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Abstract. Lurette is an automated testing tool dedi-
cated to reactive programs. The test process is auto-
mated at two levels: given a formal description of the
System Under Test (SUT) environment, Lurette gener-
ates realistic input sequences; and, given a formal de-
scription of expected properties, Lurette performs the
test results analysis.

Lurette has been re-implemented from scratch. In
this new version, the main novelty lies in the way the
SUT environment is described. This is done by means of
a new language called Lucky, dedicated to the program-
ming of probabilistic reactive systems.

This article recalls the principles of Lurette, briefly
presents the Lucky language, and describes some cases
studies from the IST project Safeair II. The objective is
to illustrate the usefulness of Lurette on real case studies,
and the expressiveness of Lucky in accurately describing
SUT environments. We show in particular how Lurette
can be used to test a typical fault-tolerant system; we
also present case studies conducted with Hispano-Suiza
and Renault.

Key words: Automated testing, tool environment, real-
time embedded systems, reactive programs, synchronous
languages, stochastic machines.

1 Introduction

This article presents some case studies in testing reactive
embedded programs. This kind of system can be found in
domains such as transportation and control/command,
and are in general safety critical. Indeed, they require to
be strongly validated before being used.

Synchronous languages [4,1,13,12], which provide a
formal semantics of time and concurrency, played a sig-
nificant role in the introduction of formal methods in

industry. Since those languages have a precise seman-
tics, it is possible to use formal verification techniques,
mainly based on model-checking [15,6]. Formal valida-
tion methods are appealing, but they are limited for the-
oretical and practical reasons to relatively simple and
small systems. For complex and big systems, in particu-
lar those where numerical aspects are important, testing
is the only tractable method. Testing is obviously not ex-
haustive, but it can help to discover bugs, and increase
confidence in the system.

Testing reactive systems. Testing reactive systems raises
specific issues. First of all, the execution of reactive sys-
tems is (virtually) infinite; a test case is then an arbitrary
long sequence of input vectors. Moreover, the system is
not intended to run in a completely random environ-
ment, and some properties must be taken into account
in order to generate relevant (or even interesting) test
sequences. More specifically, the relevance of the inputs
may depend on the behavior of the system itself, since
the system influences the environment which in turn in-
fluences the system. This feed-back aspect is important
for reactive systems, and it makes off-line generation of
test sequences impossible. In some sense, testing a reac-
tive system requires running it in a simulated environ-
ment.

Several methods and tools have been proposed for
testing reactive systems, which in general assume a full
knowledge (glass-box) of the System Under Test (SUT)
[30], and/or do not deal with numerical programs [26,7,
10,17].

The “model-based” approach [10,17] supposes there
exists some formal description of the SUT. This model
is used in combination with the hypothesis made on
the environment plus the properties to be checked (the
test purposes). Verification techniques based on model-
checking, partial orders, or bisimulation, are then ap-
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plied to derive expected traces to be compared with ac-
tual traces produced by the SUT.

However, black-box testing is sometimes the only pos-
sibility because the code of the system is either not avail-
able or not tractable (e.g., because of numerics); the only
thing we can do then is to execute it and observe the re-
sults.

Compared to other methods, our objective is more
ambitious since we want to deal with numerical values.
But on the other hand, as we do not suppose we have
a model of the SUT, we only focus on providing a very
general and efficient machinery to describe and generate
sets of test cases. We do not deal with how to obtain test
case models.

The Lurette tool. In this work, we use a testing tool
called Lurette [28] which is black-box oriented and able
to handle numerical values. This tool currently supports
Lustre [14], Scade1 [9] and Sildex2 programs. It can also
be easily extended to other languages like Esterel [5], or
even C programs as far as they meet some interfacing
conventions.

This tool is the second version of Lurette, where the
main difference lies in the way the environment of the
SUT is described and simulated. We started from the
idea that, since the SUT behaves as a reactive system,
it is natural to describe it as a reactive program. But
conversely to the SUT which is a “real” program, the
environment is not intended to be deterministic: we have
some knowledge on how it behaves, but we are in gen-
eral unable to exactly predict its behavior. Moreover,
for testing purpose, non-determinism is not always suffi-
cient: we do not only want to express that some behav-
iors are possible but more precisely that some behaviors
are more probable than others. As a consequence, the
SUT environment is described as a stochastic reactive
system.

Stochastic reactive systems. Many formalisms exist to
describe non-deterministic and probabilistic systems.
Some of them are based on classical finite automata
and Markov Chains [8]. The more specific model of I/O
automata [25] is extended with probabilistic features
in [31]. PCTL [21] is an example of temporal logic ex-
tended with probabilities. For a more operational point
of view, we can cite stochastic extensions of process al-
gebras [22,3], or Signalea [2], an extension of the syn-
chronous language Signal.

Those formalisms are mainly designed to allow global
analysis: formal proofs, model checking, probabilistic
analysis. As a consequence, their expressive power is lim-
ited to decidable models (typically finite state machines).

1 Scade is an integrated programming environment based on the
Lustre language, see http://www.esterel-technologies.com

2 Sildex is an integrated programming environment based on the
Signal language [24], see http://www.tni-world.com/sildex.asp

Our approach is less ambitious, since we focus on
simulation only. More precisely, we do not care if the
model can not be analyzed, as long as it can be efficiently
simulated3. In other terms, our goal is more to program
stochastic reactive systems, rather to reason about them.

Organization of the paper. After a brief recall of the
Lurette principles, we introduce Lucky, a new language
used to describe and simulate the environment. Then,
we present four case studies that emphasize the main
characteristics of the tool.

1. The first one is a resistance to temperature converter,
developed in Scade, and provided by Hispano-Suiza
in the framework of the IST project Safeair II. It
is not a typical reactive system, in the sense that
there is no feedback between the environment and the
program, but it illustrates the numerical capabilities
of the tool. Two bugs were found in this (untested)
program.

