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1 Introduction

Term rewriting has shown to be a very powerful tool in contexts where efficient methods for reasoning with
equations are required [1, 12]. In the last decade, term rewriting has also shown to provide a very elegant
framework for specifying concurrency models [14] and deduction systems [7, 3].

When specifying probabilistic systems, it is rather natural to consider that the firing of a rewrite rule
can be subject to some probabilistic laws. For that purpose, we proposed in [6] to add basic probabilistic
strategies to rule based languages. The idea of adding probabilities to rewrite rules has also been explored
in [10] in the context of probabilistic constraint handling rules, or in [15]. The idea of adding probabilities
to high level models of reactive systems has also been explored for models like Petri Nets [2, 17], automata
based models [8, 18], or process algebra [11].

In a recent work [4], we developed techniques to prove termination with a finite mean of reductions (called
positive almost sure termination) of a set of probabilistic rewrite rules.

The Ethernet and WI-FI network protocols use probabilistic primitives that require appropriate prob-
abilistic models and tools for their verification [13, 9]. In this paper, we provide a probabilistic rule based
model of the CSMA/CA 802.11b protocol and we prove that this model terminates in a time whose mean is
finite, using the previously proposed frameworks. More precisely, we first show that for a given station, the
probability to make a ”good” transition—a transition which leads to the success state—is always positive,
then we build a function mapping the terms to the set of positive real numbers such that all probabilistic
rewrite rule decrease the value of this function by some quantity whose mean is positive. Thanks to the
results of [4], we conclude.

Finding such a function in the general case, is not easy. However, in our case, the rules can be split in
two several subsets:

1. Some rules coding administrative tasks (e.g. putting some subterms in normal form, sorting, etc. . . ).

2. Other rules applicable on the normal forms of the previous set of rules. These include the rules coding
transitions between CSMA/CA’s main states.

Our approach is to present a simple combination construction that allow to build the wanted function
by considering these subsets of rules somehow independently. Indeed, we show that if there exists a function
whose mean value decreases at least by a fixed positive real number between these classes of states —i.e.
each time a rule of the second set of rule is fired—, and if the first set of rules terminates, then the whole
rewrite system terminates in a finite mean time.

This construction, exemplified here, helps the proof of positive almost sure termination in the general
case by allowing modular constructions.

This paper is organized as follows. In Section 2, we recall probabilistic rewrite systems and some results
of [4]. In Section 3, we discuss the combination of a probabilistic rewrite system and a term rewrite system.
In Section 4, we describe our coding of the protocol using probabilistic rewrite rules. In the following section,
we prove the protocol to be positively almost surely terminating using our tools.

2 Probabilistic Rewrite Rules

In [6], we introduced probabilistic abstract reduction systems (PARS). In the same way that abstract re-
duction systems are also called transition systems in other contexts, PARS corresponds to Markov Decision
Processes [16]. The main points are that, compared to usual definitions of Markov decision processes, we
explicitly allow states to be terminal and we do not label transitions by actions.

Definition 1 (PARS) Given some denumerable set S, we note Dist(S) for the set of probability distribu-
tions on S: µ ∈ Dist(S) is a function S → [0, 1] that satisfies

∑

i∈S µ(i) = 1.
A probabilistic abstract reduction system (PARS) is a pair A = (A,→) consisting of a countable set A

and a relation →⊂ A × Dist(A).
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A PARS is said deterministic if, for all a, there is at most one µ with a → µ.
A state a ∈ A with no µ such that a → µ is said terminal.

