
Véri�
ation de propriétés quantitatives et fon
tionnellesAnalysis and VERi�
ation for the Reliability Of Embedded Systems
Lot 3.1Animation

Symboli
 Simulation and FormalVeri�
ation of Updatable TimedAutomata using a Rewrite System
Des
ription : Simulateur d'automates Temporisés étendus Averroes.Auteur(s) : Olivier Bournez, Téren
e Soussan,Bertrand Tavernier,Référen
e : Averroes /Lot 3.1 /Fourniture 1 /V1.0Date : 14 mars 2006Statut : validéVersion : 1.0
Réseau National des Te
hnologies Logi
iellesProjet subventionné par le Ministère de la Re
her
he et des Nouvelles Te
hnologiesCRIL Te
hnology, Fran
e Télé
om R&D, INRIA-Futurs, LaBRI (Univ. de Bordeaux � CNRS),LIX (É
ole Polyte
hnique, CNRS) LORIA, LRI (Univ. de Paris Sud � CNRS), LSV (ENS deCa
han � CNRS)



avril 2003 V 0.1 version initiale14 mars 2006 V 1.0 mise au format averroesTable des matières1 Introdu
tion 22 The ELAN system 33 The CALIFE plateform 34 Updatable Timed Automata 45 Model-
he
king algorithms implemented in ELAN 66 The CALIFE Simulator 86.1 Driving ELAN from CALIFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.2 A Graphi
al User Interfa
e for debugging spe
i�
ations . . . . . . . . . . . . . . . 97 Con
lusion 11



RésuméIn the paper we present a tool, fully developed using rewrite rules and strategies in the ELAN sys-tem, whi
h supports symboli
 simulation and formal veri�
ation of rea
hability properties on rea
-tive timed systems. Systems proved or simulated are modeled as a syn
hronized produ
t of Upda-table Timed Automata (Timed Automata extended with bounded variables and non-deterministi
updates).The tool is 
onne
ted to the CALIFE plateform whi
h allows the design of systems in a graphi
alway. A dedi
ated graphi
al user interfa
e is 
onne
ted to the plateform for spe
ifying rea
habilityrequests by simple 
li
ks. Using that interfa
e, a simulation tra
e 
an be built by swit
hing between"step by step" and rea
hability requests. This pro
ess allows one to debug a spe
i�
ation with akind of breakpoint modeled by a rea
hability formula.



