
Véri�ation de propriétés quantitatives et fontionnellesAnalysis and VERi�ation for the Reliability Of Embedded Systems
Lot 3.1Animation

Symboli Simulation and FormalVeri�ation of Updatable TimedAutomata using a Rewrite System
Desription : Simulateur d'automates Temporisés étendus Averroes.Auteur(s) : Olivier Bournez, Térene Soussan,Bertrand Tavernier,Référene : Averroes /Lot 3.1 /Fourniture 1 /V1.0Date : 14 mars 2006Statut : validéVersion : 1.0
Réseau National des Tehnologies LogiiellesProjet subventionné par le Ministère de la Reherhe et des Nouvelles TehnologiesCRIL Tehnology, Frane Téléom R&D, INRIA-Futurs, LaBRI (Univ. de Bordeaux � CNRS),LIX (Éole Polytehnique, CNRS) LORIA, LRI (Univ. de Paris Sud � CNRS), LSV (ENS deCahan � CNRS)

avril 2003 V 0.1 version initiale14 mars 2006 V 1.0 mise au format averroesTable des matières1 Introdution 22 The ELAN system 33 The CALIFE plateform 34 Updatable Timed Automata 45 Model-heking algorithms implemented in ELAN 66 The CALIFE Simulator 86.1 Driving ELAN from CALIFE . 86.2 A Graphial User Interfae for debugging spei�ations 97 Conlusion 11

RésuméIn the paper we present a tool, fully developed using rewrite rules and strategies in the ELAN sys-tem, whih supports symboli simulation and formal veri�ation of reahability properties on rea-tive timed systems. Systems proved or simulated are modeled as a synhronized produt of Upda-table Timed Automata (Timed Automata extended with bounded variables and non-deterministiupdates).The tool is onneted to the CALIFE plateform whih allows the design of systems in a graphialway. A dediated graphial user interfae is onneted to the plateform for speifying reahabilityrequests by simple liks. Using that interfae, a simulation trae an be built by swithing between"step by step" and reahability requests. This proess allows one to debug a spei�ation with akind of breakpoint modeled by a reahability formula.

1 IntrodutionOverview. The CALIFE v3.0 plateform is an environment developed under the GPL liense(freely downloadable at http ://alife.riltehnology.om) allowing the spei�ation and formal va-lidation of systems desribed as a synhronized produt of (extended) timed automata [14℄.The goal of this plateform is not to provide another veri�ation tool but to interfae existing toolsworking on automata in a unique graphial and powerful environment.The CALIFE plateform is omposed of several layers :1. a system editor whih allows the user to model in graphi form a system desribed as asynhronized produt of timed automata ;2. a model ompiler that heks the onsisteny of the input ;3. a sript engine that generates datas and exeutes one of the interfaed tool.Among the interfaed tools there are CMC[5℄, COQ[6℄, HyTeh[9℄, KRONOS[10℄, UPPAAL[16℄, anda model-heker built using ELAN rewrite system [3℄.Considering that a simulator was missing to CALIFE graphial interfae, it was proposed to buildthis simulator by adapting this latter model-heker. Indeed, the ode needed to realize a simulatoris lose to the ode used by model-hekers, and unlike all the other tools, the ode of this lattermodel heker is not hard-oded in a lassial imperative programming language but written usinga set of high-level rules that are exeuted using the ELAN rewrite system, hene providing learlya great �exibility.That is why it was deided to start from the model-heker of [3℄ (about 1000 lines, tested onlyfew simple timed automata) to build a new model-heker fully usable as a simulator tool by theCALIFE plateform. The new tool is now about 5000 lines.This paper. This paper fous on desribing1. the extensions that have been added to the previous model-heker onerning the lass ofautomata that an now be model-heked ;2. the extensions that have been added to the previous model-heker onerning possiblequeries that allow one to use it as simulator ; for the CALIFE plateform3. the onnexion of the new model-heker with the CALIFE plateform.The new model-heker. Compared to the tool desribed in [3℄, the new model-heker/simulatornow o�ers :1. the possibility of de�ning produts of automata synhronized by synhronization vetors(the most general and powerful way to de�ne synhronization) ;2. the possibility of qualifying some loations as urgent ;3. the possibility of doing depth-�rst, breadth-�rst, onentri explorations in order to get forexample all the states reahable in some �xed number of disrete transitions ;4. the possibility of obtaining a trae of a given exeution as well as the list of all labels usedin that transitions ;5. the possibility to use wildards in the desription of states tested for reahability as well asdeteting deadloks ;6. the possibility of onsidering automata with integer bounded variables and with very generalupdates.The latter point, onerning integer variables is very important, sine it transforms our tools notonly in a model heker for lassial timed automata [2℄, but also in a model heker for theupdatable timed automata model presented in [4℄. As far as we know, this is the �rst simulatorwhih is really able to deal with this very general model.