We now need to explain how such systems evolve: a history (of length n+1) is a finite sequence a0a1 · · · an

of elements of the state space A. It is non-terminal if an is. A policy φ, that can also be called a strategy, is
a function that maps non-terminal histories to distributions in such a way that φ(a0a1 · · · an) = µ is always
one (of the possibly many) distribution µ with an → µ. A history is said realizable, if for all i < n, if µi

denotes φ(a0a1 · · ·ai), one has µi(ai+1) > 0.
A derivation of A is then a stochastic sequence where the non-deterministic choices are given by some

policy φ, and the probabilistic choices are governed by the corresponding distributions. Formally:

Definition 2 (Derivations) Assuming ⊥ to be a fresh constant symbol (in particular not in A), a derivation
π of A over policy φ is a stochastic sequence π = (πi)i∈N on A ∪ {⊥} such that for all n, P (πn+1 = ⊥|πn =
⊥) = 1, P (πn+1 = ⊥|πn = s) = 1 if s ∈ A is terminal, P (πn+1 = ⊥|πn = s) = 0 if s ∈ A is non-terminal
and, for all t ∈ A, P (πn+1 = t|πn = an, πn−1 = an−1, . . . , π0 = a0) = µ(t) whenever a0a1 · · · an is a realizable
non-terminal history and µ = φ(a0a1 · · · an).

If a derivation is such that πn = ⊥ for some n, then πn′ = ⊥ almost surely for all n′ ≥ n. Such a
derivation is said to be terminating. In other words, a non-terminating derivation is such that πn ∈ A

(πn 6= ⊥) for all n.

Definition 3 (Almost Sure Termination) A PARS A = (A,→) is almost surely (a.s) terminating when
for any policy φ, the probability that a derivation π = (πi)i∈N under policy φ terminates is 1, i.e. for all φ,
P (∃n s.t. πn = ⊥) = 1.

Definition 4 (Positive Almost Sure Termination) A PARS A = (A,→) is positively almost surely
(+a.s.) terminating when for all policies φ, for all states a ∈ A, the mean number of reductions required to
reach a terminal state starting from a and following policy φ, is finite.

A positively almost surely terminating PARS is almost surely terminating.
In [4], we proved:

Theorem 1 (Soundness) A PARS A = (A,→) is +a.s. terminating if there exist some function V : A →
R, with infi∈A V (i) > −∞, and some ǫ > 0, such that, for all states a ∈ A, for all µ with a → µ, the drift
in a according to µ defined by:

∆µV (a) =
∑

i

µ(i)V (i) − V (a)

satisfies:
∆µV (a) ≤ −ǫ.

We also showed that the technique is complete for finitely branching systems.

Definition 5 (Probabilistic Rewrite system) Given a signature Σ and a set of variables X, the set of
terms over Σ and X is denoted by T (Σ, X).

A probabilistic rewrite rule is an element of T (Σ, X)×Dist(T (Σ, X)). A probabilistic rewrite system is
a finite set R of probabilistic rewrite rules.

To manipulate terms, we use the standard term rewriting notations [1]: When t ∈ T (Σ, X) is a term, let
Pos(t) be the set of its positions, where the position of a subterm denotes the path to reach the subterm
from the root of the term. For ρ ∈ Pos(t), let t|ρ be the subterm of t at position ρ, and let t[s]ρ denote the
replacement of the subterm at position ρ in t by s. The set of all substitutions is denoted by Sub.

Definition 6 (Reduction relation) To a probabilistic rewrite system R is associated the following PARS
(T (Σ, X),→) over terms: t →R µ if there is a rule (g, M) ∈ R, some position p ∈ Pos(t), some substitution
σ ∈ Sub, such that t|p = σ(g), and, for all t′, µ(t′) =

∑

{d∈T (Σ,X)|t′=t[σ(d)]p}
M(d).
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To a probabilistic rewrite system is associated a probabilistic abstract reduction system (T (Σ, X),→R)
over the set of terms T (Σ, X) where →R is defined as follows:

We proposed several results to prove the positive almost sure termination of a set of probabilistic rewrite
rules.

Definition 7 For a given rewrite system R and for all t ∈ T (Σ, X), NFR(t) denotes the set of the normal
forms of t. In the same vein NFR(T (Σ, X)) denotes the set of the normal terms for R. When R is clear
from the context, we may omit the subscript.

3 Combination of a Probabilistic Rewrite System and a Term

Rewrite System.

