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Efficient approximations of logical satisfiability :

Model M |=ε Property

1st case (difficult) : Model = Automaton A

Property = a word w ∈ε L(A)

Property testing

(E. Fisher, F. Magniez and M. de Rougemont)

2st case (easy) : Model = Probabilistic transition system

Property = the probability measure of ... equalsε p

Randomised Approximation Scheme

(this talk)
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MODEL
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representation)
MODEL

PROPERTY FORMULA

YES

NO
+

COUNTEREXAMPLE

Input :

• Model M = (S,R) R ⊆ S2 (transition relation)

• Initial state s0

• Formula ϕ

Output :

• YES if (M, s0) |= ϕ

• NO with a counterexample if (M, s0) 6|= ϕ
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Complexity

O(|M |.|ϕ|) (Branching Time Temporal Logic CTL)

or

O(|M |.2|ϕ|) (Linear Time Temporal Logic LTL)

Problem :

State space explosion phenomenon

(the problem is not the time but the space)

Classical methods :

• Symbolic representation (OBDD)

• SAT-based methods (Bounded moded checking)

• Abstraction
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Probabilistic Transition Systems

Input :

• Model M = (S, π, L) and initial state s0

• π : S2 −→ [0, 1] Probability function

• L : S −→ 2AP (state labelling)

• Formula ψ (LTL)

s0 s1

s2

s3

1
0.01

1

transmission

0.98

1

0.01

initial state

success

error

Output : ProbΩ[ψ]

where (for example) ψ ≡ transmissionUsuccess

(Ω probabilistic space of execution paths starting at s0)
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Probability space (and measure) :

Finite paths ρ = (s0, s1, . . . , sn) :

Prob({σ/σ is a path and (s0, s1, . . . , sn) is a prefix of σ}) =

n
∏

i=1

P (si−1, si)

Measure extended to the Borel family of sets generated by the

sets {σ/ρ is a prefix of σ} where ρ is a finite path.

The set of paths {σ/σ(0) = s and M, σ |= ψ} is measurable (Vardi).
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Complexity : (Coucourbetis and Yannakakis) [CY95]

Qualitative verification (i.e. prob=1 ?)

Same complexity as LTL model checking

O(|M |.2|ψ|)

Quantitative verification (i.e. prob= ?)

O(|M |3.2|ψ|)

Method : Computing ProbΩ[ψ]

• Transforming step by step the formula and the Markov chain

M

• Eliminating one by one the temporal connectives

• Preserving the satisfaction probability

• Solving system of linear equations of size |M |.
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Counting problems : (L. Valiant 79)

• ♯P class of counting problems associated with NP decision

problems

• ♯SAT is a ♯P -complete problem

Randomised Approximation Scheme :

(R. Karp and M. Luby 85)

Randomised Algorithm A

• Input : instance x of a counting problem, ε, δ > 0

• Output : value A(x, ε, δ) such that

Pr[(1 − ε)#(x) ≤ A(x, ε, δ) ≤ (1 + ε)#(x)] ≥ 1 − δ

Fully Polynomial Randomised Approximation Scheme

(FPRAS) :

Running time is poly(|x|, (1/ε), log(1/δ))
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Classical Randomised Approximation Schemes :

• Approximation of ♯DNF (Karp, Luby, Madras 89)

Input : Disjunctive Normal Form formula Φ

Output : number of assignments satisfying Φ

• Approximation of graph reliability (Karger 99)

Input : a graph whose edges can disappear with some

probability

Output : the probability that the graph remains connected
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Can we efficiently approximate ProbΩ(ψ) ?

General case : (R. Lassaigne and S. Peyronnet 05)

There is no probabilistic approximation algorithm with polynomial

time complexity for computing ProbΩ(ψ) (ψ ∈ LTL)

unless BPP = NP .

BPP : Complexity class of problems decidable by a Monte-Carlo

randomized algorithm (with two-sided error).

Bounded-error, Probabilistic, Polynomial time : class of languages

L s.t.

x ∈ L : Prob[ acceptance of x] ≥ 3/4

x 6∈ L : Prob[ acceptance of x] ≤ 1/4
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#SAT can be reduced to counting the number of paths of length

2n, whose infinite extensions satisfy ψ.
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Propositional clauses : c1, . . . , cm

Labelling of states :

L(xi) = {cj / xi appears in cj} (i = 1, . . . , n)

L(x′i) = {cj / ¬xi appears in cj} (i = 1, . . . , n)

LTL formula ψ :
∧n
i=1 Fcj
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Sketch of the proof

• Counting this number of paths gives ProbΩ(ψ)

• If there was a FPRAS for computing ProbΩ(ψ), then we could

randomly approximate #SAT

• A FPRAS allows to distinguish, in polynomial time, for input

x, between the case #(x) = 0 and the case #(x) > 0

• Then we would have a polynomial time randomised algorithm

to decide SAT and BPP = NP

Moreover

• There is no deterministic polynomial time approximation

algorithm neither for #SAT nor for computing ProbΩ(ψ)

(Jerrum and Sinclair :#P -complete problems either admit a

FPRAS or are not approximable at all)
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We want to approximate a probability p.