1 Introdu
tionOverview. The CALIFE v3.0 plateform is an environment developed under the GPL li
ense(freely downloadable at http ://
alife.
rilte
hnology.
om) allowing the spe
i�
ation and formal va-lidation of systems des
ribed as a syn
hronized produ
t of (extended) timed automata [14℄.The goal of this plateform is not to provide another veri�
ation tool but to interfa
e existing toolsworking on automata in a unique graphi
al and powerful environment.The CALIFE plateform is 
omposed of several layers :1. a system editor whi
h allows the user to model in graphi
 form a system des
ribed as asyn
hronized produ
t of timed automata ;2. a model 
ompiler that 
he
ks the 
onsisten
y of the input ;3. a s
ript engine that generates datas and exe
utes one of the interfa
ed tool.Among the interfa
ed tools there are CMC[5℄, COQ[6℄, HyTe
h[9℄, KRONOS[10℄, UPPAAL[16℄, anda model-
he
ker built using ELAN rewrite system [3℄.Considering that a simulator was missing to CALIFE graphi
al interfa
e, it was proposed to buildthis simulator by adapting this latter model-
he
ker. Indeed, the 
ode needed to realize a simulatoris 
lose to the 
ode used by model-
he
kers, and unlike all the other tools, the 
ode of this lattermodel 
he
ker is not hard-
oded in a 
lassi
al imperative programming language but written usinga set of high-level rules that are exe
uted using the ELAN rewrite system, hen
e providing 
learlya great �exibility.That is why it was de
ided to start from the model-
he
ker of [3℄ (about 1000 lines, tested onlyfew simple timed automata) to build a new model-
he
ker fully usable as a simulator tool by theCALIFE plateform. The new tool is now about 5000 lines.This paper. This paper fo
us on des
ribing1. the extensions that have been added to the previous model-
he
ker 
on
erning the 
lass ofautomata that 
an now be model-
he
ked ;2. the extensions that have been added to the previous model-
he
ker 
on
erning possiblequeries that allow one to use it as simulator ; for the CALIFE plateform3. the 
onnexion of the new model-
he
ker with the CALIFE plateform.The new model-
he
ker. Compared to the tool des
ribed in [3℄, the new model-
he
ker/simulatornow o�ers :1. the possibility of de�ning produ
ts of automata syn
hronized by syn
hronization ve
tors(the most general and powerful way to de�ne syn
hronization) ;2. the possibility of qualifying some lo
ations as urgent ;3. the possibility of doing depth-�rst, breadth-�rst, 
on
entri
 explorations in order to get forexample all the states rea
hable in some �xed number of dis
rete transitions ;4. the possibility of obtaining a tra
e of a given exe
ution as well as the list of all labels usedin that transitions ;5. the possibility to use wild
ards in the des
ription of states tested for rea
hability as well asdete
ting deadlo
ks ;6. the possibility of 
onsidering automata with integer bounded variables and with very generalupdates.The latter point, 
on
erning integer variables is very important, sin
e it transforms our tools notonly in a model 
he
ker for 
lassi
al timed automata [2℄, but also in a model 
he
ker for theupdatable timed automata model presented in [4℄. As far as we know, this is the �rst simulatorwhi
h is really able to deal with this very general model.



