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Abstract

We present a method for fine grain QoS control of mul-
timedia applications. This method takes as input an appli-
cation software composed of actions. The execution times
are unknown increasing functions of quality level param-
eters. Our method allows the construction of a Qual-
ity Manager which computes adequate action quality lev-
els, so as to meet QoS requirements for a given platform.
These include requirements for safety (action deadlines
are met) as well as optimality (maximization and smooth-
ness of quality levels).

In this paper, we use learning techniques for compu-
tation of quality management policies. Given input pa-
rameters of the actions, a neural network is used to refine
online pre-computed average execution times. Using re-
fine average execution times allows a better control of the
application, which leads to a reduction of fluctuations of
CPU load.

We present experimental results including the imple-
mentation of the method and benchmarks for an MPEG4
video encoder.

1. Introduction

Designing systems meeting both hard and soft real-
time requirements is a challenging problem. There ex-
ist well-established design methodologies for hard real-
time systems, that is systems that do not violate critical
properties such as deadlines. These methodologies rely
on complete understanding and formal analysis of the be-
havior of the system. As a consequence, they are based
on worst-case analysis using conservative approximations
of the system dynamics and static resource reservation.
This implies high predictability but a non optimal use of
resources.

In contrast, design methodologies for soft real-time are
based on average-case analysis and seek more efficient use
of resources (e.g. optimization of speed, jitter, memory,
bandwidth, power) without addressing critical behavior is-
sues. They are used for applications where some degrada-
tion or even temporal denial of service is tolerated, e.g.,
multimedia and telecommunications.

These two classes of design methodologies are cur-

rently disjoint. Meeting hard real-time properties and
making optimal use of available resources seem to be two
antagonistic requirements. The existing gap between hard
and soft real-time often leads to costly and unreliable so-
lutions.

Adaptivity is a means to bridge the gap between the
two classes of design methodologies. Fine grain QoS
control can be used to increase predictability of execu-
tion times, and thus modify the worst-case behavior of the
system. It allows drastic reduction of the impact of worst-
case execution times on resource utilization [3, 4, 5]. Nev-
ertheless, non flexibility of approaches based on worst-
case execution times may still lead to non-optimal use of
available resources. Development of soft real-time ap-
proaches that ensure predictability is a key challenge in
the design of modern methologies for real-time embedded
systems.

Our method targets multimedia applications. It allows
adapting the overall system behavior by adequately set-
ting quality level parameters for its actions. The objec-
tive of the quality management policy is to meet QoS re-
quirements including three types of properties: 1) safety
(no deadlines are missed); 2) optimality, (maximization of
the utilization of available time budget); 3) smoothness of
quality levels.

The method takes as input an application software with
timing information about its actions. This includes dead-
lines and (platform-dependent) execution times. It pro-
duces a controlled application software meeting the QoS
requirements for the target platform. This is obtained by
applying to the application software a Controller consist-
ing of a Scheduler and a Quality Manager. Depending on
the progress of the computation, the Scheduler chooses
the next action to be executed and the Quality Manager
the associated quality level parameter.

In [4], we explained how to build quality management
policies meeting QoS requirements. These are computed
from average and worst-case estimates of execution times.
We also provided low overhead implementations of the
controller in [5].

In this paper, we use learning techniques for compu-
tation of quality management policies. Given input pa-
rameters of the actions, a neural network is used to refine
online pre-computed average execution times. Using re-
fine average execution times allow a better control of the



application, which leads to a reduction of fluctuations of
CPU load.

We consider the following simplified version of the
general problem by assuming that the application software
is already scheduled (see Figure 1):
• The application software cyclically performs in-
put/output transformations of data streams. It is described
as a finite sequence of actions (C-functions). Its execu-
tion during a cycle can be controlled by choosing quality
level parameters. We assume that the execution times of
actions are unknown and are increasing with quality.
•We consider single-thread implementations of the appli-
cation software on a platform for which it is possible, by
using timing analysis and/or profiling techniques, to com-
pute average estimates of execution times of actions for
different quality levels. Action execution is assumed to
be atomic. A compiler is used to generate the controlled
software from the initial application software, for given
deadline requirements and execution times.