Organization. In Setion 2 we reall brie�y the ELAN system. In Setion 3 we present theCALIFE plateform. Updatable timed automata and the assoiated model-heking algorithms fortesting reahability properties are realled in Setion 4. In Setion 5, we desribe the way thesealgorithms have been implemented using rewrite rules and strategies in the ELAN system. InSetion 6, we explain how the model-heker is onneted to the CALIFE plateform in order toget a simulator, and we disuss the resulting funtionalities for CALIFE plateform users. Setion7 is a onlusion.2 The ELAN systemThe simulator for the CALIFE plateform is built using the rewrite system ELAN.The ELAN system [8℄ takes from funtional programming the onept of abstrat data typesand the funtion evaluation priniple based on rewriting. In ELAN, a program is a set of labeledonditional rewrite rules with loal a�etations
ℓ : l ⇒ r if c where wInformally, rewriting a ground term t onsists of seleting a rule whose left-hand side (also alledpattern) mathes the urrent term (t), or a subterm (t|ω), omputing a substitution σ that givesthe instantiation of rule variable (lσ = t|ω), and if instantiated ondition c is satis�ed (cσ reduesto true), applying substitution σ enrihed by loal a�etation w to the right-hand side to buildthe redued term.One of the main originalities of the ELAN language is to provide strategies as �rst lass objetsof the language. This allows the programmer to speify in a preise and natural way the ontrolon the rule appliations.The full ELAN system inludes a preproessor, an interpreter, a ompiler, and standard libraries[8℄. The ELAN ompiler is able to generate ode that applies up to 15 millions rewrite rules perseond on typial examples where no non-determinism is involved and typially between 100 000and one million ontrolled rewrite per seond in presene of assoiative-ommutative operatorsand non-determinism [11, 12℄.3 The CALIFE plateformThe simulator/model-heker presented in this paper is fully integrated to the CALIFE plateform.The CALIFE plateform is a framework for modeling and proving reative timed systems. It workson several automata models (transition systems, timed automata, ounter automata,...) and allowsone to de�ne new models and interfae new tools. Several tools are urrently interfaed with theplateform (UPPAAL [16℄, HyTeh [9℄, KRONOS [10℄, CMC [5℄, COQ [6℄,...) and a unique timed-automata system modeled under the CALIFE System Editor an be exported to all these tools.XML Automata. In the plateform, automata are desribed using the XML standard [17℄. Thekey of interoperability between tools is to represent every prediate as an Abstrat Syntax Tree(AST in short) where :� the root is a Guard, Invariant, Updates or Ativity node ;� the leaves are Variable, Parameter or Constant nodes ;� the intermediary nodes are assoiated with funtions (but some usual operators are pretty-printed for �exibility reasons).Of ourse, that mehanism is totally hidden to the user who de�nes automata in a graphial way.These syntati automata de�nitions allow one to easily generate target ode for interfaed tools.The proess of the generation of target ode an be slitted into two parts : generating the prediatesin the target language and modeling the produt of automata in a onsistent way with respet tothe semantis of synhronization in the tool.

Timed Automata

Counter Automata

Hybrid Automata

...