2. The second one, also developed in Scade by Hispano-
Suiza, computes a propulsion nozzle position. It is
still a combinational program, but slightly more com-
plex. One bug was detected.

3. The third one is a fault-tolerant controller, where the
feedback aspects are important. It is written in Lus-
tre. It is not an industrial case study, but it has been
inspired from a real one, and we believe it is typical
of what a fault-tolerant system is. For this case study,
we illustrate how simple environment models can be
defined quickly, and then refined to more accurate
models.

4. The last one is a brake-by-wire system developed in
Sildex, and provided by Renault in the framework
of the IST project Safeair II. It presents an original
use of the oracle to compare two different versions
of a software. It also illustrates the expressiveness of
Lucky.

2 Lurette, an automated testing tool

We recall in this section the principles of Lurette [28].
More details about the new version of the tool can be
found in the Lurette V2 user guide [18].

2.1 Automatic generation of realistic inputs: the
System Under Test (SUT) Environment

The main challenge in automating the test process of a
reactive program is the ability to generate realistic in-
put sequences to feed the SUT. Indeed, realistic input
sequences cannot be generated off-line, since the SUT
generally influences the behavior of the environment it

3 Note that, even for simulation, some restrictions are necessary.
But they are likely to be weaker than those required for global
reasoning
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is supposed to control, and vice-versa. Imagine, for ex-
ample, a heater controller for which the input is the tem-
perature in the room, and the output is a Boolean signal
controlling the heater.

In other words, we need an executable model of the
environment in which the inputs are the SUT outputs,
and the outputs are the SUT inputs.

Basically, the Lurette input sequence generation
engine is a linear constraint solver and drawer. The
Boolean part of the solver is based on Bdd [29] and
the numeric part is based on a convex Polyhedron Li-
brary [20]. Constraints on the environment variables
(that may depend on memories and on SUT outputs),
are solved, and one solution is drawn at each step to
feed the SUT. Such SUT environment constraints are
described by Lucky programs. Lucky is a language dedi-
cated to the construction of probabilistic machines; it is
presented in Section 3.

2.2 Automatic test decision: the oracle

The second thing that needs to be automated is the test
decision. To do that, we use the technique of observers
used in verification [16]. An observer of a program P is a
program that takes in input the inputs and the outputs
of P, and that returns exactly one Boolean variable. It
lets one express any safety property [23].

In the context of program testing, those observers
play the role of automated oracles. A test data sequence
is considered as correct with respect to a temporal safety
property if the oracle that encodes it always returns true.

Such oracles can be written in (almost) any program-
ming language, as soon as (1) it can store informations
from one call to the other in a persistent memory (since
the oracle may depend of the history of inputs/outputs),
and (2) it can compile into an executable procedure. For
Lurette, we propose to use the same data-flow program-
ming languages that Lurette targets, namely, Lustre,
Scade and Sildex.

2.3 The Lurette data flow loop

Fig. 1 outlines the Lurette data flow between the differ-
ent entities, namely, the SUT, its environment, and the
test oracle.

The environment outputs serve as SUT inputs, and
SUT outputs serve as environment inputs, apart from
the first step. Therefore, to be able to start such a looped
design, one entity has to start first. In order to avoid
putting hypotheses on the SUT (for instance, the SUT
should be able to produce outputs without inputs at the
first step), the environment starts first. This means that
a valid environment for Lurette is one that can generate
values without any input at the first instant. The role
of the boot keyword of Fig. 1 is precisely to signal the
environment it should start generating values.

Oracle

oki Ii Oi

Iiboot / Oi−1

Ii

Oi

SUTTest Manager

Environment

Fig. 1. The Lurette data flow loop.

Hence, once the environment has received the boot

signal, it (non-deterministically) produces a vector of
values I1. Lurette sends this input vector I1 to the SUT,
which returns the output vector O1. Lurette then sends
both I1 and O1 to the oracle. The oracle returns a single
Boolean ok1, which is true if and only if I1O1 satisfies
the property.

If ok1 is false, then the testing process stops and
a counter example that violates the property has been
found. If ok1 is true, then the testing session continues
in exactly the same manner, except that this time, O1

is sent to the environment, which returns yet another
input vector I2. I2O2 is sent to the oracle which returns
true if the trace (I1O1; I2O2) satisfies the property.

3 Lucky, a language to program stochastic

machines

A first version of Lurette [28] was designed in the late
nineties. In this version, the SUT environment was de-
scribed by means of temporal constraints expressed with
the Lustre language. The role of Lurette was then to
solve those constraints in order to build a relevant input
sequence for feeding the SUT.

From a practical point of view, the use of Lustre for
describing input sequences was not completely satisfac-
tory. First of all, the declarative style is not adapted for
describing sequential scenario. Moreover, it does not pro-
vide any means for expressing that some input sequence
is more probable than another.

In order to overcome those limitations, a new lan-
guage named Lucky, has been defined. Unlike Lus-
tre, this language provides an explicit control structure
which makes it easier to express sequential scenario and
also to express probability issues.

Basically, a Lucky program is a probabilistic in-
terpreted automaton where a transition represents an
atomic reaction of the SUT environment. Each transi-
tion is labeled by:
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1 2up and down(t, 0, 10, 4)

switch ∧ (t = pre t)

up and down(t, 0, 10, 1)

switch ∧ (t = pre t)

[1]

[1000]

[1000] [1]

where:

up and down(X, Min, Max,Bound) = (|X − pre X| < Bound) ∧ (

if (pre X < Min) ∨ ((pre X < Max) ∧ (pre pre X ≤ pre X))

then (X > pre X) else (X < pre X) )

Fig. 2. A Lucky automaton with one Boolean input switch and one real output t.

