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1. Scientific Context  
 
The embedded computing systems found in cars, aircraft and spacecraft, nuclear power plants, etc., are said to 
be critical, because of the potential consequences of a bug for human lives. In these domains, there exist 
norms on the development process of the computing systems, and even independent certification authorities 
giving their approval on the computing system. For instance, in the avionics domain, there is a European norm 
(DO 178B), which imposes strict criteria on how the software projects should be conducted. Before being able 
to ``fly'' a piece of software, a company has to demonstrate that it has been designed with care.  All the tools 
used in the design flow, including the C compiler at the end, have to be certified. There are similar norms for 
the hardware components (DO 154). One of the main functional criteria that matter for the certification is the 
predictability of the system behavior. In other words, it should be possible to determine in advance what will 
happen when the system is deployed. Predictability is usually ensured by careful implementation methods, 
which guarantee that the behavior is deterministic. This also means that the complete implementation process 
is well understood and mastered, and that the potential sources of non-determinism in the final system have 
been identified and suppressed. Besides, in critical embedded software, timing is part of the function, because 
the software usually implements some control law, and the execution time is strongly related to the sampling 
rate of the inputs. Producing a correct value, but too late, is like producing a wrong value. Concerning the 
timing aspects, predictability means, in particular, that the execution time of a piece of software has to be 
computable in advance or, at least, that there should be a way to find a guaranteed upper bound, called the 
worst-case-execution-time (WCET).    
 
The first generation (in the 80's) of critical embedded systems, e.g., in aircraft or nuclear power-plants, used 
the very simple hardware available at that time, and very static software solutions, which was a satisfactory 
way to guarantee determinism. For instance, in the domain of nuclear power plants, a conservative solution is 
still in use: the embedded software is an infinite loop in which the processor first reads the sensors, then 
computes the response and updates its internal memory, then writes to the actuators. This code can run on a 
machine without any operating system. The hardware architecture is simple, based on a variant of the 
Motorola 68040 processors which were designed around 1980. This type of processor has no sophisticated 
mechanisms like branch prediction, caches, pipelines, speculation, etc. The predictability of execution time for 
a given piece of code is quite good. The absence of an operating system and the simplicity of the processor 
guarantee determinism.  
 
Even if some of these solutions are still in use in highly critical contexts like nuclear power-plants, they are 
obviously reaching their limits.  In almost all domains of critical systems, it is no longer possible to use simple 
hardware. First, the old hardware components will soon disappear because no company keeps producing 
them; second, more and more functions have to be implemented by computing systems and there is a need for 
more computing power than that available with the old hardware components. Unfortunately, the modern 
individual processors or the multiprocessor architectures are increasingly non-deterministic and 
unpredictable.  They are designed with the objective of improving the average performance of a computing 
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system, but they may exhibit a very high variation in computation time. The main sources of non-determinism 
include: the sophisticated features of the processors like pipelining and speculation, the competition of the 
processors for memory accesses, and the communication elements (buses, networks on chip). The current 
hardware architectures are, therefore, not suitable for critical embedded systems.   
 
The question of how to design an embedded system for the critical domains, using modern hardware 
architectures, therefore raises a huge interest, both  in companies, and in academia. There is no satisfactory 

solution yet.  A related question is that of mixed-criticality systems, i.e., systems in which several pieces of 
software, some critical, and some which are not, are executed on the same architecture. In this case, there are 
additional problems of time and space isolation between these pieces of software. This type of problem is very 
common in the automotive industry, for instance, where there is a trend towards fewer processors in a car, for 
more functions. 

 

2. Scientific Objectives, Related and Non-Related Work  
 
We think that these topics deserve a new and fresh look, “forgetting” about the constraints of existing 
components or software solutions. As already mentioned, the existing multi-processor architectures are 
designed for average performance and the solutions at all levels are meant to be transparent for the 
application programmer (from the prefetching mechanisms in memory controllers to the routing algorithms in 
networks on a chip, including the very principle of a cache,  load balancing techniques, etc.). Several levels of 
such transparent mechanisms that try and improve the average performance constitute the main obstacle to 
predictability. 
  
In this project, we aim at exploring ways to implement critical systems as software running on multiprocessor 
architectures, in such a way that the complete solution be simple and provably deterministic, therefore 
acceptable by certification authorities. The main directions are: 

 In contrast with other projects involving industrial partners and existing hardware components, we 
will consider here that we are free to propose new solutions at all levels. 