The controlled software can be considered as the com-
position of the initial application software with a Quality
Manager (see Figure 2). The latter monitors the progress
of the computation within a cycle of the application soft-
ware. At any state of the cycle, it chooses the quality level
for the next action to be executed, guided by a quality
management policy.

This is a constraint guaranteeing safety and embodying
an optimality criterion. The Quality Manager chooses the
maximal quality satisfying this constraint.

Tool Chain
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Hardware Platform
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Application Software

Application SW
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Cwc, Cav, D
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Parameterized System PS(C)

Quality Manager
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Figure 1. Prototype tool implementation

Our method significantly differs from existing ones.
The main difference is fine granularity of quality manage-
ment, which allows a better controllability of the applica-
tion. Most existing techniques are applied at system or
task level, focus on average scenario and do not provide
predictability. Buttazzo et al.’s elastic tasks model [2], as
well as slack scheduling [6], [11] and gain time techniques
[1] are based only on worst-case execution times and do

not deal with quality smoothness. Buttazzo et al. propose
the elastic tasks model [2], but their approach is based on
worst-case execution times. Slack scheduling and gain
time techniques [6], [11] can be used to determine the
quality level of the tasks of a system, but it is also based
only on worst-case execution times and thus cannot deal
with quality smoothness property. A common and simple
way to treat CPU overload is to skip an instance of a task
[9]. Lu et al. [13] propose a feedback scheduling based on
PID controllers. Steffens et al. [18], [14] minimize dead-
line misses of an MPEG decoder by applying a Markov
decision process and reinforcement learning techniques,
combined with structural load analysis.

The paper is organized as follows. In section 2 we
present the quality management problem. Neural net-
works are presented in section 3. Section 4 presents ex-
perimental results for a non trivial MPEG4 video encoder.

2. Quality Management

2.1. Definition of the Problem
We provide a formalization of the quality management

problem by considering that the application software is
already scheduled. It is characterized by an execution se-
quence { si−1

ai−→ si }1≤i≤n, where S = { s0, . . . , sn }
is a set of states and for all i we have ai ∈ A where A
is a finite set of actions. Actions correspond to blocks of
code. Their execution is atomic.

The execution of the application software (A,S) on a
platform, is modeled by an execution time function C :
A→ R+, associating with an action ai its execution time
C(ai). The corresponding timed execution sequence is
{ (si−1, ti−1)

ai−→ (si, ti) }1≤i≤n such that t0 = 0 and
ti − ti−1 = C(ai).

Execution times for actions may considerably vary
over time as they depend on the contents of data. Further-
more, non predictability of the underlying platform is an
additional factor of uncertainty. We consider that they are
not known in advance, but are bounded by worst-case esti-
mates. To cope with the inherent uncertainty of execution
times, we assume that some actions – called controllable
– are parameterized by quality levels. This leads to the
following model.

Definition 1 A parameterized system PS is an applica-
tion software (A,S) with
• a finite set of integer quality levels Q
• the set of actions A is partitioned into Ac and Au, where
Ac is the subset of controllable actions, and Au is the sub-
set of uncontrollable actions
• a worst-case execution time function Cwc : A × Q →
R+ non-decreasing with quality levels for controllable ac-
tions and constant with quality levels for uncontrollable
actions, that is, for all actions ai ∈ Ac, the function
q 7→ Cwc(ai, q) is a non-decreasing function, and for all
actions ai ∈ Au the function q 7→ Cwc(ai, q) is constant
• a parameter C, called actual execution time function,
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C : A × Q → R+ non-decreasing with quality lev-
els for controllable actions and constant with quality lev-
els for uncontrollable actions, and such that C(ai, q) ≤
Cwc(ai, q) for any action a and quality level q.

