Veérification de propriétés quantitatives et fonctionnelles

e Analysis and VERification for the Reliability Of Embedded Systems

Lot 3.1

Animation

Symbolic Simulation and Formal
Verification of Updatable Timed
Automata using a Rewrite System

Description : Simulateur d’automates Temporisés étendus AVERROES.

Auteur(s) : Olivier BOURNEZ, Térence SOUSSAN,
Bertrand TAVERNIER,

Référence : AVERROES / Lot 3.1 / Fourniture 1 / V1.0

Date : 14 mars 2006
Statut : validé
Version : 1.0

Réseau National des Technologies Logicielles
Projet subventionné par le Ministére de la Recherche et des Nouvelles Technologies

CRIL Technology, France Téléecom R&D, INRIA-Futurs, LaBRI (Univ. de Bordeaux — CNRS),
LIX (Ecole Polytechnique, CNRS) LORIA, LRI (Univ. de Paris Sud CNRS), LSV (ENS de
Cachan CNRS)

avril 2003 V 0.1 | version initiale
14 mars 2006 | V 1.0 | mise au format averroes

Table des matiéres

1 Introduction 2
2 The ELAN system 3
3 The CALIFE plateform 3
4 TUpdatable Timed Automata 4
5 Model-checking algorithms implemented in ELAN 6
6 The CALIFE Simulator 8

6.1 Driving ELAN from CALIFE 8

6.2 A Graphical User Interface for debugging specifications 9

7 Conclusion 11

Résumé

In the paper we present a tool, fully developed using rewrite rules and strategies in the ELAN sys-
tem, which supports symbolic simulation and formal verification of reachability properties on reac-
tive timed systems. Systems proved or simulated are modeled as a synchronized product of Upda-
table Timed Automata (Timed Automata extended with bounded variables and non-deterministic
updates).

The tool is connected to the CALIFE plateform which allows the design of systems in a graphical
way. A dedicated graphical user interface is connected to the plateform for specifying reachability
requests by simple clicks. Using that interface, a simulation trace can be built by switching between
"step by step" and reachability requests. This process allows one to debug a specification with a
kind of breakpoint modeled by a reachability formula.

1 Introduction

Overview. The CALIFE v3.0 plateform is an environment developed under the GPL license
(freely downloadable at http ://calife.criltechnology.com) allowing the specification and formal va-
lidation of systems described as a synchronized product of (extended) timed automata [14].

The goal of this plateform is not to provide another verification tool but to interface existing tools
working on automata in a unique graphical and powerful environment.

The CALIFE plateform is composed of several layers :

1. a system editor which allows the user to model in graphic form a system described as a
synchronized product of timed automata ;

2. a model compiler that checks the consistency of the input ;
3. a script engine that generates datas and executes one of the interfaced tool.

Among the interfaced tools there are CMC[5], COQ[6], HyTech[9], KRONOS|[10], UPPAAL[16], and
a model-checker built using ELAN rewrite system [3].

Considering that a simulator was missing to CALIFE graphical interface, it was proposed to build
this simulator by adapting this latter model-checker. Indeed, the code needed to realize a simulator
is close to the code used by model-checkers, and unlike all the other tools, the code of this latter
model checker is not hard-coded in a classical imperative programming language but written using
a set of high-level rules that are executed using the ELAN rewrite system, hence providing clearly
a great flexibility.

That is why it was decided to start from the model-checker of [3] (about 1000 lines, tested only
few simple timed automata) to build a new model-checker fully usable as a simulator tool by the
CALIFE plateform. The new tool is now about 5000 lines.

This paper. This paper focus on describing

1. the extensions that have been added to the previous model-checker concerning the class of
automata that can now be model-checked ;

2. the extensions that have been added to the previous model-checker concerning possible
queries that allow one to use it as simulator ; for the CALIFE plateform

3. the connexion of the new model-checker with the CALIFE plateform.

