binary
code and the description of the architecture, a proven upper
bound to the Worst-Case Execution Time (WCET) of the
code (see [8] for an overview of methods and tools). Existing
methods and tools are mainly organized in 3 steps.

(1) Data-flow Analysis considers the semantics of the code
(often requiring the availability of the source code, e.g., C)
in order to identify the paths in the CFG that are actually
feasible; this phase must at least find accurate loop bounds,
in order to retain only finite executions.

(2) Micro-architecture Analysis builds the Control Flow Graph
(CFG) of the code, made of Basic Blocks (BB) of sequential
instructions connected by edges representing the possible
control paths. It then computes, for each BB and/or edges,
a local WCET estimation (aka local weight), taking into ac-
count as precisely as possible hardware features like memory
cache, pipeline, branch predictor.

(3) Worst-Case Path Search comes at last, to identify a/the
worst-case execution path according to the weights assigned
to each BB and/or edges. For this purpose, the mostly used
methods are based on Implicit Path Enumeration Technique
(IPET), introduced in [6].

The key idea of this method is to encode the problem of find-
ing a worst-case path into a numerical optimization prob-
lem, more precisely, an Integer Linear Programming prob-
lem (ILP). An integer variable is associated to each BB
and/or edge, representing the number of time the block/edge
is traversed during an execution. The structure of the graph
can then be expressed as a set of linear constraints, accord-
ing to the well-know principle that “incoming flow equals
outgoing flow”, and that the entry point of the program is
executed once. Other constraints, coming from the data-
flow analysis, are added to the numerical system, compris-
ing at least the ones that are necessary to bound all loops in
the graph. The objective function is then to maximize the
weighted sum of all these counters, and it can be solved by
a state-of-art Integer Linear Programming solver.

A main interest of the IPET method, pointed out since its
first proposal [6], is its ability to implicitly prune lots of
infeasible paths by stating simple linear constraints. The
study of this ability is the subject of this paper. To complete
this introduction, we present now some related works and

some examples that illustrate the problem and motivate this
work.

1.1 State of the art
To our knowledge, there is no previous work specifically ded-
icated to the expression of infeasible paths by means of ILP
constraints. More precisely, almost all works based on the
IPET method are considering this problem, but mainly as a
complement to the one of finding the properties that make
the paths infeasible. Papers on this subject are numerous,
and a general characteristic is that they search for partic-
ular property patterns leading to infeasible path, that are
translated into particular constraint patterns. These pat-
terns are mainly based on the notion of conflicting edges:
edges that cannot be all traversed during the same exe-
cution. Papers are considering pairwise conflicts (conflict-
pair), or more generally n-ary conflicts (conflict-list).

For instance, [1, 4] are handling conflicting lists of edges,
that can be expressed as bounded sums; it is similar to the
notion of conflict we develop in this paper, but only in the
case of programs without loops. Papers like [2, 3, 4] go fur-
ther by considering properties holding in loop scopes, in the
case of pairwise relations between edges (conflict pairs, ex-
clusions, equalities etc.). Moreover, almost all works notice
(often implicitly) that purely conjunctive linear program-
ming is unable to express all kind of conflicting properties.
The general solution is to define a mix of case-by-case analy-
sis and pure ILP. This kind of methods can be referred to as
splitting-based methods, in the sense that they consists in
splitting the problem to make paths more and more explicit.
Technically, they can be based on control-flow graph trans-
formation, addition of extra variables and/or disjunctive lin-
ear systems (in order to express non convex domains [5, 6,
7]).

The work presented in this paper is somehow transversal
to these related works. In particular it does not consider
at all the problem of finding properties, but only focusses
on the expression of these properties as ILP constraints. We
aim at considering in a homogeneous manner programs with
or without loops, and relations between two or more edges
(conflicting pairs or lists). Moreover, we try to explore the
limits of pure ILP constraints, and thus we do not consider
splitting-based methods.

1.2 Examples
Program 1 shows an example of code written in pseudo-
C (left). The actual CFG, handled by the timing analyzing
tool, is shown in the middle. For reasoning about path fea-
sibility, we use the simplified graph on the right: sequential
blocks are abstracted to outline the branching possibilities.
Each transition is identified by a letter (a,b,c, etc.) that
helps to relate it with the source C code.