The execution of a parameterized system is charac-
terized by the family of sequences { (si−1, ti−1)

ai,qi−→
(si, ti) }1≤i≤n,qi∈Q such that t0 = 0 and ti − ti−1 =
C(ai, qi).

Quality Managers are used to adequately restrict the
behavior of a parameterized system so as to meet given
properties.

Definition 2 Given a parameterized system PS a Qual-
ity Manager is a function Γ : S × R+ → Q giving, for a
state (si−1, ti−1) of PS, the quality level qi for executing
the next action ai.

PS||Γ denotes a controlled system obtained as the
composition of the parameterized system PS and the
Quality Manager Γ. For a given actual execution
time function C, it has a single execution sequence
{ (si−1, ti−1)

ai,qi−→ (si, ti) }1≤i≤n such that qi =
Γ(si−1, ti−1).

The quality management problem for a given param-
eterized system PS consists in finding a Quality Man-
ager Γ meeting the QoS requirements. That is,there are
no deadline misses and the overall quality is maximal. It
is formalized as follows.

Definition 3 (quality management problem) Given
a parameterized system PS and a deadline function
D : A→ R+ associating with each action ai its deadline
D(ai), find a Quality Manager Γ such that for any actual
time function C ≤ Cwc:
• Γ is safe (deadlines are met), that is for any
state (si, ti) of PS||Γ we have D(ai) ≥ ti where
ti = C(a1, q1) + . . . + C(ai, qi).
• The overall execution time is maximal, that is for any
safe Quality Manager Γ′, tn ≥ t′n, where tn (resp. t′n)
is the completion time of the last action in PS||Γ (resp.
PS||Γ′).

In [4], we require in addition to feasibility and optimality,
smoothness for the quality levels chosen by the Quality
Manager. Informally, smoothness means low fluctuation
of quality levels. Due to lack of space, we do not study
this property which is essential for most multimedia ap-
plications [16].

2.2. Quality Manager Design
We summarize the method for the design of Quality

Managers, given in [4].

Quality Manager Design Principles

Figure 2 shows interaction between the Quality Manager
Γ, applying a quality management policy, and the appli-
cation software, i.e. the parameterized system PS. The

Parameterized System PS
current state (si−1, ti−1)

(ai, qi)

Quality Manager Γ

(si−1, ti−1)

qi := max { q | tD(si−1, q) ≥ ti−1 }

Figure 2. Quality Manager

Quality Manager observes the current state (si−1, ti−1)
of PS and computes the next quality level qi for the next
action ai. The Quality Manager is defined by:

Γ(si−1, ti−1) = qi = max { q | tD(si−1, q) ≥ ti−1 }.

The function tD : A×Q→ R+ defines the quality man-
agement policy of the Quality Manager. It gives for a state
of the application software si−1 and a quality level q, the
estimated elapsed time tD(si−1, q) at next state si if the
rest of the actions is executed with constant quality q. If
the inequality tD(si−1, q) ≥ ti−1 is satisfied, then it is
possible to complete execution without missing the dead-
lines specified by D. The chosen quality level qi at state
(si−1, ti−1) is maximal amongst the quality levels q meet-
ing the inequality tD(si−1, q) ≥ ti−1.

The function tD is defined as follows:

tD(si−1, q) = mini≤k≤n D(ak)− CD(ai..ak, q),

where CD(ai..ak, q) denotes an estimation of the total ex-
ecution time for the sequence of actions ai, ai+1, . . . , ak.

Choosing an adequate quality management policy, i.e.,
that ensures safety and an optimal use of resources, is a
non trivial problem discussed in [3] and [4]. In [4] we
proposed the mixed quality management policy based on
the mixed execution time function Cmx defined below. Its
interest has been shown through both theoretical and ex-
perimental results.

Quality Management Policies

We use execution time function CD that combines two
execution time functions Csf and Cav . The first allows
respecting the safety requirement, that is no deadline is
missed. The second is used to enhance smoothness of
quality levels.