The new model-checker. Compared to the tool described in [3], the new model-checker /simulator
now offers :

1. the possibility of defining products of automata synchronized by synchronization vectors
(the most general and powerful way to define synchronization) ;

2. the possibility of qualifying some locations as urgent ;

3. the possibility of doing depth-first, breadth-first, concentric explorations in order to get for
example all the states reachable in some fixed number of discrete transitions;

4. the possibility of obtaining a trace of a given execution as well as the list of all labels used
in that transitions;

5. the possibility to use wildcards in the description of states tested for reachability as well as
detecting deadlocks ;

6. the possibility of considering automata with integer bounded variables and with very general
updates.

The latter point, concerning integer variables is very important, since it transforms our tools not
only in a model checker for classical timed automata [2], but also in a model checker for the
updatable timed automata model presented in [4]. As far as we know, this is the first simulator
which is really able to deal with this very general model.

Organization. In Section 2 we recall briefly the ELAN system. In Section 3 we present the
CALIFE plateform. Updatable timed automata and the associated model-checking algorithms for
testing reachability properties are recalled in Section 4. In Section 5, we describe the way these
algorithms have been implemented using rewrite rules and strategies in the ELAN system. In
Section 6, we explain how the model-checker is connected to the CALIFE plateform in order to
get a simulator, and we discuss the resulting functionalities for CALIFE plateform users. Section
7 is a conclusion.

2 The ELAN system

The simulator for the CALIFE plateform is built using the rewrite system ELAN.

The ELAN system [8] takes from functional programming the concept of abstract data types
and the function evaluation principle based on rewriting. In ELAN, a program is a set of labeled
conditional rewrite rules with local affectations

{:1l=rif ¢c where w

Informally, rewriting a ground term ¢ consists of selecting a rule whose left-hand side (also called
pattern) matches the current term (), or a subterm (¢|,), computing a substitution o that gives
the instantiation of rule variable (lo = t|,), and if instantiated condition c is satisfied (co reduces
to true), applying substitution o enriched by local affectation w to the right-hand side to build
the reduced term.

One of the main originalities of the ELAN language is to provide strategies as first class objects
of the language. This allows the programmer to specify in a precise and natural way the control
on the rule applications.

The full ELAN system includes a preprocessor, an interpreter, a compiler, and standard libraries
[8]. The ELAN compiler is able to generate code that applies up to 15 millions rewrite rules per
second on typical examples where no non-determinism is involved and typically between 100 000
and one million controlled rewrite per second in presence of associative-commutative operators
and non-determinism [11, 12].

3 The CALIFE plateform

The simulator/model-checker presented in this paper is fully integrated to the CALIFE plateform.
The CALIFE plateform is a framework for modeling and proving reactive timed systems. It works
on several automata models (transition systems, timed automata, counter automata,...) and allows
one to define new models and interface new tools. Several tools are currently interfaced with the
plateform (UPPAAL [16], HyTech [9], KRONOS [10], CMC [5], COQ [6],...) and a unique timed-
automata system modeled under the CALIFE System Editor can be exported to all these tools.

XML Automata. In the plateform, automata are described using the XML standard [17]. The
key of interoperability between tools is to represent every predicate as an Abstract Syntax Tree
(AST in short) where :
— the root is a Guard, Invariant, Updates or Activity node;

the leaves are Variable, Parameter or Constant nodes;

the intermediary nodes are associated with functions (but some usual operators are pretty-

printed for flexibility reasons).
Of course, that mechanism is totally hidden to the user who defines automata in a graphical way.
These syntactic automata definitions allow one to easily generate target code for interfaced tools.
The process of the generation of target code can be slitted into two parts : generating the predicates
in the target language and modeling the product of automata in a consistent way with respect to
the semantics of synchronization in the tool.