Automata
Models

Model Compiler

 (Type-Checker)

Script Engine +

XSLT Processor

System Editor

Model-Checkers

* Kronos

* Uppaal

* Hytech

* ...

Provers

* Coq

* Isabelle

* ...

Other

* Postscript

* Abstractions

* Test generator

* ...

Simulator Fig. 1 � Overview of the CALIFE plateformTranslating prediates. That step is performed using an XSL transformation [18℄. Sine everyprediate is represented as an AST, the orresponding ode an be generated searhing throughthe tree from the root to the leaves and assoiating a simple rule for ode generation with everynode enountered. These rules are de�ned using an �xsl :template� node [18℄.Modeling the synhronized produt. Several tehniques an be used to generate onsistentode :� diret translation of the synhronization table for tools able to deal diretly with synhronizationtables (CMC [5℄, COQ [6℄ or the simulator/model-heker presented in this paper for example).Code de�ning the table an be generated using a very simple XSL transformation.� translation using an injetive funtion whih assoiates a single label with every synhronizationvetor. Every transition is repliated for eah instane of its label in the table. This tehniqueis used for tools like KRONOS [10℄, HyTeh [9℄ or the previous version of the model-hekerdeveloped in ELAN. Code an be generated using an XSL transformation.� omplex translation using XML pattern mathing programming with the rewrite based Tom tool[15℄. This tehnique is used to interfae the UPPAAL tool [16℄ where new states must beintrodued for every synhronization vetor using more than one synhronization label. Complexabstrations are also made using this tehnique.4 Updatable Timed AutomataIntrodution. Updatable timed automata is a model for reative systems de�ned in [4℄ whihextends the timed automata model introdued by Alur and Dill [2℄.Let X be a �nite set of variables alled loks. A lok valuation is a mapping v : X → R+, where
R+ denotes the set of non-negative reals. The set of lok valuation is denoted (R+)X . Given
t ∈ R+, the valuation v + t is de�ned by (v + t)(x) = v(x) + t for all x ∈ X . When the ardinalityof X is n, we also identify a valuation v with the point (v(xi))1≤i≤n of (R+)

n.

Clok onstraints. The set of lok onstraints denoted by C(X), is de�ned by the followinggrammar ϕ ::= x ∼ c|x − y ∼ c|ϕ ∧ ϕ|true where x, y ∈ X , c ∈ Q, ∼∈ {<,≤, =,≥, >}, and Q isthe set of rational numbers.A k-bounded lok onstraint is a lok onstraint that involves only onstants between −k and
+k.Updates. An update is a funtion whih assigns to eah valuation a set of valuations. Updatesare restrited as follows : a simple update over a lok z has one of the following forms up ::=
z :=∼ c|z :=∼ y + c where c ∈ Q, y ∈ X and ∼∈ {<,≤, =,≥, >}.Given a valuation v and a simple update up over z, a valuation v′ is in up(v) if v′(y) = v(y) forall y 6= z, and if v′(z) satis�es (∼∈ {<,≤, =,≥, >}) :

{

v′(z) ∼ c and v′(z) ≥ 0 if up = z :=∼ c
v′(z) ∼ v(y) + d and v′(z) ≥ 0 if up = z :=∼ c + dAn update over a set of loks X is a olletion up = (upi)1≤i≤k where eah upi is a simple updateover some lok xi ∈ X . Given a valuation v, a valuation v′ is in up(v) if and only if, for all i, thelok valuation vi de�ned by