The safe execution time function Csf gives a worst-
case estimation of the total execution time of ai..ak:

Csf (ai..ak, q) = Cwc(ai, q) + Cwc(ai+1..ak, qmin)

where Cwc(ai+1..ak, qmin) denotes the total worst-case
execution time for the sequence of actions ai+1, . . . , ak

with the minimal quality level qmin = min Q. That is,

Cwc(ai+1..ak, qmin) =
∑

i+1≤j≤k

Cwc(aj , qmin).

3



As the quality level can be changed by the Quality Man-
ager after the execution of the first action ai, we take the
quality level q for the first action, and qmin for the remain-
ing actions. The application of safe quality management
policy ensures safety of the Quality Manager. Neverthe-
less, it may lead to considerable variations of quality lev-
els in a sequence e.g., by starting with high quality levels
and terminating with low quality levels.

To improve smoothness of the quality levels, we in-
troduce an average execution time function Cav : A ×
Q → R+, non-decreasing with quality. Average execu-
tion times can be estimated by static analysis and/or pro-
filing techniques. We define δmax as the maximum differ-
ence between the worst-case and the average behavior:

δmax(ai..ak, q) = maxi≤j≤k δ(aj ..ak, q),

where δ(aj ..ak, q) = Csf (aj ..ak, q) − Cav(aj ..ak, q).
That is, for a sequence of actions ai..ak and quality level
q, δmax(ai..ak, q) is a kind of safety margin with respect
to the average behavior. It measures uncertainty on exe-
cution times in order to meet the deadlines.

The mixed execution time function Cmx is defined by
Cmx = Cav + δmax. It combines average and worst-
case behavior. It is possible to take into account execution
time needed for quality management by adequately over-
estimate average and worst-case execution times.

2.3. Impact of Worst-Case Execution Times
Using worst-case execution times may lead to an over-

estimation of the time budget needed to execute the appli-
cation software at a given quality level. The function δmax

defined above give an estimation of the possible loss of
time budget when using mixed quality management pol-
icy. In the following, we introduce functions — η and β —
computed from average and worst-case execution times.

Definition 4 We define the functions η : A × Q → R+

and β : A×Q→ R as follows:

η(ai, q) = Cwc(ai, q)− Cav(ai, q)
β(ai, q) = Cwc(ai, qmin)− Cav(ai, q).

For an action ai and a quality level q, η(ai, q) is the dif-
ference between the worst-case and the average execution
time. The value η can be considered as the uncertainty
for the execution time of the action ai for quality q. The
value β(ai, q) is the difference between the worst-case ex-
ecution time for the action ai at the minimal quality level
qmin, and the average execution time for the actions at the
quality level q. It is related to the “fall-back” capability of
ai for quality q: for small values of β, in particular nega-
tive values, the controller can speed up the application by
selecting the minimal quality level, even if we consider the
worst-case assumption (i.e. C = Cwc). Then, we write δ
as follows:

δ(a1..an, q) = η(a1, q) + β(a2..an, q)

where β(a2..an, q) = β(a2, q) + . . . + β(an, q).
Consider a set of quality levels Q = { 0, 1 } and a set

of actions A = { a, b } such that worts-case and average
execution time functions are given in Figure 3. Notice that
a is a controllable action and b is an uncontrollable action,
that is, Ac = { a } and Au = { b }.

Cwc(x, q) x = a x = b

q = 0 4 6
q = 1 10 6

Cav(x, q) x = a x = b

q = 0 2 3
q = 1 7 3

η(x, q) x = a x = b

q = 0 2 3
q = 1 3 3

β(x, q) x = a x = b

q = 0 2 3
q = 1 −3 3

Figure 3. Worst-case and average execution
time functions.

