
Vérification de propriétés quantitatives et fonctionnelles
Analysis and VERification for the Reliability Of Embedded Systems

Lot 5.3

Technologie de vérification
Mécanisation de la déduction

Narrowing Based Inductive
Proof Search

Description : We present in this paper a narrowing-based proof search
method for inductive theorems. It has the specificity to be
grounded on deduction modulo and to yield a direct trans-
lation from a successful proof search derivation to a proof in
the sequent calculus. The method is shown to be correct and
refutationally complete in a proof theoretical way.

Keywords: Noetherian induction, rule based induction, de-
duction modulo, proof assistant, term rewriting, proof terms.

Auteur(s) : Claude Kirchner, Hélène Kirchner, Fabrice Nahon

Référence : Averroes /Lot 5.3 / Fourniture 5 /V1.1

Date : mars 2006

Statut : validé

Version : 1.1

Réseau National des Technologies Logicielles
Projet subventionné par le Ministère de la Recherche et des Nouvelles Technolo-
gies

CRIL Technology, France Télécom R&D, INRIA-Futurs, LaBRI (Univ. de Bor-
deaux – CNRS), LIX (Ecole Polytechnique, CNRS) LORIA, LRI (Univ. de
Paris Sud – CNRS), LSV (ENS de Cachan – CNRS)

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Introduction
Proof by induction is a main reasoning principle and is of prime interest in
informatics. Typically in hardware and software verification problems, reasoning
on complex data structures with infinite data or states make a prominent use of
induction. Two main approaches have been developed for automated induction
proof: explicit induction, used in proof assistants, and implicit induction by
rewriting, used in automated theorem provers. This work was motivated by
the need to have a better understanding of the relation between them. Thanks
to the deduction modulo framework, explicit induction is applied to generate
smaller instances of the property to be proved. These instances can then be
used by the modulo part to implicitly simplify the goals, thanks to a sequent
calculus modulo.

In this context, we provide a proof search mechanism for such inductive
proofs. We show how the induction step can be performed by narrowing at
innermost positions when the theory is axiomatized by a sufficiently complete
and convergent rewrite system. This allows us to make precise the relationship
between rewrite-based automated inductive theorem provers like Spike or RRL
and case analysis in proof assistants like Coq or PVS.

We provide a proof theoretic foundation to the proof search procedure which
is described by deduction rules that are proved valid in the sequent calculus
modulo. This provides the ability to build a proof term for a proof assistant and
therefore to be able to formally validate the proof search result. So, starting from
the (inductive) proposition to be proved, the proof search mechanism builds a
proof in the sequent calculus modulo, from which a proof term can be computed
if needed.

This paper is built over the works and results on deduction modulo [DHK03],
first-order presentation of higher-order logic [DHK01], formalization of induction
in deduction modulo [Dep02, DK04] and on preliminary results on narrowing
for induction presented in [DKKN03]. We provide first a summary of these
approaches in Section 1 to motivate the main idea of narrowing based induction
proof search. Section 2 introduces two basic ingredients of the method: ordering
on equalities and narrowing with sufficiently complete rewrite systems. Then
Section 3 presents the proof search system for inductive proofs, which is proved
correct and refutationally complete.

For the main notations and classical results on term rewriting, we refer to
the books on that topics like [BN98] or [KK99].

1 Deduction modulo and the Noetherian induc-
tion principle

Proofs by structural induction are of main use in proof assistants where the
structural induction principle is generally automatically generated from the defi-
nition of the inductive data types. However, by using sophisticated termination
orderings, proofs by Noetherian induction performed by rewriting are much

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

2

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

more expressive than structural induction. We recall in this section how deduc-
tion modulo can provide the description, at the proof theoretical level, of proof
by Noetherian induction.

1.1 Deduction modulo
Let T (Σ,X) be the set of terms build over the signature Σ and the denumer-
able set of variables X . We assume for simplicity Σ to be one-sorted, so that
any term is of sort τ . Terms are denoted by letters s, t, u, v, l, r, variables by
x, y, z,X, Y, Z, vectors of variables by −→x , and substitutions on terms by Greek
letters α, β, γ. SubstT (Σ,X) denotes the set of substitutions on T (Σ,X).

Provided a Noetherian relation R and a user defined theory Thu, we are
looking for a proof of a proposition P using a Noetherian induction principle
denoted NoethInd, in the sense of finding a derivation of the sequent:

NoethInd(R), Thu ` P

The Noetherian induction principle being by essence a second order proposition,
this is indeed a sequent in higher-order logic.

Since we want to make a primarily use of first-order rewrite concepts and
techniques and to consider first-order theories, we need a first-order presentation
of higher-order logic. We use the so-called HOLλσ introduced in [DHK01] which
is based on deduction modulo [DHK03] and reveals to be particularly well-suited
for our concerns. It is clearly out of the scope of this paper to explain in detail
the full approach, and we only sketch here the main ideas. The reader can refer
to [Dep02] and to [DK04] for a detailed exposition.

In deduction modulo, terms but also propositions can be identified modulo
a congruence. We use a congruence that can typically be defined by conditional
equalities and that takes into account the application context to evaluate the
conditions. Furthermore, since the congruence application should be controlled
closely, an appropriate notion of protective symbol is used, see [Dep02]: actually
the congruence is not allowed to act below a protective symbol. In deduction
modulo, the notions of term and proposition come from many-sorted first-order
logic. We consider theories described by a set of axioms Γ and a congruence,
denoted ∼, defined on terms and propositions. This congruence takes three
arguments: the two objects to be compared and a set of axioms Γ called a local
context. When we want to emphasize this, we denote the congruence ∼Γ. The
deduction rules of the sequent calculus take this equivalence into account. For
instance, the right rule for the conjunction is not stated as usual

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆

but is formulated

Γ ∼̀ A,∆ Γ ∼̀ B,∆
Γ ∼̀ D,∆ if D ∼Γ A ∧B.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

3

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

We recall in Figure 1, the definition of the sequent calculus modulo. In these
rules, Γ and ∆ are finite multisets of propositions, P and Q denote propositions.
Substituting the variable x by the term u in Q is denoted Q{u/x}. When the
congruence ∼ is simply identity, this sequent calculus collapses to the usual
one [GLT89]. In that case, sequents are written as usual with the ` symbol.

