
Timing Analysis Enhancement for Synchronous
Program

Extended Abstract

Pascal Raymond, Claire Maiza,
Catherine Parent-Vigouroux,

Fabienne Carrier, and Mihail Asavoae

Grenoble-Alpes University
Verimag, Centre Équation

2 avenue de Vignate, 38610 Gières, France
firstname.lastname@imag.fr

Abstract. Real-time critical systems can be considered as correct if they
compute both right and fast enough. Functionality aspects (computing
right) can be addressed using high-level design methods, such as the syn-
chronous approach that provides languages, compilers and verification
tools. Real-time aspects (computing fast enough) can be addressed with
static timing analysis, that aims at discovering safe bounds on the Worst-
Case Execution Time (WCET) of the binary code. In this paper, we aim
at improving the estimated WCET when the analyzed binary code comes
from a high-level synchronous design. The key idea is that some high-
level functional properties may imply that some execution paths of the
binary code are actually infeasible, and thus, can be removed from the
worst-case candidates. In order to automatize the method, we show (1)
how to trace semantic information between the high-level design and
the executable code, (2) how to use a model-checker to prove infeasibil-
ity of some execution paths, and (3) how to integrate such infeasibility
information into an existing timing analysis framework. Based on a re-
alistic example, we show that there is a large possible improvement for
a reasonable computation time overhead.

1 Context: timing analysis and Synchronous
Programming

1.1 WCET/Timing Analysis

We consider here state-of-the-art static Timing Analysis techniques ([1]), whose
aim is to find a safe (and hopefully accurate) upper bound on the Worst-Case
Execution Time of a function/procedure. WCET estimation tools are classically
organized into several stages:

– Micro-architectural analysis takes the binary code as input, together with the
model of the architecture. It builds the Control Flow graph of the program,



made of basic blocs of (purely sequential) instructions, connected by edges
representing the control passing. At each vertex and/or edge is assigned a
local worst-case execution time (aka a weight), expressed in cpu cycles.

– Flow analysis extracts information about execution paths in the CFG (dead
code, infeasible path [2]). This stage must at least be able to bound the
length of the executions, otherwise the weight will trivially be infinite (loop
bounds).

– Implicit Path Enumeration Technique is the last stage, where the actual
worst case path and time is computed [3]. This technique consists in encoding
the problem into an Integer Linear Programming optimization problem: a
numerical variable is assigned to each block/edge, whose value is the number
of time it is executed/traversed during an execution. The ILP problem is
made of structural constraints, directly deduced from the structure of the
graph, and semantics constraints, that (at least) bound the execution of the
loops. The objective function is to maximize the sum of the counter variables
weighted by their local WCET.

1.2 Synchronous Programming

Synchronous Programming approach provides high-level languages compilers
and validation tools for the design of safe, deterministic reactive systems [4].
There exist several programming styles (mainly data-flow or control-flow ori-
ented), but the principles are always the same:

– The user designs its application with an idealized vision of time and con-
currency: a logical discrete clock exists and each change or communication
takes place at some instant of this discrete clock.

– A compiler takes this synchronous concurrent design and produces a step
procedure that implements a single reaction of the whole system, consisting
on an interleaving of the concurrent tasks (static scheduling).

– The languages are voluntarily limited in such a way that the code execution
time is intrinsically bounded (no recursion, no dynamic memory allocation,
only trivially bounded “for” loops).

The synchronous designed application can be considered as real-time if, for a
particular execution architecture, the WCET of the step procedure is actually
less than some deadline defined in the specification. Synchronous Programming
and WCET estimation can then be viewed as two complementary and orthogonal
methods for the design of safe real-time application:

– Synchronous Programming focuses in functionality (and thus determinism)
by abstracting away “timing duration details”, while guaranteeing by con-
struction that a bound will necessarily exist.

– WCET analysis can be performed afterwards to find an actual bound and
checks that the implementation is real-time.

The goal of this work is to enhance the WCET estimation by pruning exe-
cution paths that are infeasible due the semantics of the high-level design.



onoff
toggle

high
control low

idle onoff

toggle

nom

degr
control

toggle

onoff

data

A B

modes

idle

data outA

low

high

A0

A1

A2

nom

degr

B0

B1 out

outoutA

Fig. 1. Typical control system design.

2 Our approach on a realistic example

In this section, we illustrate our method, step-by-step on the typical synchronous
design shown in Fig. 1. This application is made of two concurrent modules A and
B. Each module is organized according to the operating mode paradigm: depend-
ing on the logical variables computed by the control part, the module computes
exactly one particular mode (e.g. A0, or A1 or A2). These intra-exclusion prop-
erties, which can be formally proved on the high-level design, are not necessarily
obvious at the binary level: it strongly depends on the programming language
and its compiler. Moreover, for this particular design, we also know that there is
a relation between the modes of B and the modes of A: whenever A is not idle
(modes A1 or A2), B is necessarily in degraded mode (B0). This kind of inter-
exclusion property has no chance to be obvious (i.e. structural) at the binary
code, whatever be the language and the compiler.