Organization. In Se
tion 2 we re
all brie�y the ELAN system. In Se
tion 3 we present theCALIFE plateform. Updatable timed automata and the asso
iated model-
he
king algorithms fortesting rea
hability properties are re
alled in Se
tion 4. In Se
tion 5, we des
ribe the way thesealgorithms have been implemented using rewrite rules and strategies in the ELAN system. InSe
tion 6, we explain how the model-
he
ker is 
onne
ted to the CALIFE plateform in order toget a simulator, and we dis
uss the resulting fun
tionalities for CALIFE plateform users. Se
tion7 is a 
on
lusion.2 The ELAN systemThe simulator for the CALIFE plateform is built using the rewrite system ELAN.The ELAN system [8℄ takes from fun
tional programming the 
on
ept of abstra
t data typesand the fun
tion evaluation prin
iple based on rewriting. In ELAN, a program is a set of labeled
onditional rewrite rules with lo
al a�e
tations
ℓ : l ⇒ r if c where wInformally, rewriting a ground term t 
onsists of sele
ting a rule whose left-hand side (also 
alledpattern) mat
hes the 
urrent term (t), or a subterm (t|ω), 
omputing a substitution σ that givesthe instantiation of rule variable (lσ = t|ω), and if instantiated 
ondition c is satis�ed (cσ redu
esto true), applying substitution σ enri
hed by lo
al a�e
tation w to the right-hand side to buildthe redu
ed term.One of the main originalities of the ELAN language is to provide strategies as �rst 
lass obje
tsof the language. This allows the programmer to spe
ify in a pre
ise and natural way the 
ontrolon the rule appli
ations.The full ELAN system in
ludes a prepro
essor, an interpreter, a 
ompiler, and standard libraries[8℄. The ELAN 
ompiler is able to generate 
ode that applies up to 15 millions rewrite rules perse
ond on typi
al examples where no non-determinism is involved and typi
ally between 100 000and one million 
ontrolled rewrite per se
ond in presen
e of asso
iative-
ommutative operatorsand non-determinism [11, 12℄.3 The CALIFE plateformThe simulator/model-
he
ker presented in this paper is fully integrated to the CALIFE plateform.The CALIFE plateform is a framework for modeling and proving rea
tive timed systems. It workson several automata models (transition systems, timed automata, 
ounter automata,...) and allowsone to de�ne new models and interfa
e new tools. Several tools are 
urrently interfa
ed with theplateform (UPPAAL [16℄, HyTe
h [9℄, KRONOS [10℄, CMC [5℄, COQ [6℄,...) and a unique timed-automata system modeled under the CALIFE System Editor 
an be exported to all these tools.XML Automata. In the plateform, automata are des
ribed using the XML standard [17℄. Thekey of interoperability between tools is to represent every predi
ate as an Abstra
t Syntax Tree(AST in short) where :� the root is a Guard, Invariant, Updates or A
tivity node ;� the leaves are Variable, Parameter or Constant nodes ;� the intermediary nodes are asso
iated with fun
tions (but some usual operators are pretty-printed for �exibility reasons).Of 
ourse, that me
hanism is totally hidden to the user who de�nes automata in a graphi
al way.These synta
ti
 automata de�nitions allow one to easily generate target 
ode for interfa
ed tools.The pro
ess of the generation of target 
ode 
an be slitted into two parts : generating the predi
atesin the target language and modeling the produ
t of automata in a 
onsistent way with respe
t tothe semanti
s of syn
hronization in the tool.
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Simulator  Fig. 1 � Overview of the CALIFE plateformTranslating predi
ates. That step is performed using an XSL transformation [18℄. Sin
e everypredi
ate is represented as an AST, the 
orresponding 
ode 
an be generated sear
hing throughthe tree from the root to the leaves and asso
iating a simple rule for 
ode generation with everynode en
ountered. These rules are de�ned using an �xsl :template� node [18℄.Modeling the syn
hronized produ
t. Several te
hniques 
an be used to generate 
onsistent
ode :� dire
t translation of the syn
hronization table for tools able to deal dire
tly with syn
hronizationtables (CMC [5℄, COQ [6℄ or the simulator/model-
he
ker presented in this paper for example).Code de�ning the table 
an be generated using a very simple XSL transformation.� translation using an inje
tive fun
tion whi
h asso
iates a single label with every syn
hronizationve
tor. Every transition is repli
ated for ea
h instan
e of its label in the table. This te
hniqueis used for tools like KRONOS [10℄, HyTe
h [9℄ or the previous version of the model-
he
kerdeveloped in ELAN. Code 
an be generated using an XSL transformation.� 
omplex translation using XML pattern mat
hing programming with the rewrite based Tom tool[15℄. This te
hnique is used to interfa
e the UPPAAL tool [16℄ where new states must beintrodu
ed for every syn
hronization ve
tor using more than one syn
hronization label. Complexabstra
tions are also made using this te
hnique.4 Updatable Timed AutomataIntrodu
tion. Updatable timed automata is a model for rea
tive systems de�ned in [4℄ whi
hextends the timed automata model introdu
ed by Alur and Dill [2℄.Let X be a �nite set of variables 
alled 
lo
ks. A 
lo
k valuation is a mapping v : X → R+, where
R+ denotes the set of non-negative reals. The set of 
lo
k valuation is denoted (R+)X . Given
t ∈ R+, the valuation v + t is de�ned by (v + t)(x) = v(x) + t for all x ∈ X . When the 
ardinalityof X is n, we also identify a valuation v with the point (v(xi))1≤i≤n of (R+)

n.



Clo
k 
onstraints. The set of 
lo
k 
onstraints denoted by C(X), is de�ned by the followinggrammar ϕ ::= x ∼ c|x − y ∼ c|ϕ ∧ ϕ|true where x, y ∈ X , c ∈ Q, ∼∈ {<,≤, =,≥, >}, and Q isthe set of rational numbers.A k-bounded 
lo
k 
onstraint is a 
lo
k 
onstraint that involves only 
onstants between −k and
+k.Updates. An update is a fun
tion whi
h assigns to ea
h valuation a set of valuations. Updatesare restri
ted as follows : a simple update over a 
lo
k z has one of the following forms up ::=
z :=∼ c|z :=∼ y + c where c ∈ Q, y ∈ X and ∼∈ {<,≤, =,≥, >}.Given a valuation v and a simple update up over z, a valuation v′ is in up(v) if v′(y) = v(y) forall y 6= z, and if v′(z) satis�es (∼∈ {<,≤, =,≥, >}) :