Γ, P ∼̀ Q
axiom if P ∼Γ Q

Γ, P ∼̀ ∆ Γ ∼̀ Q, ∆

Γ ∼̀ ∆
cut if P ∼Γ Q

Γ, Q1, Q2 ∼̀ ∆

Γ, P ∼̀ ∆
contr-l if (A)

Γ ∼̀ Q1, Q2, ∆

Γ ∼̀ P, ∆
contr-r if (A)

Γ ∼̀ ∆

Γ, P ∼̀ ∆
weak-l

Γ ∼̀ ∆

Γ ∼̀ P, ∆
weak-r

Γ, P, Q ∼̀ ∆

Γ, R ∼̀ ∆
∧-l if R ∼Γ (P ∧Q)

Γ ∼̀ P, ∆ Γ ∼̀ Q, ∆

Γ ∼̀ R, ∆
∧-r if R ∼Γ (P ∧Q)

Γ, P ∼̀ ∆ Γ, Q ∼̀ ∆

Γ, R ∼̀ ∆
∨-l if (B)

Γ ∼̀ P, Q, ∆

Γ ∼̀ R, ∆
∨-r if (B)

Γ ∼̀ P, ∆ Γ, Q ∼̀ ∆

Γ, R ∼̀ ∆
⇒-l if (C)

Γ, P ∼̀ Q, ∆

Γ ∼̀ R, ∆
⇒-r if (C)

Γ ∼̀ P, ∆

Γ, R ∼̀ ∆
¬-l if R ∼Γ ¬P

Γ, P ∼̀ ∆

Γ ∼̀ R, ∆
¬-r if R ∼Γ ¬P

Γ, P ∼̀ ∆
⊥-l if P ∼Γ ⊥

Γ, Q{t/x} ∼̀ ∆

Γ, P ∼̀ ∆
(Q, x, t) ∀-l if (D)

Γ ∼̀ Q{y/x}, ∆
Γ ∼̀ P, ∆

(Q, x, y) ∀-r if (E)

Γ, Q{y/x} ∼̀ ∆

Γ, P ∼̀ ∆
(Q, x, y) ∃-l if (F)

Γ ∼̀ Q{t/x}, ∆
Γ ∼̀ P, ∆

(Q, x, t) ∃-r if (G)

A = P ∼Γ Q1 ∼Γ Q2, B = R ∼Γ (P ∨ Q) C = R ∼Γ (P ⇒ Q), D = P ∼Γ ∀x Q,
E = P ∼Γ ∀x Q, y fresh variable, F = P ∼Γ ∃x Q, y fresh variable, G = P ∼Γ ∃x Q

Figure 1: The sequent calculus modulo

Proof checking decidability for the sequent calculus modulo reduces to the
decidability of the relation ∼Γ, since we can check for each rule that the condi-
tions of application are satisfied and we provide the needed information in the
quantifier rules. When ∼Γ is not decidable, we still can use instances for which
one can check the conditions of application, typically using a constraint based
approach [Hue72, KKR90]

We can now introduce the fundamental notion of compatibility: a theory (a
set of propositions) T is said to be compatible with a congruence ∼ when:

T ,Γ ` ∆ if and only if Γ ∼̀ ∆.

As shown in [Dep02, DK04], this property is modular: if T 1 is compatible
with a congruence C1 and T 2 is compatible with C2 then T 1∪T 2 is compatible
with C1 ∪ C2.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

4

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Using the above equivalence, we can internalize propositions into the con-
gruence, and we call this operation “push”. We can also recover them at the level
of the logic, and we call this operation “pop”. Moreover, thanks to modularity,
this can be done dynamically during the proof. This duality between computa-
tion and deduction is very conveniently reflected by the compatibility property.
In [DHK03], internalization has been done statically and used to identify com-
putation within the deduction process. Our aim here is to do internalization
dynamically and to use it to design rules for induction by rewriting and an
adequate strategy for Noetherian induction.

In what follows, we consider congruences generated by conditional class
rewrite systems denoted RE and composed of (conditional) term rewrite rules,
(conditional) term equational axioms, (conditional) proposition rewrite rules,
(conditional) proposition equational axioms. Moreover, we assume that the left-
hand side of a proposition rewrite rule and both sides of a proposition equational
axiom have to be atomic propositions. Conditions may be arbitrary proposi-
tions. The variables in the right-hand side and condition of a rule must occur
in the left-hand side. In the case of equational axioms, variables in both sides
have to be the same and (free) variables in the condition have to be a subset of
those.
We assume here that ≈ is a binary relation symbol which satisfies the axioms
of equality (the classical denotation = will only represent syntactical equality).
In this case, to any conditional class rewrite system RE is associated the the-
ory denoted TRE as follows: for each conditional rewrite rule (l → r if c) or
conditional equality (l ≈ r if c) in RE , TRE contains the proposition:

• ∀x(c ⇒ (l ⇔ r)) when l and r are propositions,

• ∀x(c ⇒ (l ≈ r)) when l and r are terms,

where all free variables of l, denoted x, are universally quantified.
It is proved in [Dep02] that TRE is compatible with the congruence generated

byRE (see also [Dow99] and [DHK03]). This allows us to freely use the “pushing
and popping” operations. This also ensures that deduction modulo a congruence
represented by a conditional class rewrite system is not a proper extension of
first-order logic, but only a different presentation of it.

1.2 Deduction modulo for inductive proofs
This short introduction to deduction modulo now allows us to give a proof the-
oretic understanding of induction by rewriting. In the context of deduction
modulo, the induction hypotheses arising from equational goals can be (dynam-
ically) internalized into the congruence. When doing this, the computational
part of the deduction modulo appears to perform induction by rewriting as done
for instance by systems like Spike [BKR92] or RRL [KZ95].

The powerful principle of these approaches is to allow application of rewrite
rules of the theory at any position of the current goal, as well as application of

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

5

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

induction hypotheses and current conjecture, provided that the applied formula
is smaller in the Noetherian induction ordering than the current goal.

When the ordering contains the relation induced by a terminating rewrite
system, a smaller formula is obtained as soon as a rewrite step is performed.
Moreover, in Spike for instance, the choice of the induction variables and instan-
tiation schemas is done using pre-calculated induction positions and schemas
called test-sets. In the approach described below, we show how to use narrow-
ing to automatically and completely perform these choices.

Given a property P and a relation R defined on a sort τ , the Noetherian
induction principle NoethInd(P,R, τ) is defined as follows:

∀x ((x ∈ τ ∧ ∀y ((y ∈ τ ∧R(x, y)) ⇒ P (y))) ⇒ P (x)) ⇒ ∀x (x ∈ τ ⇒ P (x))

and we write Noeth(R, τ) to state that R is a Noetherian relation over τ .
Proving that P inductively holds in a user theory Thu, denoted Thu |=Ind P ,

amounts to derive the sequent:

∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)), Thu ` P.

Of course to finish the proof, one should also provide a proof of Noeth(R, τ).
To get a better intuition, let us consider an equational goal Q of the form
∀x (x ∈ τ ⇒ t1(x) ≈ t2(x)), the whole problem is formalized in HOLλσ. The
remainder of this section gives the main steps which are detailed in [Dep02]. We
start from the sequent:

∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)), Thu

`
∀x (x ∈ τ ⇒ t1(x) ≈ t2(x))

In the following, we will denote NI the proposition:

∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ))

Choosing a specific relation R (written ≺) and a type still denoted τ , we get:

Noeth(≺, τ) ⇒ ∀P NoethInd(P,≺, τ)), Thu ` ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x)).

From this, by the rule ⇒-l of the sequent calculus, we get on one hand
the sequent Thu ` Noeth(≺, τ) corresponding to the proof that ≺ is indeed
Noetherian, on the other hand the sequent

∀P NoethInd(P,≺, τ)), Thu ` ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x))

corresponding to the use of the induction principle to prove our goal.
We instantiate P as the equality to prove and we get:

∀x ((x ∈ τ ∧ ∀x ((x ∈ τ ∧ x ≺ x) ⇒ t1(x) ≈ t2(x))) ⇒ t1(x) ≈ t2(x))
⇒ ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x)), Thu ` ∀x (x ∈ τ ⇒ t1(x) ≈ t2(x))

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

6

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

where we have renamed y to x to emphasize that x is a smaller instance of x.
A few easy steps of the sequent calculus later, we get:

Thu ` ∀x ((x ∈ τ ∧ ∀x ((x ∈ τ ∧ x ≺ x) ⇒ t1(x) ≈ t2(x))) ⇒ t1(x) ≈ t2(x))

We then instantiate x by a fresh variable that we call X to emphasize this
status, and we get:

Thu ` (X ∈ τ ∧ ∀x ((x ∈ τ ∧ x ≺ X) ⇒ t1(x) ≈ t2(x))) ⇒ t1(X) ≈ t2(X).