– a constraint (a relation) defining the possible SUT
input values,

– a weight (an integer) defining the relative probability
for this transition to be taken.

The operational semantics of Lucky is first presented
on a very simple example. The features of the language
are then presented in more details.

3.1 A simple Lucky program

A simple Lucky program is drawn on Fig. 2. It has
one Boolean input switch, and one real output t, which
means that it is supposed to implement the environment
of a SUT which inputs t and outputs switch.

The relation level. Each transition in this automaton is
labelled by a relation (a conjunction of constraints) and
a weight (an integer). Each relation, which holds over
the automaton input, output, and memories (e.g., pre t),
defines how to compute one reaction of the program.

– The relation “switch ∧ (t = pre t)” is satisfiable if
and only if the input switch is true; it states that t
keeps its previous value in such a case.

– The relation “up and down(t, 0, 10, 1)” constrains
the output t in the following manner: the difference
between t and its previous value is always smaller
than 1 (|t− pre t| < 1); if t was increasing (resp. de-
creasing) at the previous step (pre pre t ≤ pre t) then
t increases (resp. decreases) at the current step, un-
less its previous value is bigger than 10 (resp. smaller
than 0). Refer to Fig. 7 in order to see the shape of
a timing diagram of a variable constrained by such
a relation. We will use that macro in most of the
examples in this article.

– The relation “up and down(t, 0, 10, 4)” is similar, ex-
cept that the bound over the derivative of t is set to
4 instead of 1.

Note that constraints are mixing controllable vari-
ables (outputs), and non-controllable variables (inputs
and past values). As a consequence, a constraint may or
may not be satisfiable.

The control level. The automaton describes how con-
straints are evolving among time: at each “instant” the
control belongs to some state of the automaton. A fea-
sible transition starting from this state is elected, and
the control passes to the corresponding target state. A
transition is feasible if the corresponding constraint is
satisfiable according to the current values of the uncon-
trollable variables. When several transitions are feasible,
the random selection is made according to their relative
weights.

In Fig. 2, the program starts in state 1 (marked by a
dashed arrow). If the input switch is false, only one tran-
sition is feasible, labelled by up and down(t, 0, 10, 4).
This constraint is solved, and one solution is drawn
among its set of solutions.

If the input switch is true, then the transition from
1 to 2 is also feasible. One is labelled by a weight of 1,
and the other one by a weight of 1000, which means that
the latter has a probability of 1000/1001 to be elected.

Such an automaton models the fact that the control
can move from one mode to another only when the input
switch is true. It also models the fact that the current
mode might not change even if switch is true (with a
probability of 0.1 %), which can be convenient, for ex-
ample, to model occasional errors.

Note that there are two sources of non-determinism
in Lucky: one at the relation level, where several solu-
tions to a set of constraints exist; and one at the control
level, over which we have some quantitative control via
the use of weights.
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s
c = 0

alive ∧ (c = pre c + 1) [wl(pre c)]

Fig. 3. An alive process description.

3.2 Other Lucky concepts

The language provides some concepts that are not used
in Fig. 2, but that will be needed later. We present here
the most important ones.

Dynamic weights. In the example of Fig. 2, weights are
integer constants expressing that some transitions are
always more probable than others. This notion of static
weights is quite restrictive since it does not allow to ex-
press that the fact that the history and/or the outside
may influence the probabilities. This is why Lucky pro-
vides a more general notion of dynamic weights: a weight
is a numerical function over the inputs and the past val-
ues.

A good example of the usefulness of dynamic weights
is when simulating an alive process where the system has
a known average life expectancy before breaking down.
At each reaction, the probability to work properly de-
pends numerically on an internal counter of the process
age.

Fig. 3 illustrates the use of dynamic weights to model
such an alive process. An internal variable c is used to
count the number of loops on the state s: its initialization
is enforced when this state is reached, and its increment
is enforced each time a loop is performed. The weight
associated to the loop (wl) is a decreasing function of
pre c, for instance wl(pre c) = 1000 − pre c.

Infinite weight. Lucky provides a special notation for
infinite weight, in order to express a sound notion of
mandatory choice. A transition labelled with the infi-
nite weight has priority on any finite weighted transition.
Note that there is a single notion of infinite weight: two
feasible transitions with infinite weight have the same
probability. The next paragraph illustrates how to as-
sign finer-grained probabilities to different mandatory
choices.

Transient states. For the time being, there is only one
notion of control state: a state is a stable control point,
and a transition between two states defines an atomic
reaction. However, it may be convenient to introduce
the notion of transient state, and, as a consequence a
notion of micro-step: a complete reaction is then a se-
quence of transitions between two stable states, where all
the intermediate states are transient. Transient states do

r1

r3r2 [2]

[∞]

Fig. 4. Transient state and infinite weight.

not affect the synchronous interpretation of the variable
changes: intuitively, if we abstract probabilities, a reac-

tion s
f

−→t
g

−→s′, is qualitatively equivalent to s
f∧g
−→s′. In

contrast, transient states affect probabilities, and may be
helpful to express complex conditional relative weights.

Figure 4 shows an example where a transient state is
used to assign different relative probabilities to several
mandatory choices: r2 or r3 both have the priority over
r1, and r2 is twice more probable than r3.

3.3 Restrictions on constraints

From an abstract point of view, a constraint is a relation
between uncontrollable variables (inputs and internal
memories) and controllable ones (outputs). At each step,
the value of uncontrollable variables is known, hence the
relation is reduced to a constraint over the controllable
variables. This constraint must then be solved in order
to find (if is exists) some actual solution.

The constraint solver is the core of the Lurette tool.
Since it is fully automatic, it requires some restriction
on the nature of the constraints, in particular for those
concerning the numerical variables. Actually, Lurette re-
quires numerical constraints to be linear: it uses a deci-
sion module based on polyhedra to solve such constrains.