{

v′(z) ∼ c and v′(z) ≥ 0 if up = z :=∼ c
v′(z) ∼ v(y) + d and v′(z) ≥ 0 if up = z :=∼ c + dAn update over a set of 
lo
ks X is a 
olle
tion up = (upi)1≤i≤k where ea
h upi is a simple updateover some 
lo
k xi ∈ X . Given a valuation v, a valuation v′ is in up(v) if and only if, for all i, the
lo
k valuation vi de�ned by

{

vi(xi) = v′(xi)
vi(y) = v(y) for y 6= xiis in upi(v). The set of updates over the set of 
lo
ks X is denoted by U(X).Updatable Timed Automata. An updatable timed automata[4℄ is a tupleA = (Σ, Q, T, I, F, X)where Σ is a �nite alphabet of a
tions, Q is a �nite set of states 
alled lo
ations, X is a �nite setof 
lo
ks, T ⊂ Q × [C(X) × Σ × U(X)] × Q is a �nite set of transitions, I ⊂ Q is the subset ofinitial states, and F ⊂ Q is the subset of �nal states.Timed Automata 
orrespond to updatable timed automata where the only allowed atomi
 updatesare of the form up ::= z = 0, z ∈ X [2℄.Runs. A path ofA is a �nite sequen
e of 
onse
utive transitions P = q0 −→ϕ1,a1,up1 q1 . . . qp−1 −→ϕp,ap,upp

qp where (qi−1, ϕi, ai, upi, qi) ∈ T for ea
h 1 ≤ i ≤ p.The path is said to be a

epting if it starts in an initial state (q0 ∈ I) and ends in a �nal state(qp ∈ F ).A run of the automaton through the path P is a sequen
e of the form < q0, v0 >−→ϕ1,a1,up1

t1
<

q1, v1 > · · · < qp−1, vp−1 >−→
ϕp,ap,upp

tp
qp where (ti)1≤i≤p is �nite non-de
reasing sequen
e ofnon-negative reals, and (vi)1≤i≤p are 
lo
k valuations de�ned by







v0(x) = 0, ∀x ∈ X
vi−1 + (ti − ti−1) satis�es ϕi

vi ∈ upi(vi−1 + (ti − ti−1))Building automata from simpler ones. Given A1 = (Σ1, Q1, T1, I1, F1, X1) and A2 =
(Σ2, Q2, T2, I2, F2, X2), and a set Synch ⊂ (Σ1 ∪ {−}) × (Σ2 ∪ {−}) of syn
hronization ve
tors,the produ
t automata A1‖A2 is de�ned as (Σ1 ∪Σ2, Q1 ×Q2, T, I1 × I2, F1 × F2, X1 ∪X2) wherethe set of transitions T is de�ned by1. For (a1, a2) ∈ Synch, a1 ∈ Σ1, a2 ∈ Σ2, whenever (q1, ϕ1, a1, up1, q

′
1) ∈ T1 and (q2, ϕ2, a2, up2, q

′
2) ∈

T2, then ((q1, q2), a1, ϕ1 ∧ ϕ2, up1 ∪ up2, (q
′
1, q

′
2)) ∈ T2. For (a1,−) ∈ Synch, whenever (q1, ϕ1, a1, up1, q

′
1) ∈ T1, then for all q2 ∈ Q2, ((q1, q2), a1, ϕ1, up1, (q

′
1, q2)) ∈

T3. Symmetri
ally for (−, a2) ∈ Synch.