The ⇒-r and ∧-l rules of the sequent calculus lead to the discovery of the
induction hypothesis:

Thu, X ∈ τ,∀x ((x ∈ τ ∧ x ≺ X) ⇒ t1(x) ≈ t2(x))) ` t1(X) ≈ t2(X).

Using what we have seen on compatible theories, this hypothesis can now be
internalized as a conditional equality denoted in general RE ind(Q,≺, τ)(X):

t1(x) ≈ t2(x) if x ∈ τ ∧ x ≺ X (1)

Note that because of its status of free fresh variable, X behaves like a constant,
while x is universally quantified.

What is crucial in using the induction hypothesis (1) as an equality or a
rewrite rule, is to check its condition. For any many-sorted theory, the x ∈ τ part
of the condition just expresses that the variable is sorted. More interestingly,
the x ≺ X condition is always satisfied provided the following hypotheses (called
H) are imposed:
(i) the theory Thu can be oriented into a Noetherian rewrite system R,
(ii) we choose for ≺ the reduction ordering induced by R,
(iii) (1) is only applied on a subterm of the goal t1 ≈ t2 or on a R-reduced form
of this goal.

Under these hypotheses, we are left to derive the sequent

Thu, X ∈ τ `R,t1(x)≈t2(x) t1(X) ≈ t2(X)

in the sequent calculus modulo. To be able to satisfy the (iii) part of the H
hypotheses, we need in general to use the information that X ∈ τ in order
to instantiate X by the free constructors of τ . This idea is exploited in the
following to provide the proof search strategy. One of the main technical point
handled in the paper is to justify that in most cases, the condition x ≺ X is
always satisfied when an induction hypothesis like (1) is internalized and used
as a simplification rewrite rule.

2 Ordering and narrowing
Before describing the proof search system, we describe in this section the two
main tools of the method, namely orderings on terms and equalities, and the
narrowing properties in sufficiently complete rewrite systems. Most importantly,
we provide the main result (Lemma 1) relating induction as deduction modulo
as presented in the previous section and the Noetherian ordering induced by a
terminating rewrite relation.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

7

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

2.1 Orders and quasi-orders on terms and equalities
The set of positions in a term t is denoted Dom(t), the subterm of t at position
ω is denoted t|ω and the symbol at position ω in t by t(ω). The notation t[u]ω
means that the term t contains the subterm u at position ω. These notations
extend to goals t1 ≈ t2 seen as a term with top symbol ≈ of arity 2. Var(t)
denotes the set of (free) variables of the term t and |Var(t)| its cardinality. We
define

−−−−→
Var(t) as the vector of variables assumed linearly ordered by their name.

These notations are extended to equalities, rewrite rules and goals.
From now on, we assume given a quasi simplification order 6 on T (Σ,X) (see

for example [DP01]). We denote < its proper part, ≷ its associated equivalence
(i.e. ≷ = (6 ∩ >)) and [t] the class of a term t for this equivalence. We
assume that < and ≷ are closed under substitutions and contexts. For instance,
it is shown in [Fer95] that if 6 is a recursive path ordering (rpo) with status
then < and ≷ are closed under substitutions and contexts.

In order to compare n-tuple of terms, for any natural n, we will use the
standard extension on the Cartesian product 6n of 6:

∀−→u ,−→v ∈ T (Σ,X)n −→u 6n
−→v ⇔ (∀i 1 ≤ i ≤ n ⇒ ui 6 vi)

If we denote <n the proper part of this quasi-order, then <n is Noetherian on
the set T (Σ,X)n provided < is Noetherian.

Definition 1 Let Q and Q′ be two equational goals, Q′ ≤e Q whenever there
exists a finite sequence of equalities (Qi = si ≈ ti)0≤i≤n such that:

1. Q = Q0 and Q′ = Qn,

2. for any i, si+1 6 si and ti = ti+1 or ti+1 6 ti and si = si+1.

Now, since 6 is stable under substitution, we get:

Lemma 1 ≤e is stable under substitution.

Moreover, to compare goals in a finer way, we also will make use of another
ordering on goals similar to the one in [Dep02].

Definition 2 Let C be the following complexity measure on equalities:

C(s ≈ t) = ({{[s]}}, {{[t]}}) if [t] < [s]
({{[t]}}, {{[s]}}) if [s] < [t]
({{[s], [t]}}, ∅) otherwise

We define a quasi ordering on equalities 6e by

s ≈ t 6e s′ ≈ t′ if C(s ≈ t) �lex C(s′ ≈ t′) or (s ≷ s′ and t ≷ t′)

where �lex is the lexicographic extension of the multiset extension of <. We
denote <e the proper part of 6e.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

8

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Let us remark that the order <e is well-suited for equalities, since it is
invariant under symmetry of equality: for all t, t′, u, u′ ∈ T (Σ,X), we have:
t ≈ t′ <e u ≈ u′ if and only if t′ ≈ t <e u ≈ u′ if and only if t ≈ t′ <e u′ ≈ u.
But it is not stable under substitution: for example with the substitution σ =
{x 7→ x1, y 7→ x1, z 7→ z1}, we have:

1. z ≈ x + z <e y ≈ x + z since
C(z ≈ x + z) = ({{[x + z]}}, {{[z]}}) and
C(y ≈ x + z) = ({{[x + z], [y]}}, ∅)

2. but zσ ≈ xσ + zσ
e yσ ≈ xσ + zσ since
C(zσ ≈ xσ + zσ) = ({{[x1 + z1]}}, {{[z1]}}) and
C(yσ ≈ xσ + zσ) = ({{[x1 + z1]}}, {{[x1]}})

Notice the difference between 6e and ≤e, the latter being included in the
former as it can be checked by a simple case analysis. Indeed, stability by
substitution is in particular needed when considering optimized version of the
proof search method developed in [KKN06].

2.2 Induction hypothesis and ordering on goals
Taking into account vectors of variables, we are now in position to instantiate
the Noetherian induction hypothesis RE ind(Q,≺, τ)(X) defined in Section 1.2.

For any equality Q, for any integer n such that n = |Var(Q)|, for any
−→x ∈ Xn such that −→x is the vector of variables of Q, we have:

RE ind(Q,<n, T (Σ)n) , (−→x ∈ T (Σ)n) ∧ (−→x <n
−→x) ⇒ Q{−→x /−→x }

In order to simplify the notations, and when no confusion can occur, we denote
it simply RE ind(Q,<).