This section deals with the proof technique that will be used to certify that the modelisation of the CSMA/CA
algorithm terminates within a finite mean time. Althrough we provide here a direct proof, this can also be
seen as a consequence of the theorem about termination under strategies described in [5].

The direct application of Theorem 1 yielding almost sure termination is not appropriate because, in the
full description of the model, we have more rules than it appears, e.g. we need to code some priority queue,
sorting operations etc, and building a function whose mean decreases for so many transitions is far from
being obvious. Hopefully, thanks to the result described below, we will see that it is possible on one hand
to only consider the probabilistic rewrite rules which must satisfy the decreasing property for a given lower
bounded function if, on the other hand, we can prove that the derivations generated by the remaining rules
have a length that can be explicitly bounded. Let us now see this in a formal way,

Let Tp =(T (Σ, X),→R) be a probabilistic rewrite system and Ts =(T (Σ, X),→) a (classical) rewrite
system coded as a probabilistic rewrite system (e.g. all the probabilities are fixed to 0 or 1). Suppose that
there exists a set A of terms, so that if a term t is included in A, it is reduced using a probabilistic rule of
Tp else if t is not in A, it is reduced using a rule of Ts. We suppose that the set of the normal forms of Ts

equals A.

Definition 8 (The Sequential Combination of a TRS and a PRS) The sequential combination of a
PRS Tp and a TRS Ts is the PRS (T (Σ, X), ;) whose probabilistic rewrite relation is defined by:

• t1 ; t2 when there exists t′1 such that t1 → t′1 by PRS Tp in one step and t′1
!
→ t2,

where t′1
!
→ t2 means that t1 rewrites by a sequence of derivation of TRS Ts to t2 ∈ NF (t′1).

We denote Ts! the strategy consisting in normalizing using the rules of Ts.

We provide sufficient conditions to insure that a subset B of A will be reached in a finite mean time,
independently from the choice of the first term to reduce and independently from the followed policy [4].

Definition 9 (Drift between normal forms) Assume that we have a function V from A to R. The drift
between normal forms for V , for a given policy φ and the history t1 . . . tn is the following value:

∆
NF (T (Σ,X),→)
φ(t1...tn) V (tn) =

∑

t∈T (Σ,X)

V (NFφ(t)) × φ(t1 . . . tn)(t) − V (tn)

which represents the mean variation of V once the term is put in normal form by (T (Σ, X),→).

Let us recall that we are looking for sufficient conditions entailing that B ⊆ A a set of terms considered
as terminal, will be reached in a finite mean time, knowing that after that a term of A is reduced with a
probabilistic rule of Tp the reduced term will be reduced to a normal form of Ts

Lemma 1 (Positive almost surely termination of the combination) If there exits some ǫ, some V :
A → R, some function Size : T (Σ, X) → N and some non-decreasing function L : N → N, and:
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p1 p2

p3

p4

p5 B

Figure 1: An example of reductions: green term is rewritten into the the five blue other terms by a proba-
bilistic rewrite rule. Once a successor of the green term has been chosen, it is rewritten using the classical
term rewrite system (in red) until a normal form is reached.

1. The length of any derivation from a term t of T (Σ, X) by Ts is less or equal to L(Size(t)).

2. If t ; t′ (formally ; (t, t′) > 0) then Size(t) ≥ Size(t′)

3. ∀t ∈ A, ∀φ, ∀t1 . . . tn ∆
NF (T (Σ,X),→)
φ(t1...tn) V (tn) ≤ −ǫ

4. V is lower bounded and reaches its minimum in B and only in B.

Then Tp∪Ts is positively almost surely terminating. Furthermore, the terminal terms of Tp∪Ts are precisely
the terms of B.