In the classical IPET approach, an integer variable is associ-
ated to each edge. This variable is a counter, whose value is
the number of time the edge is traversed during one partic-
ular execution. We note these counters with the same letter
than the corresponding edge. Let E = {a, b, c, ...} this set
of variables. The weights (local WCET) computed during
the micro-architecture analysis are denoted wa, wb, etc. The
IPET goal is to maximize, under a set of linear constraints,

the objective function: ∑
x∈E

wx · x

The CFG of Program 1 can be literally translated into a set
of structural constraints:

S =

{
1 = a+ d a+ d = g g + k = h+ `
h = b+ e b+ e = c+ f c+ f = k

}
With these structural constraints only, there is trivially no
bound to the objective function: the estimated WCET is
infinite. This is why the control-flow analysis must at least
produce a bound for each loop in the program. We suppose
that such a constant bound n is given (e.g. 100), and a new
constraint is added to obtain the basic set of constraints :

B = S ∪ {h ≤ n}

If we only consider the constraints set B (structural and
loop bounds), the interest of the ILP encoding is not obvi-
ous. The WCET can be computed without the help of a
numerical solver by applying a simple max/plus inductive
algorithm:

1. The WCET of a sequence is the sum.
2. The WCET of a choice is the max.
3. The WCET of a loop bounded by n is n times the

WCET of one iteration.

The ILP method becomes interesting if there exist addi-
tional information about edges that are not structural but
rather semantical. Such an information is for instance that
two (distant) edges are incompatible (or conflicting), in the
sense that they cannot be both taken during the same exe-
cution. The purpose of this work is not at all to find these
properties: we just make the statement that they exist, and
our goal is to express them as precisely as possible in the
IPET framework. Let us now precise this notion of incom-
patibility on the example.

Conflict within a loop. On the example program, one can
observe that executing the branch e sets the variable cond

to true, and, as a consequence, makes it impossible to take
immediately after the branch f . This kind of property is
very easy to express as an ILP constraint if the program
has no loop: since each edge is executed at most once, the
constraint e + f ≤ 1 precisely express that at most one
edge can be executed. Here the problem is slightly more
complex because the edges belong to a loop. A simple ad
hoc reasoning shows that the conflict holds at each iteration
of the for statement, and that the number of iterations is
precisely captured by the value of the edge counter h. The
conflict can be expressed by:

e+ f ≤ h

Since we know that h is bounded by the constant n, we may
also directly write:

e+ f ≤ n

Most of the examples found in the literature are very similar
to this case: authors search for particular property patterns
that lead to particular constraint patterns, typically a sum
bounded by a constant.

i f (i n i t) {
/∗ a ∗/

} else {
/∗ d ∗/

}
for (i =0; i<n ; i++){

i f (Y[i]) {
cond = not i n i t and Z [i] ;
/∗ b ∗/

} else {
cond = true ;
/∗ e ∗/

}
/∗ . . . ∗/
i f (cond){

/∗ c ∗/
} else {

/∗ f ∗/
}

}

χ

d a

g

h

k

l

be

cf

ε

Program 1: simplified C code, actual binary CFG and simplified CFG

χ

g”

h”

k”

l”

b”e”

c”f”

ε ad

e’ b’

c’f’

k’

h’

l’
g’

Figure 1: Unfolding the CFG of Program 1 to dis-
tinguish executions where a is taken or not.

Conflict across a loop. A less obvious semantic relation
exists between the initial if statement and the two state-
ments inside the loop: if the variable init is true, then in
each loop, if Y[i] is true then cond is set to false and branch
c becomes unreachable. This is yet another example of con-
flict, but involving three edges instead of two: a, b and c.
Moreover, these edges do not belong to the same loop scope,
making impossible to simply bound their sum.

A usual solution to treat this kind of property consists in
splitting the problem according to several cases. This split
can be made explicitly by unfolding the CFG as shown in
Figure 1. We obtain a new graph, and thus a new ILP
system which is equivalent with respect to the WCET com-
putation. Note that the conflict previously discovered be-
tween e and f , simply applies to the new “versions” of the
edges; from now on we use the more visual name of avatars
to identify the several versions of an edge: e′ + f ′ ≤ n and
e′′ + f ′′ ≤ n. Moreover, we can now precisely express the
new conflict, that holds only for the prime avatars of b and

c (i.e., after the execution of a only):

b′ + c′ ≤ n

CFG transformation (unfolding, loops unrolling) is a gen-
eral solution for expressing any kind of infeasibility: the
more detailed is the graph, the more explicit are the paths.
However it contradicts the spirit of the IPET method, and
it is technically limited by the combinatorial growing of the
graphs.