In the same way, we introduce the following notations, where σ is any sub-
stitution:

• RE ind(Q,<)σ , (−→x ∈ T (Σ)n) ∧ (−→x <n
−→x σ) ⇒ Q{−→x /−→x }

• RE ind(Q,6) , (−→x ∈ T (Σ)n) ∧ (−→x 6n
−→x) ⇒ Q{−→x /−→x }

• RE ind(Q,6)σ , (−→x ∈ T (Σ)n) ∧ (−→x 6n
−→x σ) ⇒ Q{−→x /−→x }

A crucial point in inductive proofs will be to compare different instances of a
same equational goal: this is the purpose of the next proposition.

Lemma 2 For any equational goal Q with −→x =
−−−−−→
Var(Q) and n = |−→x |, for all

substitutions σ, µ ∈ SubstT (Σ,X), for all t, t′ ∈ T (Σ,X):

1. If t 6 t′ then Q[t]ω 6e Q[t′]ω

2. If −→x σ 6n
−→x µ then Qσ 6e Qµ.

3. If Qσ <e Qµ and −→x σ 6n
−→x µ then −→x σ <n

−→x µ.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

9

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Proof. 1. Let i and ω′, such that ω = i.ω′. Since t 6 t′, and since 6 is a
reduction ordering, we have:

Q|i[t]ω′ 6 Q|i[t′]ω′ (2)

Now, one can easily check the following proposition:

∀s ∀s′ s ≈ t 6e s′ ≈ t (3)

And (2) and (3) above lead to Q[t]ω 6e Q[t′]ω
2. is obtained from 1 by an easy induction based on the number of

occurrences of the variables xi in Q

3. Assume −→x σ 6n
−→x µ and −→x σ ≮n

−→x µ. Then −→x σ ≷n
−→x µ, hence

−→x µ 6n
−→x σ, thus Qµ 6e Qσ by 2, and this contradicts the assump-

tion Qσ <e Qµ.

2

In other words, for any equational goal Q, for any vector of variables −→x of Q in
Xn, and for all σ, µ ∈ SubstT (Σ,X), in order to prove the proposition−→x σ <n

−→x µ,
and whenever Qσ <e Qµ, it suffices to check all inequalities σ(xi) 6 µ(xi) for
all component xi of −→x . Indeed, we are going to see in next Lemma that the
inequality Qσ <e Qµ can be automatically checked in many cases.

The next lemma relates the strict ordering <e on goals with a rewrite relation
→. It is a crucial step to justify the correct use of Noetherian rewriting as the
main ingredient to perform Noetherian induction.

Indeed, under technical conditions that can be syntactically checked, this
result ensures that Qσ <e Qµ. It is therefore possible in most of the cases to
use an equational goal Q to reduce an instance of itself, Qµ, as soon as a rewrite
step has been previously performed on Qµ.

Theorem 1 (Main compatibility theorem) Let Q1, Q2, Q3 and Q4 be
equational goals, l → r a rewrite rule (remember that then l > r), κ0 be ei-
ther a rewrite rule lκ0 → rκ0 or an equality lκ0 ≈ rκ0 Consider the inequality
I : (lκ0 ≈ rκ0)σ <e Q1 and assume:

1. Q1 →l→r, j.ωj , θ Q2

2. Q2 ≥ Q3

3. Q3 →κ0, i.ωi, σ Q4

4. Q3 >e Q4

Then:

1. I is satisfied whenever ωi 6= ε or i = j

2. If ωi = ε and i 6= j:

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

10

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

(a) If lκ0 > rκ0 , then:

I ⇔ ((Q1|i ≷ lκ0σ) ∧ (Q1|j < Q1|i) ⇒ (Q1|j > rκ0σ))

(b) If lκ0 ≷ rκ0 , then:

I ⇔ ((Q1|i ≷ lκ0σ) ⇒ (Q1|j > rκ0σ))

(c) Otherwise:

I ⇔ (((Q1|i ≷ lκ0σ) ∧ ((Q1|j < Q1|i) ∨ (lκ0σ ≷ rκ0σ)) ∧ (rκ0σ 6 lκ0σ))
⇒ (Q1|j > rκσ))

Proof. The proof of this crucial result is given in [KKN06]. It is based on a
technical case analysis. 2

A variant of this lemma is given in [Dep02] for an ordering between goals
based on a complexity C using a set ordering instead of multiset ordering as
here.

2.3 Narrowing
To make precise the use of narrowing in the induction process, let us first in-
troduce a few concepts and notations. Narrowing will be performed only with
rewrite rules, i.e. formulas l → r with l > r, but not with equalities. Let R be
a rewrite system on T (Σ,X). The signature Σ is partitioned into a set of con-
structors C and a set of defined symbols D. Constructors are function symbols
which do not occur as a head symbol of a rule left-hand side. A constructor
term is a term built only with constructor symbols. T (C,X) denotes the set
of constructor terms. A ground substitution is a substitution mapping each
variable to a ground term, i.e. a term without variables. Let SubstT (Σ) be the
set of all ground substitutions on T (Σ). A rewrite system is said to be ground
convergent if it is confluent and terminating over the set of ground terms. for
any ground convergent rewrite system R, for any term t, t is said to be ground
R-reducible if tα is R-reducible for any ground substitution α. Furthermore, a
symbol f ∈ D of arity n is completely defined if f(t1, . . . , tn) is reducible for all
t1, . . . , tn ∈ T (C,X), and a ground convergent rewrite system R is said to be
sufficiently complete if all symbols in D are completely defined.

For ground convergent and sufficiently complete rewrite systems, it is pos-
sible to specify particular positions in terms where reductions must apply, and
where case analysis by rewriting can usefully be done.

Definition 3 For any t ∈ T (Σ,X), a position ω in t is called defined-innermost,
and we denote ω ∈ DI(t), if t(ω) ∈ D and t(ω′) ∈ C ∪ X whenever ω < ω′.

For example, considering Peano’s naturals, 0 and s are constructors, + is a
defined symbol and in s((0 + 0) + s(0 + s(x))) the occurrence 1.2.1 is defined-
innermost but 1 is not.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

11

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Lemma 3 For any ground convergent rewrite system R, for any term t, and
for any position ω ∈ Dom(t), if t(ω) is completely defined and ω is defined-
innermost in Dom(t), then, for any irreducible ground substitution α, tα is
reducible at position ω.

Proof. Classical and by case analysis 2

Definition 4 A goal Q is narrowed into Q′ at a position ω with the rule l → r
and the substitution σ, if σ is the most general unifier (mgu for short) of l and
Q|ω, and Q′ = Q[r]ωσ. This narrowing step is denoted Q ;l→r,ω,σ Q′.

Indeed, every defined-innermost occurrence is narrowable:

Corollary 1 For any ground convergent rewrite system R, for any equational
goal Q, for any defined-innermost position ω ∈ Dom(Q), for any ground substi-
tution α and for any finite set V of variables such that Var(Q)∪Dom(α ↓) ⊆ V ,
there exists a rule l → r ∈ R, a unifier σ of Q|ω and l, and a ground substitution
µ such that σµ|V = (α ↓)|V .

Proof. It is a consequence of the previous lemma and the classical narrowing
lifting lemma [Hul80, KK99]. 2

Thanks to these settings, we present in the next section, an induction based
proof search system, relying on a main induction rule that uses narrowing to
choose both the induction variables and the instantiation schema.