System Editor

| | Model Compiler
.,-". (Type-Checker)
Counter Automata
Automata | | ;| l;

Timed Automata

Models .
.
Hybrid Automata ey, Script Engine +
XSLT Processor

Si mul at or Model - Checker s Provers O her
e e B * Kronos * Coq * Postscript

* Uppaal * lsabelle * Abstractions
b ‘_’_ === * Hytech *o * Test generator
E B *

F1G. 1 — Overview of the CALIFE plateform

Translating predicates. That step is performed using an XSL transformation [18]. Since every
predicate is represented as an AST, the corresponding code can be generated searching through
the tree from the root to the leaves and associating a simple rule for code generation with every
node encountered. These rules are defined using an “xsl :template” node [18].

Modeling the synchronized product. Several techniques can be used to generate consistent

code :
direct translation of the synchronization table for tools able to deal directly with synchronization
tables (CMC [5], COQ [6] or the simulator/model-checker presented in this paper for example).
Code defining the table can be generated using a very simple XSL transformation.

— translation using an injective function which associates a single label with every synchronization
vector. Every transition is replicated for each instance of its label in the table. This technique
is used for tools like KRONOS [10], HyTech [9] or the previous version of the model-checker
developed in ELAN. Code can be generated using an XSL transformation.

— complex translation using XML pattern matching programming with the rewrite based Tom tool
[15]. This technique is used to interface the UPPAAL tool [16] where new states must be
introduced for every synchronization vector using more than one synchronization label. Complex
abstractions are also made using this technique.

4 Updatable Timed Automata

Introduction. Updatable timed automata is a model for reactive systems defined in [4] which
extends the timed automata model introduced by Alur and Dill [2].

Let X be a finite set of variables called clocks. A clock valuation is a mapping v : X — RT, where
R* denotes the set of non-negative reals. The set of clock valuation is denoted (R*)X. Given
t € R, the valuation v + ¢ is defined by (v +t)(x) = v(z) + ¢ for all x € X. When the cardinality
of X is n, we also identify a valuation v with the point (v(2;))1<i<n of (RT)".

Clock constraints. The set of clock constraints denoted by C(X), is defined by the following
grammar ¢ == T ~ clx —y ~ c|lp A pltrue where z,y € X, c € Q, ~€ {<,<,=,>,>}, and Q is
the set of rational numbers.

A k-bounded clock constraint is a clock constraint that involves only constants between —k and
+k.

Updates. An update is a function which assigns to each valuation a set of valuations. Updates
are restricted as follows : a simple update over a clock z has one of the following forms up ::=
z:=~clz:=~y+cwhere ceQ,y € X and ~€ {<,<,=,>,>}.

Given a valuation v and a simple update up over z, a valuation v’ is in up(v) if v'(y) = v(y) for
all y # z, and if v/(2) satisfies (~€ {<,<,=,>,>}) :

V'(z) ~cand v'(z) >0 if up = 2 :=~c
V(z) ~v(y)+dand v'(2) >0 fup=z:=~c+d

An update over a set of clocks X is a collection up = (up;)1<i<x where each up; is a simple update
over some clock z; € X . Given a valuation v, a valuation v’ is in up(v) if and only if, for all ¢, the
clock valuation v; defined by

{vi(xi) = o'(z;)
vily) = wv(y) fory#ua

is in up;(v). The set of updates over the set of clocks X is denoted by U(X).

Updatable Timed Automata. An updatable timed automata[4]is atuple A = (£,Q,T, 1, F, X)
where X is a finite alphabet of actions, @ is a finite set of states called locations, X is a finite set
of clocks, T C Q x [C(X) x ¥ x U(X)] x @ is a finite set of transitions, I C @Q is the subset of
initial states, and F' C @ is the subset of final states.

Timed Automata correspond to updatable timed automata where the only allowed atomic updates
are of the form up :=2=0, z € X [2].