Consider an application software composed of p ac-
tions a and p actions b. Assume that there exists two
possible schedules for this application — schedule #1 and
schedule #2 (see Figure 4) — corresponding to the follow-
ing execution sequences:

schedule #1: s0
a−→ s1

b−→ . . .
a−→ s2p−1

b−→ s2p

schedule #2: s0
a−→ . . .

a−→ sp
b−→ . . .

b−→ s2p.

It can easily be shown that:

δmax(ab . . . ab︸ ︷︷ ︸
p times

, 1) = η(a, 1) + β(b, 1) = 6 and

δmax(a . . . a︸ ︷︷ ︸
p times

b . . . b︸ ︷︷ ︸
p times

, 1) = η(a, 1)+pβ(b, 1) = 3(p+1).

This means that δmax for quality q = 1 and schedule #1 is
constant, whereas it tends to +∞ as p increases for sched-
ule #2.

The difference between the values of δmax obtained
with schedules #1 and #2 comes from the position of con-
trollable actions in the schedule. Controllable actions are
scattered all along schedule #1, whereas they are put to-
gether at the beginning of schedule #2 (see Figure 4).
Consequently, the Quality Manager keeps control on the
execution times of actions during the execution of sched-
ule #1. On the contrary, once all controllable actions —

ba ba ba ba ba

#2 a a a a a b b b b b

#1

controllable actions

controllable actions

Figure 4. Schedules #1 and #2 for p = 10
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actions a — have been executed in schedule #2, the Qual-
ity Manager has no control anymore on the (uncertain)
execution times of the remaining (uncontrollable) actions.
Uncontrollability combined with unpredictability leads to
an overestimation of the execution time of the remaining
actions — actions b —, that is, considering their worst-
case estimates.

For such a schedule considering worst-case scenario
lead to non-optimal use of available resources, and make
mixed quality management policy unapplicable without
loss of time budget. Using only (fixed) average execution
times, that is, the quality management policy CD = Cav ,
may lead to fluctuations of CPU load and frame skips.

In this paper, we propose a quality management pol-
icy based on refined average execution times. These exe-
cution times are computed online depending on the input
parameters of the corresponding actions. Since dependen-
cies between execution times and input parameters can be
very complicated, figuring out a relationship between exe-
cution times and inputs without executing the application
software on the platform is often untractable for multime-
dia applications. We use neuronal networks for computing
refined average execution times.

3. Neural Networks

Neural networks are well suited to model complex rela-
tionships between inputs and outputs or to find patterns in
data. Moreover, neural networks are tolerant to noisy data
and errors in sample values. In most cases a neural net-
work is an adaptive system that changes its behavior based
on information about its environment during the learning
phase. In the rest of the paper, neural networks are used
for online computation of refined average execution times
of the actions. Refine average execution times depend on
input parameters of the actions, and thus overcome limi-
tations of standard (fixed) average execution times. This
allows better estimation of actual execution times and a
reduction of fluctuations of CPU load.

A neural network is composed of layers (input layer,
hidden layers, output layer), each layer is composed of
cells (or neurons), connected to each other by links that
are affected by weight. A neuron has an entry, allowing
it to receive information from other cells, an activation
function. Typical activation functions are identity : x 7→
x and sigmoid : x 7→ 1

1+e−βx . Each neuron computes the
activation function from the weighted sum of its inputs.
The output, can serve as input to other neuron. In Figure 5
we give an example of neural network.

Definition 5 A neural network is defined by:
• a set of layer, L = { L1, L2, . . . , Ln } where L1 is the
input layer, L2, . . . , Ln−1 are the hidden layers, and Ln

is the output layer.
• Nl is the number of neurons in the layer l.
• w

(l)
ij is the weight between the neuron i in the layer l,

and the neuron j in the layer l − 1 (2 ≤ l ≤ n).

w
(2)
31

w
(2)
32

w
(3)
11

x1

x2

Input Layer Output Layer1-Hidden Layer

y
(3)
1

y
(2)
3 = f2(

P2
i=1 w

(2)
3i xi)

Figure 5. Neural network with three layers

• fl is the activation function of the neurons in the layer l
(2 ≤ l ≤ n).
• θ

(l)
i is a scalar bias of the neuron i in the layer l.