A clever solution consists in keeping the splitting implicit, by
introducing as few extra variables as possible. For instance,
we can start with the original ILP system of Program 1 and
introduce only the avatars of b and c. The following set
of extra constraints, called A, is sufficient to express the
property:

A =

b′ + c′ ≤ n · a

b′′ ≤ n · d
c′′ ≤ n · d

b′ + b′′ = b
c′ + c′′ = c

In this system, a behaves like a Boolean oracle whose value
“chooses” between two different systems. If a = 0, then,
because of the structural constraints, we have d = 1− a = 1
and the set A can be reduced to b ≤ n and c ≤ n, which is
redundant with the structural constraints. If a = 1, A can
be reduced to the expected conflicting constraint : b+c ≤ n.

The solution of introducing extra variables is still not really
in the spirit of the IPET, since extra variables are just a way
to make paths more explicit.

In fact, for this particular case, ad hoc reasoning shows that
the property can be expressed exactly without the help of a
splitting method. The following constraint, involving only
original variables, precisely captures the expected conflict:

n · a+ b+ c ≤ 2n

Conflict between iterations. Program 2 has the same con-
trol flow graph as Program 1, but the order of the if state-

i f (i n i t) {
/∗ a ∗/

} else {
/∗ d ∗/

}
cond = . . . ;
for (i =0; i<n ; i++){

i f (cond){
/∗ b ∗/

} else {
/∗ e ∗/

}
/∗ . . . ∗/
i f (Y[i]) {

cond = not i n i t and Z [i] ;
/∗ c ∗/

} else {
cond = true ;
/∗ f ∗/

}
}

Program 2: Same CFG as Program 1, if statements
are reversed

ments in the loop is reversed. As a consequence, whenever a
is taken, the conflict between b and c does not occur during
the same iteration, but between two consecutive iterations:
if c is taken, cond is set to false, and in the next iteration (if
it exists) b cannot be taken. Even if it is not so different from
the previous example, this kind of inter-iteration property
is hardly handled in existing work. Here again the problem
can be solved by unfolding the graph or introducing extra
variables. However, here again, it is not necessary to do so.
Let n be the loop bound, the following constraint precisely
captures the conflict:

(n− 1) · a+ b+ c ≤ 2n

Here is an informal proof sketch:

• if n = 0, then b = c = 0 and the constraint becomes a
tautology: −1 ≤ 0;
• if n = 1 or a = 0, the constraint becomes redundant:
b+ c ≤ 2n;
• if n ≥ 2 and a = 1 the constraint becomes b + c ≤

2n − (n − 1) = n + 1. By doing a (virtual) unfolding
of the n iterations, on can exhibit n avatars of b and
c, denoted b1, · · · bn, c1, · · · , cn. Both b1 and cn are
unconstrained, and then, their sum is bounded by 2.
All others pairs (ck, bk+1) are conflicting and thus ck+
bk+1 ≤ 1. Since there are n − 1 such pairs, the sum
of all the avatars is bounded by 2 + (n − 1) = n + 1,
which is the bound given by the formula.

Limits of numerical constraints. Unfortunately, it is not
possible to exactly reflect any conflict using only the ex-
isting variables. Program 3 is very similar to Program 1,
except that the tests within the loop are not depending on
the current iteration. For this program, if init is true, then
depending on the value of Y, either b = n and c = 0 or b = 0
and c = n. This property cannot be expressed in classical
(conjunctive) linear programming since it requires to express
a disjunction: (b = n∧ c = 0)∨ (b = 0∧ c = n). Here again,
splitting oriented methods (graph unfolding, extra variable,

i f (i n i t) {
/∗ a ∗/

} else {
/∗ d ∗/

}
for (i =0; i<n ; i++){

i f (Y) {
cond = not i n i t and Z ;
/∗ b ∗/

} else {
/∗ e ∗/
cond = true ;

}
/∗ . . . ∗/
i f (cond){

/∗ c ∗/
} else {

/∗ f ∗/
}

}

Program 3: Same CFG as Program 1, conditions do
not depend on the current iteration

disjunctive systems) can solve precisely the problem, but
they are not considered in this paper.

Nevertheless, for this program, the simple linear constraint
n · a + b + c ≤ 2n still holds and, while not perfect, may
prune some infeasible paths.

1.3 Motivation and paper organization
The goal of this work to go further than ad hoc reasoning
by proposing a general method to produce linear constraints
such as the ones presented in the examples (e + f ≤ n,
n · a + b + c ≤ 2n, etc.). The method should handle in a
homogeneous manner programs with or without loops, intra
or inter loop properties.