3.4 Concurrency

In order to design large and complex systems, Lurette
allows to define the environment as a set of Lucky au-
tomata running concurrently.

Intuitively, in this case, each Lucky automaton be-
haves as a generator of constraints, and the global be-
havior results in the conjunction of those constraints.
In other term, the global behavior is defined as a syn-
chronous product of the automata.

In terms of control structures, parallelism corre-
sponds to a kind of synchronous product of automata.
Transient states make this “product” more complex than
a simple Cartesian product, but do not involve major
difficulties. For constraints, the product is simply the
logical and. Unfortunately, there is no obvious way for
combining probabilistic information: as they are defined,
transitions carry local information that may induce para-
doxes when combined into a parallel composition. A sim-
ple example is shown in Fig. 5a: the first automaton
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YB

B ∧ X [x]

B ∧ Y

B

B A [a]YY

Y

B
A [a] X [x]

A ∧ Y [a]

X [x]

X [x]A [a]

Fig. 5. Weights and parallelism: the parallel composition (5a), and, assuming that A ∧ X is not feasible, the product solution (5b) and
the arbiter solution (5c).

(resp. the second) has the choice between the constraints
A or B (resp. X or Y ) both satisfiable. In the first au-
tomaton, the choice of A has a big weight a >> 1 com-
pared to B (1 by default), and in the second, X has a big
weight x >> 1 compared to Y . Suppose that the data-
state makes it impossible to satisfy A∧X , it follows that
it is impossible to satisfy the stochastic demand of both
components. There are mainly two ways for solving the
problem.

1. Consider that weights are not only local information,
but are also influencing the parallel composition: for
instance, if a is much bigger than x, it means that
the stochastic demand of the first component is much
stronger than the one of the second. The simplest way
to implement this notion is to combine weights with
multiplication, as shown in Fig. 5b.

2. The problem is treated at the parallel composi-
tion level, where some indications are added to ex-
press priority for satisfying stochastic demands. Intu-
itively, the components of a parallel composition are
treated sequentially: the first one is perfectly served,
according to its own local weights; then the second is
served according to what was decided by the first one,
etc. The order of components is a stochastic informa-
tion that can be added to influence it. The Fig. 5c
shows a product where a first fair choice is made to
decide which component will “play” first. Note that
all intermediate states are transient.

There is no obvious argument to prefer one solution
to another: each are consistent, and none is clearly more
natural than the other. As a consequence, both are im-
plemented and the user can choose between them.

3.5 Lucky, a target language

One of the goals when designing Lucky was to have a
language with a simple operational semantics (it is a
simple interpreted automaton) that is general enough to
model any non-deterministic formal description. It was
not necessarily meant to be a language for users but
rather a target language for other higher-level languages,
or third-party tools. However, as the examples provided
in this article will illustrate, we believe that this language
is readable enough.

Anyhow, we designed another language, Lutin [27],
which compiles into Lucky. Lutin also aims at describing

and simulating non-deterministic systems, but it is based
on regular expressions instead of an explicit automaton,
which sometimes makes the description of stochastic sys-
tems easier.

Moreover, a gateway from Lustre observers to Lucky
programs can be done straightforwardly: it will result
in a degenerate Lucky automaton with a single control
state and a single (looping) transition labelled by the
Lustre observer equations. Using Lucky instead of Lus-
tre does not change the underlying synchronous compu-
tation model, but it gives a more “operational” style of
description, in which non-determinism is explicit.

4 Case study 1: a resistance to temperature

converter

We first illustrate the use of Lurette on a (untested) pro-
gram that has been kindly provided by Hispano-Suiza,
and which is written in Scade. Even if this node is rather
small, Lurette still let us find two problems with it very
quickly.

4.1 The specification of the converter

Hispano-Suiza has provided the following specification.
The converter is a Scade node with one input R, repre-
senting a resistance (in Ohms) that comes from a sensor.
It has one output T, representing the corresponding tem-
perature (in Kelvin). The output is computed from the
input using the function:

if R > 0 then T = C ∗ R
2 + D ∗ R + 273.15

else T = A ∗ R
4 + B ∗ R

3 + C ∗ R
2 +

D ∗ R + 273.15 (1)

where A, B, C, and D are constants that we do not
provide here.

4.2 The test session

Fig. 6 shows a Lucky program that models a possible en-
vironment for stimulating this converter. The first two
lines declare the Lucky machine interface. Then come
the node and transition declaration definitions. This very
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inputs { T : real }
outputs { R : real ˜init 200.0}
nodes { 1 : stable }
start node { 1 }
transitions { 1 -> 1 ˜cond

up_and_down(R, 150.0, 500.0, 5.0) }

Fig. 6. A Lucky program modelling the converter environment.
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Fig. 7. The timing diagram of an execution of the converter.

simple automaton contains only one node and one transi-
tion. The transition states that the output R should vary
up and down between 150 and 500, with a slope smaller
than 54. Note that in this particularly simple case, we
make use neither of the input T nor any memory.

We use as oracle a direct translation in Lustre of
Equation 1, and we observe that this oracle is violated
on the first step. Fig. 7 displays a visualisation of the
data produced by Lurette. The expected output of the
converter node is displayed in the graphic in the variable
T expected. The expected output would be to see the
two upper curves superimpose.

As a matter of fact, the bug was in the specification
and not in the code. Indeed, in the definition of T, R

should be R-100.0.
A second problem with this node was revealed by

Lurette when we tried R values smaller than 100. In-
deed, in such a case, R-100 is negative, and (R-100)2

was computed by an exponentiation function of type
float → float → float, which raises an exception
when its first argument is negative – whereas it should
probably have used a exponentiation function of type
float → int → float which makes sense even if the first
argument is negative.