• y
(l)
i is the output of the neuron i in the layer l.

y
(l)
i =

{
fl(

∑Nl−1
j=1 y

(l−1)
j w

(l−1)
ij + θ

(l)
i ) if l 6= 1

xi (input of neuron i) if l = 1.

The design of neural networks that are fitted to a given
application is a key issue. Choosing optimal parameters
for neural networks is assited by learning algorithms. Pa-
rameters that concerns architecture — number of layers,
number of neurons in each layers, and activation functions
— must be chosen by the designer of the neural network.
Weight values between neurons are chosen by learning al-
gorithms, and scalar bias values are often random values.

3.1. Architecture of Neural Network
The choice of architecture for a neural network is es-

sential for an efficient adequation to a given application.
Several aspects must be considered when designing the
network, the most important are:

• the number of layers ( n ),

• the number of neurons in each layer ( Nl ), and

• the activation functions ( fl ).

Without hidden layers, the network only offers limited
opportunities for adaptation; with one hidden layer, it is
capable — with a sufficient number of neurons — to ap-
proximate every continuous function [7]. Adding neurons
allows taking into account specific profiles of the input
neurons. With a large number of neurons, a neural net-
work can stick better to the considered data, but it is not
noise-robust.

Once the architecture of a neural network is defined, it
remains to choose network weights and scalar bias. Learn-
ing algorithms are used to adjust weights between the neu-
rons. We describe a learning algorithm as follows.
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3.2. Learning Algorithm
Learning is a process of a neural network design in

which the behavior of the network is modified to get
the desired one. Neural network learning takes as in-
put a set of samples. A sample is a pair (X, Y ) where
X = (x1, . . . , xN1) represents the inputs of the network,
and Y = (y1, . . . , yNn) are the desired outputs. In the
context of this paper, the desired output will be the actual
execution time and the output of the network will be the
refined average execution times.

During the learning phase, the weights of the network
are adjusted in order to match the desired outputs (see Fig-
ure 6). This requires a learning algorithm and a set of sam-
ples to be learnt. After initializing the network weights W
(usually random), and given a sample (X, Y ), the learn-
ing algorithm computes the error E(W ) that measures the
difference between the desired output Y and the output
of the network for the inputs X . Then, an error correc-
tion ∆W is computed and weight corrections are applied.
We used backward propagation algorithm, developed es-
pecially by [17, 10, 15]. This algorithm is aimed at mini-
mizing the sum of squared differences between the desired
output Y = (y1, . . . , yNn) and the output of the neural
network y(n) = y

(n)
1 , . . . , y

(n)
Nn

, that is:

E(W ) = 1/2
Nn∑
j=1

(yj − y
(n)
j )2.

Network weights are initialized with small random val-
ues. If the initial weights happen to be too far from a good
solution or if they are near a local minimum of the error
function E, the learning will take too many iteration steps
for converging to the (global) minimum of E. Further-
more, it may not converge at all to the minimum. For this
reason, the method we used for initializing the weights is
the same as given in [12]. It is based on the orthogonal
least squares algorithm.

After initializing the network weights, a recuring se-
quence of weights Wi is built in order to approach to the
minimum of E. We have ∆Wi−1 = Wi − Wi−1 =
−εE′(Wi−1), where E′ denotes the derivative of E with
respect to W , and ε is a non-negative real adequatly cho-
sen. Backward propagation algorithm uses the following
learning rules:

∆w
(n)
ik = −ε

∂E

∂w
(n)
ik

= −ε(y(n)
i − yi)f

′

n(
Nn−1∑
j=1

w
(n−1)
ij y

(n−1)
j − θ

(n)
i )y(n−1)

k ,

and ∆w
(p6=n)
ik = −ε ∂E

∂w
(p)
ik

= −εδ
(p)
k y

(p−1)
h , with:

δ
(p)
k = f ′p(

∑
h

w
(p)
kh y

(p−1)
h )

Np+1∑
i=1

w
(p+1)
ik δ

(p+1)
i .

