# Probabilistic verification and approximation schemes

Richard Lassaigne Equipe de Logique mathématique, CNRS-Université Paris 7

Joint work with Sylvain Peyronnet (LRDE/EPITA & Equipe de Logique) **Motivation** 

**Probabilistic verification** 

**Randomised approximation schemes** 

**Approximate Probabilistic Model Checker** 

Conclusion

**Efficient approximations** of logical satisfiability :

Model  $\mathcal{M} \models_{\varepsilon}$  Property

1st case (difficult) : Model = Automaton  $\mathcal{A}$ Property = a word  $w \in_{\varepsilon} \mathcal{L}(\mathcal{A})$  **Property testing** (E. Fisher, F. Magniez and M. de Rougemont)

2st case (easy) : Model = Probabilistic transition system Property = the probability measure of ... equals<sub> $\varepsilon$ </sub> p Randomised Approximation Scheme (this talk)



Input :

- Model  $\mathcal{M} = (S, R) \ R \subseteq S^2$  (transition relation)
- Initial state  $s_0$
- Formula  $\varphi$

Output :

- YES if  $(\mathcal{M}, s_0) \models \varphi$
- NO with a counterexample if  $(\mathcal{M},s_0)\not\models\varphi$

## Complexity

 $O(|M|.|\varphi|)$  (Branching Time Temporal Logic **CTL**) or  $O(|M|.2^{|\varphi|})$  (Linear Time Temporal Logic **LTL**)

Problem :

State space explosion phenomenon (the problem is not the time but the space)

#### Classical methods :

- Symbolic representation (OBDD)
- SAT-based methods (Bounded moded checking)
- Abstraction

#### **Probabilistic Transition Systems**

Input :

- Model  $\mathcal{M} = (S, \pi, L)$  and initial state  $s_0$
- $\pi: S^2 \longrightarrow [0,1]$  Probability function
- $L: S \longrightarrow 2^{AP}$  (state labelling)
- Formula  $\psi$  (LTL)



Output :  $Prob_{\Omega}[\psi]$ where (for example)  $\psi \equiv transmission Usuccess$ ( $\Omega$  probabilistic space of execution paths starting at  $s_0$ )

#### **Probability space (and measure) :**

Finite paths  $\rho = (s_0, s_1, \dots, s_n)$ :  $Prob(\{\sigma/\sigma \text{ is a path and } (s_0, s_1, \dots, s_n) \text{ is a prefix of } \sigma\}) =$ 

$$\prod_{i=1}^{n} P(s_{i-1}, s_i)$$

Measure extended to the Borel family of sets generated by the sets  $\{\sigma/\rho \text{ is a prefix of } \sigma\}$  where  $\rho$  is a finite path.

The set of paths  $\{\sigma/\sigma(0) = s \text{ and } \mathcal{M}, \sigma \models \psi\}$  is measurable (Vardi).

**Complexity** : (Coucourbetis and Yannakakis) [CY95] **Qualitative verification (i.e. prob=1?)** Same complexity as LTL model checking  $O(|M|.2^{|\psi|})$ 

Quantitative verification (i.e. prob=?)  $O(|M|^3.2^{|\psi|})$ 

Method : Computing  $Prob_{\Omega}[\psi]$ 

 $\bullet$  Transforming step by step the formula and the Markov chain  ${\cal M}$ 

- Eliminating one by one the temporal connectives
- Preserving the satisfaction probability
- Solving system of linear equations of size |M|.

#### **Counting** problems : (L. Valiant 79)

•  $\sharp P$  class of counting problems associated with NP decision problems

•  $\sharp SAT$  is a  $\sharp P$ -complete problem

#### **Randomised Approximation Scheme :**

(R. Karp and M. Luby 85) Randomised Algorithm A

- Input : instance x of a counting problem,  $\varepsilon, \delta > 0$
- Output : value  $A(x,\varepsilon,\delta)$  such that

#### $Pr[(1-\varepsilon)\#(x) \le A(x,\varepsilon,\delta) \le (1+\varepsilon)\#(x)] \ge 1-\delta$

# Fully Polynomial Randomised Approximation Scheme (FPRAS) : Running time is $poly(|x|, (1/\varepsilon), \log(1/\delta))$

**Classical Randomised Approximation Schemes :** 

• Approximation of  $\sharp DNF$  (Karp, Luby, Madras 89)

Input : Disjunctive Normal Form formula  $\Phi$  Output : number of assignments satisfying  $\Phi$ 

• Approximation of graph reliability (Karger 99)

Input : a graph whose edges can disappear with some probability

Output : the probability that the graph remains connected

### Can we efficiently approximate $Prob_{\Omega}(\psi)$ ?

#### General case : (R. Lassaigne and S. Peyronnet 05)

There is **no** probabilistic approximation algorithm with polynomial time complexity for computing  $Prob_{\Omega}(\psi)$  ( $\psi \in LTL$ ) unless BPP = NP.

BPP: Complexity class of problems decidable by a Monte-Carlo randomized algorithm (with two-sided error).