3 A proof search system for induction
The proof search system IndNarrow for inductive proofs introduced in this sec-
tion is based on narrowing and rewriting. The main rule, called Induce, per-
forms the induction step. This is the key point that provides a bridge between
the implicit and explicit approaches of induction. Correctness and refutational
completeness of this system are proved.

3.1 The proof search system IndNarrow
The rules in Figure 2 apply on sequents modulo of the form Γ1|Γ2 `RE1|RE2 Q,
where Γ1 is the deduction part of the definitions, RE1 is their computational
part; Γ2 is the deduction part for other statements, RE2 is their computational
part; Q is an equational goal.

The distinction between Γ1/RE1 and Γ2/RE2 is needed because in the
Induce rule, only RE1 is used for narrowing. For simplicity, we assume that
RE1 contains only unconditional rules or equalities and we assume from now
on, that RE1 is sufficiently complete.

Γ2 is initialized with the proposition NI defined in subsection 1.2:

NI : ∀R ∀τ Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

12

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Induce Γ1|Γ2 `RE1|RE2 Q[t]ω �

•
κ ∈ RE1
σ = mgu(t, l)

Γ1|Γ2 `RE1|RE2σ∪REind(Q,<)σ (Q[r]ω)σ

if κ = l → r and ω ∈ DI(Q)

Orient Γ1|Γ2 `RE1∪{κ}|RE2 Q � Γ1|Γ2 `RE1∪{l→r}|RE2 Q

if κ = l ≈ r or κ = r ≈ l and l > r

Push1 Γ1, l ≈ r|Γ2 `RE1|RE2 Q � Γ1|Γ2 `RE1∪{l≈r}|RE2 Q

Push2 Γ1|Γ2, l ≈ r `RE1|RE2 Q � Γ1|Γ2 `RE1|RE2∪{l≈r} Q

Rewrite1 Γ1|Γ2 `RE1∪{κ}|RE2 Q[lσ]ω � Γ1|Γ2 `RE1∪{κ}|RE2 Q[rσ]ω

if κ = l → r or κ = l ≈ r or κ = r ≈ l

Rewrite2 Γ1|Γ2 `RE1|RE2∪{κ} Q[lσ]ω � Γ1|Γ2 `RE1|RE2∪{κ} Q[rσ]ω

if κ = l ≈ r or κ = r ≈ l or

κ = RE ind(l ≈ r)µ or κ = RE ind(r ≈ l)µ

and −→x σ <n
−→x µ where −→x =

−−−−−−−→
Var(l ≈ r)

Trivial Γ1|Γ2 `RE1|RE2 t ≈ t � 3

Refutation Γ1|Γ2 `RE1|RE2 Q � Refutation

when no other rules can be applied

Figure 2: The proof search system IndNarrow

and may contain other lemmas. RE2 receives the induction hypotheses pro-
vided by some application of the rule Induce. So RE2 may contain conditional
equalities. Sequents are gathered in a multiset structure modeled with the •
operator that is an AC operator on sequents with 3 as a neutral element.

The main rule is Induce as it performs the induction step. It uses narrowing
to choose both the induction variable(s) and the instantiation schema. Narrow-
ing is applied only at defined innermost positions (see Definition 3) DI(Q) of
the current goal Q. The other rules are doing the following: Trivial eliminates
a trivial equation, Push pushes an equational hypothesis from the deduction
part to the computational part, Orient orients an equation in the computa-
tional part into a rewrite rule, according to the term ordering, Rewrite (1 or 2)
rewrites using a rule, an equation, or a smaller instance of a previous goal. Push
and Rewrite are duplicated because of the Γ1/RE1 and Γ2/RE2 distinction.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

13

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

3.2 A simple example
To get a better understanding of the way this set of rules is working, let us
look at the proof of addition commutativity in Peano arithmetic. So, the goal
is to prove:

x + 0 ≈ x, x + s(y) ≈ s(x + y)|NI `∅|∅ X + Y ≈ Y + X
Applying Push1 twice, we get:

∅|NI `x+0≈x,x+s(y)≈s(x+y)|∅ X + Y ≈ Y + X
Then, applying Orient twice gives us:

∅|NI `x+0→x,x+s(y)→s(x+y)|∅ X + Y ≈ Y + X
We can now apply Induce since RE1 = {x + 0 → x, x + s(y) → s(x + y)}
is confluent, terminating and sufficiently complete. This could be done at
occurrence 1 or 2 of the goal. We arbitrary chose occurrence 1 and this leads
us to prove the two sequents:

∅|NI `RE1|REind(X+Y≈Y +X,<,T 2
Σ){X 7→X1;Y 7→0} X1 ≈ 0 + X1

∅|NI `RE1|REind(X+Y≈Y +X,<,T 2
Σ){X 7→X1;Y 7→s(Y1)} s(X1 + Y1) ≈ s(Y1) + X1

We have now to prove in particular that 0 is left-neutral. The only applicable
rule on that goal is Induce again and we get the two new subgoals:
∅|NI `RE1| REind(X + Y ≈ Y + X, <, T2

Σ){X 7→ 0; Y 7→ 0}
REind(X1 ≈ 0 + X1, <, TΣ){X1 7→ 0}

0 ≈ 0

∅|NI `RE1| REind(X + Y ≈ Y + X, <, T2
Σ){X 7→ s(X2); Y 7→ 0}

REind(X1 ≈ 0 + X1, <, TΣ){X1 7→ s(X2)}
s(X2) ≈ s(0 + X2)

Trivial gets rid of the first one. Rewrite2 can be applied on the second
one since, because of narrowing, the goal has been reduced and therefore the
induction hypothesis can now be used. We get:
∅|NI `RE1| REind(X + Y ≈ Y + X, <, T2

Σ){X 7→ s(X2); Y 7→ 0}
REind(X1 ≈ 0 + X1, <, TΣ){X1 7→ s(X2)}

s(X2) ≈ s(X2 + 0)

Applying now Rewrite1 proves that 0 is left-neutral for addition. We are left
with the goal s(X1 + Y1) ≈ s(Y1) + X1 and we will make precise later on how
the proof search finishes.

3.3 Soundness of IndNarrow
Soundness amounts to show that for each rule of the proof search system Ind-
Narrow of the form:

Γ1|Γ2 `RE1|RE2 Q � •i∈I Γi
1|Γi

2 `REi
1|REi

2
Qi

then Γ1|Γ2,
−→x ∈ T (Σ)n `RE1|RE2 Q is derivable provided all the Γi

1|Γi
2,
−→
xi ∈

T (Σ)ni `REi
1|REi

2
Qi are. In what follows, we assume that all variables in Γ are

universally quantified.
Let us first state a few basic rules which are needed in the soundness proof.

Lemma 4 The following rules are derivable in the sequent calculus modulo:

1.
Γ `RE P1 ⇒ P2,∆
Γ, P1 `RE P2,∆

imp

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

14

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

2.
Γ, x = y ` x ≈ y

ref

3.
Γ `RE ∀x α(x) ≈ β(x) Γ `REα Pα

Γ `REβ Pβ
re

4.