For this purpose, a first requirement is to precise the“nature”
of an infeasibility property. Moreover, we want to explore
the limits of the ILP expressiveness without the help of any
split-oriented method: no graph transformation, no extra
variables, no disjunction.

To summarize, a first definition of the goal is: given a CFG
and information on the incompatibility between edges, find
one or more linear constraint(s) that cut, as precisely as
possible, the corresponding infeasible path.

The paper is organized as follow: section 2 gives the neces-
sary formal definitions. We show that the notion of conflict-
ing sets is atomic with respect to path pruning in the sense
that any set of infeasible paths can be described as a union
of conflicting sets.

Section 3.1 gives a first general solution for transforming con-
flicting sets into linear constraints. This solution requires
very few information about the incompatibilities, but the
counterpart is that the result may be rather imprecise. Sec-
tion 3.2 presents a solution for capturing more precisely the
incompatibilities.

2. DEFINITIONS AND NOTATIONS
2.1 Programs and unfoldings
A CFG (or simply a program) is a direct graph, possibly
cyclic, made of a finite set of vertices (V), a finite set of
edges (E ⊆ V × V), a particular entry vertex (ε), and one
or more exit vertex (X):

P = (V,E ⊆ V × V, ε ∈ V, ∅ ⊂ X ⊆ V)

In the sequel we use lowercase letters to identify edges (e.g.,
a, b, c, etc., as in the CFG of Program 1).

A trace of a program P is a sequence of subsequent edges
starting in ε and ending in x ∈ X . The set of traces of a
program P is denoted T (P).

In the WCET framework, we are only interested in pro-
grams that terminate in bounded time. It implies that we
always suppose the existence of a finite set of actually fea-
sible executions, which is, in general, a strict subset of the
program traces. We do not claim that this finite set is pre-
cisely known, just that it exists. We call it the set of actual
executions and note it E ⊆ T (P).

We introduce now the notion of unfolding in order to for-
malize the notion of “more precise” program graph.

Definition 1.
An unfolding of a program P = (VP , EP , εP ,XP), with
respect to a set of executions E ⊆ T (P) is a pair (U, δ) such
that:

• U = (VU , EU , εU ,XU) is a CFG,
• δ is a mapping from U edges to P edges (i.e., a decod-

ing’):

δ : EU → EP

the induced trace mapping is denoted:

δ∗ : T (U)→ T (P)

and the set of decoded traces is denoted:

T δ(U) = {δ∗(t), t ∈ T (U)}

• such that:

E ⊆ T δ(U) ⊆ T (P)

For instance, Figure 1 shows an unfolding of Program 1,
where the mapping consists in ignoring the prime symbols;
in this case the unfolding is not more precise since T δ(U) =
T (P).

Note that the definition of unfolding can be generalized by
considering neutral edges in U : in this case the mapping is a
function δ : EU → EP ∪{τ} where τ 6∈ EP is simply ignored
when extending δ to sequences (i.e., δ∗(τ) = ε).

Among the unfoldings of P we are particularly interested
in those that are acyclic (i.e., DAGs): they structurally re-
ject the infinite traces of the original P . In particular, an

l3

h3

b3

c3 f3

k3

e3
l2

h2
e2 f2

c2
b2

k2

a1d1

g1
l1

h1

e1 b1

c1f1

k1

l4

ε

χ

Figure 2: Acyclic unfolding ofProgram 1 (for n = 3).

acyclic unfolding is exactly what we get (implicitly) in clas-
sical WCET techniques when a bound is assigned to each
loop of the program. Figure 2 shows an acyclic unfolding
of Program 1, in the case that the number of iterations is
bounded by n = 3. Note that it trivially exists, within the
acyclic unfoldings of P , a canonical program that exactly
captures the actual executions E (more precisely, a class of
minimal graphs, equivalent modulo edge renaming).

In the sequel, we consider that we have an acyclic unfolding
of the program P : we do not require that it must be precisely
built or known, only that it virtually exists.

2.2 Avatars and implicit paths
Let P be a program, E the set of actual executions and
(U, δ) an acyclic unfolding. From now on we call P the
concrete program (and its edges the concrete edges). The
edges in the reverse image of the concrete edge a are called
the avatars of a. We note ma the number of avatars of a
(ma = |δ−1(a)|), and, by convention, we note the avatars
with subscript indices, like in Figure 21:

δ−1(a) = {a1, a2, · · · , ama}

Let us now come back to the IPET framework. In IPET,
sets of traces are characterized implicitly by giving the num-
ber of occurrences of the edges. We call these numbers the
edge counters, and note, for instance, |a|t the number of oc-
currences of the edge a in the trace t. In order to simplify
the notations, and whenever the context clearly concerns a
trace t, we will simply note a for |a|t.