{

vi(xi) = v′(xi)
vi(y) = v(y) for y 6= xiis in upi(v). The set of updates over the set of loks X is denoted by U(X).Updatable Timed Automata. An updatable timed automata[4℄ is a tupleA = (Σ, Q, T, I, F, X)where Σ is a �nite alphabet of ations, Q is a �nite set of states alled loations, X is a �nite setof loks, T ⊂ Q × [C(X) × Σ × U(X)] × Q is a �nite set of transitions, I ⊂ Q is the subset ofinitial states, and F ⊂ Q is the subset of �nal states.Timed Automata orrespond to updatable timed automata where the only allowed atomi updatesare of the form up ::= z = 0, z ∈ X [2℄.Runs. A path ofA is a �nite sequene of onseutive transitions P = q0 −→ϕ1,a1,up1 q1 . . . qp−1 −→ϕp,ap,upp

qp where (qi−1, ϕi, ai, upi, qi) ∈ T for eah 1 ≤ i ≤ p.The path is said to be aepting if it starts in an initial state (q0 ∈ I) and ends in a �nal state(qp ∈ F).A run of the automaton through the path P is a sequene of the form < q0, v0 >−→ϕ1,a1,up1

t1
<

q1, v1 > · · · < qp−1, vp−1 >−→
ϕp,ap,upp

tp
qp where (ti)1≤i≤p is �nite non-dereasing sequene ofnon-negative reals, and (vi)1≤i≤p are lok valuations de�ned by

v0(x) = 0, ∀x ∈ X
vi−1 + (ti − ti−1) satis�es ϕi

vi ∈ upi(vi−1 + (ti − ti−1))Building automata from simpler ones. Given A1 = (Σ1, Q1, T1, I1, F1, X1) and A2 =
(Σ2, Q2, T2, I2, F2, X2), and a set Synch ⊂ (Σ1 ∪ {−}) × (Σ2 ∪ {−}) of synhronization vetors,the produt automata A1‖A2 is de�ned as (Σ1 ∪Σ2, Q1 ×Q2, T, I1 × I2, F1 × F2, X1 ∪X2) wherethe set of transitions T is de�ned by1. For (a1, a2) ∈ Synch, a1 ∈ Σ1, a2 ∈ Σ2, whenever (q1, ϕ1, a1, up1, q

′
1) ∈ T1 and (q2, ϕ2, a2, up2, q

′
2) ∈

T2, then ((q1, q2), a1, ϕ1 ∧ ϕ2, up1 ∪ up2, (q
′
1, q

′
2)) ∈ T2. For (a1,−) ∈ Synch, whenever (q1, ϕ1, a1, up1, q

′
1) ∈ T1, then for all q2 ∈ Q2, ((q1, q2), a1, ϕ1, up1, (q

′
1, q2)) ∈

T3. Symmetrially for (−, a2) ∈ Synch.

Model-heking algorithms. A zone is a subset of Rn de�ned by a lok onstraint. A k-bounded zone is a zone de�ned by a k-bounded lok onstraint. When Z is a zone, we denote by
Approxk(Z) the smallest k-bounded zone Zk suh that Z ⊂ Zk.If e = q −→ϕ,a,C:=0 q′ is a transition of a timed automaton, then Post(Z, e) denotes the set [C ←
0](ϕ ∩ Future(Z)) where Future(Z) represents the future of Z and is de�ned by Future(Z) =
{v + t|v ∈ Z and t ≥ 0}. In other words, Post(Z, e) is the set of valuations whih an be reahedby waiting in the urrent state q and then taking the transition e.The algorithm implemented in our model-heker for testing reahability properties for timedautomata (for e.g. in UPPAAL [16℄ and KRONOS [10℄, see the disussion in [4℄) is the following1 :ZoneAlgorithm(A) :Compute k the largest onstant appearing in A ;Visited := ∅ ;Waiting := {(q0, Approxk(Z0))} ;RepeatGet and Remove (q, Z) from Waiting ;If q is �nal then {Return �Yes� ;}else { if there is no (q, Z ′) ∈ V isited suh that Z ⊂ Z ′then { V isited := V isited ∪ {(q, Z)} ;