The goal is to use this kind of properties to enhance the WCET. It requires
to solve several problems:

– How to trace information between the high-level design and the binary code?
More precisely, how to relate choices in the binary code to the high-level
variables?

– How to find and prove the “right” properties, that is, the ones that are likely
to prune infeasible paths?

– How to translate high-level properties into a suitable form for the Implicit
Path Enumeration Technique? That is, in our case, how to express them as
Integer Linear constraints.

– Finally, how to define a complete pruning algorithm with a good trade-off
between the computation cost and the precision of the results? As a mater
of fact, the techniques involved in this approach are well known to have a
combinational cost: formal proof at the high level, ILP resolution...



2.1 Traceability

The compilation scheme of synchronous programs has two stages: the high-level
design is compiled into an “agnostic” sequential language (C, most of the time),
and then compiled into binary code.

Traceability between high-level and C code raises no problem: the code gen-
erator can be easily patched to associate to the C “if-then-else” statements the
corresponding high-level variable. Traceability between C and binary raises a
technical problem: patching an existing C compiler (gcc for instance) requires a
lot of work, that is likely to be lost as soon as a newer version will be released.
From a pragmatic point of view, we found more reasonable to rely on the “stan-
dard” debugging information provided by the compiler. This solution may lose
information, especially when intrusive code optimization are used. However, we
can expect it to be safe: either the debugging information clearly associate a
binary branch to some C statement, or we simply ignore it.

Code generation
(gcc) bin CFGC CFG

low

high

nom

idle

degr

Fig. 2. CFG traceability with -O2



Fig. 2 shows the result of the traceability analysis for our example. Here, the
code is obtained with the -O2 optimization level of gcc, which is relatively intru-
sive and strongly modifies the control structure. Compared with the C structure,
some test has been introduced, that are not clearly related to a C statement (e.g.
block BB1); furthermore, some C statements have been “duplicated” (e.g. BB4
and BB5). Finally, the heuristic, based on the debugging information was able
to relate 7 choices in the binary code to some binary choice in the C program,
and then back to 5 high-level variables.

2.2 Checking infeasibility with a Model-Checker

Thanks to the traceability information, we can relate a conjunction of binary
branches to a conjunction of high-level conditions. For instance, taking both
branches BB4 to BB6 and BB13 to BB21 during an execution, requires that
the high-level condition ‘‘not idle and nom’’ is satisfied. We can use a high-
level verification tool to get information about this condition. We actually used
Lesar, a model-checker dedicated to the Lustre programs. For instance, we can
ask Lesar to prove that the Boolean expression ‘‘not(not idle and nom)’’

is an invariant of the program, that is, infinitely true along any execution of
the program. In this case, the proof succeeds, meaning that the condition ‘‘not

idle and nom’’ is actually infeasible, and thus, that all the corresponding ex-
ecution paths can be removed for the search of the WCET.

2.3 Translating infeasibility into ILP

Taking infeasibility into account can be interesting for the micro-architecture
analysis: it may help to enhance the analysis of features like instruction pipeline
or memory cache hit and miss.

However, for this experiment, we are using this information only at the
last stage of the WCET analysis: Implicit Path Enumeration. This supposes
to translate the information (exclusivity of branches) into some Integer Linear
constraints. This is particularly simple with the kind of code we are considering
here: each branch is taken at most once, and thus, two branches are exclusive
is their sum is strictly less than 2. For instance, the property not(not idle

and nom) is translated into #BB6 + #BB21 ≤ 1, where #BBi is the numerical
variable encoding the number of time BBi is executed.

2.4 Putting all together: a proof of concept prototype

Several solutions have been explored to define a fully automatic enhancement
algorithm. The first one is rather intuitive and behaves as a try and refute
iterative algorithm:

– a first WCET path candidate is found using the standard ILP solving method,
– from this path candidates, according to the traceability information, we build

a high-level infeasibility property, and ask the model-checker to prove that
it is an invariant:



• if the proof succeed, the worst case candidate is proven infeasible, we
translate this information into an additional Linear constraint, solve the
system again to find another WCET candidate and so on,

• if the proof fails, it means that the WCET candidate is feasible (modulo
the decision power of our tool), and the iteration stops.

This iterative algorithm eventually converges to a WCET estimation which is
“optimal” (modulo the model-checker). However, the global cost is likely to be
intractable, because the number of necessary iterations grows in a combinatorial
way.