Of course, this sub-program is not representative of
typical reactive systems as it involves no feedback. How-

4 It is not particularly meaningful to bound the derivative of
the input for such a combinatorial program; we did it here only
because it makes the visualisation of data easier on Fig. 7.

ever, it let us illustrate the use of Lurette smoothly.
Moreover, it has allowed Hispano-Suiza to discover two
(simple) bugs in no time, as Lurette is able to generate
the simple environment of Fig. 6 automatically. Indeed,
no sophisticated/stressful environment is necessary to
find such kind of bugs in such kind of programs.

5 Case study 2: computing a propulsion nozzle

position

This second case study has also been provided by
Hispano-Suiza. The task of this component is to compute
the position of a propulsion nozzle according to the val-
ues of two sensors that measure electric tension. Lurette
allowed us to discover one bug in a preliminary and un-
validated version of the code. This bug has already been
corrected when we signaled it to the Hispano-Suiza pro-
duction team.

5.1 The specification of the component

The propulsion nozzle position Scade node has four in-
puts: U1 and U2, which are real values that come from
sensors; VU1 and VU2 which are Boolean values that state
whether the tensions U1 and U2 are valid. It has two out-
puts: X, a real value that indicates the nozzle position;
and VX, a Boolean value that states whether the nozzle
position is valid or not.

The specification of that component says that the
output VX ought to be true if and only if the following
equation holds:

VU1 ∧ VU2 ∧ (1 ≤ U1 ≤ 5) ∧ (1 ≤ U2 ≤ 5)

∧ (4 ≤ U1 + U2 ≤ 8) ∧ X = f(U1, U2) (2)

where f is a deterministic function of U1 and U2 that we
do not provide here.

5.2 A possible test session

From this specification, there are numerous ways we can
use Lurette for an automatic test session. A first extreme
way would be to put Equation 2 both in the oracle and
in the SUT environment. But then, we would never see
VX becoming false, e.g., when U1+U2 is smaller than 4.

Another way would be to put no constraint at all in
the environment and thus to generate completely ran-
dom input values for the SUT, and to put equation 2 in
the oracle only. But then, the probability of getting “in-
teresting” values (i.e., around the interval [0; 10]) would
be very low.

Therefore, the environment we propose in Fig. 8 is
somewhere between those two extreme solutions: U1 and
U2 vary between 0 and 5 using the macro of Fig. 2.
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inputs { X : real ; VX : bool }
outputs { U1,U2:real ˜init 1.8 ; VU1,VU2:bool }
nodes { 0 : stable }
start node { 0 }
transitions { 0 -> 0 ˜cond

abs(U2 - U1) < 0.1

and up_and_down(U1, 0.0, 5.0, 0.1)

and up_and_down(U2, 0.0, 5.0, 0.1) }

Fig. 8. A Lucky program modelling the nozzle environment.
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Fig. 9. The timing diagram of an execution of the nozzle.

In order to make the environment more realistic, we
add a constraint that enforces U1 and U2 to be close:
abs(U2-U1)<0.1. Moreover, VU1 and VU2 are left un-
constrained. The init option is used to set the previ-
ous values of U1 and U2 at the first instant. The oracle
is again just a straightforward translation in Lustre of
equation 2.

The timing diagram of a Lurette run with this en-
vironment is shown in Fig. 9. Note that the oracle was
really useful in deciding automatically whether the tests
succeeded or not. Indeed, for very long sequences5, per-
forming the test decision manually (i.e., by data file in-
spection) would be very tedious.

A preliminary and unvalidated version of this pro-
gram violated the oracle. The bug was that the equa-
tion 2 was encoded in Scade with or instead of and gates.
The timing diagram of Fig. 9 has been generated with a
corrected version of the component.

5.3 Other possible test sessions

Of course, several other test scenarios can be useful. For
instance, one could enforce VU1 and VU2 to be always
true, so that the checking of the result of the numeric
function f is done at each step. One could also play

5 For this kind of environment, Lurette can generate several
thousands of test vectors per second.

with the tension slopes, or let the two tensions evolve
independently.

It is precisely the point of having the flexibility of a
plain programming language: be able to tackle the diver-
sity of all the possible situations. In the next case study,
we illustrate how one can write more sophisticated envi-
ronments.

6 Case study 3: a fault tolerant heater

This case study in not an industrial application, but has
been inspired from a real one. We believe it is represen-
tative of what testing a fault tolerant controller could be.
It lets us illustrate several aspects of the use of Lurette,
and in particular how simple environments can be de-
fined in Lucky, and then refined.

6.1 A fault-tolerant heater controller

We want to test a fault-tolerant heater controller which
has three sensors (namely, three real inputs) measuring
the temperature in a room, and which returns a Boolean
value indicating to the heater whether it should heat or
not. We only provide its informal specification, which is
enough from the Lurette black-box testing point of view.
The full Lustre code for this controller can be found in
Appendix A.

The main task of the controller is to perform a vote
to guess what the temperature is. Then, if that guessed
temperature is smaller than a minimum value (TMIN),
it heats; if it is bigger than a maximum value (TMAX),
it does not heat; otherwise, it keeps its previous state.
The voting works as follows: the values of each sensor
is compared pairwise, and two sensors are considered
suspicious as soon as they differ by a threshold value
(DELTA).

V12 = abs(T1-T2) < DELTA;

V13 = abs(T1-T3) < DELTA;

V23 = abs(T2-T3) < DELTA;

Hence, there are four cases, depending on the values of
V12, V13, and V23.

1. If the three comparisons are true, it returns the me-
dian value of the three sensors;

2. If only one comparison is false, it considers it as a
false alarm (e.g., because DELTA was too small) and
still returns the median value.