Γ,−→x ∈ T (Σ)n `RE P,∆
Γ `REα Pα, ∆

rα if
{

α ∈ SubstΣ
−→x is the vector of free variables of RE ∪ P

5. ∧
α∈SubstΣ

Γ `REα Pα

Γ,−→x ∈ T (Σ)n `RE P
r−→x if −→x is the vector of free variables of RE ∪ P

6. For any proposition P and for any integer n, if |Var(P) ∪ Var(RE)| = n,
if the proposition P is inductive in some context Γ ∪ RE with respect
to the order <n, and if this order is Noetherian in this context, then
the proposition P is valid in the context Γ ∪ RE , whenever it contains
the proposition NI = ∀R ∀τ (Noeth(R, τ) ⇒ ∀P NoethInd(P,R, τ)) (see
subsection 3.1)

7.

Γ,−→x ∈ T (Σ)n `RE∪REind(P,<) P Γ `RE Noeth(<n, T (Σ)n)

Γ,−→x ∈ T (Σ)n `RE P
rI

if −→x is the vector of free variables of RE ∪ P

We are ready now to prove soundness of IndNarrow in the sequent calculus
modulo by considering in turn each inference rule of IndNarrow.

Theorem 2 For all contexts Γ1,Γ2, rewrite systems RE1,RE2, equational goal
Q, occurrence ω ∈ DI(Q) and integer n, let us assume that:

1. Induce is applied on
Γ1|Γ2 `RE1|RE2 Q[t]ω

to get
• l → r ∈ RE1

σ = mgu(t, l)
Γ1|Γ2 `RE1|RE2σ∪REind(Q,<)σ (Q[r]ω)σ;

2. RE1 is ground convergent and sufficiently complete;

3. < is Noetherian, so that Γ1 ∪ Γ2 `RE1∪RE2 Noeth(<n, T (Σ)n);

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

15

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

4. for any rewrite rule l → r ∈ RE1, when σ = mgu(t, l) and −→x σ ∈ Xnσ is
the vector of free variables of REσ ∪Qσ, the sequent

Γ1 ∪ Γ2,
−→x σ ∈ T (Σ)nσ `RE1∪RE2σ∪{REind(Q,<)σ} (Q[r]ω)σ

is derivable in the sequent calculus modulo.

Then, the sequent
Γ1 ∪ Γ2,

−→x ∈ T (Σ)n `RE1∪RE2 Q[t]ω
is derivable in the sequent calculus modulo.

Proof. First, let us introduce the following notations:

Γ will denote Γ1 ∪ Γ2

RE will denote RE1 ∪RE2

RE ′ will denote RE ∪ {RE ind(Q,<)}
REσ will denote RE1 ∪RE2σ
RE ′σ will denote REσ ∪ {RE ind(Q,<)}σ

(4)

Let α be a ground substitution such that Dom(α) ⊆ V and α ↓ be its
RE1-normal form. According to the narrowing lemma, we have:

σµ|V = (α ↓)|V (5)

for some substitution µ. Let us consider the following derivations.
Π1

∀x x(α ↓) = xσµ `RE ∀x xα = xσµ
Ax

Π2
` ∀x x(α ↓) = xσµ (by 5)

`RE ∀x x(α ↓) = xσµ,∀x xα = xσµ
w + push

Π3

Π1 Π2

`RE ∀x xα = xσµ
cut

Γ `RE ∀x xα = xσµ,∀x xα ≈ xσµ
w

Π4:

Γ, xα = xσµ ` xα ≈ xσµ
ref

Γ,∀x xα = xσµ ` xα ≈ xσµ
∀ − l

Γ,∀x xα = xσµ ` ∀x xα ≈ xσµ
∀ − r

Γ,∀x xα = xσµ `RE ∀x xα ≈ xσµ
w + push

Π5:
Π3 Π4

Γ `RE ∀x xα ≈ xσµ
cut

Π6:
Γ,−→x σ ∈ T (Σ)n `RE′σ Qσ[rσ]|ω

Γ,−→x σ ∈ T (Σ)n `RE′σ Qσ, Qσ[rσ]|ω
w

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

16

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Π7

Qσ[rσ]|ω `RE1 Qσ[lσ]|ω
Ax

Γ,−→x σ ∈ T (Σ)n, Qσ[rσ]|ω `RE′σ Qσ[lσ]|ω
w

Γ,−→x σ ∈ T (Σ)n, Qσ[rσ]|ω `RE′σ Q

(since lσ = tσ and Q = Q[t]|ω)
Π1,σ:

Π6 Π7

Γ,−→x σ ∈ T (Σ)n `RE′σ Qσ
cut

Denoting PE ind(Q) the canonical proposition associated to RE ind(Q,<),
this leads to:
Π2,σ

Π1,σ

Γ,−→x σ ∈ T (Σ)n,PE ind(Q)σ `REσ Qσ
pop

Γ,−→x σ ∈ T (Σ)n `REσ PE ind(Q)σ ⇒ Qσ
⇒ −r

Since the proposition PE ind(Q)σ ⇒RE Qσ is equivalent to
(PE ind(Q) ⇒RE Q)σ, we have:
Πσ,µ:

Π2,σ

Γ `REσµ (PE ind(Q) ⇒ Q)σµ
rµ

Πα:
Πσ,µ Π5

Γ `REα (PE ind(Q) ⇒ Q)α
re

And since α is any ground substitution, we have:
Π−→x : ∧

α∈SubstΣ
Πα

Γ,−→x ∈ T (Σ)n `RE PE ind(Q) ⇒ Q
r−→x

Γ,−→x ∈ T (Σ)n,PE ind(Q) `RE Q
imp

Γ,−→x ∈ T (Σ)n `RE∪REind(Q,<) Q
push

Π:
Π−→x Γ `RE Noeth(<n, T (Σ)n)

Γ,−→x ∈ T (Σ)n `RE Q
rI

and we are done. 2

Soundness of Push is simply a consequence of soundness of the sequent
calculus modulo.

Let us now look at the Rewrite inferences.

Theorem 3 For all contexts Γ1,Γ2, for all rewrite systems RE1,RE2, for any
equational goal Q, let us assume that:

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

17

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

1. Rewrite is applied on
Γ1|Γ2 `RE1|RE2 Q

to get:
Γ1|Γ2 `RE1|RE2 Q′

2. The sequent Γ1|Γ2 `RE1|RE2 (Q[rσ]ω) admits a proof.

Then, the sequent Γ1|Γ2 `RE1|RE2 Q[lσ]ω is derivable in the sequent calculus
modulo.