Proof. Condition 3 and 4, combined with Theorem 1, provide positive almost sure termination of probabilistic
relation ;. Conditions 1 and 2, guarantee that each rewrite step of ; on a term t correspond to at
most 1 + L(Size(t)) rewrite steps of Tp ∪ Ts. 2

4 Model

We now consider our model of the CSMA/CA protocol in infrastructure mode, that is to say in the case
where there exists a central station called “hub”, that regulates the transmission, centralises messages and
broadcasts to every other stations. The CSMA/CA protocol is widely used today in wireless networks. It
aims at handling appropriately collisions, i.e. the situation where two stations emit during the same time
slot, by using a virtual locking mechanism.

To lock the medium, one station has to wait that the medium is free during DIFS + backoff (c) time
units, where:

• DIFS is a constant fixed in the 802.11 specification,

• backoff (c) is a random variable following an uniform law on the set 0, . . . , 2min(c,10), and

• c is the number of collisions since last successful transmission.

If during this amount of time, the station has not eared anything then it sends a RTS message (Request
To Send) and wait the central station authorization, given by a CTS message (Clear to Send) during a period
of at most timeout time units. If the CTS message is received on time, then the station emits.
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When the whole message has been received by the central station, an acknowledgment message (ACK)
is sent to the sender, with a checksum of the message.

SENDER

DIFS BACKOFF

RTS CTS DATA ACK

CENTRAL STATION

Figure 2: Successful CSMA/CA’s dialogue between a station and the central station.

The algorithm in each sender can be represented by the following automata:

CTS not receivedmedium
busy

RTS CTS

Waiting for
ACK.Checksum error 

or timeout.

0 1 2 3

4

5

6

garbeled while
waiting.

If medium

Success

Emitting
data

with the following meaning of the states:

State description
0 Ear the medium, wait it become free, calculate backoff(c)
1 Has waited DIFS+backoff(c) time units.
2 Central station received RTS, send a CTS
3 Station received CTS.
4 Station send a data tram.
5 Station received an ACK tram.
6 Packet successfully transmitted.

This automata is implemented using (probabilistic) rewrite rules as follows:

• A sender is represented as a 5-tuples (state, wait time, nb mess, c, write) where

1. state is the current state of the sender (state ∈ {0, 1, . . . , 6}),

Projet RNTL : Averroes / Lot 4.2 /Fourniture 4.2 /V1.0
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2. wait_time is the remaining time before next transition,

3. nb_mess is the number of messages still to be sent,

4. c is the number of collisions since last successful transmission,

5. write switch monitoring other sender access to the medium.

• The whole system is represented by (t, l), where t is an integer coding the current date, and l is the
list of 5-tuples coding senders.

The following hypotheses are made:

1. Station 1 can here the n − 1 stations, called 2, . . . , n,

2. There is k hidden stations, n + 1, . . . , n + k,

3. Each messages sent by the base station can be heard by all the stations.

4. Trams CTS and ACK are never garbled.

5. ci denotes the number of collisions for station i, since last successful transmission.

The main point of probabilistic rewrite rules is to let the global state (t, l) of the system evolve according
to the protocol. This is done in ELAN4 by rules of type:

[] simul((x,cons(snd,l)) => simul((x+snd.wait_time, runfirst_sortlist(cons(snd,l))

if jobleft(cons(snd.l))

[] simul((x,cons(snd,l)) => (x,cons(snd,l))

if !jobleft(cons(snd,l))

[] runfirst_sortlist((x,cons(snd,l)) => sortlist(nextstep(cons(snd,l)))

Where:

1. x is the current date,

2. cons is the list constructor,

3. nextstep(l), where l is a list, aims at computing the result of the transition of the first sender of list
l according to the automata.

4. sortlist(l), where l is a list, aims at sorting senders according to waiting time: it returns list l in
an order such that the first sender in the obtained list is the next one to evolve. In other words, it
sorts the senders by value of wait_time.