 We will keep in mind that the solutions have to be sufficiently simple for the certification constraint. 
The objective is not to define new sophisticated architectures and optimal software-to-hardware 
mapping algorithms. A solution that under-exploits the hardware, but in a simple and deterministic 
way, will be preferred.  

 We will adopt a holistic view of the problem (hardware and all software layers together) which is 
necessary for the certification objective anyway, and also explore cross-layer solutions (e.g., allow the 
software to control the running modes of the hardware) if they improve performance without 
compromising  predictability. In other words, we aim at programmable and predictable performance, 
instead of transparent average performance.  
 

We would like to come up with a clear idea of what could be an ideal hardware architecture and design flow for 
“predictable-by-construction” critical embedded systems. Even if it is not feasible for a number of reasons, 
ranging from hardware fabrication problems to economic viability, this is scientifically worth trying because it 
would give an estimation of the distance between such an ideal solution and what exists now, and help 
identifying the tricky problems with the current hardware.  
 
The related work covers hardware design and modeling, software specification, concurrent programming 
models, WCET analysis,   real-time scheduling, and software-to-hardware mapping (see more details below).  
The non-related work includes: (i) operating systems, because in the domain of critical systems, the operating 
system services are usually compiled together with the application software, and there is nothing like a runtime 
system;   (ii) automatic partitioning of the software for a multi-processor architecture, because this partitioning 
is usually imposed by the application itself (a task corresponding to one control law, for instance) and we may 
expect hints given by the application designer on how to partition it; (iii) automatic and dynamic load balancing 
because of our main objective of predictability; we might exploit well-defined running modes of the 
applications, in order to reconfigure the hardware for better performances, but this should be computable in 
advance.  
Some of the points that deserve attention are the following:  
 

 Among the set of existing solutions for mapping real-time applications to hardware, we will have to 
identify those that make realistic assumptions about the sources of non-determinism in the hardware 
(some tricky behaviors like timing anomalies in the processors may have a huge impact on the 
correctness of some scheduling algorithms, for instance).  



 We will study specification formalisms for application software, in which there is a way to capture all 
the characteristics that help getting a predictable implementation. For instance, a lot of critical 
applications are divided into dataflow blocks for which we know a “clock”, i.e., points in time when it 
needs activations.  

 Similarly, among the new hardware components, we will have to select those for which there is a way 
to get a guaranteed behavior and timing.   For instance we may prefer networks on chip that offer 
programmable routers, in such a way that the whole traffic can be studied offline, and scheduled once 
and for all to avoid collisions or deadlocks.  

 The types of memories to be used (DRAM, SRAM) are important, because the latency of accesses may 
vary a lot depending on the type of memory, and their controllers may contain mechanisms like pre-
fetching that degrade predictability.  

 The granularity of data also matters a lot, and it might be necessary to distinguish between control 
information that could travel between processors using dedicated links, and data like images, which 
need accesses to the memory via the network on chip.  

 We will look at solutions in which the software and the hardware exchange information, for instance 
when the application changes modes of operation, and the hardware has to be reconfigured (by 
changing the arbitration policy on a bus, for instance).  

 

3. Local, National and International Contexts  
 
The work on how to implement critical systems on multiprocessor architectures follows several paths:  

a) The study of existing processors, in order to identify subclasses having better predictability (see, e.g., 
the work by R. Wilhelm, U. Saarbrucken)  

b) The design of predictable-by-construction new hardware architectures (e.g., the PRET machine in the 
US, the European projects MERASA, PAR MERASA and T-CREST) 

c) New methods for the evaluation of the worst-case-execution-time (WCET) on modern processors, 
including models of the most non-deterministic hardware features (e.g., U. Saarbrucken, the Absint 
company,  Inria-Popart, IRIT, INRIA-Rennes) 

d) The extension of traditional WCET analyses to cope with the influence of parallel computing units and 
communication elements in modern architectures (e.g., work by A. Burns, U. York, European action 
TACLE) 

e) The design of dedicated implementation methods for multi- or many-core architectures, starting from 
high-level models or programming languages (e.g.,  D. Potop at Inria-Aoste, LIP6, PRET-C associated 
with the PRET machine) 

f) The design of controllable hardware elements for better predictability (IRIT Toulouse,  LIP6 Paris, P. 
Marwedel at U. Dormund, ...) 
 