The basic relation between the counters of an unfolded trace
t and the corresponding concrete trace t′ = δ∗(t) is trivially:

ma∑
i=1

ai = a

Another trivial property of the unfolded counters is that
they are either 0 or 1:

0 ≤ ai ≤ 1

1This does not mean that we consider a “natural” ordering
of the avatars, just think about them as a family of symbols.

2.3 Conflicting sets
Let P be a program, E the set of actual executions and
(U, δ) an acyclic unfolding. U structurally rejects any infi-
nite infeasible paths, however there is still a precision gap
represented by G = T δ(U) \ E which is the set of infeasible
finite paths not rejected by U .

Definition 2.
Let C ⊆ EU be a set of edges, we note T δU (C) ⊆ T δ(U) the
set of traces of U that pass by all the edges in C:

• C is a conflicting set if T δU (C)∩E = ∅ and T δU (C) 6= ∅,
i.e., it contains only infeasible paths, among them at
least one not rejected by U ;
• C is a minimal conflicting set iff any C′ ⊂ C is not

a conflicting set;
• A set C = {C1, · · · , Ck} is a conflict covering iff:

T δ(U) ⊆ E
⋃

1≤i≤k

T δU (Ci)

i.e., the conflicting sets of C are sufficient to reject any
infeasible path from U ;
• C is a minimal conflict covering iff it contains only

minimal conflicting sets, and any C′ ⊂ C is not a con-
flict covering.

Theorem 1. For all (P, (U, δ), E), there exist a minimal
conflict covering.

Here is a sketch of a constructive proof, which is indeed
related to the notion of prime implicant in Boolean algebra:

• there exist (at least) one conflict covering: the one
obtained form G = T δ(U)) \ E by interpreting the
paths as (unordered) sets of edges,
• if a conflicting set C in a covering is not minimal, re-

place it by some other conflicting set C′ ⊂ C,
• if a covering is not minimal, replace it by some covering
C′ ⊂ C.

This theorem is relatively trivial, but nevertheless impor-
tant since it justifies the fact that the notion of conflicting
sets is (implicitly) considered equivalent to the one “pruning
properties” in the literature.

In an unfolding, the incompatibility due to a conflicting
set can be expressed exactly in terms of ILP constraints.
Consider a multiset of n concrete edges (we use superscript
indexes to avoid confusion with avatar notation): ax for
x = 1 · · ·n. Consider a set of n avatars, one per each con-
crete edge ax: C = {axix |x = 1 · · ·n}. Note that we consider
multisets of concrete edges for the sake of generality: it is
possible that different avatars of a same concrete edge are
conflicting; it arises for instance when a edge in a loop cannot
be taken in two consecutive iterations. If C is a conflicting
set, then, for any execution:

n∑
x=1

axix ≤ n− 1

For the same multiset of concrete edges, it is likely that
many others sets of avatars are also conflicting. This leads

to the notion of “conflicting from time to time”: a multiset
of (concrete) edges {{ax}} is conflicting s times (i.e., is s-
conflicting) if there exists s sets of their avatars that are
conflicting.

3. COMPLETION OF S-CONFLICTING
3.1 Rough completion
3.1.1 Case of 3 edges

In order to make the presentation more clear, and to keep the
notations readable, we consider here the case of 3 concrete
edges, denoted a, b and c. Note that nothing in the following
reasoning requires the these edges should be all different:
|a, b, c| must be understood as a multi-set containing 3 edge
references (e.g. a and b may refer to the same concrete edge).
The reasoning can be easily extended to the general case of
any number of edge references.

Even if the reasoning is based on the existence of an acyclic
unfolding, we try to keep the information about it as ab-
stracted as possible; we suppose given:

• the number of avatars of each edge, denoted ma, mb

and mc;
• the number of conflicting sets of avatars, denoted s.