For example, the transitions of the automata are encoded as follows:

[] nextstep ( cons(snd , l)) => cons((4,Tsendpacket,snd.nb_mess,snd.c,0),markwritten(l))

if snd.write==1 and snd.state==3

[] nextstep ( cons(snd , l)) => cons((0,timeout,snd.nb_mess,snd.c,0),l)

if snd.write==0 and snd.eta==3

[] nextstep ( cons(snd , l)) => cons((0,0,snd.nb_mess,snd.c+1,0),l)

if snd.write==2 and snd.eta==3
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These three rules code the outgoing transitions from the state number 3. The first applies if the write fields
equals to 1 and the field state equals 3, and we modify the field state to 4 which means that the first
sender of the list will transit to the state number 4 and the transition’s duration will be Tsendpacket.
The two other rules code a return to the zero state for the first sender because of errors notification.

Let now precise how the behavior of the different stations are synchronized in function of their access
to the medium. Previously we mentioned that the field write of each station was used to testify if another
station did a write access to the medium during the current transition.

The first rule of the example says that the list l is rewritten to markwritten(l) in the simulation term.
The markwritten term triggers rewrite rules which change the value of the field write of each element of
the list l to 2. Thanks to this, each term coding a sender, contains the information of what happened to
the medium during their last transition. When we look at three previous rules, we can see that each time
we take care of the write field’s value, and we transit to the next state in function of this value.

5 Positive almost sure termination

We now prove termination that the protocol is correct, by proving the following fact: any term (t, l), where
l encodes n senders with wait_time=0, is ultimately reduced in a number of rewrite rules whose mean is
finite to a term (t′, l′), where l′ encoding a list of n senders with state = 6, nb_mess=0. I.e. all messages
are ultimately sent in a finite mean time.

To do so, we use Lemma 1. We take B as the subset of the terms (t′, l′), where l′ encodes a list of senders
with state = 6, nb_mess=0. These terms are irreducible.

We are going to call Tp all the probabilistic1 rewrite rules acting on operator nextstep: i.e. all the rules
encoding the transitions of the automaton.

Let Ts denote all the other rewrite rules. These correspond to classical rewrite rules, since no probabilities
is involved.

We take A to be the set of terms t ∈ T (Σ, X) such that there is some unique position p ∈ Pos(t), such
that the subterm at position p is of the form nextstep(l), where l is a list sorted with respect to wait_time.

To apply Lemma 1, we need to build a function V : A → R that satisfies the hypotheses of this lemma.
We prove that if there exist three positive real numbers α, β and γ such that:

• Any term coding a state where the first sender is in state 1 rewrites by Tp ∪ Ts! to a term where this
sender is in state 2 with probability greater than α.

• Any term coding a state where the first sender is in state 3 rewrites by Tp ∪ Ts! to a term where this
sender is in state 4 with probability greater than β.

• Any term coding a state where the first sender is in state 4 rewrites by Tp ∪ Ts! to a term where this
sender is in state 5 with probability greater than γ.

Then there exist V certifying the positively almost sure termination of the simulation algorithm, and we
compute those three real numbers latter.

In the same way, we suppose that the probability to go to 5 from 6 is positive, because of the virtual
channel locking.

Consider the function V : A → R defined by:

V (...(nextstep(l1.l2. . . . .ln)...) = K × (
n

∑

i=1

nb_mess(li) + W (state(li)))

1Only the rule [] nextstep ... describing the transition from the state 0 is a probabilistic rewrite rule that depends on

the backoff result.
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where
K = 1−2(1−α)(1−β)+3(1−γ)(1−β)(1−α)

(1−α)(1−β)(1−γ)

W (0) = K

W (1) = K − 1
W (2) = K − α−2

1−α

W (3) = K − 2α−3
1−α

W (4) = K − α−(1−α)(1−β)
(1−α)(1−β)

W (5) = K − −2(1−α)(1−β)+α

(1−α)(1−β)

W (6) = 1
nbmess((state,...,nb_mess,...,write)) = nb_mess

state((state,...,write)) = state

Remark 1 One can see that we choose ǫ = 1 to simplify the reading of the function W and the computation
of the function V .