Runs. A path of Ais afinite sequence of consecutive transitions P = gy —%1*"P1 gy ... g1 —>F» %2 "Pp
qp where (gi—1, @i, a;, up;, q;) € T for each 1 < i <p.
The path is said to be accepting if it starts in an initial state (g9 € I) and ends in a final state

(gp € F).
A run of the automaton through the path P is a sequence of the form < ¢, v >—>;’;1’a1’"p1<
1,01 > o < Qpe1,Vp_1 >—>fp‘“’a‘“’u’)zo ¢y where (t;)1<i<p is finite non-decreasing sequence of

non-negative reals, and (v;)1<i<p are clock valuations defined by

vo(x) =0, Ve € X
vi—1 + (t; — ti—1) satisfies @;
v; € upi(vi—1 + (ti — ti—1))

Building automata from simpler ones. Given A4, = (X1,Q1,T1, 11, F1,X;1) and Ay =
(89, Q. Ts. I, Fy, Xs), and a set Synch C (£3 U {—}) x (S U {—}) of synchronization vectors,
the product automata A;||As is defined as (31 U 3o, Q1 X Q2, T, I1 X Iy, F} X Fy, X3 U X5) where
the set of transitions T is defined by
1. For (a1, as) € Synch,a; € X1, as € Yo, whenever (q1, 1, a1, up1,qy) € T1 and (g2, p2, az, upa, ¢4) €
T27 then ((qla q2)7 ai, Y1 A Y2, UpP1 U up2, (qllv qé)) er
2. For (Cll, _) € Syn0h7 whenever (qla $1,0a1,Up1, qll) S Tlﬂ then for all q2 € QQ? ((q17 qQ)a ai, ¥1,UpP1, (qlla q2)) €
T

3. Symmetrically for (—,as) € Synch.

Model-checking algorithms. A zone is a subset of R™ defined by a clock constraint. A k-
bounded zone is a zone defined by a k-bounded clock constraint. When Z is a zone, we denote by
Approzx(Z) the smallest k-bounded zone Zj such that Z C Z.

If e = ¢ —%%C=0 ¢/ is a transition of a timed automaton, then Post(Z, e) denotes the set [C' «
0](¢ N Future(Z)) where Future(Z) represents the future of Z and is defined by Future(Z) =
{v+tlv € Z and t > 0}. In other words, Post(Z, e) is the set of valuations which can be reached
by waiting in the current state g and then taking the transition e.

The algorithm implemented in our model-checker for testing reachability properties for timed
automata (for e.g. in UPPAAL [16] and KRONOS [10], see the discussion in [4]) is the following' :

ZoneAlgorithm(A) :

Compute k the largest constant appearing in A ;
Visited :— () ;
Waiting := {(qo, Approzi(Zy))};
Repeat

Get and Remove (q, Z) from Waiting ;

If g is final then {Return “Yes”;}

else { if there is no (q, Z') € Viisited such that Z C Z’
then { Visited := Visited U {(¢q, 2)};
Successor := {(q', Approx(Post(Z,e)))le
transition from q to ¢’} ;
Waiting := Waiting U Successor ;} }

Until (Waiting = 0) ;
Return “No”; }

As proved in [4], a similar algorithm can be derived for updatable timed automata by replacing
the approximation Approxj operator by a more general one.

DBMs. For timed automata as well as for updatable timed automata, zones can be represented
efficiently by matrices, to get the so called difference bounded matrices (DBM) [7]. The operations
needed on zones (computing Future(Z), [C' < 0](Z), Z N Z' for given zones Z, Z') correspond to

elementary manipulations on these matrices [1].

5 Model-checking algorithms implemented in ELAN

The ELAN code of the simulator consists mainly in rewrite rules that implement the previous
algorithm ZoneAlgorithm for udpatable timed automata.

