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Motivation

Efficient approximations of logical satisfiability :

Model M |=. Property

1st case (difficult) : Model = Automaton A
Property = a word w €. L(A)

Property testing

(E. Fisher, F. Magniez and M. de Rougemont)

2st case (easy) : Model = Probabilistic transition system
Property = the probability measure of ... equals,. p
Randomised Approximation Scheme

(this talk)



Model Checking

SYSTEM
(succinct MODEL
representation) / YES
\ NO
PROPERTY FORMULA +
COUNTEREXAMPLE
Input :

e Model M = (S,R) R C S? (transition relation)
e Initial state sy
e Formula ¢

OQutput :
e YES if (M,sq) = ¢
e NO with a counterexample if (M, sg) [~ ¢



Model Checking : Logic and Complexity

Complexity

O(|M|.l¢|) (Branching Time Temporal Logic CTL)
or
O(|M|.21¥1) (Linear Time Temporal Logic LTL)

Problem :
State space explosion phenomenon
(the problem is not the time but the space)

Classical methods :
e Symbolic representation (OBDD)
e SAT-based methods (Bounded moded checking)
e Abstraction



Probabilistic verification

Probabilistic Transition Systems

Input :
e Model M = (5,7, L) and initial state s
o m:5% —[0,1] Probability function
o [: S — 24P (state labelling)
e Formula ¢ (LTL)

succes

Output : Probg|y]
where (for example) 1 = transmissionU success
(€2 probabilistic space of execution paths starting at sg)



Probabilistic verification

Probability space (and measure) :

Finite paths p = (sg, S1,-..,8n) :
Prob({c/o is a path and (sg, $1,...,5,) is a prefix of o}) =

n

H P(Si_l, Sz)

1=1

Measure extended to the Borel family of sets generated by the
sets {o/p is a prefix of o} where p is a finite path.

The set of paths {¢/0(0) =s and M, o =1} is measurable (Vardi).



Probabilistic verification

Complexity : (Coucourbetis and Yannakakis) [CY95]

Qualitative verification (i.e. prob=17)
Same complexity as LTL model checking
O(|M|.21%1

Quantitative verification (i.e. prob=7)
O(|M|3.21*1

Method : Computing Probg|y]

e [ransforming step by step the formula and the Markov chain
M

e Eliminating one by one the temporal connectives

e Preserving the satisfaction probability

e Solving system of linear equations of size |M|.



Approximation

Counting problems : (L. Valiant 79)

e fiP class of counting problems associated with NP decision
problems

e 1SAT is a fP-complete problem

Randomised Approximation Scheme :

(R. Karp and M. Luby 85)

Randomised Algorithm A
e Input : instance x of a counting problem, ¢,0 >0
e Output : value A(z,e,0) such that

Pri(1 —e)#(x) < A(z,e,0) < (1 +e)#(x)]| >1-6§

Fully Polynomial Randomised Approximation Scheme
(FPRAS) :
Running time is poly(|z|, (1/¢),log(1/9))



Approximation

Classical Randomised Approximation Schemes :

e Approximation of 1DNF (Karp, Luby, Madras 89)

Input : Disjunctive Normal Form formula &
Output : number of assignments satisfying &

e Approximation of graph reliability (Karger 99)

Input : a graph whose edges can disappear with some
probability
Output : the probability that the graph remains connected



Approximation 10

Can we efficiently approximate Probg(v) ?

General case : (R. Lassaigne and S. Peyronnet 05)

There is no probabilistic approximation algorithm with polynomial
time complexity for computing Probo(v) (¢ € LTL)
unless BPP = NP.

BPP : Complexity class of problems decidable by a Monte-Carlo
randomized algorithm (with two-sided error).

Bounded-error, Probabilistic, Polynomial time : class of languages
L s.t.

x € L : Prob| acceptance of x| > 3/4

x € L : Prob| acceptance of z] <1/4



Reduction

11

#+SAT can be reduced to counting the number of paths of length

2n, whose infinite extensions satisfy .

X
1 X2

1/2 1 12 1 1
1/
Yo
1/ 191 1 1 1

x

X i)
1 2

Propositional clauses : cq,...,¢m
LLabelling of states :

L(xz;) ={c; / z; appears inc¢;} (i=1,...
L(x}) ={c; / —~xz; appears in ¢;} (1 =1,...

LTL formula ¢ : A\;_, Fe,

1/ 1
1
y
n-171 %/ n

X’
n-1



Reduction 12

Sketch of the proof
e Counting this number of paths gives Probg ()

e If there was a FPRAS for computing Probg(vy), then we could
randomly approximate #SAT

e A FPRAS allows to distinguish, in polynomial time, for input
x, between the case #(z) =0 and the case #(z) > 0

e [ hen we would have a polynomial time randomised algorithm
to decide SAT and BPP = NP

Moreover

e [ here is no deterministic polynomial time approximation
algorithm neither for #SAT nor for computing Probg ()
(Jerrum and Sinclair :#P-complete problems either admit a
FPRAS or are not approximable at all)



Approximation
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We want to approximate a probability p.