Model-
he
king algorithms. A zone is a subset of Rn de�ned by a 
lo
k 
onstraint. A k-bounded zone is a zone de�ned by a k-bounded 
lo
k 
onstraint. When Z is a zone, we denote by
Approxk(Z) the smallest k-bounded zone Zk su
h that Z ⊂ Zk.If e = q −→ϕ,a,C:=0 q′ is a transition of a timed automaton, then Post(Z, e) denotes the set [C ←
0](ϕ ∩ Future(Z)) where Future(Z) represents the future of Z and is de�ned by Future(Z) =
{v + t|v ∈ Z and t ≥ 0}. In other words, Post(Z, e) is the set of valuations whi
h 
an be rea
hedby waiting in the 
urrent state q and then taking the transition e.The algorithm implemented in our model-
he
ker for testing rea
hability properties for timedautomata (for e.g. in UPPAAL [16℄ and KRONOS [10℄, see the dis
ussion in [4℄) is the following1 :ZoneAlgorithm(A) :Compute k the largest 
onstant appearing in A ;Visited := ∅ ;Waiting := {(q0, Approxk(Z0))} ;RepeatGet and Remove (q, Z) from Waiting ;If q is �nal then {Return �Yes� ;}else { if there is no (q, Z ′) ∈ V isited su
h that Z ⊂ Z ′then { V isited := V isited ∪ {(q, Z)} ;

Successor := {(q′, Approxk(Post(Z, e)))|etransition from q to q′} ;
Waiting := Waiting ∪ Successor ;}}Until (Waiting = ∅) ;Return �No� ; }As proved in [4℄, a similar algorithm 
an be derived for updatable timed automata by repla
ingthe approximation Approxk operator by a more general one.DBMs. For timed automata as well as for updatable timed automata, zones 
an be representede�
iently by matri
es, to get the so 
alled di�eren
e bounded matri
es (DBM) [7℄. The operationsneeded on zones (
omputing Future(Z), [C ← 0](Z), Z ∩ Z ′ for given zones Z, Z ′) 
orrespond toelementary manipulations on these matri
es [1℄.5 Model-
he
king algorithms implemented in ELANThe ELAN 
ode of the simulator 
onsists mainly in rewrite rules that implement the previousalgorithm ZoneAlgorithm for udpatable timed automata.Representing zones. Observing the grammar of 
onstraints, 
lo
k 
onstraints and zones 
anbe parsed dire
tly using the following mix-�x ELAN signature :true : 
lause ;false : 
lause ;� < � : ( 
lo
k int ) 
lause ;� <= � : ( 
lo
k int ) 
lause ;� - � <= � : ( 
lo
k 
lo
k int ) 
lause ;� - � < � : ( 
lo
k 
lo
k int ) 
lause ;� : ( 
lause ) 
lo
kzone ;� ^ � : ( 
lo
kzone 
lo
kzone ) 
lo
kzone asso
Right;1Given a timed automaton A it tests if A has an a

epting run by 
omputing step-by-step an over-approximationof the set of rea
hable states and tests whether this approximation interse
ts the set of �nal states.