Representing zones. Observing the grammar of constraints, clock constraints and zones can
be parsed directly using the following mix-fix ELAN signature :

true : clause ;

false : clause ;

@< @ : (clock int) clause ;

Q<=0 (clock int) clause ;

@ - 0<=0 (clock clock int) clause ;

@ -0< @ (clock clock int) clause ;

6] : (clause) clockzone ;

@ - @ : (clockzone clockzone) clockzone assocRight;

LGiven a timed automaton A it tests if A has an accepting run by computing step-by-step an over-approximation
of the set of reachable states and tests whether this approximation intersects the set of final states.

We also implemented difference bounded matrices [7] : difference bounded matrices correspond in
the ELAN code to terms of sort matriz[bound] where bound is a sort for coding DBM entries, and
matriz is the built-in module of ELAN system for dealing with matrices.

The pairs of type (q,Z) of algorithm ZoneAlgorithm correspond then to terms of the form ¢/z
where ¢ is a list of locations, and z is a term coding the zone Z using the previous signature or a
DBM.

Operations on zones. To implement ZoneAlgorithm, the main operations to be realized on
zones are the operators that map a zone Z to Future(Z), [C' < 0](Z) and Approxy(Z) respectively.
Unlike previous prototype where these operations where realized using a Fourier-Motzkin like
algorithm [3], these operations are now realized by working on DBMs, transforming constraints to
DBM if needed.

In the same spirit, the classical Floyd-Warshal algorithm for computing normal form of DBMs
[7, 1] as well as the test of vacuity of a DBM are also fully written by ELAN rewrite rules.

// ELAN Signature of main operations on DBMs

TimeDBM(@): (matrix[bound]) matrix[bound]; //Future

@-ApproxDBM(@) : (int matrix[bound]) matrix[bound];//Approx_k

InterDBM(@,Q) : (matrix[bound] matrix[bound]) matrix[bound];
//Intersection

Project(@,@): (matrix[bound] list[clock]) matrix[bound]; //[C<-0]

Floyd(@,@): (matrix[bound] int) matrix[bound] ; //Canonical Form

IsEmptyDBM(@,Q@): (matrix[bound] int) bool; //Empty?

Transcription of Automata The previous rules are independant of the automata given as
input. For rules dependant of the (updatable) timed automaton given as input, the rules are
generated using the preprocessor of the ELAN system.

For example, 2n + 1 named rules and a strategy of ELAN strategy language are used for making
an automaton corresponding to a product of n automata do a transition, using the following
ELAN code :

// Transcription of a synchronization product
FOR EACH N : Int SUCH THAT N:=()valueOf(size_of_Automaton_list(LA)):{
rules for can_sz

{s_I : state ;}_I=1...N

{ss_J : state ;}_J=1...N

Phi, nPhi : matrix[bound] ;

11bl : list[label] ;

1bl : label;

cansz : can_sz ;
global

{[r1s_i] DTs(11bl,{s_j.}_j=1...(i-1) s_i.{s_j.}_j=(i+1)...N nil/Phi) =>
DTs(11bl,{s_j.}_j=1...(i-1) ss_i.{s_j.}_j=(i+1)...N nil/nPhi)
where 1bl:=()i-th elem(11bl)
if not(eq_label (NOMOVE,1bl))
where cansz:=()TransitionOperator.lbl(s_i/Phi)
where ss_i:=()st(cansz)
where nPhi:=()zn(cansz)
end
[r2s_i] DTs(11lbl,cansz) => DTs(11lbl,cansz) end
}_i=1...N
[r3s] DTs(11bl,cansz) => cansz end
end // of rules for can_sz

}

With the following strategy built using the first one operator (this ELAN strategy operator applied
on a term ¢ returns the result of the first strategy among its arguments on ¢ that does not fail) :

strategies for can_sz
implicit
FOR EACH N : Int SUCH THAT N:=()valueOf(size_of_ Automaton_list(LA)) :{
[1 next_sz => {first one(ris_I,r2s_I);}_I=1...N r3s end
}

Breadth-First Exploration The first model-checker written in ELAN was implementing a
Depth-First exploration of the zone graph. In our case, the goal is to build a model-checker which
can be used as a symbolic simulator. Depth-First exploration does not ensure that the trace
returned is the shortest. That’s why, we implemented a breadth-first exploration compliant to the
model-checking algorithm ZoneAlgorithm.