To shorten the notations, one denotes here by V (i.l) the valuation of a list cons(snd,l)where state(snd)=i.
This function satisfies for all l:







∀ p1 ≥ α > 0 p1 × V (2.l) + (1 − p1) × V (0.l) < V (1) − ǫ (1)
∀ 1 − β ≥ p2 > β > 0 p3 × V (3.l) + (1 − p3) × V (0.l) < V (3) − ǫ (2)
∀ p5 ≥ γ > 0 p5 × V (6.l) + (1 − p5) × V (0.l) < V (5) − ǫ (3)

(1)

for ǫ = 1.
It is quite easy to see that all permutations of the senders in the list do not change the system valuation

by V , the same is true when the fields write, c, waiting_time are modified. In other words, when a
nextstep rule is applied on a term of A, the valuation of term by V do not change by the rewrite rules of Ts.

∀t1 . . . tn, ∀φ,

∆
NF (T (Σ,X),→)
φ(t1...tn) V (tn) =

∑

t∈T (Σ,X) V (NFφ(t)) × φ(t1 . . . tn)(t) − V (tn)

=
∑

t∈T (Σ,X) V (t) × φ(t1 . . . tn)(t) − V (tn)

≤ −ǫ,

for ǫ = 1, where last inequality follows from inequations 1.
Hence, we have hypothesis 3 of lemma 1. The rewrite system Ts mostly codes the insertion of an element

in a list of size n - where n is the size of the sender list- with respect to a simple order, plus a scan on the
same list to update the wait_time field of each sender. In other word, the length of any derivation of Ts is
always bounded by a polynomial function of the first degree in the number n of senders: hence we can take
as Size function the function that returns for any list coding a valid list of senders the number n of senders
in the list, and as function L this polynomial function, to get hypothesis 1 of lemma 1.

Since all rules preserve the size n of lists, the rewrite derivation of Ts are finites, and hence hypothesis 2
of lemma 1 is satisfied.

The function V is a sum of a finite number of positive number, thus is lower bounded, and reaches its
minimum when each station has zero message to send and is in the state number 6, which describe the set
B of terminal terms. This shows that hypothesis 4 of lemma 1 is satisfied.

Lemma 1 then implies the correctness of the protocol: whatever is the initial state of the protocol,
ultimately all messages will be sent in a finite mean time.

The only remaining point is to prove that α, β and γ are non equal to 0.

5.0.1 Computing α

The sole phenomenon which may cause the automaton to return 0 once in 1 is that one station among the
n − 1 other has emitted a signal. This signal will necessary be a RTS tram, because all the station are
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synchronized by the the base station for starting the waiting phase of the algorithm. The probability that
the automaton 1 emits RTS in the state 1 equals the probability that:

backoff(c1) ≤ backoff(ci)∀i ∈ {1, . . . , n}

P (Succes1)2 = P (

n
⋂

i=2

backoff(c1) ≤ backoff(ci))

P (Succes1) =

n
∏

i=2

P (backoff(c1) ≤ backoff(ci))

The worst case happens when 1 has more than 10 collisions since the last successfully sent message and
that all the other station had no collisions.

P (Succes1) ≥
n

∏

i=2

P (backoff(10) ≤ backoff(1))

P (Succes1) ≥
1

210×n

We can then fix α = 1
210×n

5.0.2 Computing β

Two phenomenon may cause a failure,

1. A RTS packet is sent during the same time slot by one station among the n− 1 other visible stations.

2. There is a jamming caused by one of the k hidden stations.

Let us compute a high bound of the probability that the cause number one occurs. Such a phenomenon
happens when another station has the same backoff as the current one, that means,

P (Succes2)3 = P (∀i backoff(c1) 6= backoff(ci))

If, backoff(c1) 6= backoff(ci) then backoff(c1) < backoff(ci))

P (Succes2) = P (∀i backoff(c1) < backoff(ci))

P (Succes2) =

210

∑

j=1

P (backoff(ci) > i|backoff(c1) = j) × P (backoff(c1) = j)