Backward propagation algorithm can be summarized
as follows:

Algorithm
Learning

Neural Network 

including weights  

between neurons

output (y(n))

desired ( Y )

adjust
weights W

input (X)

Figure 6. Learning of neural network

a1 a2 a3 a4 a699 a700 a701

controllable actions

. . . . . . a1750

uncontrollable actions

Figure 7. Application software

1. Initialize the network weights W .

2. Select a new sample (X, Y ).

3. Update weights of the output and hidden layers using
the rules given above, that is, W ←W + ∆W .

4. Go to 3 if the error E(W ) is above a tolerance value.

5. Go to 2 if other samples must be learnt.

Since learning algorithms for neural networks can con-
sume a lot of CPU resources, refined average execution
times are learnt offline from execution traces using typical
input parameters. This avoid execution time overhead due
to learning algorithm.

4. Experimental Results

This section provides experimental results which con-
firm the interest of theoretical sections. We present the ex-
perimental framework as well as a description of the target
application (an MPEG4 video encoder) and platform.

4.1. Experimental Framework
We applied our results to an MPEG4 video encoder

written in C (more than 10,000 lines of code). The en-
coder cyclically treats frames. Each frame is split into N
macroblocks of 16× 16 pixels. Typical values of N range
from 180 to 1, 620. In the following, we consider frames
of 400× 224 pixels (N = 350).

The parameterized system PS(C) describing the video
encoder consists of:
• the scheduled video encoder, that is, a sequence s0

a1−→
s1

a2−→ . . .
an−→ sn of n = 1750 actions for encoding a

frame. This sequence is composed of controllable actions
— actions a2, a4, a6, . . . , a698, a700 — and uncontrollable
actions — actions a1, a3, a5, . . . , a699, a701, a702, a703,
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. . . , a1749, a1750 (see Figure 7). Notice that controllable
actions are put together at the beginning of the sequence.
• a set of 8 quality levels Q = { 0, . . . , 7 }.

The video encoder architecture is shown in figure 8.
The considered application corresponds to a videophone
application. It captures a sequence of frames with a cam-
era, transmits the sequence, and then displays the frames
on a screen. From a captured frame, the video encoder
produces a corresponding bitstream. The latter is trans-
mitted to a video decoder which decodes the bitstream
and displays decoded frame on a screen. This architec-
ture uses input and output buffers of the same size K, to
cope with changes of load and avoid as much as possible
frame skips. These may happen when the input buffer is
full.

...
encoder

video
0 1 1 0 1 0 0 1 1

...
decoder

video

camera input frames input buffer

output frames

bitstream

output buffer

tran
sm

issio
n

screen

Figure 8. MPEG4 video encoder architec-
ture

We developed a prototype tool that allows the genera-
tion of controlled application software (see Figure 1). The
inputs of the tool is a parameterized system PS(C):
• the application software s0

a1−→ s1
a2−→ . . .

an−→ sn

modelling actions (C functions) and execution order,
• the set of quality level parameters Q,
• average execution time function Cav ,
• the deadline function D.

From these inputs, the tool computes:
• C code corresponding to the application software,
• tables containing pre-computed values used by the Qual-
ity Manager.

A compiler is used to link the following items and gen-
erate the controlled application software from:
• the application software and the tables generated by the
tool,
• the code for the actions of the application software,
• a generic Quality Manager implementing the stochastic
quality management policy.

For the experimental results, the target platform is an
STm8010 board from STMicroelectronics. It includes
three ST231 processors running at 400 MHz, and it is
used in set-top box products. As our approach targets
mono-processor platforms, we use only one of the three
ST231. A register that counts the number of processor cy-
cles elapsed provides a real-time clock with minimal ac-
cess overhead.