An alternative heuristic is based on the empirical remark that “interesting”
properties are often simple pairwise exclusions. The idea is then to:

– identify the set of interesting high-level control variables (i.e. the ones that
are related to binary choices),

– check the validity of all the pairwise relations between this variables,
– translate back all the proven relations into ILP, and solve the system once.

This solution is not guaranteed to provide an optimal solution. However, its
cost is likely to remain reasonable: only a polynomial number of relations has to
be considered (quadratic); each relation is “small” (involving only 2 variables)
and is also likely to be proven or refuted with a reasonable cost.

At last, it is possible to define an extension and/or a mix of the methods, for
instance:

– complete the pairwise method with some iterative steps to guaranty opti-
mality,

– consider relations involving more than 2 variables (in which case they should
be selected carefully in order to limit the number of combinations).

2.5 Some results and conclusion

We have developed a fully automatic tool, that orchestrate several external tools
for the search for an enhanced WCET estimation. It uses:

– The language Lustre and its compiler (lus2c) for designing and compiling
the high-level application [5].

– The compiler arm-elf-gcc to produce binary code (for the ARM architec-
ture).

– The tool OTAWA for the micro-architecture analysis and to build a first ILP
system [6].

– The tool LPSolve to solve ILP systems.
– The model-checker Lesar to prove invariants of the high-level (Lustre) code

[7].

Figure 3 shows the general organization of the tool and its relations with external
tools.

Table 1 gives some interesting quantitative results for the example of Fig 1,
compiled without optimization. The interesting facts are the following:



High-Level
code

C code Binary code

Traceability
Analysis OTAWA

Initial ILP
System

Traceability
Information

Infeasible Path Removal
(Uses lpsolve and Lesar)

2 Algorithms

Enhanced
WCET

Legend:

Data

Phase

Fig. 3. Proof-of-concept Workflow

Wcet estimation # iter. ILP constraints cost (cpu seconds)
initial final (# / arity) LPSolve Lesar Over. (Total)

4718 2371 298 298 / 30 var. 90s 5.2s 99s (163s)

Wcet estimation Lesar (# pairs) ILP constr. cost (cpu seconds)
initial final checked valid (# / arity) LPSolve Lesar Over. (Total)

4718 2372 144 21 396 / 2 0.1s 2.2s 3s (67s)

Table 1. Some results with the 2 algorithms: iterative (top) and pairwise (bottom)

– As expected, the enhancement is important (about 50%).

– The (unavoidable) cost of OTAWA is 60 cpu seconds (not represented, we
give only the overhead due to our method). This cost can be explained by
the relatively important code size (83 basic blocks and 119 edges).

– The iterative method requires a huge number of steps (298), and as many
calls to both LPSolve and Lesar. The cost of Lesar remains reasonable, while
the cost of LPSolve “explodes”: this is due to the number and the size of
the extra linear constraints –in the last iteration, LPSolve handles 298 extra
constraints with up to 30 variables in each.

– The global cost of pairwise method is much more reasonable. Lesar is called
to check 144 pairwise relations, and 21 are proven invariant and translated
into simple ILP constraints. LPSolve is called once for a neglectable cost.
Note that the result misses the optimal one for one cycle (2372 vs 2371): the
obtained path is actually not feasible, but for a “reason” that involves more
than 2 conditions, and thus, that cannot be handled by the method.



As a conclusion, this work proposes a method to improve timing analysis of
programs generated from high-level synchronous designs. The main idea is to
take benefit from semantic information that are known at the design level and
may be lost by the compilation steps (high-level to C, C to binary). For that
purpose, we use an existing model-checker for verifying the feasibility of execu-
tion paths, according to high-level design semantics Furthermore, our approach
may work on optimized code (from C to binary). We introduced the approach
on a realistic example and showed that there is a huge possible improvement,
with a reasonable overhead compared to the (unavoidable) cost of the timing
analysis of the binary code. For a most detailed presentation, the reader may
see the long version [8].

References

1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Embedded Comput.
Syst. (TECS) 7(3) (2008)

2. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for WCET analysis using abstract execution. In:
RTSS. (2006)

3. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 16(12) (1997)

4. Halbwachs, N.: Synchronous programming of reactive systems. Kluwer Academic
Pub. (1993)

5. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. In: Proceedings of the IEEE. (1991) 1305–1320

6. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An open toolbox for
adaptive WCET analysis. In: SEUS. (2010)

7. Raymond, P.: Synchronous program verification with lustre/lesar. In Mertz, S.,
Navet, N., eds.: Modeling and Verification of Real-Time Systems. ISTE/Wiley
(2008)

8. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F.: Timing analysis en-
hancement for synchronous program. In: RTNS. (2013) 141–150