Our objectives are close to those of T-CREST (point b) which focuses on hardware optimized for the WCET 
analysis. We go a step further by considering cross-layer solutions, i.e., cases in which controlling the hardware 
based on application-level information may improve determinism. The work in (a) helps selecting a simple 
processor; the work in (d) helps identifying the communication elements that have no chance to satisfy our 
needs; the work in (f) is a starting point and a source of solutions for our new architecture; the work in (e) gives 
directions for our objective of building a complete chain.  

 

4. Expected Results and Methodology 
 
The results of the project will be complete proof-of-concept solutions covering: (i) a formalism for the 
description of the application, capturing all the constraints that may be exploited for better predictability of the 
resulting implementation; (ii) a multiprocessor hardware architecture, offering  hooks for a precise control by 
the software; (iii) a set of algorithms for the implementation of applications expressed in the formalism, onto 
the architecture; (iv) a set of proofs for the phases of the implementation, guaranteeing determinism and time-
predictability; (v) a discussion on the “distance” between this ideal solution  and what can be done on the 
existing hardware. 
 
As usual, the project requires a first phase to share expertise, build a common knowledge, and review existing 
work. However, this will overlap with the construction of the first “solution”. Indeed, we will adopt an agile-like 
methodology, starting from something very simple yet representative of the problems that occur at all levels, 
and then enrich this first example in several steps. We will choose a simple existing processor and specify new 
hardware elements for a multiprocessor architecture, using simulators and virtual-prototyping tools (e.g., 



SystemC with instruction-set-simulators).  We will select a few classes of critical applications for which there is 
a need for more computing power and available information like “clocks” for parts of the software. We will 
reuse and extend the dataflow formalisms and programming models popular in both critical software and 
multi-core implementations.  We will not look (yet) at modular solutions, or at dynamic and reconfigurable 
systems.  
 

5. Value Added by the Collaboration, and External Partners 
 
Verimag-Synchrone brings the expertise in critical applications, formally-defined programming languages, and 
predictable implementations on mono-processor architectures with real-time operating systems. TIMA-SLS 
brings the expertise in hardware design, implementations on multi-processor architectures, networks-on-chip, 
and virtual prototyping. The partners therefore cover all the needed aspects.   Moreover, both Verimag and 
TIMA have been involved in a lot of projects with industrial partners. Among them, some can be consulted for 
representative critical applications and the kind of solution that has some chance to be accepted by 
certification authorities: Peugeot, Airbus, Astrium, Thalès avionics, Continental.  Others are references on 
modern multiprocessor architectures: STMicroelectronics, Kalray.  Similarly, both laboratories are involved in 
national or international projects on some of the points mentioned in section 3, with the main actors of these 
research activities.  
 

6. Organization and Activities 
 
The specification work will be done by the permanent researchers involved in the project, together with master 
students. The necessary developments will be done by students doing their engineer internship. We plan to 
invite people who are specialists in one or several topics needed for the project.  This includes:  
 

 Christine Rochange or Pascal Sainrat, IRIT, Toulouse, for their expertise on predictable architectures, 
and their participation in the European projects MERASA and PAR-MERASA 

 Dumitru Potop-Butucaru, INRIA Rocquencourt, for his work on static schedules.  

 Jan Reinecke, Saarbrucken, for his work on a predictable DRAM memory, and the PRET project 

 Reinhart  Wilhelm, Saarbrucken, for his expertise on the analysis of existing processors, and his 
participation in the projects  PROMPT and Predator 

 Joel Goossens, Brussels, for his work on multi-core implementations  

 Christian Ferdinand, Saarbrucken and Absint, for his participation in the projects  T-Crest and 
Predator,  and his industrial point of view on predictability 

 Rob Davis, York, for his work on scheduling techniques that take into account realistic assumptions on 
the hardware.  

 Kees Goossens, TuE Eindhoven, for his expertise in mixed soft and hard real-time systems, and his 
work on real-time networks on chip.  
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8. Costs 
 
    

Invitations of researchers  3000 

Conferences for the members of the project 2300 

Master students (5 months x 470 euros) x 2 4700 

    

Total 10000 

  
 


