
The FunLoft Language
Fr�ed�eric Boussinot

MIMOSA Project, Inria-Sophia

http://www.inria.fr/mimosa/rp

March 2007

Common work with Fr�ed�eric Dabrowski

ACI ALIDECS

1

http://www.inria.fr/mimosa/rp


Summary

1. FunLoft

2. Implementation

3. Multicore Programming

4. Future Work

2



FunLoft

� Inductive data types - First order functions

� References - Threads - Events

� Schedulers + link, unlink

p ::= x j C(p; : : : ; p) (patterns)

e ::= x j C(e; : : : ; e) j f(e; : : : ; e)

j match x with p � >e j : : : j p � >e

j let x = e in e j ref e j !e j e:=e

j cooperate j thread f(e; : : : ; e) j join e j stop e

j unlink e j link s do e

j event j generate e with e j await e

j get all values e in e

j loop e j while e do e (expressions)

3



Synchronous �-Calculus

� Purely functional (no references). Unique scheduler

p ::= x j C(p; : : : ; p)

e ::= x j C(e; : : : ; e) j f(e; : : : ; e)

j match x with p � >e j : : : j p � >e

j let x = e in e j ejje

j event j generate e with e j present e then e else e

j pre e

� R. Amadio, A synchronous �-calculus,

http://www.pps.jussieu.fr/�amadio

� Resources usage (memory & CPU) is polynomial in the size of

the input provided some static checks (F. Dabrowski's thesis)

4



PACT

� FunLoft (without join)

� References can be separated (using a type and e�ect system):

{ threads linked to the same scheduler never interfere

(cooperation!)

{ Schedulers own references only shared by threads linked to

them

{ Threads own private references only accessible by them

� Consequence: absence of data-races (two threads accessing the

same reference asynchronously)

� TV'06 paper was considering only a limited version (unique

scheduler)

� F. Dabrowski's thesis

5



Implementation

� Type inference and type checking � > code production in

Loft/C (pthreads + GC)

� Distinction function/module - no recursive module

� Non-termination detection of recursive functions with inductive

type parameters

� Instantaneous loop detection

� Strati�cation of references and events

� Control of thread dynamic creation

� � 8000 lines of code

6



Multicore Programming

� How can a single application bene�t from a multicore

architecture?

� Multithreaded applications. Weak/Strong synchronisation

between threads

� Benchmarks:

{ Prey/predator system with one native thread for all preys

and one native thread for all predators.

{ Several rooms for migrating preys/predators: one native

thread by room

{ Game Of Life (GOL) divided in several synchronised areas:

one native thread by area. Strong synchronisation. Global

determinism.

7



Synchronised Schedulers

� Asynchronous schedulers:

{ no sharing of memory (to avoid data races)

{ no event emitted from one scheduler to another scheduler

(bounded size memory)

� Schedulers sharing same instants

{ no sharing of memory

{ shared events: events are common to synchronised

schedulers

{ protocol for scheduler synchronisation (distributed reactive

machines of SugarCubes/Junior)

� Syntax:

let s1 = scheduler

and s2 = scheduler

8



Multithreaded GOL

� Main di�erences with the one scheduler program:

{ Draw orders sent to the thread in charge of graphics

{ No global array of cells

{ Synchronised start of cells

� Di�cult to get full bene�t from multicore:

{ multi-threaded malloc

{ multi-threaded GC (Boehm's GC)

� Demo (10K cells, 500 instants, 1K cycles)

one scheduler

real 0m26.367s

user 0m24.991s

sys 0m0.381s

two schedulers

real 0m20.944s

user 0m26.548s

sys 0m0.626s

9



Conclusion & Future Work

� Resource control for S-�-calculus

� No data races in PACT

� Lack of formalisation: type inference, join primitive,

synchronised schedulers

� Experimental implementation: Loft-C, pthreads, Boehm's GC

� Syntax for multithreaded applications running on multicore

architectures

� Documentation + Available FunLoft v0.1

� Error messages!

� Speci�c automatic memory management?

� Language extension: exceptions? distribution (agents)?

10