Successor := {(q′, Approxk(Post(Z, e)))|etransition from q to q′} ;
Waiting := Waiting ∪ Successor ;}}Until (Waiting = ∅) ;Return �No� ; }As proved in [4℄, a similar algorithm an be derived for updatable timed automata by replaingthe approximation Approxk operator by a more general one.DBMs. For timed automata as well as for updatable timed automata, zones an be representede�iently by matries, to get the so alled di�erene bounded matries (DBM) [7℄. The operationsneeded on zones (omputing Future(Z), [C ← 0](Z), Z ∩ Z ′ for given zones Z, Z ′) orrespond toelementary manipulations on these matries [1℄.5 Model-heking algorithms implemented in ELANThe ELAN ode of the simulator onsists mainly in rewrite rules that implement the previousalgorithm ZoneAlgorithm for udpatable timed automata.Representing zones. Observing the grammar of onstraints, lok onstraints and zones anbe parsed diretly using the following mix-�x ELAN signature :true : lause ;false : lause ;� < � : (lok int) lause ;� <= � : (lok int) lause ;� - � <= � : (lok lok int) lause ;� - � < � : (lok lok int) lause ;� : (lause) lokzone ;� ^ � : (lokzone lokzone) lokzone assoRight;1Given a timed automaton A it tests if A has an aepting run by omputing step-by-step an over-approximationof the set of reahable states and tests whether this approximation intersets the set of �nal states.

We also implemented di�erene bounded matries [7℄ : di�erene bounded matries orrespond inthe ELAN ode to terms of sort matrix[bound] where bound is a sort for oding DBM entries, and
matrix is the built-in module of ELAN system for dealing with matries.The pairs of type (q, Z) of algorithm ZoneAlgorithm orrespond then to terms of the form q/zwhere q is a list of loations, and z is a term oding the zone Z using the previous signature or aDBM.Operations on zones. To implement ZoneAlgorithm, the main operations to be realized onzones are the operators that map a zone Z to Future(Z), [C ← 0](Z) and Approxk(Z) respetively.Unlike previous prototype where these operations where realized using a Fourier-Motzkin likealgorithm [3℄, these operations are now realized by working on DBMs, transforming onstraints toDBM if needed.In the same spirit, the lassial Floyd-Warshal algorithm for omputing normal form of DBMs[7, 1℄ as well as the test of vauity of a DBM are also fully written by ELAN rewrite rules.// ELAN Signature of main operations on DBMsTimeDBM(�): (matrix[bound℄) matrix[bound℄; //Future�-ApproxDBM(�): (int matrix[bound℄) matrix[bound℄;//Approx_kInterDBM(�,�): (matrix[bound℄ matrix[bound℄) matrix[bound℄;//IntersetionProjet(�,�): (matrix[bound℄ list[lok℄) matrix[bound℄; //[C<-0℄Floyd(�,�): (matrix[bound℄ int) matrix[bound℄ ; //Canonial FormIsEmptyDBM(�,�): (matrix[bound℄ int) bool; //Empty?Transription of Automata The previous rules are independant of the automata given asinput. For rules dependant of the (updatable) timed automaton given as input, the rules aregenerated using the preproessor of the ELAN system.For example, 2n + 1 named rules and a strategy of ELAN strategy language are used for makingan automaton orresponding to a produt of n automata do a transition, using the followingELAN ode :// Transription of a synhronization produtFOR EACH N : Int SUCH THAT N:=()valueOf(size_of_Automaton_list(LA)):{rules for an_sz{s_I : state ;}_I=1...N{ss_J : state ;}_J=1...NPhi, nPhi : matrix[bound℄ ;llbl : list[label℄ ;lbl : label;ansz : an_sz ;global{[r1s_i℄ DTs(llbl,{s_j.}_j=1...(i-1) s_i.{s_j.}_j=(i+1)...N nil/Phi) =>DTs(llbl,{s_j.}_j=1...(i-1) ss_i.{s_j.}_j=(i+1)...N nil/nPhi)where lbl:=()i-th elem(llbl)if not(eq_label(NOMOVE,lbl))where ansz:=()TransitionOperator.lbl(s_i/Phi)where ss_i:=()st(ansz)where nPhi:=()zn(ansz)end[r2s_i℄ DTs(llbl,ansz) => DTs(llbl,ansz) end}_i=1...N[r3s℄ DTs(llbl,ansz) => ansz endend // of rules for an_sz