In order to avoid confusion, we use different index symbols
for the avatars. Avatars are denoted ai for i = 1 · · ·ma, bj
for j = 1 · · ·mb, and ck for k = 1 · · ·mc. The corresponding
counters properties, holding for any execution are:

a =

ma∑
i=1

ai, b =

mb∑
j=1

bj , c =

mc∑
k=1

ck

We know that {{a, b, c}} is s-conflicting. Thus, there exists
a set S of s triples (i, j, k) such that each {ai, bj , ck} is a con-
flicting set. The sum of the corresponding linear constraints
gives:

∑
(i,j,k)∈S

ai + bj + ck ≤ 2s

The idea is now to complete this constraint in order to get
rid of the avatar details and come up with a relation between
the full counters only. Without any other information than
the number s, we can hardly do better than complete the
relation with all the triples that do not belong to S. For
these triples, such that (i, j, k) /∈ S, the following trivial
relation holds:

ai + bj + ck ≤ 3

Moreover, there are mambmc − s such triples. By summing
all these trivial constraints with the conflicting ones, we ob-
tain, in the left hand side, mbmc times the sum of all a
avatars, that is, the complete a counter. Similarly, the full
b appears mamc times, and the full c mamb times. Finally,
we obtain a relation free of any avatar details:

mbmca+mamcb+mambc ≤ 2s+ 3(mambmc − s)

or equivalently:

Formula 1.

m

ma
a+

m

mb
b+

m

mc
c ≤ 3m− s

where m = mambmc

3.1.2 General case
The 3-edges formula can be easily generalized to the in-
compatibility between any number of (possibly redundant)
edges: let X be a multiset of |X| concrete edges. Each edge
occurrence x ∈ X is characterized by its number of avatars
mx, and the incompatibility is characterized globally by the
number of conflicting sets of avatars s:

Formula 2. ∑
x∈X

m

mx
x ≤ |X|m− s

where m =
∏
x∈X

mx

3.1.3 Inefficiency of rough completion
Let us consider the left hand part of Formula 2: each edge
counter x is, by definition, bounded by mx, thus the whole
left hand sum is intrinsically bounded by m ∗ |X|. The gain
in precision of the Formula is then only s. Except for very
special cases (big s, small number of edges and/or small
number of avatars), the formula is unlikely to give a useful
information.

One of the rare case where the Formula gives an exact in-
formation is when ma = mb = mc = s, (i.e. a cycle-free
program with 3 incompatible tests): the Formula

a+ b+ c ≤ 2

precisely “cuts” the infeasible paths.

As soon as the m’s are greater, the formula cuts very few
infeasible paths, and thus gives very imprecise results. Con-
sider 3 edges within the same loop (executed n times), con-
flicting at each iteration. The parameters are ma = mb =
mc = s = n and the formula gives:

a+ b+ c ≤ (3n2 − 1)/n

which is equivalent (since a, b, and c are integers) to:

a+ b+ c ≤ 3n− 1

The inefficiency is clearly a drawback of the completion, and
not of the ILP approach, since we know that there exist, for
this particular example, a constraint that precisely cuts the
infeasible paths: a+ b+ c ≤ 2n.

The goal of the next section is to propose a method for find-
ing, when it exists, a precise ILP formulation of the conflict.

3.2 Precise completion
3.2.1 Multiplicity and lack

The problem of the rough completion is that it introduces
a huge amount of useless information of the type ai ≤ 1.

We will try here to introduce the minimal number of useless
information. Consider the incompatibility relation:∑

(i,j,k)∈s

ai + bj + ck ≤ 2s

and focus for instance on the term involving the ai avatars.
This term is of the form:

ma∑
i=1

αiai with

ma∑
i=1

αi = s

The maximum of the αi is called the multiplicity of a and
denoted pa = MAXi=1···ma(αi).
For each αi, we define α′i, its complement to pa: α′i+αi = pa.

Intuitively, the α′i describe the avatars of a that are missing
in the conflict constraint:

ma∑
i=1

αiai +

ma∑
i=1

α′iai = paa

Moreover, the details of the α′i have no importance, only
their sum is important:

ma∑
i=1

α′i = pama − s

We call it the lack of a in the conflict, and note `a = pama−
s.

Consider for instance Program 1 in the case n = 3, and the
corresponding acyclic unfolding in Figure 2. The numbers of
avatars are ma = 1 and mb = mc = 3. There are s = n = 3
conflicting sets {a1, b1, c1}, {a1, b2, c2} and {a1, b3, c3}. The
multiplicity of a is 3 (a1 appears 3 times in the conflicts),
while the multiplicity of b and c is 1 (each avatar appears
exactly once in the conflicts). It follows that the lack of a
is `a = 3 × 1 − 3 = 0, and the lack of b and c is `b = `c =
1 × 3 − 3 = 0. As a consequence, there is no lack at all in
the constraints: no avatar is missing in the conflicts sets.