Bounded-error, Probabilistic, Polynomial time : class of languages L s.t.

$$x \in L$$
 :  $Prob[$  acceptance of  $x] \ge 3/4$   
 $x \notin L$  :  $Prob[$  acceptance of  $x] \le 1/4$ 

#SAT can be reduced to counting the number of paths of length 2n, whose infinite extensions satisfy  $\psi$ .





Propositional clauses :  $c_1, \ldots, c_m$ Labelling of states :

 $L(x_i) = \{c_j \ / \ x_i \text{ appears in } c_j\} \ (i = 1, ..., n)$  $L(x'_i) = \{c_j \ / \ \neg x_i \text{ appears in } c_j\} \ (i = 1, ..., n)$  $\mathsf{LTL formula} \ \psi \ : \ \bigwedge_{i=1}^n Fc_j$ 

### Sketch of the proof

• Counting this number of paths gives  $Prob_{\Omega}(\psi)$ 

• If there was a FPRAS for computing  $Prob_{\Omega}(\psi)$ , then we could randomly approximate #SAT

• A FPRAS allows to distinguish, in polynomial time, for input x, between the case #(x)=0 and the case #(x)>0

• Then we would have a polynomial time randomised algorithm to decide SAT and BPP=NP

#### Moreover

• There is no deterministic polynomial time approximation algorithm neither for #SAT nor for computing  $Prob_{\Omega}(\psi)$  (Jerrum and Sinclair :#*P*-complete problems either admit a FPRAS or are not approximable at all)

We want to approximate a probability p.



 $Pr[(p-\varepsilon) \le A \le (p+\varepsilon)] \ge 1-\delta$ 

- $\varepsilon$ : error parameter (additive approximation)
- $\delta$  : confidence parameter (randomised algorithm)

We consider  $Prob_k(\phi)$  with :

 $\bullet$  the probability space is the space over paths of length  $\leq k$ 



•  $\psi$  express a monotone property

$$\lim_{k \to \infty} Prob_k(\phi) = Prob_{\Omega}(\phi)$$

Generic approximation algorithm  $\mathcal{GAA}$ input :  $\phi$ , diagram,  $\varepsilon$ ,  $\delta$ Let A := 0Let  $N := \log(\frac{2}{\delta})/2\varepsilon^2$ For i from 1 to N do 1. Generate a random path  $\sigma$  of depth k2. If  $\phi$  is true on  $\sigma$  then A := A + 1Return (A/N)

Algorithm based on Monte-Carlo estimation and Chernoff-Hoeffding bound

Diagram : succinct representation of the system (for example in Reactive Modules)

**Method**: Estimation (Monte-Carlo) + Chernoff-Hoeffding bound

X Bernoulli (0,1) random variable with success probability  $\boldsymbol{p}$ 

- Do N independent Bernoulli trials  $X_1, X_2, \ldots, X_N$
- Estimate p by  $\mu = \sum_{i=1}^{N} X_i / N$  with error  $\varepsilon$
- Sample size N is such that the error probability  $< \delta$

Chernoff-Hoeffding bound :

$$Pr[\mu p + \varepsilon] < 2e^{-2N\varepsilon^2}$$

If  $N \geq \ln(\frac{2}{\delta})/2\varepsilon^2$ , then

$$Pr[p - \varepsilon \le \mu \le p + \varepsilon)] \ge 1 - \delta$$

#### Theorem :

 $\mathcal{GAA}$  is a FPRAS for  $Prob_k(\psi)$ 

#### **Methodology** : To approximate $Prob_{\Omega}[\psi]$

- Choose  $k \approx \log |M| \cdot \ln(1/\varepsilon)$
- Iterate approximation of  $Prob_k[\psi]$

#### Remark :

- Length of needed paths can be the diameter of the system
- Convergence time may be long, but space is saved...

#### **Improvement** :

Optimal Approximation Algorithm (Dagum, Karp, Luby and Madras) with multiplicative error.

**Improvement :** Randomised approximation scheme with multiplicative error

**Idea** : Use the optimal approximation algorithm (OAA) [DKLR00]

- The first step outputs an  $(\varepsilon, \delta)$  -approximation  $\hat{p}$  of p after expected number of experiments proportional to  $\Gamma/p$  where  $\Gamma = 4(e-2) \cdot \ln(\frac{2}{\delta})/\varepsilon^2$
- The second step uses the value of  $\hat{p}$  to produce an estimate  $\hat{\rho}$ de  $\rho = max(\sigma^2, \varepsilon p)$  ( $\sigma^2$  is the variance)
- The third step uses the values of  $\hat{p}$  and  $\hat{\rho}$  to set the number of experiments and runs the experiments to produce an  $(\varepsilon,\delta)$ -approximation of p

Remark : It's not a FPRAS

#### **Continuous Time Markov Chains**

 $\mathcal{M} = (S, R)$ S is the set of states

 $R:S^2:\longrightarrow \mathbb{R}_+$  Rate matrix

$$s \in S, \lambda(s) = \sum_{s' \in S} R(s, s')$$
 Total rate of transition from  $s$ 

Delay of transition from s to s' governed by an exponential distribution with rate R(s,s').