RANDOM GENERATO
OF PATHS

APPROXIMATION
P SCHEME
€ O FOR p

Prip—e) <A< (p+e)>1-96

e . error parameter (additive approximation)
0 . confidence parameter (randomised algorithm)




Restriction
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We consider Probg(¢) with :

e the probability space is the space over paths of length < k&

execution
paths

initial state

depth k

® ) express a monotone property

lim Proby(¢) = Probg(¢)

k— 00



Randomized approximation algorithm

15

Generic approximation algorithm GgAA
input : ¢, diagram,e,0
Let A:=0
Let N := log(%)/252
For : from 1 to N do
1. Generate a random path o of depth k
2. If ¢ is true on ¢ then A:=A+1
Return (A/N)

Algorithm based on Monte-Carlo estimation and
Chernoff-Hoeffding bound

Diagram : succinct representation of the system
(for example in Reactive Modules)



Randomized approximation algorithm
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Method : Estimation (Monte-Carlo) + Chernoff-Hoeffding
bound

X Bernoulli (0,1) random variable with success probability p

e Do N independent Bernoulli trials X, Xs,..., Xy
e Estimate p by u=>.", X;/N with error ¢
e Sample size N is such that the error probability < 9

Chernoff-Hoeffding bound :

2

Prip <p—ce|+ Prlu>p+e| <2 20¢
If N >1In(2)/2e%, then

Prp—e<p<p+e)]>1-90



Randomized approximation algorithm
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T heorem :
GAA is a FPRAS for Probg ()

Methodology : To approximate Probg[v]
e Choose k =~ log|M|-In(1/e)
e Iterate approximation of Probg[v]

Remark :
e Length of needed paths can be the diameter of the system
e Convergence time may be long, but space is saved...

Improvement :

Optimal Approximation Algorithm (Dagum, Karp, Luby and
Madras) with multiplicative error.



Randomized approximation algorithm
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Improvement : Randomised approximation scheme with
multiplicative error

Idea : Use the optimal approximation algorithm (O.AA) [DKLROO]

e The first step outputs an (g,0) -approximation p of p after
expected number of experiments proportional to I'/p where
['=4(e —2).In(3)/e?

e T he second step uses the value of p to produce an estimate p
de p = max(c?,ep) (o2 is the variance)

e The third step uses the values of p and p to set the number of
experiments and runs the experiments to produce an
(e,0)-approximation of p

Remark : It's not a FPRAS



CTMCs
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Continuous Time Markov Chains

M= (S, R)
S is the set of states
R:S?:— R, Rate matrix

s€ S A(s) = Z R(s,s’) Total rate of transition from s

s'eS
Delay of transition from s to s’ governed by an exponential
distribution with rate R(s,s’).

Probability to move from s to s’ within ¢ time units :

(1 . G—A(S)Xt)



CTMCs
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Random generator of paths

Execution path : so(tg) — s1(t1) — ... s:(t;) - -

t:=0
Initialize at state s
Repeat
1:=38
Choose state j with proba P(:,5) = R(¢,7)/\(2)
§:=7
t :=t — In(randomyy 1))/ R(3, j)
Until ¢ > T

Simulation by inversion of uniform distribution over [0, 1]



APMC - Implementation 21

APMC : Approximate Probabilistic Model Checker

e Freely available GPL software

e Developped at LRDE/EPITA, Paris VII and Paris XI (T.
Hérault)

e Use randomised approximation algorithm

e Distributed computation

e Integrated in the probabilistic model checker PRISM
e Case studies : CSMA/CD, 2PCP, Sensor Networks...



Experimental results

The dining philosophers problem

Prob[\/ hungry(i) = F(

1=1

n

1=1

\/ eat(i))] > 1 -«

7 phil. | depth time PRISM (time) | PRISM (states)
5 23 24.67 0.615 64858
10 33 70.32 13.059 4.21 x 10°
15 42 146.22 68.926 2.73 x 104
20 51 261.43 167.201 1.77 x 10
25 58 412.06 3237,143 1.14 x 10%*
30 06 614.49 out of mem. -
50 95 2020.79 | out of mem. -
100 148 11475.28 out of mem -

e Memory used : 2 MB
e k£ determined experimentally




Experimental results 23

The dining philosophers problem strike back
Cluster of 20 Athlon XP1800+4 sous Linux

# phil. | depth || APMC (time : sec.) | (memory : Kbytes)
15 33 11 324
25 55 25 340
50 130 104 388
100 145 413 4384
200 230 1399 676
300 295 4071 1012
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Conclusion

e Efficiency of randomised approximation schemes
(exponential reduction of space complexity)

e Quantitative verification of monotone
(reachability) and anti-monotone (safety) properties

e Extension to an approximation with multiplicative
error (optimal approximation algorithm)

e Continuous time Markov chains
CSL (Continuous Stochastic Logic)
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Ongoing work
e Continuous time Markov chains : APMC 3.0
e New case studies :
CSMA/CA with cheater
WLAN sensor networks
Biological processes
e Practical verification of C programs

e Black Box verification (via learning)
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