Proof. Let us use the same notations as in the previous theorem. By assumption
1, and by definition of the rule Rewrite, there exist
κ ∈ RE , (l, r) ∈ T (Σ,X)2, ω ∈ Dom(Q), and σ ∈ SubstT (Σ,X), such that:

• (κ = l → r or κ = l ≈ r or κ = r ≈ l or
∃µ (µ ∈ SubstT (Σ,X)) and (κ = RE ind(l ≈ r)µ or κ = RE ind(r ≈
l)µ))

• Q = Q[lσ]|ω

• Q′ = Q[rσ]|ω

Now, let us consider the following derivations:
Π1:

Q[rσ]ω `{κ} Q[lσ]ω
Ax

Γ, Q[rσ]ω `RE Q[lσ]ω
w + push

Π2:
Γ `RE Q[rσ]ω (assumed)

Γ `RE Q[rσ]ω, Q[lσ]ω
w

Π:
Π1 Π2

Γ `RE Q[lσ]ω
cut

which concludes the proof. 2

We have already proved soundness of the rewrite system IndNarrow \
{Orient}. Now, it is easy to see that, for all contexts Γ, Γ′, for all rewrite
systems RE , RE ′, and for all equational goals Q, Q′, one can build a deriva-
tion Γ `RE Q

∗
�IndNarrow\{Orient}Γ

′ `RE′ Q′ whenever there exists a derivation

Γ `RE Q
∗

�IndNarrow Γ′ `RE′ Q′. Therefore, soundness of IndNarrow is a conse-
quence of soundness of IndNarrow \ {Orient}.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

18

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

3.4 Example (continued)
Remember that we need to prove:

∅|NI `RE1|REind(X+Y≈Y +X,<,T 2
Σ){X 7→X1;Y 7→s(Y1)} s(X1 + Y1) ≈ s(Y1) + X1

We can apply Induce at position 1.1, leading to:
∅|NI `RE1|RE′2 s(0 + Y3) ≈ s(Y3)
∅|NI `RE1| REind(X + Y ≈ Y + X, <, T2

Σ)σ1
REind(s(X1 + Y1) ≈ s(Y1) + X1, <, T2

Σ)σ2

s(s(X3) + Y3) ≈ s(s(Y3) + X3)

where RE ′2 is easy to explicit and σ1 = {X1 7→ 0, Y1 7→ Y3},
σ2 = {X 7→ 0;Y 7→ s(Y3)} In the same way as before, the goal s(0+Y3) ≈ s(Y3)
is solved. Reducing with the Rewrite rules and using Theorem 1 to check the
conditions leads directly to the proof of the last goal, therefore finishing the
proof.

Notice that, following the soundness proof above, the proof search developed
in the example can be straightforwardly expanded into a sequent calculus proof.

3.5 Refutational correctness
Refutational correctness amounts to show that for each rule of the proof search
system IndNarrow of the form:

Γ1|Γ2 `RE1|RE2 Q � •i∈I Γi
1|Γi

2 `REi
1|REi

2
Qi

then all the Γi
1|Γi

2,
−→
xi ∈ T (Σ)ni `REi

1|REi
2

Qi are derivable provided Γ1|Γ2,
−→x ∈

T (Σ)n `RE1|RE2 Q is.
We detail here the most delicate point which is again the case of the rule

Induce, addressed in the following theorem.

Theorem 4 For all contexts Γ1, Γ2, for all rewrite systems RE1, RE2, for
any equational goal Q, for any ω ∈ DI(Q), and for any integer n,

If

Γ1|Γ2 `RE1|RE2 Q[t]ω
Induce

� • l → r ∈ RE1
σ = mgu(t, l)

Γ1|Γ2 `RE1|RE2σ∪REind(Q,<)σ Q[r]wσ

and if the sequent Γ1 ∪Γ2,
−→x ∈ T (Σ)n `RE1∪RE2 Q[t]ω (where −→x ∈ Xn denotes

the vector of free variables of RE2 ∪Q) admits a proof in sequent calculus mod-
ulo,
then, for any σ = mgu(t, l), for any integer nσ, for any vector of free variables
−→x σ of REσ ∪Qσ in Xnσ , one can build a proof of

Γ1 ∪ Γ2,
−→x σ ∈ T (Σ)nσ `RE1∪RE2σ∪{REind(Q,<)σ} Q[r]ωσ

Proof. Recall the notations 4. Let σ = mgu(t, l). For any ground substitution
µ, we have:
Πσ,µ

Γ,−→x ∈ T (Σ)n `RE Q

Γ `REσµ Qσµ
rσµ

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

19

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Now, let us consider the following derivations:

Π1,σ:

∧
µ∈SubstΣ

Πσ,µ

Γ,−→x σ ∈ T (Σ)nσ `REσ Qσ
rX

Π2,σ:
Π1,σ

Γ,−→x σ ∈ T (Σ)nσ `REσ Qσ, Qσ[rσ]|ω
w

Denoting ThRE2σ the canonical theory associated to RE2σ, and since
REσ = RE1 ∪RE2σ, we obtain:

Π3,σ:

Qσ `RE1 Qσ[rσ]|ω
Ax

Γ,−→x σ ∈ T (Σ)nσ , Qσ, ThRE2σ `RE1 Qσ[rσ]|ω
w

Γ,−→x σ ∈ T (Σ)nσ , Qσ `REσ Qσ[rσ]|ω
push

Denoting PE ind(Q) the canonical proposition associated to RE ind(Q,<),
this leads to:

Π4,σ:
Π2,σ Π3,σ

Γ,−→x σ ∈ T (Σ)nσ `REσ Qσ[rσ]|ω
cut

Γ,−→x σ ∈ T (Σ)nσ ,PE ind(Q)σ `REσ (Qσ[rσ]|ω)
w

Γ,−→x σ ∈ T (Σ)nσ `REσ∪REind(Q)σ (Qσ[rσ]|ω)
push

and we are done. 2

As a corollary of Theorem 4, we get:

Theorem 5 The proof search system IndNarrow is refutationally correct.

Proof. Induce being handled in Theorem 4, the other inference rules Rewrite
and Orient are proved refutationally correct, in similar ways. Correctness
of the other rules is a consequence of correctness of deduction modulo. 2

3.6 Refutational completeness
Refutational completeness is achieved thanks to the Refutation rule which
applies when no other rule of IndNarrow can be applied.

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

20

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Lemma 5 For all contexts Γ1, Γ2, for all rewrite systems RE1, RE2, if:

Γ1|Γ2 `RE1|RE2 Q � Refutation

then, the sequent Γ1|Γ2 `RE1|RE2 Q has no proof.

Proof. If Q contains a defined symbol, there exists a defined-innermost posi-
tion in Dom(Q), therefore one can apply the rule Induce, and there is a
contradiction. Since the rule Trivial cannot be applied either, we have
Q = t ≈ t′, with t, t′ constructor terms that are not syntactically equal.
Therefore, the sequent Γ1|Γ2 `RE1|RE2 Q has no proof, since the con-
structors are assumed to be free and ≈ satisfies the axioms of equality.
2

Lemma 6 For all contexts Γ1, Γ2, for all rewrite systems RE1, RE2, if there
exists an IndNarrow-derivation

Γ1|Γ2 `RE1|RE2 Q
∗

�IndNarrow Refutation

then, the sequent Γ1|Γ2 `RE1|RE2 Q has no proof.

Proof. Assume: Γ1|Γ2 `RE1|RE2 Q
∗

�IndNarrow Refutation
There exist contexts Γ′1, Γ′2, rewrite systems RE ′1, RE

′
2 and an equational

goal Q′ such that:

Γ1|Γ2 `RE1|RE2 Q
∗

�IndNarrow Γ′1|Γ′2 `RE′1|RE′2 Q′ �IndNarrow Refutation

And, by lemma 5, the sequent Γ′1|Γ′2 `RE′1|RE′2 Q′ has no proof. Therefore,
by the refutation correctness of IndNarrow (Theorem 5), Γ1|Γ2 `RE1|RE2 Q
has no proof either. 2

As a corollary, we get:

Theorem 6 The proof search system IndNarrow is refutationally complete.