Probability to move from s to  $s^\prime$  within t time units :

$$P(s,s') = \frac{R(s,s')}{\lambda(s)} (1 - e^{-\lambda(s) \times t})$$

#### **Random generator of paths**

Execution path :  $s_0(t_0) \rightarrow s_1(t_1) \rightarrow \ldots s_i(t_i) \ldots$ 

```
\begin{split} t &:= 0\\ \text{Initialize at state }s\\ \text{Repeat}\\ i &:= s\\ \text{Choose state j with proba } P(i,j) = R(i,j)/\lambda(i)\\ s &:= j\\ t &:= t - \ln(random_{[0,1]})/R(i,j)\\ \text{Until }t \geq T \end{split}
```

Simulation by inversion of uniform distribution over [0,1]

#### **APMC : Approximate Probabilistic Model Checker**

• Freely available GPL software

• Developped at LRDE/EPITA, Paris VII and Paris XI (T. Hérault)

- Use randomised approximation algorithm
- **Distributed** computation
- Integrated in the probabilistic model checker **PRISM**
- Case studies : CSMA/CD, 2PCP, Sensor Networks...

#### The dining philosophers problem

| n                        | n                                                 |
|--------------------------|---------------------------------------------------|
| $Prob[\bigvee hungry(i)$ | $\implies F(\bigvee eat(i))] \ge 1 - \varepsilon$ |
| $i{=}1$                  | i = 1                                             |
|                          |                                                   |

| ⊭ phil. | depth | time     | PRISM (time) | PRISM (states)      |
|---------|-------|----------|--------------|---------------------|
| 5       | 23    | 24.67    | 0.615        | 64858               |
| 10      | 33    | 70.32    | 13.059       | $4.21 \times 10^9$  |
| 15      | 42    | 146.22   | 68.926       | $2.73\times10^{14}$ |
| 20      | 51    | 261.43   | 167.201      | $1.77\times10^{19}$ |
| 25      | 58    | 412.06   | 3237,143     | $1.14\times10^{24}$ |
| 30      | 66    | 614.49   | out of mem.  | -                   |
| 50      | 95    | 2020.79  | out of mem.  | -                   |
| 100     | 148   | 11475.28 | out of mem   | -                   |

- Memory used : 2 MB
- k determined experimentally

٦

#### The dining philosophers problem strike back

Cluster of 20 Athlon XP1800+ sous Linux

| # phil.      | depth | APMC (time : sec.) | (memory : kbytes) |
|--------------|-------|--------------------|-------------------|
| 15           | 38    | 11                 | 324               |
| 25           | 55    | 25                 | 340               |
| 50           | 130   | 104                | 388               |
| 100145200230 |       | 418                | 484               |
|              |       | 1399               | 676               |
| 300          | 295   | 4071               | 1012              |

#### Conclusion

- Efficiency of randomised approximation schemes (exponential reduction of space complexity)
- Quantitative verification of monotone
  (reachability) and anti-monotone (safety) properties
- Extension to an approximation with multiplicative error (optimal approximation algorithm)
- Continuous time Markov chains
  CSL (Continuous Stochastic Logic)

#### Ongoing work

- Continuous time Markov chains : APMC 3.0
- New case studies :

CSMA/CA with cheater

WLAN sensor networks

Biological processes

- Practical verification of C programs
- Black Box verification (via learning)

• [CY95] C. Courcoubetis and M. Yannakakis. *The complexity of probabilistic verification*. Journal of the ACM, 24(4), 857-907, 1995.

• [DKLR00] P. Dagum, R. Karp, M. Luby, and S. Ross. *An optimal algorithm for Monte-Carlo estimation*. SIAM Journal on Computing, 29(5), 1484-1496, 2000.

• [HLMP04] T. Hérault, R. Lassaigne, F. Magniette and S. Peyronnet. *Approximate Probabilistic Model Checking*. Int. Conf. on Verification, Model Checking and Abstraction, LNCS n<sup>°</sup> 2937.

• [KL83] R. Karp and M. Luby. *Monte-Carlo Algorithms for Enumeration and Reliability Problems.*, 24th IEEE FOCS, 56-64, 1983.

• [KLM89] R. Karp, M. Luby and N. Madras. *Monte-Carlo Approximation Algorithms for Enumeration Problems.* Journal of Algorithms 10, 429-448, 1989. • [KNP02] M. Kwiatkowska, G. Norman and D. Parker. *Probabilistic symbolic model checking with PRISM : A hybrid approach.* Proc. of 8th Int. Conf. TACAS, LNCS n° 2280, p.52-66, 2002.

• [LP05] R. Lassaigne et S. Peyronnet. *Probabilistic Verification and Approximation*. WoLLIC 2005. Electronic Notes in Theoretical Computer Science, vol. 143, p. 101-114.

• [LR03] R. Lassaigne et M. de Rougemont : *Logic and Complexity.* Springer-Verlag, 350 p. (nov. 2003).

• [Val79] L.G. Valiant *The complexity of enumeration and reliability problems.* SIAM Journal on Computing, 8, 410-421, 1979.

• [Var85] Automatic verification of probabilistic concurrent finite-state programs 26th IEEE FOCS, 327-338, 1985.