We also implemented di�eren
e bounded matri
es [7℄ : di�eren
e bounded matri
es 
orrespond inthe ELAN 
ode to terms of sort matrix[bound] where bound is a sort for 
oding DBM entries, and
matrix is the built-in module of ELAN system for dealing with matri
es.The pairs of type (q, Z) of algorithm ZoneAlgorithm 
orrespond then to terms of the form q/zwhere q is a list of lo
ations, and z is a term 
oding the zone Z using the previous signature or aDBM.Operations on zones. To implement ZoneAlgorithm, the main operations to be realized onzones are the operators that map a zone Z to Future(Z), [C ← 0](Z) and Approxk(Z) respe
tively.Unlike previous prototype where these operations where realized using a Fourier-Motzkin likealgorithm [3℄, these operations are now realized by working on DBMs, transforming 
onstraints toDBM if needed.In the same spirit, the 
lassi
al Floyd-Warshal algorithm for 
omputing normal form of DBMs[7, 1℄ as well as the test of va
uity of a DBM are also fully written by ELAN rewrite rules.// ELAN Signature of main operations on DBMsTimeDBM(�): (matrix[bound℄) matrix[bound℄; //Future�-ApproxDBM(�): (int matrix[bound℄) matrix[bound℄;//Approx_kInterDBM(�,�): (matrix[bound℄ matrix[bound℄) matrix[bound℄;//Interse
tionProje
t(�,�): (matrix[bound℄ list[
lo
k℄) matrix[bound℄; //[C<-0℄Floyd(�,�): (matrix[bound℄ int) matrix[bound℄ ; //Canoni
al FormIsEmptyDBM(�,�): (matrix[bound℄ int) bool; //Empty?Trans
ription of Automata The previous rules are independant of the automata given asinput. For rules dependant of the (updatable) timed automaton given as input, the rules aregenerated using the prepro
essor of the ELAN system.For example, 2n + 1 named rules and a strategy of ELAN strategy language are used for makingan automaton 
orresponding to a produ
t of n automata do a transition, using the followingELAN 
ode :// Trans
ription of a syn
hronization produ
tFOR EACH N : Int SUCH THAT N:=()valueOf(size_of_Automaton_list(LA)):{rules for 
an_sz{s_I : state ;}_I=1...N{ss_J : state ;}_J=1...NPhi, nPhi : matrix[bound℄ ;llbl : list[label℄ ;lbl : label;
ansz : 
an_sz ;global{[r1s_i℄ DTs(llbl,{s_j.}_j=1...(i-1) s_i.{s_j.}_j=(i+1)...N nil/Phi) =>DTs(llbl,{s_j.}_j=1...(i-1) ss_i.{s_j.}_j=(i+1)...N nil/nPhi)where lbl:=()i-th elem(llbl)if not(eq_label(NOMOVE,lbl))where 
ansz:=()TransitionOperator.lbl(s_i/Phi)where ss_i:=()st(
ansz)where nPhi:=()zn(
ansz)end[r2s_i℄ DTs(llbl,
ansz) => DTs(llbl,
ansz) end}_i=1...N[r3s℄ DTs(llbl,
ansz) => 
ansz endend // of rules for 
an_sz



}With the following strategy built using the �rst one operator (this ELAN strategy operator appliedon a term t returns the result of the �rst strategy among its arguments on t that does not fail) :strategies for 
an_szimpli
itFOR EACH N : Int SUCH THAT N:=()valueOf(size_of_Automaton_list(LA)) :{[ ℄ next_sz => {first one(r1s_I,r2s_I);}_I=1...N r3s end}Breadth-First Exploration The �rst model-
he
ker written in ELAN was implementing aDepth-First exploration of the zone graph. In our 
ase, the goal is to build a model-
he
ker whi
h
an be used as a symboli
 simulator. Depth-First exploration does not ensure that the tra
ereturned is the shortest. That's why, we implemented a breadth-�rst exploration 
ompliant to themodel-
he
king algorithm ZoneAlgorithm.From an implementation point of view, the list of visited states is stored using a hashtable prin
iple.This te
hnique divides the time needed for exploration by 3. Requiring the 
ompiled 
ode to usethe aterm library [13℄ whi
h allows maximal subterm sharing and automati
 garbage 
olle
tionallows one to divide further the time for exploration by 2.On-the-�y model-
he
king. Our implementation using a rewrite engine and our trans
riptionof automata transitions into rewriting rules o�ers a natural way to implement On-the-�y model-
he
king. This means that the syn
hronized automata are not stati
ally built before starting torea
h the �nal state, but is 
onstru
ted on running time and only when needed.Queries The di�erent queries for rea
hability that are o�ered by the tool are the following(noti
e that wild-
ards are authorized when writing starting and �nal subsets).� breadth-First(starting subset, �nal subset), where starting subset and �nal subset are of theform s/c where s is a list of lo
ations (with possibly wild
ard ∗) and c is a zone. This queryreturns an exe
ution tra
e if some state of the �nal subset is rea
hable from a state of thestarting subset, or unreachable otherwise.� breadthFirstExploration1s(starting subset,�nal subset) does an exploration similar to theprevious query but without returning a tra
e : it returns only reachable or non− reachable.� Rea
hableIn-i-stepsFrom(starting subset) returns all the tra
es 
orresponding to states rea-
hable in exa
tly i-steps from starting subset ; it returns that the exploration is exhaustive inless than i-steps otherwise. Similarly to the two previous queries, it is implemented using abreadth-�rst exploration in the spirit of ZoneAlgorithm.� DsbreadthFirst(starting subset) seeks for a deadlo
k starting from starting subset, and returnsa tra
e that rea
hes it if there is one. It returns that there is no deadlo
k otherwise. It is alsoimplemented using a breadth-�rst exploration.� Rea
hInOneStep(starting subset, �nal subset) returns true if some state of �nal subset 
anbe rea
h in one step from a starting state, false otherwise6 The CALIFE Simulator6.1 Driving ELAN from CALIFEGenerating the ELAN exe
utable. As other tools integrated in the CALIFE plateform, theELAN simulator is 
onne
ted using an XML s
ript de�ned inside a model de�nition (asso
iatedto an automata 
lass like Timed Automata, Extended Timed Automata or Updatable TimedAutomata). The XML s
ript exe
uted by the CALIFE S
ript Engine is in 
harge of :