From an implementation point of view, the list of visited states is stored using a hashtable principle.
This technique divides the time needed for exploration by 3. Requiring the compiled code to use
the aterm library [13] which allows maximal subterm sharing and automatic garbage collection
allows one to divide further the time for exploration by 2.

On-the-fly model-checking. Our implementation using a rewrite engine and our transcription
of automata transitions into rewriting rules offers a natural way to implement On-the-fly model-
checking. This means that the synchronized automata are not statically built before starting to
reach the final state, but is constructed on running time and only when needed.

Queries The different queries for reachability that are offered by the tool are the following

(notice that wild-cards are authorized when writing starting and final subsets).
breadth-First (starting subset, final subset), where starting subset and final subset are of the
form s/c where s is a list of locations (with possibly wildcard %) and ¢ is a zone. This query
returns an execution trace if some state of the final subset is reachable from a state of the
starting subset, or unreachable otherwise.
breadthFirstExplorationls(starting subset,final subset) does an exploration similar to the
previous query but without returning a trace : it returns only reachable or non — reachable.
Reachableln-i-stepsFrom (starting subset) returns all the traces corresponding to states rea-
chable in exactly i-steps from starting subset ; it returns that the exploration is exhaustive in
less than i-steps otherwise. Similarly to the two previous queries, it is implemented using a
breadth-first exploration in the spirit of ZoneAlgorithm.
DsbreadthFirst (starting subset) seeks for a deadlock starting from starting subset, and returns
a trace that reaches it if there is one. It returns that there is no deadlock otherwise. It is also
implemented using a breadth-first exploration.

— ReachInOneStep (starting subset, final subset) returns true if some state of final subset can
be reach in one step from a starting state, false otherwise

6 The CALIFE Simulator

6.1 Driving ELAN from CALIFE

Generating the ELAN executable. As other tools integrated in the CALIFE plateform, the
ELAN simulator is connected using an XML script defined inside a model definition (associated
to an automata class like Timed Automata, Extended Timed Automata or Updatable Timed
Automata). The XML script executed by the CALIFE Script Engine is in charge of :

generating the ELAN specification : this step is performed using a simple XSL[18] transformation
directly translating the XML tree in a flat textual form. The use of a synchronization table in
the ELAN tool simplifies a lot that step by avoiding to calculate synchronization labels or to
abstract the system in an equivalent form

— compiling the ELAN executable : in order to have the best performances during model-checking
verification, we choose to drive a C executable generated by the ELAN compiler instead of
using the ELAN interpreter. To avoid useless compilations (which spend about 1 minute), we
calculate a magic number from the specification (using a CRC32) in order to determine when a
compilation phase is necessary.

Driving the ELAN executable. In order to make the graphical interface independant of
ELAN term forms, we define a Java interface defining a generic exchange protocol for the simulator
engine (SimulatorEngine.java).
Any Java class following this interface must implement the following methods :

public Document getNextStatesMultitracesFrom(Node xmlZone) ;
— public Document findaDeadlockFrom(Node xmlZone) ;
— public Document reachState(Node fromxmlZone, Node toxmlZone) ;
As illustrated in the previous Java function signatures, we use XML (which is generalized within
the CALIFE plateform) as a data exchange format between the simulator engine and the GUIL.
The java functions are in charge of executing the simulator engine and translating the results in
XML.