}With the following strategy built using the �rst one operator (this ELAN strategy operator appliedon a term t returns the result of the �rst strategy among its arguments on t that does not fail) :strategies for an_szimpliitFOR EACH N : Int SUCH THAT N:=()valueOf(size_of_Automaton_list(LA)) :{[℄ next_sz => {first one(r1s_I,r2s_I);}_I=1...N r3s end}Breadth-First Exploration The �rst model-heker written in ELAN was implementing aDepth-First exploration of the zone graph. In our ase, the goal is to build a model-heker whihan be used as a symboli simulator. Depth-First exploration does not ensure that the traereturned is the shortest. That's why, we implemented a breadth-�rst exploration ompliant to themodel-heking algorithm ZoneAlgorithm.From an implementation point of view, the list of visited states is stored using a hashtable priniple.This tehnique divides the time needed for exploration by 3. Requiring the ompiled ode to usethe aterm library [13℄ whih allows maximal subterm sharing and automati garbage olletionallows one to divide further the time for exploration by 2.On-the-�y model-heking. Our implementation using a rewrite engine and our transriptionof automata transitions into rewriting rules o�ers a natural way to implement On-the-�y model-heking. This means that the synhronized automata are not statially built before starting toreah the �nal state, but is onstruted on running time and only when needed.Queries The di�erent queries for reahability that are o�ered by the tool are the following(notie that wild-ards are authorized when writing starting and �nal subsets).� breadth-First(starting subset, �nal subset), where starting subset and �nal subset are of theform s/c where s is a list of loations (with possibly wildard ∗) and c is a zone. This queryreturns an exeution trae if some state of the �nal subset is reahable from a state of thestarting subset, or unreachable otherwise.� breadthFirstExploration1s(starting subset,�nal subset) does an exploration similar to theprevious query but without returning a trae : it returns only reachable or non− reachable.� ReahableIn-i-stepsFrom(starting subset) returns all the traes orresponding to states rea-hable in exatly i-steps from starting subset ; it returns that the exploration is exhaustive inless than i-steps otherwise. Similarly to the two previous queries, it is implemented using abreadth-�rst exploration in the spirit of ZoneAlgorithm.� DsbreadthFirst(starting subset) seeks for a deadlok starting from starting subset, and returnsa trae that reahes it if there is one. It returns that there is no deadlok otherwise. It is alsoimplemented using a breadth-�rst exploration.� ReahInOneStep(starting subset, �nal subset) returns true if some state of �nal subset anbe reah in one step from a starting state, false otherwise6 The CALIFE Simulator6.1 Driving ELAN from CALIFEGenerating the ELAN exeutable. As other tools integrated in the CALIFE plateform, theELAN simulator is onneted using an XML sript de�ned inside a model de�nition (assoiatedto an automata lass like Timed Automata, Extended Timed Automata or Updatable TimedAutomata). The XML sript exeuted by the CALIFE Sript Engine is in harge of :