� generating the ELAN spe
i�
ation : this step is performed using a simple XSL[18℄ transformationdire
tly translating the XML tree in a �at textual form. The use of a syn
hronization table inthe ELAN tool simpli�es a lot that step by avoiding to 
al
ulate syn
hronization labels or toabstra
t the system in an equivalent form� 
ompiling the ELAN exe
utable : in order to have the best performan
es during model-
he
kingveri�
ation, we 
hoose to drive a C exe
utable generated by the ELAN 
ompiler instead ofusing the ELAN interpreter. To avoid useless 
ompilations (whi
h spend about 1 minute), we
al
ulate a magi
 number from the spe
i�
ation (using a CRC32) in order to determine when a
ompilation phase is ne
essary.Driving the ELAN exe
utable. In order to make the graphi
al interfa
e independant ofELAN term forms, we de�ne a Java interfa
e de�ning a generi
 ex
hange proto
ol for the simulatorengine (SimulatorEngine.java).Any Java 
lass following this interfa
e must implement the following methods :� publi
 Do
ument getNextStatesMultitra
esFrom(Node xmlZone) ;� publi
 Do
ument �ndaDeadlo
kFrom(Node xmlZone) ;� publi
 Do
ument rea
hState(Node fromxmlZone, Node toxmlZone) ;As illustrated in the previous Java fun
tion signatures, we use XML (whi
h is generalized withinthe CALIFE plateform) as a data ex
hange format between the simulator engine and the GUI.The java fun
tions are in 
harge of exe
uting the simulator engine and translating the results inXML.XML representation of an exe
ution tra
e. The XML grammar used to represent Zones(StateSyn
) and Tra
es is de�ned by the following DTD[17℄2 :<!ELEMENT Tra
e (StateSyn
,(A
tion,StateSyn
)*)><!ATTLIST Tra
e Label CDATA #REQUIRED><!ELEMENT StateSyn
 ((State)*,Diag,Glob)><!ELEMENT State (Lo
,Bounds)><!ATTLIST State Id CDATA #REQUIRED><!ATTLIST State Component CDATA #REQUIRED><!ELEMENT Lo
 EMPTY><!ATTLIST Lo
 Label CDATA #REQUIRED><!ELEMENT Bounds (Bound)*><!ELEMENT Diag (Bound)*><!ELEMENT Glob (Bound)*><!ELEMENT Bound EMPTY><!ATTLIST Bound Value CDATA #REQUIRED>From a semanti
al point of view,� a Bound node de�nes an atomi
 
lo
k 
onstraint (
f Se
tion 4).� a Bounds node 
ontains a sequen
e of Bound and is lo
al to an automaton (non-diagonal
onstraints involving only lo
al variables).� a Glob node 
ontains a sequen
e of Bound asso
iated to non-diagonal 
onstraints involvingglobal (shared) variables.� a Diag node 
ontains all diagonal 
onstraints.An XML tra
e is made by a sequen
e of StateSyn
 nodes (de�ning a state zone) and A
tion nodes(de�ning the label of the syn
hronization ve
tor used to rea
h the next state).6.2 A Graphi
al User Interfa
e for debugging spe
i�
ationsOverview of the simulator As illustrated by the �gure below, the GUI is made of 4 partsshowing :2Do
ument Type De�nition