XML representation of an execution trace. The XML grammar used to represent Zones
(StateSync) and Traces is defined by the following DTD[17]? :

<!ELEMENT Trace (StateSync, (Action,StateSync)*)>
<!ATTLIST Trace Label CDATA #REQUIRED>
<!ELEMENT StateSync ((State)*,Diag,Glob)>
<!ELEMENT State (Loc,Bounds)>
<!ATTLIST State Id CDATA #REQUIRED>
<!ATTLIST State Component CDATA #REQUIRED>
<!ELEMENT Loc EMPTY>
<!ATTLIST Loc Label CDATA #REQUIRED>
<!ELEMENT Bounds (Bound) *>
<!ELEMENT Diag (Bound)*>
<1ELEMENT Glob (Bound)*>
<!ELEMENT Bound EMPTY>
<!ATTLIST Bound Value CDATA #REQUIRED>

From a semantical point of view,
a Bound node defines an atomic clock constraint (cf Section 4).
— a Bounds node contains a sequence of Bound and is local to an automaton (non-diagonal
constraints involving only local variables).
— a Glob node contains a sequence of Bound associated to non-diagonal constraints involving
global (shared) variables.
a Diag node contains all diagonal constraints.
An XML trace is made by a sequence of StateSync nodes (defining a state zone) and Action nodes
(defining the label of the synchronization vector used to reach the next state).

6.2 A Graphical User Interface for debugging specifications

Overview of the simulator As illustrated by the figure below, the GUI is made of 4 parts
showing :

2Document Type Definition

it o T T e T D e | |}
Fis Jiacer SepaySed Opsam Help
AL o 0 0 i e T PR]
e = 5l =
| T8 3T

aa T, AR g .
0 @ AT

Ty
13 e

we=t
aciiwidn

LR T
R & Dingorai Canduen
A

iy o0 8 T

=R st

O T e T
e dm, W0, |

O 8| T AT

(B8 Tiae

13 LA AT
17§ FEaw aary, bare

@ e T | 7T

-
@ # TaremdiiTaneaTiccn

Wk o T e L e |

 —— | T R o @'“‘* 1

Fi1G. 2 Overview of the simulator

In the central part, a view of all the components defined in the synchronized product. These
views are always centered on the current location of all the graphs.

— In the upper-left part of the window, the current execution trace built by the user. Initially, this
trace only contains the initial state. The trace is presented as a tree which can be expanded to
inspect clock valuations.

In the lower-left part, all the states reachable in " one step " from the current state (modulo
time elapse).

— The bottom part is used to easily construct reachability requests on the model. That can be
done by clicking on locations in the graphs associated to automata and (optionally) adding a
specific clock constraint.

Step by Step debugging. The first main functionality of a symbolic simulator over automata
is to be able to run a specification "Step by Step". For every state reached, a "Reachin-1-Step"
term is built and rewritten by the ELAN program in a list of states to present the next states list.
That kind of functionality is available in the UPPAAL [16] tool which deals with Timed Automata
with bounded variables. Our tool allows one to add non-deterministic updates (to simulate an
algorithm with an input between a lower and a upper bound for example).

A breakpoint as a reachability formula. In the simulator GUI, the user can also create
a reachability request by simply clicking on locations and adding a constraint over clocks and
variables that the reached state must satisfy. A "breadth-First" term is built and rewritten by the
ELAN program in an execution trace (playable for the simulator) or a UNREACHABLE STATE
term.
Mixing Step by Step and Reachability allows the user :
— to run the system to a specific execution point (breakpoint) and then to inspect the specification
step by step.
to prove formula like When that state is reached, the system has no deadlock or that state is
unreachable , ...
— to orient the model-checker for proving reachability formula in cases where direct model-checking
is impossible because of a combinatorial explosion. The user can construct the beginning of a
potential execution trace and then try to reach the state from that intermediary point.

7 Conclusion

In this paper we presented a tool fully written using the ELAN rewrite system, and fully integrated
to the CALIFE plateform that provides first a model-checker with functionalities available now-
here else (for example the possiblity of model-checking updatable timed automata), and second a
simulator that provides a graphical tool for simulating products of (extended) timed automata in
the CALIFE plateform with unique features.