� generating the ELAN spei�ation : this step is performed using a simple XSL[18℄ transformationdiretly translating the XML tree in a �at textual form. The use of a synhronization table inthe ELAN tool simpli�es a lot that step by avoiding to alulate synhronization labels or toabstrat the system in an equivalent form� ompiling the ELAN exeutable : in order to have the best performanes during model-hekingveri�ation, we hoose to drive a C exeutable generated by the ELAN ompiler instead ofusing the ELAN interpreter. To avoid useless ompilations (whih spend about 1 minute), wealulate a magi number from the spei�ation (using a CRC32) in order to determine when aompilation phase is neessary.Driving the ELAN exeutable. In order to make the graphial interfae independant ofELAN term forms, we de�ne a Java interfae de�ning a generi exhange protool for the simulatorengine (SimulatorEngine.java).Any Java lass following this interfae must implement the following methods :� publi Doument getNextStatesMultitraesFrom(Node xmlZone) ;� publi Doument �ndaDeadlokFrom(Node xmlZone) ;� publi Doument reahState(Node fromxmlZone, Node toxmlZone) ;As illustrated in the previous Java funtion signatures, we use XML (whih is generalized withinthe CALIFE plateform) as a data exhange format between the simulator engine and the GUI.The java funtions are in harge of exeuting the simulator engine and translating the results inXML.XML representation of an exeution trae. The XML grammar used to represent Zones(StateSyn) and Traes is de�ned by the following DTD[17℄2 :<!ELEMENT Trae (StateSyn,(Ation,StateSyn)*)><!ATTLIST Trae Label CDATA #REQUIRED><!ELEMENT StateSyn ((State)*,Diag,Glob)><!ELEMENT State (Lo,Bounds)><!ATTLIST State Id CDATA #REQUIRED><!ATTLIST State Component CDATA #REQUIRED><!ELEMENT Lo EMPTY><!ATTLIST Lo Label CDATA #REQUIRED><!ELEMENT Bounds (Bound)*><!ELEMENT Diag (Bound)*><!ELEMENT Glob (Bound)*><!ELEMENT Bound EMPTY><!ATTLIST Bound Value CDATA #REQUIRED>From a semantial point of view,� a Bound node de�nes an atomi lok onstraint (f Setion 4).� a Bounds node ontains a sequene of Bound and is loal to an automaton (non-diagonalonstraints involving only loal variables).� a Glob node ontains a sequene of Bound assoiated to non-diagonal onstraints involvingglobal (shared) variables.� a Diag node ontains all diagonal onstraints.An XML trae is made by a sequene of StateSyn nodes (de�ning a state zone) and Ation nodes(de�ning the label of the synhronization vetor used to reah the next state).6.2 A Graphial User Interfae for debugging spei�ationsOverview of the simulator As illustrated by the �gure below, the GUI is made of 4 partsshowing :2Doument Type De�nition

Fig. 2 � Overview of the simulator� In the entral part, a view of all the omponents de�ned in the synhronized produt. Theseviews are always entered on the urrent loation of all the graphs.� In the upper-left part of the window, the urrent exeution trae built by the user. Initially, thistrae only ontains the initial state. The trae is presented as a tree whih an be expanded toinspet lok valuations.� In the lower-left part, all the states reahable in " one step " from the urrent state (modulotime elapse).� The bottom part is used to easily onstrut reahability requests on the model. That an bedone by liking on loations in the graphs assoiated to automata and (optionally) adding aspei� lok onstraint.Step by Step debugging. The �rst main funtionality of a symboli simulator over automatais to be able to run a spei�ation "Step by Step". For every state reahed, a "Reahin-1-Step"term is built and rewritten by the ELAN program in a list of states to present the next states list.That kind of funtionality is available in the UPPAAL [16℄ tool whih deals with Timed Automatawith bounded variables. Our tool allows one to add non-deterministi updates (to simulate analgorithm with an input between a lower and a upper bound for example).A breakpoint as a reahability formula. In the simulator GUI, the user an also reatea reahability request by simply liking on loations and adding a onstraint over loks andvariables that the reahed state must satisfy. A "breadth-First" term is built and rewritten by theELAN program in an exeution trae (playable for the simulator) or a UNREACHABLE_STATEterm.Mixing Step by Step and Reahability allows the user :� to run the system to a spei� exeution point (breakpoint) and then to inspet the spei�ationstep by step.� to prove formula like When that state is reahed, the system has no deadlok or that state isunreahable , ...� to orient the model-heker for proving reahability formula in ases where diret model-hekingis impossible beause of a ombinatorial explosion. The user an onstrut the beginning of apotential exeution trae and then try to reah the state from that intermediary point.