4 Conclusion
We have shown how narrowing can provide the inference mechanism to perform
induce proof search. Instead of pre-computing induction schemata and induction
variables, this has the advantages to target exactly which variables should be
instantiated and how. Moreover, because the method derives directly from the
deduction modulo framework, we take benefit from a direct translation from
a successful proof search derivation to a sequent calculus modulo proof. Last
but not least, the fact that we are precisely specifying the conditions on the
induction ordering allows us to refine, in the full paper [KKN06], the proof
search inference rules and therefore to narrow the search space.

At the proof level, the general framework of deduction modulo is quite rel-
evant to keep at the deduction level only the true deduction steps like modus

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

21

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

ponens and to delegate all computational steps on propositions or terms to spe-
cialized provers using equational and rewriting techniques. Then, some parts
of the proofs can be deferred to aside computations, while the true skeleton
of the proof is being built. At the checking level, the experiences described
in [DKKN03] of translating equational and inductive proofs to proof terms for
Coq should be quite useful.

If the approach is theoretically fruitful and enlightens the relationship be-
tween rewrite based induction methods and Noetherian induction, we are clearly
in need of an implementation of the results presented here. Our goal will be
to achieve this as a way to mechanize proof search in a proof assistant based
on type theory and the rewriting calculus [BCKL03, Wac05]. Moreover our
approach provides the ability to use an induction principle based on Noethe-
rian rewrite systems, therefore strongly enhancing over the structural induction
principle which is, in practice, used in most of the current proof assistants.

This narrowing based approach opens also new fundamental questions, let
us mention three of them. The first one concerns its relationship with the
very useful rippling [BBHI05] technique. Indeed, in a way related to rippling,
narrowing makes explicit and links with a Noetherian rewrite system what we
are in need for inductively proving a goal. This analogy should be deepened and
possibly exploited. A second one, that we are currently investigating, concerns
the extension of rewrite based inductive theorem proving to class rewriting.
This has been explored in particular in [BBR95] for associative-commutative
theories. The genericity of narrowing modulo may enlighten and ease the use
of such class rewrite systems to base inductive proof search. The third one
concerns inductive proof by consistency which is indeed at the source of the use
of rewrite techniques for induction [Mus80, GS92, CN98, Ste]. The relationship
between deduction modulo and such a consistency technique is worth to be
better understood.

Acknowledgments: Many thanks to the members of the Protheo team for
stimulating discussions on many of the subjects developed in this paper, and
most particularly to Eric Deplagne whose PhD thesis is the initial work on which
this paper is based.

References
[BBHI05] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-

Level Guidance for Mathematical Reasoning. Cambridge University
Press, 2005. 22

[BBR95] N. Berregeb, A. Bouhoula, and M. Rusinowitch. Extending SPIKE
to associative and commutative theories. In Seminar on Automation
of proof by induction, Dagstuhl seminar, Germany, July 1995. 22

[BCKL03] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pat-
terns Type Systems. In Principles of Programming Languages -
POPL2003, New Orleans, USA. ACM, January 2003. 22

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

22

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

[BKR92] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Spike: An au-
tomatic theorem prover. In Proceedings of the 1st International
Conference on Logic Programming and Automated Reasoning, St.
Petersburg (Russia), volume 624 of Lecture Notes in Artificial Intel-
ligence, pages 460–462, July 1992. 5

[BN98] F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge
University Press, 1998. 2

[CN98] H. Comon and R. Nieuwenhuis. Induction = i-axiomatization +
first-order consistency. Research report LSV-98-9, LSV, October
1998. To appear in Information and Computation, special issue on
RTA’98. 22

[Dep02] E. Deplagne. Système de preuve modulo récurrence. Thèse de doc-
torat, Université Nancy 1, November 2002. 2, 3, 4, 5, 6, 8, 11

[DHK01] G. Dowek, T. Hardin, and C. Kirchner. HOL-λσ an intentional first-
order expression of higher-order logic. Mathematical Structures in
Computer Science, 11(1):21–45, 2001. 2, 3

[DHK03] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo.
Journal of Automated Reasoning, 31(1):33–72, Nov 2003. 2, 3, 5

[DK04] E. Deplagne and C. Kirchner. Induction as deduction modulo. Rap-
port de recherche, LORIA, Nov 2004. 2, 3, 4

[DKKN03] E. Deplagne, C. Kirchner, H. Kirchner, and Q.-H. Nguyen. Proof
search and proof check for equational and inductive theorems. In
F. Baader, editor, Proceedings of CADE-19, Miami, Florida, July
2003. Springer-Verlag. 2, 22

[Dow99] G. Dowek. La part du Calcul. Université de Paris 7, 1999. Mémoire
d’habilitation. 5

[DP01] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 9, pages 535–610. Elsevier Science, 2001. 8

[Fer95] M. Ferreira. Termination of Term Rewriting: Well foundedness,
Totality and Transformations. PhD thesis, Utrecht University, 1995.
8

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989. 4

[GS92] H. Ganzinger and J. Stuber. Inductive theorem proving by consis-
tency for first-order clauses. In Conditional Term Rewriting Sys-
tems, pages 226–241, 1992. 22

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

23

Averroes – Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

[Hue72] G. Huet. Constrained Resolution: A Complete Method for Higher
Order Logic. PhD thesis, Case Western Reserve University, 1972. 4

[Hul80] J.-M. Hullot. Canonical forms and unification. In Proceedings 5th In-
ternational Conference on Automated Deduction, Les Arcs (France),
pages 318–334, July 1980. 12

[KK99] C. Kirchner and H. Kirchner. Rewriting, solving, proving. A pre-
liminary version of a book available at www.loria.fr/~ckirchne/
rsp.ps.gz, 1999. 2, 12

[KKN06] C. Kirchner, H. Kirchner, and F. Nahon. Narrowing based induc-
tive proof search: Definition and optimisations. Research report,
LORIA, March 2006. 9, 11, 21

[KKR90] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with
symbolic constraints. Revue d’Intelligence Artificielle, 4(3):9–52,
1990. Special issue on Automatic Deduction. 4

[KZ95] D. Kapur and H. Zhang. An overview of rewrite rule laboratory
(RRL). J. Computer and Mathematics with Applications, 29(2):91–
114, 1995. 5

[Mus80] D. Musser. On proving inductive properties of abstract data types.
In Proceedings, Symposium on Principles of Programming Lan-
guages, volume 7. Association for Computing Machinery, 1980. 22

[Ste] G. Steel. Proof by consistency - a literature survey. 22

[Wac05] B. Wack. Typage et déduction dans le calcul de réécriture. Thèse de
doctorat, Université Henri Poincaré - Nancy I, October, 7- 2005. 22

Projet RNTL : Averroes / Lot 5.3 / Fourniture 5 /V1.1
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA,
LRI, LSV

24

www.loria.fr/~ckirchne/rsp.ps.gz
www.loria.fr/~ckirchne/rsp.ps.gz

	Deduction modulo and the Noetherian induction principle
	Deduction modulo
	Deduction modulo for inductive proofs

	Ordering and narrowing
	Orders and quasi-orders on terms and equalities
	Induction hypothesis and ordering on goals
	Narrowing

	A proof search system for induction
	The proof search system IndNarrow
	A simple example
	Soundness of IndNarrow
	Example (continued)
	Refutational correctness
	Refutational completeness

	Conclusion