Consider now the example Program 2, with n = 3, for which
the CFG in Figure 2 is also an acyclic unfolding. We still
have ma = 1 and mb = mc = 3, but there are now only
s = 2 conflicting sets: {a1, b2, c1} and {a1, b3, c2}. The mul-
tiplicity of a is 2, and thus the lack is `a = 2 × 1 − 2 = 0.
The multiplicity of both b and c is 1, and thus the lack is
`b = `c = 1 × 3 − 2 = 1. Intuitively, there is a lack in the
conflict sets: one avatar of b and one avatar of c are missing.
Note that we do not care about what particular avatar is
missing or not: only their numbers matter.

3.2.2 Lack completion
For each missing avatar, we can add a trivial constraint stat-
ing that is it less than 1, and by summing all these trivial
constraints, we obtain:

ma∑
i=1

α′iai ≤
ma∑
i=1

α′i = `a

The same reasoning holds for the terms in b and c, and finally
we can build a global sum of the conflict constraints and the
three “lack” constraints that erases the avatar details:

ma∑
i=1

αiai +
mb∑
j=1

βjbj +
mc∑
k=1

γkck ≤ 2s

ma∑
i=1

α′iai ≤ `a

mb∑
j=1

β′jbj ≤ `b

mc∑
k=1

γ′kck ≤ `c

paa + pbb + pcc ≤ 2s+ `a + `b + `c

3.2.3 Precise completion (3 edges)
To summarize, in order to obtain a precise translation in
ILP of the incompatibility, we need:

• the numbers of avatars ma, mb and mc,
• the number of “times” the incompatibility holds s (i.e.,

the number of avatar conflicting sets among themambmc

possible ones),
• for each edge, its multiplicity in the conflict, that is,

the maximum occurrence of a particular avatar ai in
the set of conflicting sets: pa, pb and pc,
• from these information, we compute the relative lacks

of each edge, e.g., `a = pama − s,
• and then we can state that the (ternary) s-conflicting

formula holds:

Formula 3.

paa+ pbb+ pcc ≤ 2s+ `a + `b + `c

3.2.4 Precise completion (general case)
This result can be easily generalized to the incompatibility
between any number of (possibly redundant) edges. Let X
be a multiset of |X| concrete edges. Each edge occurrence
x ∈ X is characterized by its number of avatars mx. The
incompatibility is characterized globally by the number of
conflicting sets of avatars s, and, for each edge occurrence x,
its multiplicity px, and the corresponding lack `x = pxmx−s.
The generalized n-ary s-conflicting formula is:

Formula 4. ∑
x∈X

pxx ≤ (|X| − 1)s+
∑
x∈X

`x

3.3 Examples

Across-loop conflict. In Program 1, the conflict between
a, b and c holds for each of the n iterations, thus:

• s = mb = mc = n and ma = 1,
• pa = n and thus `a = pama − s = 0,
• pb = pc = 1 and thus `b = `c = pbmb − s = 0,
• and finally:

n · a+ b+ c ≤ 2n

which is the precise translation of the incompatibility,
as it was obtained by ad hoc reasoning in the intro-
duction.

for (i =0; i<n1 ; i++){
read (x) ;
i f (x)
{
/∗ a ∗/
}
for (j =0; j<n2 ; j++){
read (y) ;
i f (not x or y)
{
/∗ b ∗/
}
for (k=1;k<n3 ; k++){
read (z) ;
i f (not (x and y) and z)
{

/∗ c ∗/
}
}
}
}

χ

a

ε

b

c

Program 4: Example of ternary conflict in nested
loops.

An even simpler example is when the 3 edges belong to the
same loop, and the incompatibility holds for each of the n
iterations:

• n = s = ma = mb = mc,
• pa = pb = pc = 1 and thus `a = `b = `c = 0,
• and finally:

a+ b+ c ≤ 2n

Note that the same reasoning works for edges that are in
distant loops: only the number of conflict matters, not the
precise structure of the graph.

Nested-loops conflict. Program 4 is another example of
ternary conflict, but where the conflict propagates within
nested loops. The edges a, b and c are appearing (respec-
tively) in nested loops executed locally n1, n2 and n3 times,
thus:

• ma = n1,
• mb = n1n2,
• mc = n1n2n3,

The conflict propagates to the whole nested loop, i.e.: the
first a is incompatible with the n2 first b and the n2n3 first
c, and so on. For this example, the avatars are numbered
form 0 to m − 1 in order to simplify the notations. The
incompatibility holds for all the triples:

(i, n2i+ j, n3(n2i+ j) + k)

with 0 ≤ i < n1, 0 ≤ j < n2, 0 ≤ k < n3.