4.2. Neural Network Architecture
We use neural networks for computing refined average

estimates of execution time of actions a701, . . . , a1750. As
inputs of these actions can be known in advance, refined
average estimates are used by the Quality Manager to bet-
ter predict their execution times.

Designing a neural network requires choosing the num-
ber of layers, the number of neurons per layers, and the
activation functions (see previous section). Usually, the
number of neurons of the input (resp. output) layer equals
the number of input (resp. output) parameters. As the
amount of data transmitted between the actions is too
large, we do not consider the whole data as an input of the
neural network. We only consider X = (x1, x2), where
x1 is the SAD value (sum of absolute difference) of the
macroblock, and x2 is the position of the macroblock in
a frame. These inputs are sufficient for accurate estimates
of execution times. The output layer consists of a single
neuron that output the refined average execution time.

There is no general approaches for choosing the num-
ber of hidden layers and the number of neurons for each
hiddent layer. Literature shows only specific solutions for
each problem to be solved. Solutions are seared by means
of empirical testing. Usually it is recommended to start
with only one hidden layer, and if the results are not ac-
ceptable, the number of hidden layers have to be increased
[8]. In our case, we remark that one layer is sufficient, and
we choose 4 neurons for this hidden layer.

4.3. Results
We provide results for the controlled video encoder

running with mixed quality management policy, average
quality management policy using fixed average execution
times, and average quality management policy using re-
fined average execution times computed by the neural net-
work given above.

Figure 9 shows time budget utilization for a sequence
of 140 frames and a single deadline D = 100 ms. The
latter corresponds to a frame rate of 10 frame/s. We also
take an input buffer size K = 2. This means that a frame
is skipped if the video encoder complete the encoding of
a frame 2D = 200 ms after it is captured by the camera.

The Quality Manager applying the mixed quality man-
agement loose about 20 % of the time budget D. Since
there is no controllable action from action a701 to a1750,
the Quality Manager loose control on the execution times
of the application after executing action a700. The lost
time budget comes from overestimated worst-case exe-
cution times combined with uncontrollabibility of actions
a701, . . . , a1750. Meeting the deadline implies keeping a
safety margin (i.e. the difference between worst-case and
average execution times) with respect to average execu-
tion times.

Applying average quality management policy using
only (fixed) average execution times avoid overestima-
tion of execution times, but does not garantee meeting the
deadlines. As a result, overloads are possible, e.g., from
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frame 80 to frame 140. Figure 9 shows three jumps corre-
sponding to three frame skips (i.e. buffer overloads). This
reduces video quality since a frame is not encoded when
it is skipped.

Using neural networks that computes refined aver-
age execution times allows better estimates of execution
times. This estimates take into account the execution con-
text of the actions. Fluctuations of the load are reduced
when using refined average execution times, which avoids
frame skipping for the considered sequence and size of the
input buffer.
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Figure 9. Time budget utilization

5. Conclusion

We presented a fine grain quality management method
for real-time applications. The method is based on learn-
ing techniques that improve estimates of execution times.

Design methodologies for soft real-time are usually
based on average case analysis and do not address pre-
dictability of system behavior. In contrast, non flexibility
of hard real-time approaches (i.e. based worst-case analy-
sis of system dynamics) often leads to non-optimal use of
available resources. Non-optimality comes from consid-
ering the (overestimated) worst-case scenario.

Our approach allows a significant reduction of fluctu-
ations of the load for an MPEG4 video encoder, and thus
allows a significant reduction of the amount of skipped
frames. This improves video quality and this is achieved
by the combined use of:
• a Quality Manager controlling the execution times of
controllable actions, by selecting adequate quality level
parameters, that is, quality levels meeting the quality man-
agement policy proposed in this paper;
• neural networks ensuring an early and accurate predic-
tion of execution times of uncontrollable actions.

We work in other directions to improve the method and
the supporting tools: adaptation to multiple tasks, consid-
ering multi-processor architectures.
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