7 ConlusionIn this paper we presented a tool fully written using the ELAN rewrite system, and fully integratedto the CALIFE plateform that provides �rst a model-heker with funtionalities available now-here else (for example the possiblity of model-heking updatable timed automata), and seond asimulator that provides a graphial tool for simulating produts of (extended) timed automata inthe CALIFE plateform with unique features.Furthermore, if one onsiders that the whole system was fully developed in ELAN in �ve months,by a non rewrite-system expert who neither know rewriting nor ELAN system before this exerise,it an be observed that this is also a demonstration of the gain o�ered by the use of a rewritesystem suh as ELAN for realizing quikly powerful prototypes.The full ode an be found at http ://alife.riltehnology.om in the CALIFE plateform downloa-dable area.From the modeling and veri�ation point of view, with1. its full integration into the CALIFE plateform,2. the onnetion of the CALIFE plateform with all tools for timed automata,3. the new resulting simulation failities,4. in partiular with the �exibility o�ered in the queries,we believe that the CALIFE plateform with our simulator is one of the most powerful tool forpratial veri�ation and simulation of timed automata.Référenes[1℄ R. Alur. Timed automata. In NATO-ASI Summer Shool on Veri�ation of Digital andHybrid Systems, 1998.[2℄ R. Alur and D. L. Dill. Automata for modeling real-time systems. In Automata, Languagesand Programming, 17th International Colloquium, volume 443 of Leture Notes in ComputerSiene, pages 322�335. Springer-Verlag, 16�20 July 1990.[3℄ Emmanuel Be�ara, Olivier Bournez, Hassen Kaem, and Claude Kirhner. Veri�ation oftimed automata using rewrite rules and strategies. In Nahum Dershowitz and Ariel Frank,editors, Proeedings BISFAI 2001, Seventh Biennial Bar-Ilan International Symposium onthe Foundations of Arti�ial Intelligene, Ramat-Gan, Israel, June 25�27, 2001.[4℄ Patriia Bouyer. Updatable timed automata, an algorithmi approah. Tehnial report,LSV, 2001. Available at http ://www.lsv.ens-ahan.fr/Publis.[5℄ CMC. CMC. Available at http ://www.lsv.ens-ahan.fr/�/mweb.html.[6℄ COQ. COQ. Available at http ://oq.inria.fr.[7℄ D. L. Dill. Timing assumptions and veri�ation of �nite-state onurrent systems. volume407 of Leture Note in Computer Siene, pages 197�212. Springer-Verlag, 1989.[8℄ ELAN. ELAN. Available at http ://elan.loria.fr/.[9℄ HYTECH. HyTeh. Available at http ://www-ad.ees.berkeley.edu/tah/hyteh/.[10℄ KRONOS. Kronos. Available at http ://www-verimag.imag.fr/TEMPORISE/kronos/.[11℄ Pierre-Etienne Moreau. REM (Redue Elan Mahine) : Core of the new ELAN ompiler.In Proeedings 11th Conferene on Rewriting Tehniques and Appliations, Norwih (UK),volume 1833 of Leture Notes in Computer Siene, pages 265�269. Springer-Verlag, 2000.[12℄ Pierre-Etienne Moreau and Hélène Kirhner. A ompiler for rewrite programs in assoiative-ommutative theories. In �Priniples of Delarative Programming�, number 1490 in LetureNotes in Computer Siene, pages 230�249. Springer-Verlag, September 1998. Report LORIA98-R-226.

[13℄ Pierre-Etienne Moreau and Olivier Zendra. GC2 : A Generational Conservative GarbageColletor for the ATerm Library, 2004. To appear in Journal of Logi and Algebrai Pro-gramming.[14℄ Bertrand Tavernier. Calife : a generi graphial user interfae for automata tools. In FourthWorkshop on Language Desriptions, Tools and Appliations (LDTA 2004), April 2004.[15℄ TOM. TOM. Available at http ://tom.loria.fr/.[16℄ UPPAAL. UPPAAL. Available at http ://www.uppaal.om/.[17℄ XML. Extensible Markup Language (XML) 1.0. W3C Reommendation, Otober 6 2000.http ://www.w3.org/TR/2000/REC-xml-20001006.[18℄ XSL. Extensible Stylesheet Language (XSL) Version 1.0. W3C Reommendation, Otober 152001. http ://www.w3.org/TR/xsl/.