P (Succes2) =

210

∑

j=1

n
∏

i=2

2ci − j

2ci
× 1j≤2ci ×

1

2c1
× 1{j≤2c1}

where 1{C} equals 1 when condition C is satisfied and 0 otherwise. Let us note p = mini∈{1,...,n}ci

P (Succes2) =

210

∑

j=1

n
∏

i=2

2ci − j

2(n−1)c1+
P

n
i=2

ci
= β1

Let us now compute the probability that the second phenomenon occurs,

2The set of events Succes1 denotes the successful firing of the rewrite rule coding the transition from the state 1 to 2
3The set of events Succes2 denotes the successful firing of the rewrite rule coding the transition from 3 to 4
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P (Succes2) = P (∀i ∈ {n + 1, . . . , n + k} backoff(c1) < backoff(ci))

P (Succes2) =

210

∑

j=1

n+k
∏

i=n+1

P (backoff(c1) < backoff(ci) = j) × P (backoff(c1) = j)

P (Sucess2) =

210

∑

j=1

n+k
∏

i=n+1

j

2ci × 2c1
× 1{j≤2ci∩j≤2c1}

Let us note p′ = mini∈{n+1,...,n+k}ci

P (Succes2) =

2p′

∑

j=1

n+k
∏

i=n+1

j

2c1+ci

P (Sucess2) =

2p′

∑

j=1

jk

2kc1+
Pn+k

i=n+1
ci

1 > β2 =
jk

2kc1+
Pn+k

i=n+1
ci

> 0

To successfully transit from 3 to 4, the whole system must satisfy Succes1 and Succes2. Because of
Success1 and Success2 are independent events, because of the two set of station are disjoints and each
station’s backoffis independent from all the other.

P (Success) = P (Sucess1 ∩ Sucess2) = P (Sucess1)× P (Sucess2)

P (Success) ≥ β1 × β2

β = β1 × β2 > 0

Remark that, when transiting from state 3 to reach state 5 in two steps, all the other stations are aware
that the current transmission is started. Therefore, they will wait at least DIFS time units with DIFS bigger
than the time required to send the data packets and receiving the ACK data packet. The constant γ allows
to model events such data corruption or transmission errors.

By computing the two constants α and β, we finished to prove the termination of the simulation algorithm
in a finite mean number of rewrite steps. We can notice that the rules matching on terms containing the
nextstep subterms are applied a finite mean number of time and increase the global date by at most 210

time units. This is enough to say that the mean value of the global date will be finite, for all simulations.

6 Upperbounding the time before termination

We have shown that the protocol simulation algorithm terminates in a finite mean time. Moreover, the proofs
in [4] show that any function V that satisfies the hypothesis of Theorem 1 with ǫ = 1 actually provides an
upper bound on the mean time before termination: any term t will rewrite to some terminal one in a number
of rewrite steps whose mean is upper bounded by V (t).

Combined with the constructions used here, we get that the function V built in previous section also
provides an upper bound on the mean time before termination of the rules simulating the protocol.

More precisely, any term simul(t, l) rewrites to a term of A in a number of rewrite steps whose mean is
less than V (simul(t, l)).

We therefore obtain our main result:

Proposition 1 Starting with n senders requesting to send some f packets,
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• the whole simulation will end in a terminal state (all packets sent) in a number of rewrite steps less
than V (simul(...cons(t, l)...) × L(n).

• the whole simulation will end in a terminal state (all packets sent) in a number of rewrite steps of Tp

less than V (simul(...cons(t, l)...).

• the whole protocol will end in a terminal state (all packets sent) in a time less than than V (simul(...cons(t, l)...)×
M .

where M = 210 and L : N → N is a first degree polynomial upper bounding the number of Ts-rewrite steps
occurring in the reduction of a given simulation term to a simulation term of A.

These results give us a qualitative information on the system and a quantitative one about upper-bounding
the mean execution time of the algorithm. Such a work is a particular example of current investigations
about proving quantitative and qualitative properties of probabilistic systems using rule based model.
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