3. If two comparisons are false (say V12 and V13), it de-
duces the broken sensor (T1) and returns the average
of the other two (T2+T3/2.0);

4. If the three comparisons are false, it is difficult to
know whether two or three sensors are broken, and
it (safely) stops to heat in that case.
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inputs { Heat:bool }
outputs { T1, T2, T3 : real ;

T:real ˜min 0.0 ˜max 50.0 ˜init 7}
locals {eps1,eps1,eps3:real ˜min -0.3 ˜max 0.3}
nodes { 0 : stable }
start node { 0 }
transitions { 0 -> 0 ˜cond

T = pre T + (if Heat then 0.2 else -0.2)

and T1 = T + eps1 and T2 = T + eps2

and T3 = T + eps3 }

Fig. 10. A Lucky program modelling undegradable sensors.

6.2 A test session using undegradable sensors

In order to test that program, there are two things we
need to simulate: the real temperature in the room, and
the sensors that measure that temperature.

The Lucky program provided in Fig. 10 has one in-
put variable (the output of the SUT): the Boolean Heat

which is true iff the heater is heating. It has four output
variables (the inputs of the SUT): the true temperature
in the room T, as well as the temperature as it is mea-
sured by the 3 sensors: T1, T2, and T3. It also have three
local variables (eps1, eps2, and eps3) that are uniformly
drawn between −0.3 and 0.3 (the min and the max op-
tions in the variable declaration are syntax that lets one
define global constraints). Those local variables are used
to disturb the value of the temperature T and simulate
the noise a sensor may have (T1 = T + eps1).

We then need to simulate T. T is initialized to 7.0 via
the init option. A single transition updates T as follows:
if Heat is true, then T is incremented by 0.2; otherwise,
it is decremented of 0.2. This model is quite simple, but
it will be refined further later.

A priori, the real temperature could be a local vari-
able of the SUT environment. However, in order to write
oracles that have access to that temperature, we need to
add it to the SUT interface. That is the reason why the
controller (cf node heater control in Appendix A) has
an additional input T, which it does not use.

A Lurette run using the Lucky program of Fig. 10
produced the timing diagram shown in Fig. 11. There,
we can convince ourselves that everything seems to work
fine; the temperature increases and Heat on is true until
TMAX is reached. At step 11, Heat on becomes false and
the temperature decreases until TMIN is reached, and so
on.

6.3 The test oracle

The property that we propose to check is that the tem-
perature in the room never becomes bigger than TMAX

even if all sensors are broken. This safety property is
encoded by the Lustre observer of Fig. 12. This Lustre
node called not a sauna, takes as input the input and
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Fig. 11. The timing diagram of an execution generated with the
undegradable sensors.

node not_a_sauna(T,T1,T2,T3: real; Heat_on: bool)

returns (ok:bool);

let

ok = true -> pre T <= TMAX;

tel

Fig. 12. A possible oracle: make sure that temperature never
becomes too hot.

output flows of the SUT (the reals T, T1, T2 and T3 as
well as the Boolean Heat on). It returns a single boolean
(ok).

The core of the program (between let and tel) con-
tains the equation defining the values of ok:

– at the very first call (right hand side of the -> oper-
ator) the value is true.

– for any other calls, the value is given by the left hand-
part of ->: ok is true if and only if the pre(vious)
value of T is less or equal than TMAX.

Note that the only “observed” variable is actually T.
However, all other useless input/output variables must
appear in the profile in order to provide the profile ex-
pected by Lurette.

If we run again our program, we observe that indeed
this oracle is never violated.

6.4 A test session using degradable sensors

The Lucky program of Fig. 13 models more realistic sen-
sors that can degrade. The input, output, as well as the
epsi local variables are the same as in the Lucky pro-
gram of Fig. 10 – we have omitted them from the figure
for the sake of conciseness.

There are two additional local variables: cpt, that is
incremented at each cycle, and INV, an invariant that
states how the temperature T is simulated (basically as
in Fig. 10) and how to update cpt at each cycle.

The two transitions s1 -> t1, t1 -> s1 describe
exactly the same kind of behavior as transition 1 -> 1
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locals { cpt: int; eps: real ˜min 0.0 ˜max 0.2;

-- Invariant

INV: bool ˜alias cpt = pre cpt+1

and T = pre T + (if Heat then eps else -eps)

}
nodes { t1, t2, t3, t4 : tran-

sient; s1, s2, s3, s4 : stable }
start node { t1 }
transitions {
-- No sensor is broken

t1 -> s1 ˜cond INV and T1=T+eps1 and T2=T+eps2

and T3=T+eps3;

s1 -> t1 ˜weight 1000;

s1 -> t2 ˜weight pre cpt;

-- One sensor is broken

t2 -> s2 ˜cond INV and T1=T+eps1 and T2=T+eps2

and T3 = pre T3;

s2 -> t2 ˜weight 1000;

s2 -> t3 ˜weight pre cpt;

-- Two sensors are broken

t3 -> s3 ˜cond INV and T1=T+eps1 and T2 = pre T2

and T3 = pre T3;

s3 -> t3 ˜weight 1000;

s3 -> t4 ˜weight pre cpt;

-- Three sensors are broken

t4 -> s4 ˜cond cpt = 0 and T = pre T

and T1 = pre T1 and T2 = pre T2

and T3 = pre T3;

-- Start again from the beginning

s4 -> t1 }

Fig. 13. A Lucky program modelling degradable sensors.

in Fig. 10: T1, T2, and T3 are computed as disturbed
versions of T. Transitions t2 -> s2, s2 -> t2 simulate
the case where one sensor is broken: T3 keeps its previ-
ous value (pre T3) whatever the temperature. Transi-
tions t3 -> s3, s3 -> t3 and transitions t4 -> s4,

s4 -> t4 respectively simulate cases where respectively
two and three sensors are broken.

Let us detail the execution of that automaton. The
initial node is the one labelled by t1. The output values
for the first cycle are given by the equation that labels
the transition t1 -> s1, which states that outputs T,
T1, T2, and T3, are set to 7.0, and the local counter cpt
is set to 0.