It follows that:

• s = n1n2n3,
• pa = n2n3, pb = n3, pc = 1 and `a = `b = `c = 0
• and finally:

n2n3a+ n3b+ c ≤ 2n1n2n3

cond = read () ;
for (i =0; i<n ; i++){

i f (cond){
/∗ a ∗/
cond = 0 ;

} else {
cond = read () ;

}
}

χ

ε

a

Program 5: Edge a is “auto-conflicting” between two
consecutive iterations.

Conflict between different iterations. Consider the Pro-
gram 2, where the conflict holds from one iteration to the
following (i.e., if b is taken at loop i, then c cannot be taken
at loop i+ 1). In this case:

• n = mb = mc and ma = 1,
• s = n− 1, since all {a1, bi, ci+1} is conflicting,
• pa = n− 1, and thus `a = pama − s = 0,
• pb = pc = 1 and thus `b = `c = pbmb − s = 1; the

global lack is then 2s+ `a+ `b+ `c = 2(n−1)+2 = 2n
• and finally:

(n− 1) · a+ b+ c ≤ 2n

Auto-conflict. This example illustrates the fact that con-
flicting concrete edges do not have to be different. Consider
Program 5: (1) the loop is bounded by the constant n, (2)
whenever a is executed, it becomes unreachable for the next
iteration. This is an example of pairwise conflict, covered
by the general formula:

paa+ pbb ≤ s+ `a + `b

where, indeed, one has to keep in mind that a = b. The
parameters are ma = n, s = n− 1, pa = 1 and thus `a = 1,
and finally:

a+ a ≤ n− 1 + 1 + 1 ⇔ 2a ≤ n+ 1

4. CONCLUSION
This paper presents a general method for translating infea-
sibility properties into Integer Linear Programming (ILP)
constraints, suitable for the use in IPET method. The trans-
lation of infeasibility in terms of ILP constraints is far from
new, and numerous examples can be found in the literature.
But the goal of this work is not compete on precision or
accuracy with existing approaches. It is a theoretical study
that proposes a general formulation that in some sense en-
compass the existing ones and outlines the fundamental lim-
its of the method. In particular, it does not consider the
problem of finding “pruning” properties, but only the one
of reflecting them as precisely as possible, without the help
of any complementary method (e.g., graph transformation).
The reasoning is based on the existence of an acyclic unfold-
ing of the program. However this unfolding is kept mainly
abstract: a rough solution only requires to identify (1) the
number of times each particular edge is unfolded, (2) the
number of conflicting sets of edges in the unfolding. In or-
der to provide a finer solution, a more precise information is
necessary, that intuitively gives the number of time a par-

ticular edge is involved in the infeasibility property. Even
with this finer solution, the formulation is sometimes not
perfect, in the sense that it does not reject all the infeasible
paths. This is not a drawback of the proposed method, but
a general limitation of ILP, that arises whenever the exact
formulation requires to express disjunction. In this case, the
general solution is to combine ILP with by-case reasoning,
but this somehow orthogonal problem is not considered here
since the idea was to explore the limits of the strict conjunc-
tive ILP formulation.

5. REFERENCES
[1] B. Blackham, M. Liffiton, and G. Heiser. Trickle:

automated infeasible path detection using all minimal
unsatisfiable subsets. In Real Time and Embedded
Technology Applications Symposium, Berlin, Germany,
April 2014.

[2] J. Engblom and A. Ermedahl. Modeling complex flows
for worst-case execution time analysis. In RTSS, pages
163–174, 2000.

[3] J. Gustafsson, A. Ermedahl, C. Sandberg, and
B. Lisper. Automatic derivation of loop bounds and
infeasible paths for WCET analysis using abstract
execution. In RTSS, 2006.

[4] C. Healy and D. Whalley. Automatic detection and
exploitation of branch constraints for timing analysis.
IEEE Trans. on Software Engineering, 28(8), August
2002.

[5] T. H. Kim, H. Bang, and S. D. Cha. A systematic
representation of path constraints for implicit path
enumeration technique. Softw. Test., Verif. Reliab.,
20(1):39–61, 2010.

[6] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 16(12), 1997.

[7] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient
microarchitecture modeling and path analysis for
real-time software. In Proceedings of the 16th IEEE
Real-Time Systems Symposium, RTSS ’95, pages 298–,
Washington, DC, USA, 1995. IEEE Computer Society.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem - overview of
methods and survey of tools. ACM Trans. Embedded
Comput. Syst. (TECS), 7(3), 2008.