        

ψ
ε δ

A

RANDOM GENERATOR
OF PATHS

APPROXIMATION

SCHEME

FOR p

Pr[(p− ε) ≤ A ≤ (p+ ε)] ≥ 1 − δ

ε : error parameter (additive approximation)

δ : confidence parameter (randomised algorithm)
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We consider Probk(φ) with :

• the probability space is the space over paths of length ≤ k

execution
paths

initial state

depth k

• ψ express a monotone property

lim
k→∞

Probk(φ) = ProbΩ(φ)
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Generic approximation algorithm GAA
input : φ, diagram, ε, δ

Let A := 0

Let N := log(
2

δ
)/2ε2

For i from 1 to N do

1. Generate a random path σ of depth k

2. If φ is true on σ then A := A+ 1

Return (A/N)

Algorithm based on Monte-Carlo estimation and

Chernoff-Hoeffding bound

Diagram : succinct representation of the system

(for example in Reactive Modules)
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Method : Estimation (Monte-Carlo) + Chernoff-Hoeffding

bound

X Bernoulli (0, 1) random variable with success probability p

• Do N independent Bernoulli trials X1, X2, . . . , XN

• Estimate p by µ =
∑N
i=1Xi/N with error ε

• Sample size N is such that the error probability < δ

Chernoff-Hoeffding bound :

Pr[µ < p− ε] + Pr[µ > p+ ε] < 2e−2Nε2

If N ≥ ln( 2
δ
)/2ε2, then

Pr[p− ε ≤ µ ≤ p+ ε)] ≥ 1 − δ
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Theorem :

GAA is a FPRAS for Probk(ψ)

Methodology : To approximate ProbΩ[ψ]

• Choose k ≈ log|M | · ln(1/ε)

• Iterate approximation of Probk[ψ]

Remark :

• Length of needed paths can be the diameter of the system

• Convergence time may be long, but space is saved...

Improvement :

Optimal Approximation Algorithm (Dagum, Karp, Luby and

Madras) with multiplicative error.
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Improvement : Randomised approximation scheme with

multiplicative error

Idea : Use the optimal approximation algorithm (OAA) [DKLR00]

• The first step outputs an (ε, δ) -approximation p̂ of p after

expected number of experiments proportional to Γ/p where

Γ = 4(e− 2). ln( 2
δ
)/ε2

• The second step uses the value of p̂ to produce an estimate ρ̂

de ρ = max(σ2, εp) (σ2 is the variance)

• The third step uses the values of p̂ and ρ̂ to set the number of

experiments and runs the experiments to produce an

(ε, δ)-approximation of p

Remark : It’s not a FPRAS
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Continuous Time Markov Chains

M = (S,R)

S is the set of states

R : S2 :−→ R+ Rate matrix

s ∈ S, λ(s) =
∑

s′∈S

R(s, s′) Total rate of transition from s

Delay of transition from s to s′ governed by an exponential

distribution with rate R(s, s′).

Probability to move from s to s′ within t time units :

P (s, s′) =
R(s, s′)

λ(s)
(1 − e−λ(s)×t)
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Random generator of paths

Execution path : s0(t0) → s1(t1) → . . . si(ti) . . .

t := 0

Initialize at state s

Repeat

i := s

Choose state j with proba P (i, j) = R(i, j)/λ(i)

s := j

t := t− ln(random[0,1])/R(i, j)

Until t ≥ T

Simulation by inversion of uniform distribution over [0, 1]
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APMC : Approximate Probabilistic Model Checker

• Freely available GPL software

• Developped at LRDE/EPITA, Paris VII and Paris XI (T.

Hérault)

• Use randomised approximation algorithm

• Distributed computation

• Integrated in the probabilistic model checker PRISM

• Case studies : CSMA/CD, 2PCP, Sensor Networks...
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The dining philosophers problem

Prob[
n
∨

i=1

hungry(i) =⇒ F
(

n
∨

i=1

eat(i)
)

] ≥ 1 − ε

# phil. depth time PRISM (time) PRISM (states)

5 23 24.67 0.615 64858

10 33 70.32 13.059 4.21 × 109

15 42 146.22 68.926 2.73 × 1014

20 51 261.43 167.201 1.77 × 1019

25 58 412.06 3237,143 1.14 × 1024

30 66 614.49 out of mem. -

50 95 2020.79 out of mem. -

100 148 11475.28 out of mem -

• Memory used : 2 MB

• k determined experimentally
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The dining philosophers problem strike back

Cluster of 20 Athlon XP1800+ sous Linux

# phil. depth APMC (time : sec.) (memory : kbytes)

15 38 11 324

25 55 25 340

50 130 104 388

100 145 418 484

200 230 1399 676

300 295 4071 1012
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Conclusion

• Efficiency of randomised approximation schemes

(exponential reduction of space complexity)

• Quantitative verification of monotone

(reachability) and anti-monotone (safety) properties

• Extension to an approximation with multiplicative

error (optimal approximation algorithm)

• Continuous time Markov chains

CSL (Continuous Stochastic Logic)
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Ongoing work

• Continuous time Markov chains : APMC 3.0

• New case studies :

CSMA/CA with cheater

WLAN sensor networks

Biological processes

• Practical verification of C programs

• Black Box verification (via learning)



References 26

• [CY95] C. Courcoubetis and M. Yannakakis. The complexity

of probabilistic verification. Journal of the ACM, 24(4), 857-907,

1995.

• [DKLR00] P. Dagum, R. Karp, M. Luby, and S. Ross. An

optimal algorithm for Monte-Carlo estimation. SIAM Journal on

Computing, 29(5), 1484-1496, 2000.
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