Furthermore, if one considers that the whole system was fully developed in ELAN in five months,
by a non rewrite-system expert who neither know rewriting nor ELAN system before this exercise,
it can be observed that this is also a demonstration of the gain offered by the use of a rewrite
system such as ELAN for realizing quickly powerful prototypes.

The full code can be found at http ://calife.criltechnology.com in the CALIFE plateform downloa-
dable area.
From the modeling and verification point of view, with

1. its full integration into the CALIFE plateform,

2. the connection of the CALIFE plateform with all tools for timed automata,
3. the new resulting simulation facilities,

4. in particular with the flexibility offered in the queries,

we believe that the CALIFE plateform with our simulator is one of the most powerful tool for
practical verification and simulation of timed automata.

Références

[1] R. Alur. Timed automata. In NATO-ASI Summer School on Verification of Digital and
Hybrid Systems, 1998.

[2] R. Alur and D. L. Dill. Automata for modeling real-time systems. In Automata, Languages
and Programming, 17th International Colloguium, volume 443 of Lecture Notes in Computer
Science, pages 322 335. Springer-Verlag, 16 20 July 1990.

[3] Emmanuel Beffara, Olivier Bournez, Hassen Kacem, and Claude Kirchner. Verification of
timed automata using rewrite rules and strategies. In Nachum Dershowitz and Ariel Frank,
editors, Proceedings BISFAI 2001, Seventh Biennial Bar-Ilan International Symposium on
the Foundations of Artificial Intelligence, Ramat-Gan, Israel, June 25-27, 2001.

[4] Patricia Bouyer. Updatable timed automata, an algorithmic approach. Technical report,
LSV, 2001. Available at http ://www.Isv.ens-cachan.fr/Publis.

[5] CMC. CMC. Available at http ://www.Isv.ens-cachan.fr/fl/cmcweb.html.
[6] COQ. COQ. Available at http ://coq.inria.fr.

[7] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. volume
407 of Lecture Note in Computer Science, pages 197-212. Springer-Verlag, 1989.

[8] ELAN. ELAN. Available at http ://elan.loria.fr/.
[9] HYTECH. HyTech. Available at http ://www-cad.eecs.berkeley.edu/tah/hytech/.
[10] KRONOS. Kronos. Available at http ://www-verimag.imag.fr/ TEMPORISE /kronos/.

[11] Pierre-Etienne Moreau. REM (Reduce Elan Machine) : Core of the new ELAN compiler.
In Proceedings 11th Conference on Rewriting Techniques and Applications, Norwich (UK),
volume 1833 of Lecture Notes in Computer Science, pages 265 269. Springer-Verlag, 2000.

[12] Pierre-Etienne Moreau and Héléne Kirchner. A compiler for rewrite programs in associative-
commutative theories. In “Principles of Declarative Programming”, number 1490 in Lecture
Notes in Computer Science, pages 230-249. Springer-Verlag, September 1998. Report LORIA
98-R-226.

[13] Pierre-Etienne Moreau and Olivier Zendra. GC2 : A Generational Conservative Garbage
Collector for the ATerm Library, 2004. To appear in Journal of Logic and Algebraic Pro-
gramming.

[14] Bertrand Tavernier. Calife : a generic graphical user interface for automata tools. In Fourth
Workshop on Language Descriptions, Tools and Applications (LDTA 2004), April 2004.

[15] TOM. TOM. Available at http ://tom.loria.fr/.
[16] UPPAAL. UPPAAL. Available at http ://www.uppaal.com/.

[17] XML. Eztensible Markup Language (XML) 1.0. W3C Recommendation, October 6 2000.
http ://www.w3.org/TR/2000/REC-xm|-20001006.

[18] XSL. Eztensible Stylesheet Language (XSL) Version 1.0. W3C Recommendation, October 15
2001. http ://www.w3.org/TR/xsl/.