The values for the second cycle are computed via
one of the two transitions outgoing from node s1: s1
-> t1, which is labelled by 1000, and s1 -> t2 which
is labelled by pre cpt. The meaning of those weights is
the following: use the first transition with a probability
of 1000

1000+pre cpt
and the second one with a probability

of pre cpt

1000+pre cpt
. At the second cycle, since pre cpt is

bound to 0, the only possible transition is s1 -> t1,
which leads to a correct behavior of all sensors. Since
t1 is transient, t1 -> s1 is also used to compute the
output of the current cycle.

At the third cycle, the situation is roughly the
same: s1 is the current node, but the transition s1

-> t2 is now possible, with a probability of 1

1001
. If

this transition is chosen, we enter in a mode where
one sensor is broken. Note that as time progresses, the
probability of going to node t2 increases; this models
the situation where the probability of failure increases
with time. The behavior is similar at stable nodes
s2 and s3. When all sensors are broken, we go back
to the initial state and start a new test session (cpt = 0).

If we launch a Lurette run with the program of
Fig. 13 often enough or with a test length that is long
enough, we can exhibit sequences that violate the ora-
cle. An example of such a sequence is displayed in the
timing diagram of Fig. 14. One can see at step 20 the
first sensor breakdown (it keeps its previous value), at
step 45 the second sensor breakdown, and at step 55 the
last sensor breakdown. Then, at step 56, a new session
is launched (namely, the automaton control go back to
node t1). The oracle violation occurred at the fifth ses-
sion at step 346.

6.5 The bug explanation

This time, the bug is in the specification itself6. We mod-
elled sensor breakdowns by making them keep their pre-
vious value – which is questionable. Therefore, if ever
two sensors broke down with similar values, the voter
will not be able to realize that they are broken. Hence,
the controller keeps on heating forever, which violates
the oracle.

Note that such a configuration is not very probable,
hence the need for being able to generate values fast
enough to have a chance to detect it. The timing diagram
of Fig. 14 was generated in less than 2 seconds on a
Pentium 4 clocked at 3.00GHz, with 512 KB of RAM.

One way to correct that bug would be to check that
sensor values do change during a given number of cy-
cles, and to consider them, at least temporarily, invalid.
Note however that in general, Fault-tolerant systems
vendors only promise that their systems work under cer-
tain hypotheses made on their environments. For exam-
ple, there is nothing that can be guaranteed for a con-
troller if all its sensors agree to provide wrong values.

7 Case study 4: a brake-by-wire system

The last case study is a brake-by-wire system, provided
by Renault as a Sildex model. The objective of this con-
troller is to lower the influence of external conditions on
the performance of the braking system. Those external

6 Note that this specification was inspired by another (confi-
dential) case study. That bug was introduced (unintentionally at
first!) by us, for didactic purposes.
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Fig. 14. The timing diagram of an execution generated with degradable sensors exhibiting a test failure (the temperature exceeded 10)
at step 346.

conditions can be, for instance, the slope of the road, the
brake pads waste, or the vehicle weight.

This controller makes extensive use of non-linear
mathematical functions, and is therefore untractable for
validation tools performing exhaustive formal verifica-
tions. It is therefore a good candidate for Lurette.

7.1 The system under test

In order to test the controller at the software level, we
need a model of the vehicle. Renault has kindly provided
us with such a model (in Sildex). Of course, the accu-
racy of the testing process depends on the quality of this
model.

In this article, for the sake of simplicity and without
loss of generality, the only external condition we take
into account is the slope of the road. All other parame-
ters are set to constant values. The interface of the SUT
is therefore the following.

– It has four inputs:
– two reals, αbrake and αaccel that carry the brake

and the accelerator pedal angles;
– one Boolean, clutch pedal on, that indicates if

the clutch pedal is pressed;
– and one integer, gear lever, that carries the gear

level.
– It has 2 real outputs, Speed and Accel, which re-

spectively carry the speed and the acceleration of the
vehicle.

Note that in Fig. 15, only the brake pedal angle is
displayed, but the gear-box commands and the accelera-
tor pedal angle are also sent to the SUT and the oracle.

7.2 The oracle

We want to verify that, given the same braking request
from the driver, the vehicle deceleration is almost the

ok
0

brake pedal
angle

slope
Speed

Accel

Oracle

EnvironmentSUT

≈

Fig. 15. The brake-by-wire testing data-flow.

same whatever the slope is. In order to do that, we use
an instance of the SUT model to build the oracle. This
instance serves as a reference: it receives the same pedal
angle as the actual SUT, but a constant slope of 0. In
other terms, the reference vehicle is running on a per-
fectly flat road, while the SUT vehicle is running through
hills. The oracle compares the deceleration of the two
vehicles and check that they are not too different (see
Fig. 15).

7.3 The environment

The environment is shown in Fig. 16. The node labelled
by choice is the initial state. From that state, the only
possible transition is labelled by a constraint that draws
values for the 3 local variables: αdraw which is the angle
that will be used in the deceleration phase; Smax which
is the speed at which we start braking, and Smin, the
speed at which we stop braking.
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Speed < pre Smax ∧
Smax = pre Smax ∧
Smin = pre Smin ∧
αdraw = pre αdraw ∧
αbrake = 0 ∧
αaccel = ... ∧
clutch pedal on = ... ∧
gear lever = ...

0 < Smin < 50 ∧
Smin < Smax < 160 ∧
0 < αdraw < 1

Speed > pre Smin ∧
αbrake = αdraw ∧
αaccel = 0 ∧
not clutch pedal on

deceleration

choice acceleration

inputs = { Speed, Accel: int }
outputs = { αbrake, αaccel:float ; clutch pedal on:bool ;

gear lever:int }
locals = { αdraw, Smin, Smax: float }

Fig. 16. The brake-by-wire environment.