Fig. 2 � Overview of the simulator� In the 
entral part, a view of all the 
omponents de�ned in the syn
hronized produ
t. Theseviews are always 
entered on the 
urrent lo
ation of all the graphs.� In the upper-left part of the window, the 
urrent exe
ution tra
e built by the user. Initially, thistra
e only 
ontains the initial state. The tra
e is presented as a tree whi
h 
an be expanded toinspe
t 
lo
k valuations.� In the lower-left part, all the states rea
hable in " one step " from the 
urrent state (modulotime elapse).� The bottom part is used to easily 
onstru
t rea
hability requests on the model. That 
an bedone by 
li
king on lo
ations in the graphs asso
iated to automata and (optionally) adding aspe
i�
 
lo
k 
onstraint.Step by Step debugging. The �rst main fun
tionality of a symboli
 simulator over automatais to be able to run a spe
i�
ation "Step by Step". For every state rea
hed, a "Rea
hin-1-Step"term is built and rewritten by the ELAN program in a list of states to present the next states list.That kind of fun
tionality is available in the UPPAAL [16℄ tool whi
h deals with Timed Automatawith bounded variables. Our tool allows one to add non-deterministi
 updates (to simulate analgorithm with an input between a lower and a upper bound for example).A breakpoint as a rea
hability formula. In the simulator GUI, the user 
an also 
reatea rea
hability request by simply 
li
king on lo
ations and adding a 
onstraint over 
lo
ks andvariables that the rea
hed state must satisfy. A "breadth-First" term is built and rewritten by theELAN program in an exe
ution tra
e (playable for the simulator) or a UNREACHABLE_STATEterm.Mixing Step by Step and Rea
hability allows the user :� to run the system to a spe
i�
 exe
ution point (breakpoint) and then to inspe
t the spe
i�
ationstep by step.� to prove formula like When that state is rea
hed, the system has no deadlo
k or that state isunrea
hable , ...� to orient the model-
he
ker for proving rea
hability formula in 
ases where dire
t model-
he
kingis impossible be
ause of a 
ombinatorial explosion. The user 
an 
onstru
t the beginning of apotential exe
ution tra
e and then try to rea
h the state from that intermediary point.



7 Con
lusionIn this paper we presented a tool fully written using the ELAN rewrite system, and fully integratedto the CALIFE plateform that provides �rst a model-
he
ker with fun
tionalities available now-here else (for example the possiblity of model-
he
king updatable timed automata), and se
ond asimulator that provides a graphi
al tool for simulating produ
ts of (extended) timed automata inthe CALIFE plateform with unique features.Furthermore, if one 
onsiders that the whole system was fully developed in ELAN in �ve months,by a non rewrite-system expert who neither know rewriting nor ELAN system before this exer
ise,it 
an be observed that this is also a demonstration of the gain o�ered by the use of a rewritesystem su
h as ELAN for realizing qui
kly powerful prototypes.The full 
ode 
an be found at http ://
alife.
rilte
hnology.
om in the CALIFE plateform downloa-dable area.From the modeling and veri�
ation point of view, with1. its full integration into the CALIFE plateform,2. the 
onne
tion of the CALIFE plateform with all tools for timed automata,3. the new resulting simulation fa
ilities,4. in parti
ular with the �exibility o�ered in the queries,we believe that the CALIFE plateform with our simulator is one of the most powerful tool forpra
ti
al veri�
ation and simulation of timed automata.Référen
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