In the acceleration mode, the locals variables keep
their previous values, the brake pedal angle αbrake is set
to 0, the gear-box and the accelerator pedal are set ap-
propriately to accelerate. For the sake of clarity, the cor-
responding constraints are not fully represented on the
figure. Intuitively, the desired speed is reached by using
one stable state per gear level, or, in a less distinguished
manner, using only the fifth level and the maximal value
of the accelerator.

When the speed exceeds Smax, the transition that
loops to the acceleration state is no more satisfiable, and
the control moves to the deceleration mode. In this mode,
the clutch pedal is pressed, and the brake pedal angle
αbrake is set to αdraw. This is done in loop until Speed
is smaller than Smin; then another choice for the test
parameters is done.

Note that unlike the fault-tolerant heater of the pre-
vious section, this automaton contains no weight at all.
The control is entirely guided by the environment input
Speed.

The slope is computed in an other Lucky automa-
ton run in parallel (cf. Section 3.4), and that is made
of a single state and a single transition labelled by the
constraint up and down(slope,-30,30,1).

On a Pentium 4 clocked at 3.00 GHz, with 512 MB of
RAM, a million of cycles can be generated in 2 minutes
and 20 seconds (the time to perform the SUT and the
oracle cycles included).

8 Conclusion and further work

8.1 Conclusion

Lurette has turned out to able to analyze several designs
of real industrial applications and likely to discover er-
rors before the designs were subjected to module testing.

This article reports how Lurette let us detect three of
them in an application provided by Hispano-Suiza. One
interesting point is that those bugs were found with little
effort. However, the situation was particularly favorable,
since the application was in the development stage, and
as a consequence more likely to contain errors.

This article also illustrates the use of Lucky, a new
language to describe and simulate stochastic machines.
It shows how simple environments can be quickly de-
fined, and then how they can be refined into more accu-
rate and complex ones. It also demonstrates that, even
if Lurette targets reactive systems, it can be used to test
purely combinational programs.

Note that we insist on the language expressiveness
to allow the description of realistic environments. But of
course, the tool can be used with different motivations.
One can use it to stress the SUT in arbitrary manners,
for instance by trying limit values.

Some further work concerns the weakening of
Lurette’s black box hypothesis, via the use of verification
tools. The idea is the following: the abstract interpreta-
tion verification tool Nbac [19] provides semi-decision re-
sults: if a property is shown to be true, it is for sure; but
otherwise, the (false) negative answers might be due to
some approximations performed by tool. In such a case,
Nbac returns an abstract automaton, for which it is im-
possible to know whether a concrete path from the ini-
tial to the final node exists (if we knew it, we would have
solved an undecidable problem). Nbac is already able to
output this abstract automaton in the Lucky format [11],
which can then be used to try to find (randomly) a con-
crete path in it. Some more work and experimentation
are required.

A second step would then to be able to translate
Lucky descriptions (forgetting the weight annotations)
of the environment into a format the verification tool can
handle. Indeed, the scheme we use in Lurette is the same
as in verification: a formal description of the property (in
our case, the oracle) is checked against the program using
some formal hypotheses made on its environment. In our
case, Nbac could be tried before launching a Lurette test
session. If the proof failed, one could then use in Lurette
the result of Nbac in combination with the environment
to perform a testing session that is oriented towards the
violation of the oracle.

8.2 Code coverage for data-flow languages

Another important point that has not been addressed
yet is to have a suitable notion of code coverage for syn-
chronous data-flow languages such as Lustre. Indeed,
data-flow languages are very different from sequential
ones, for which it is easier to define coverage metrics
based on the control structures.
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A The Lustre code of the fault-tolerant heater

const FAILURE = - 999.0;

-- temperature when all sensors are broken

const TMIN = 6.0;

const TMAX = 9.0;

const DELTA = 0.5;

--------------------------------------------

node heater_control(T, T1, T2, T3 : real)

returns (Heat:bool);

var

V12, V13, V23 : bool;

Tguess : real;

let

V12 = abs(T1-T2) < DELTA;

V13 = abs(T1-T3) < DELTA;

V23 = abs(T2-T3) < DELTA;

Tguess =

if noneoftree(V12, V13, V23)

then FAILURE

else if oneoftree(V12, V13, V23)

then Median(T1, T2, T3)

else if alloftree(V12, V13, V23)

then Median(T1, T2, T3)

-- 2 among V1, V2, V3 are false, one is true

else if V12

then Average(T1, T2)

else if V13

then Average(T1, T3)

else

-- V23 is necessarily true, hence T1 is wrong

Average(T2, T3) ;

Heat = true ->

if Tguess = FAILURE then false else

if Tguess < TMIN then true else

if Tguess > TMAX then false else pre Heat;

tel

--------------------------------------------

node Average(a, b: real)

returns (z : real);

let

z = (a+b)/2.0 ;

tel

node Median(a, b, c : real)

returns (z : real);

let

z = a + b + c - min2 (a, min2(b,c))

- max2 (a, max2(b,c));

tel

node noneoftree (f1, f2, f3 : bool)

returns (r : bool)

let

r = not f1 and not f2 and not f3 ;

tel

node alloftree (f1, f2, f3 : bool)

returns (r : bool)

let

r = f1 and f2 and f3 ;

tel

node oneoftree (f1, f2, f3 : bool)

returns (r : bool)

let

r = f1 and not f2 and not f3 or

f2 and not f1 and not f3 or

f3 and not f1 and not f2 ;

tel

--------------------------------------------

-- The oracle

node not_a_sauna(T, T1, T2, T3 : real;

Heat: bool)

returns (ok:bool);

let

ok = true -> pre T < TMAX + 1.0;

tel


